
Power-Aware Technology Mapping for LUT-Based FPGAs

Jason H. Anderson and Farid N. Najm
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada M5S 3G4

janders@eecg.toronto.edu, f.najm@utoronto.ca

Abstract

We present a new power-aware technology mapping
technique for LUT-based FPGAs which aims to keep nets
with high switching activity out of the FPGA routing
network and takes an activity-conscious approach to logic
replication. Logic replication is known to be crucial for
optimizing depth in technology mapping; an important
contribution of our work is to recognize the effect of logic
replication on circuit structure and to show its
consequences on power. In an experimental study, we
examine the power characteristics of mapping solutions
generated by several publicly available technology
mappers. Results show that for a specific depth of
mapping solution, the power consumption can vary
considerably, depending on the technology mapping
approach used. Furthermore, results show that our
proposed mapping algorithm leads to circuits with
substantially less power dissipation than previous
approaches.

1. Introduction

Field-programmable gate arrays (FPGAs) are a popular
choice for digital circuit implementation because of their
fast turnaround time, growing density and speed, and
relatively low cost. State-of-the-art FPGAs have the
capacity to implement milli ons of gates [1] and their
application has migrated from being primarily a
prototyping platform to their use in low to medium volume
production designs. Despite continuing technology scaling
and decreasing supply voltage values, the power consumed
by the largest FPGA devices is increasing, with the power
of the largest chips now being measured in watts [2].
Reducing the power consumption of FPGAs is beneficial
as it leads to lower packaging and cooling costs as well as
improves reliabilit y. Additionally, if FPGAs are to be
used more pervasively in portable battery-powered
applications, low power consumption is essential.

The logic blocks in modern FPGAs are comprised of
one or more look-up-tables (LUTs), registers, as well as
arithmetic and other circuitry. An important step in the
FPGA CAD flow is technology mapping, which involves

transforming a circuit from a generic form into a network
of LUTs. LUT-based technology mapping has been
studied extensively in recent years, with most research
being focused on optimizing the area [3] and/or the depth
[4,5] of the mapped circuit. Power represents the third,
largely unexplored axis along which an FPGA design
should be optimized.

Our focus in this paper is on optimizing depth and
power in LUT-based technology mapping. We present a
new technology mapping algorithm that allows one to
explore the depth/power curve and to trade-off one
criterion for the other. The paper is organized as follows:
In the remainder of this section, we review the sources of
power dissipation in FPGAs and briefly discuss previously
published power-aware technology mapping algorithms.
We present necessary background material in Section 2.
Our technology mapping approach is described in Section
3. Section 4 presents our experimental study and results.
Conclusions and suggestions for future work are offered in
Section 5.

1.1. FPGA Power Dissipation

Several studies of FPGA power consumption have
appeared recently in the literature [6,2]. These works have
shown that power dissipation in FPGA devices is
predominantly in the programmable interconnection
network. In the Xili nx Virtex-II [1] family for example, it
was reported that between 50–70% of total power is
dissipated in the interconnect, with the remainder being
dissipated in the clocking, logic and I/O blocks [6]. This
breakdown differs substantially from custom ASIC
technology in which clock distribution often dominates
power consumption [7]. The difference in the sources of
power dissipation between these two technologies lies in
the composition of their interconnect structures: FPGA
interconnect consists of pre-fabricated wire segments of
various lengths, with used and unused routing switches
attached to each wire segment.

The primary components of power dissipation in digital
CMOS circuits are transistor leakage current (static
power), short-circuit current and the charging and
discharging of capacitance [7]. Leakage and short-circuit

current presently comprise only a small fraction of total
FPGA power dissipation [6]. The majority of power
dissipation results from charging and discharging
capacitance and is characterized by:

2

2

1
VfCP

nets i
iavg i
⋅∑ ⋅=

∈
(1)

where Pavg represents average power consumption, Ci

represents the load capacitance of a net i, fi represents the
average toggle rate of net i (the net switching activity) and
V is the voltage supply.

Our focus in this paper is on reducing the power
dissipated in the FPGA interconnection network as
computed by (1). In the remainder of the paper, we use
the term power to refer to this interconnect power.

1.2. Power-Aware Technology Mapping

A number of power-aware technology mapping
algorithms for LUT-based FPGAs have been proposed in
recent years. Farrahi and Sarrafzadeh [8] presented a
heuristic algorithm that minimized power at the expense of
both area and depth. Their algorithm provides a 14%
improvement over an algorithm that solely optimizes area.
Li, Mak and Katkoori [9] described a power-aware
mapping algorithm that produces depth-optimal mapping
solutions and optimizes power in portions of a circuit that
are not depth critical. Wang et al. [10] described an
algorithm that focused on optimizing both power and area.
They compared their approach to Farrahi and
Sarrafzadeh’s and found their approach able to reduce
power by an additional 14%, while at the same time using
fewer LUTs. These prior works each offer a “point
solution” to power optimization in technology mapping; to
our knowledge, no work has examined how power can be
traded-off with other optimization criteria.

2. Preliminaries

Before presenting our technology mapping algorithm,
we review some terminology. In this paper, we use
terminology similar to that found in [4].

The combinational part of a logic circuit can be
represented as a Boolean network, which is a directed
acyclic graph (DAG) in which each node represents a
single-output logic function and edges between nodes
represent input/output dependencies between the
corresponding logic functions. A primary input node is a
node with an in-degree of 0; a primary output node has an
out-degree of 0. For a node z in a circuit DAG, let input(z)
represent the set of nodes that are fanins of z and output(z)
represent the nodes that are fanouts of z. For a

subgraph, H, of a DAG, let input(H) represent the set of
nodes outside of H that are fanins of nodes in H; let
output(H) be the set of nodes that are outside of H that are
fanouts of nodes in H.

A node x is said to be a predecessor of node z if there
exists a directed path in the graph from x to z. The sub-
graph consisting of a node z and all its predecessors will
be referred to as the subgraph rooted at z. For any node z
in a network, a K-feasible cone at z, Fz , is defined to be a
subgraph consisting of z and some of its predecessors such
that |input(Fz)| ≤ K. A K-input LUT or K-LUT can
implement any logic function with less than or equal to K
inputs. Consequently, the technology mapping problem
for K-LUTs can be thought of as “covering” an input
Boolean network with K-feasible cones. Generally, there
are many K-feasible cones for each node in the network,
each having different area, delay or power characteristics.

A concept closely related to K-feasible cone is that of
K-feasible cut. A K-feasible cut for a node z is a partition,

),(XX , of the nodes in the subgraph rooted at z such that

Xz ∈ and the number of nodes in X that fanout to a node
in X is ≤ K. Figure 1(a) shows a network having an
output node z. The figure shows two 4-feasible cuts for
node z. There is a one-to-one correspondence between
K-feasible cuts and K-feasible cones: given a cut,),(XX ,

the K-feasible cone is simply the subgraph induced by the
nodes in X . The problem of finding all possible K-LUTs
that generate a node z’s logic function is equivalent to the
problem of enumerating all K-feasible cuts for node z.

To simpli fy the presentation of our algorithm, for a K-
feasible cut, Cz =),(XX , for a node z, we use Nodes(Cz)

to represent the set X (Xz ∈). We use Support(Cz) to
represent subset of nodes in X that fanout to a node in X .
For example, for cut 2 in Figure 1(a), Nodes(cut 2) = { c, z}
and Support(cut 2) = { b, i5, i6} . We use Cuts(z) to
represent the set of all feasible cuts for a node z.

2.1. Logic Replication and Power

Logic replication or duplication is performed implicitly
when a LUT is used to implement a K-feasible cone that
contains a node having a fanout outside that cone. It is
widely known that logic replication is necessary for depth
minimization. Consider again the network shown in
Figure 1. Figure 1(b) shows a mapping solution without
logic replication, assuming LUTs with 4 inputs, where
LUTs are shown as shaded, dashed regions. The
duplication-free mapping has depth 2 and uses 3 LUTs.
Figure 1(c) shows a mapping solution in which logic
replication is permitted. This solution has a depth of 1
which is achieved by replicating node b; node b is covered
by two different LUTs in the mapping solution.

When a node in a circuit is replicated for depth
minimization, a connection from the node to one of its
fanouts is “covered” within a LUT. In Figure 1(c) for
example, both of the connections from node b to its
fanouts are covered within LUTs. Such covered
connections are not routed through the FPGA
interconnection network and therefore do not contribute to
interconnect power dissipation. The other consequence of
node replication is that it generally increases the fanout of
nodes that fanin to the replicated node. Referring again to
Figure 1(b), primary inputs i3 and i4 each have one fanout
LUT. In Figure 1(c), node b is replicated and therefore,
primary inputs i3 and i4 must drive two LUTs. Thus, we
see that replicating a node for depth minimization has two
effects: 1) connections from the replicated node to its
fanouts may be covered within LUTs and 2) the fanout of
nodes that fanin to the replicated node is generally
increased.

y

b ca

i1 i2 i3 i4 i5 i6

z

(a) original network

y

b ca

i1 i2 i3 i4 i5 i6

z

LUT

(b) no duplication

y

b ca

i1 i2 i3 i4 i5 i6

z

(c) duplication permitted

cut 2

cut 1
primary
input

Figure 1. Illustration of feasible cuts; effect of
logic replication in LUT mapping

Equation (1) specifies that power consumption depends
linearly on switching activity. An important characteristic
of switching activity in combinational circuits is that it
typically decreases with circuit depth. Previous empirical
research has shown in fact that activity falls quadratically
with depth, on average [11]. This suggests that a node is
likely to have fanins with higher switching activity than the
switching activity at its output. Replicating a node for
depth minimization covers a fanout of the node within a
LUT, but increases the fanout of the node’s fanins. The
activity/depth relationship implies that the activity on the
signals whose fanout has been increased is likely higher
than the activity on the signal whose fanout has been
decreased (by covering a connection within a LUT).
Consequently, we believe that logic replication in LUT
mapping is generally undesirable from a power
perspective, except in specific cases, depending on the
switching activities local to a node. We apply this notion

in our technology mapping algorithm, where we introduce
an activity-based penalty for the replication of a node.

3. Algorithm Description

Our technology mapping algorithm operates in three
phases. The high-level flow of our approach is similar to
that used in [12] and [10]. In phase 1, we construct the set
of K-feasible cuts for each node in the network. In phase
2, we compute costs for the cuts generated in phase 1, and
select a “best cut” for each node. In phase 3, we use the
best-cost cuts and transform the Boolean network to
produce the final LUT mapping solution. We now describe
each phase in detail .

3.1. Generating K-Feasible Cuts

Traversing the network from primary inputs to primary
outputs, the cuts for each node, z, are generated by
merging cuts from its fanin nodes using the method
described in [12,13]. At a high level, this works as
follows: Consider a node z with two fanin nodes, a and b.
The list of K-feasible cuts for a and b have already been
computed, as a result of the network traversal order. Say
node a has two K-feasible cuts, Ca1 and Ca2, and node b
has one K-feasible cut, Cb. We can merge Ca1 and Cb to
create a cut, Cz1, for node z such that Support(Cz1) =
Support(Ca1) ∪ Support(Cb) and Nodes(Cz1) = z ∪
Nodes(Ca1) ∪ Nodes(Cb). Clearly, if |Support(Cz1)| > K,
the resulting cut is not K-feasible and it is therefore
discarded. Similarly, we can attempt to merge Ca2 and Cb

to create another cut, Cz2, for node z. This provides a
general picture of how the cut generation procedure works;
however, there are several special cases to consider, and
the interested reader is referred to [13] for full details.

Note that other LUT-based technology mapping
algorithms prune the cut-set for each node in order to
reduce run-time [12]. Although an upper bound on the
number of cuts for a node is O(nK), where n is the number
of nodes in the circuit, we have observed that in actual
circuits, the set of all cuts can be computed quickly when
the target LUTs are small , as in commercial FPGAs.
Thus, in our work, we did not find a need to implement
pruning techniques such as [12], although this is certainly
possible.

3.2. Costing Cuts

After computing the set of K-feasible cuts for each
node in the network, we again traverse the network from
primary inputs to primary outputs and select a “best cut”
for each node. The “best cut” for each node is determined
using a cost function with several components, reflecting

depth (DCost), power (PCost) as well as a logic
replication cost (RCost), to be described below. For a
node z with a K-feasible cut, Cz, we define the cost of the
cut to be:

)(

)()()(

z

zzz

CRCost

CPCostCDCostCCost

⋅
+⋅+⋅=

γ
βα (2)

where the parameters α, β and γ are coeff icients reflecting
the relative importance of each term. After computing the
cost of the K-feasible cuts for node z, the best cut is
selected to be the one with the minimum cost. We refer to
the best cut for z as BestCut(z).

We now elaborate on the terms of (2). The depth cost
of a cut Cz is defined to be the depth of the LUT mapping
solution of the subgraph rooted at node z, if Nodes(Cz) is
implemented as a LUT in the mapping solution. That is:

))}(({max1)(
)(

vBestCutDCostCDCost
zCSupport v

z
∈

+= (3)

Thus, to compute the depth cost of cut Cz, we look at the
depth cost of the best cut for each node, v, that fans out to
a node in Nodes(Cz). For each of these support nodes, the
best cut has already been selected since we are traversing
the network in an input-to-output fashion. Primary input
nodes are assigned a depth cost of zero.

For power optimization, our goal is to keep high-
activity connections out of the FPGA interconnect. Given
this, we aim to “capture” as many high-activity
connections as possible within LUTs, leaving only low-
activity connections between LUTs. We therefore define
the power cost of cut Cz for node z to be:

[]

[]∑ ∩⋅

∑ −+
=

∈

∈

)(

)(

|)()(|

))((

)(

z

z

CNodes w
zw

CSupport v
v

z

CNodeswoutputf

vBestCutPCostf

CPCost

(4)

where fx represents the switching activity of the net driven
by a node x. The first summation talli es the activities of the
connections in the mapping solution of the subgraph
rooted at z. The first term in the first summation represents
the switching activities of nodes that fanout to a node in
Nodes(Cz). The nets driven by these nodes will need to be
routed through the interconnect if Nodes(Cz) is
implemented as a LUT in the mapping solution; hence,
they contribute to higher cost. The second term in the first
summation represents the power cost of the mapping
solutions rooted at each of the support nodes. The second
summation term, whose sign is negative, represents the
sum of the fanout-weighted switching activity on the

connections that have been captured inside a LUT if
Nodes(Cz) is implemented as a LUT. For each node w in
Nodes(Cz), it counts the number of w’s fanouts that are in
Nodes(Cz) and multiplies this count by the activity of the
signal driven by w.

Prior to defining the replication cost term of (2), we
introduce two additional concepts: First, we specify the
slack and the slack weight for a node. Second, we present
the notion of replicated nodes. The slack of a node z,
Slack(z), is defined to be the number of levels in the
circuit’s Boolean network DAG by which the depth of
node z may be increased, without increasing the overall
depth of the DAG. For example, if a node has slack 0,
then its depth cannot be increased without also increasing
the overall depth of the DAG. A node with slack 1 can
have its depth increased by 1 level without affecting the
overall depth of the DAG. The maximum slack, among all
nodes in the network, is represented by MaxSlack. Using
the slack and maximum slack, we define the slack weight
of a node z to be:

 −

⋅+=
MaxSlack

zSlackMaxSlack
ztSlackWeigh

)(
1)(κ (5)

where κ is a positive real number. The definition of slack
weight implies that nodes with 0 slack have a slack weight
of 1 + κ and nodes with MaxSlack have a slack weight of
1. We compute the slack values and weights of nodes up-
front in the circuit’s unmapped DAG. We have observed
that a node’s slack in the unmapped DAG generally
correlates well with the slack of the node’s covering LUT
in the mapped network.

As mentioned in Section 2.1, for a cut, Cz, for node z,
the replicated nodes, RNodes(Cz), in Nodes(Cz) are those
nodes that fanout to a node outside of Nodes(Cz) (other
than z itself). This is ill ustrated in Figure 2, where
Nodes(Cz) = { z, a, b} and RNodes(Cz) = { a} . If Nodes(Cz)
is implemented as a LUT in the mapping solution, the
logic function of node a must be replicated in a second
LUT, since it has fanouts outside the first LUT. The
formal definition of the replicated nodes in a cut Cz is:

))}(),(|(,

|)({)(

z

zz

CNodesuvoutputuuzv

CNodesvCRNodes

∉∈∃≠
∈=

(6)

We can now define the replication cost of a cut Cz:

() ()

1
()

()

| () () |
z

z

u v z
v RNodes C u input v

RCost C
SlackWeight z

f f output v Nodes Cλ
∈ ∈

= ×

− ⋅ ⋅ ∩

∑ ∑
 (7)

The first summation is over the replicated nodes. For
each replicated node, v, we sum the activities of the signals
driven by v’s fanins. Recall that in Section 2.1, we showed
that replicating a node generally increases the fanout of its
fanin nodes. The consequences of this on power
consumption depends on the activities of the signals driven
by these fanin nodes and hence, RCost is increased in
proportion to these activities. The second term in the
square brackets is negative and its intent is similar to the
second summation term in (4). By including a replicated
node v in a LUT, we “capture” a subset of its fanout
connections within the LUT. We reduce the RCost in
proportion to the product of the number of captured
connections and activity of these captured connections. λ
is a coeff icient that we set to 0.5 in our experiments.

The intuition behind dividing by the slack weight in (7)
is to reduce the replication cost for nodes whose depth in
the mapping solution is likely to impact the overall depth
of the mapped circuit. Nodes with low slack will have a
slack weight that is substantially larger than one. For such
“critical” nodes, it is more important that we select a best
cut that optimizes depth rather than one that avoids logic
replication. We achieve this by reducing the replication
cost through dividing by the larger slack weight.

h

a bf

z
Nodes(Cz)

replicated node

i

g

Figure 2. Identifying the replicated nodes

3.3. Mapping

The mapping phase of our algorithm is similar to that
of FlowMap [4]. We initialize a FIFO queue to contain all
of the primary output nodes. We remove a node v from
the queue and then recall Cv = BestCut(v). We implement
the subnetwork corresponding to Nodes(Cv) as a LUT in
the mapping solution. Each node in Support(Cv) is then
added to the end of the FIFO queue (if not already in the
queue). The process of removing nodes from the queue,
using their best cuts to establish LUTs in the mapping
solution, and adding the support of these cuts to the end of
the queue continues until the queue contains only primary
inputs and we have fully mapped the network into LUTs.

4. Experimental Study and Results

Our algorithm has been implemented in the C language
within the Berkeley SIS framework [14]. For our
experiments, we use 29 of the largest MCNC

combinational circuits (each uses > 300 LUTs). Prior to
technology mapping, each benchmark circuit was
optimized in SIS using script.rugged [14] and then
transformed into a network of 2-bounded functions using
dmig [15].

We compare our technology mapper with two publicly
available technology mappers: 1) FlowMap [4], which
maps circuits in a depth-optimal manner and 2) FlowMap-r
[5], which optimizes both depth and area by relaxing the
depth optimality on portions of a circuit that are not depth-
critical and then performing duplication-free mapping.
Additionally, we consider the effect of using various area-
reducing post-processing routines, including FlowPack
(FP) [4], MP-Pack (MP) 1 [15].

For our algorithm, we set parameters α and β in (2) to
be 1 and 0.0001, respectively, reflecting a preference for
optimizing depth over power. We chose the value of
parameter γ (the replication cost weight) individually for
each circuit such that power was minimized while meeting
certain depth constraints (described below). To compute
the value of γ for each circuit, we used an iterative
approach in which γ was initially set to a small value and
then increased gradually. For each value of γ considered,
we invoked steps 2 and 3 of our algorithm (costing and
mapping), keeping track of the mapping solution with the
best power characteristics. In practice, a binary search
could be used to select the best value for γ, at a small
reduction in quality. We follow our algorithm by calli ng
MP-Pack as a post-processing routine.

To estimate power consumption using (1), we require
the capacitance of each net. Actual net capacitance is not
known until l ayout is complete. We therefore estimate
capacitance using structural properties of the circuit. We
developed our capacitance model by using VPR [16] to
place and route our benchmark circuits, mapped using the
FlowMap-r algorithm. The logic block in the FPGA
architecture we targeted contained a cluster of four
4-LUT/flip-flop pairs. The routing network was comprised
of wire segments of length 4 (span 4 logic blocks), with
half of the routing switches being buffered and half
unbuffered. This FPGA architecture has been shown to be
eff icient from both the area and delay perspective [17].
We used VPR’s built -in interconnect model, with
resistance and capacitance values based on a 0.18µm
TSMC process [18]. Following the placement and routing
of each circuit, we extracted capacitance data for each net
(incl. metal and transistor capacitance). In generating our
model, we considered only the routing of nets between
logic blocks, ignoring the connections within a logic block.
The results of this analysis are shown in Figure 3. The
horizontal axis represents the number of pins per net; the

1 MP-Pack was executed with node duplication off .

vertical axis shows total net capacitance. Each point in the
figure represents the capacitance of a single net in one of
our benchmarks. In addition to the raw data, the figure
shows a line of best fit, which has the following equation:

)(_55.105.1 ii netpinsnumC ⋅+= (8)

where num_pins(neti) represents the total number of pins
on neti. We use (8) in computing our power results.
However, as is evident in Figure 3, a net with a given
number of pins can have a range of capacitance values.
Therefore, an important direction for future work is to
further validate our results by placing and routing the
mapped circuits using power-aware layout tools.

Number of pins on net

N
et

 r
ou

tin
g

ca
pa

ci
ta

nc
e

0 20 40 60 80 100
0

50

100

150

200

250

300

Figure 3. Routing capacitance vs. # of net pins

To measure power using (1), we also need an activity
value for each net. We compute this value using the power
characterization capabiliti es that are built -in to SIS.
Specifically, for each primary input, i, SIS allows one to
specify a signal probabilit y, pi, which is the probabilit y
that the value at the primary input is logic ‘1’ during
circuit operation. SIS propagates primary input signal
probabiliti es through the network to yield a probabilit y for
each internal node. The activity value for the net driven by
an internal node, n, is computed by SIS using

)1(2 nnn ppf −⋅⋅= [7]. For most of the results in this

paper, we set the signal probabilit y of all primary inputs to
be 0.5, corresponding to a primary input activity of

5.0)5.01()5.0(2 =−⋅⋅ . For a limited set of results, we

investigate the effect of this choice by re-computing the
power of already-mapped solutions using randomly chosen
primary input signal probabiliti es.

4.1. Results

We first consider mapping circuits into 4-LUTs in a
depth-optimal manner. Figure 4 shows the average power,
area (# of LUTs) and number of connections for this case.
The power for a circuit was computed by first estimating

the capacitance of each net (between LUTs) using (8);
total circuit power was then computed using (1). Figure 4
includes the number of connections because we believe
this metric correlates with overall routing complexity, as it
represents the total number of net load pins to be routed.
The numbers in Figure 4 were computed by first
determining the increase in power, area and number of
connections for each mapped circuit in comparison with
the mapping solution produced by our algorithm. These
increases were then averaged across all circuits for a given
mapping approach.

Figure 4 shows that the mapping solutions produced by
our approach have substantially less power dissipation
than those produced by other approaches. The method
most competitive with ours is FlowMap-r followed by
MP-Pack; the solutions produced using this technique
require 14.2% more power than ours, on average. Table 1
shows detailed results comparing our algorithm with
FlowMap-r + MP-Pack for a subset of the 29 circuits. We
observe that the gains offered by our algorithm are
consistent; specifically, our power dissipation was equal to
or better than FlowMap-r + MP-Pack for 27 of 29 circuits.
Further, our algorithm also improves the area and number
of connections slightly (~5%); hence, we believe our
results will remain valid after layout.

Figure 4 shows that for optimal depth 4-LUT mapping
solutions, power can vary by as much as 40% on average,
depending on the mapping approach used. This variation is
much higher than that of area or the number of
connections, which can change by about 25% and 20%,
respectively. Thus, we conclude that simply knowing that a
circuit has been mapped in a depth-optimal manner does
not allow one to make inferences regarding power.

Another interesting feature of Figure 4 is that it shows
the effect of the post-processing routines. We see that
FlowPack (FP) reduces the number of LUTs in mapping
solutions substantially; however, it increases the power as
well as the number of connections to route. FlowPack is a
variation on FlowMap that maximizes cut volume; that is,
it maximizes the number of nodes that are “packed” into
each LUT, permitting logic replication. The logic
replication performed by FlowPack may lead to increased
net fanout and higher power. On the other hand, the data in
Figure 4 show that MP-Pack is about as effective as
FlowPack in reducing area and also reduces both power
and the number of connections to route.

Figure 5 shows how power varies when the optimal
depth constraint is relaxed and circuits are mapped with
optimal depth + 1. Results are given for our algorithm as
well as FlowMap-r + MP-Pack for 4-LUTs and larger,
5-LUTs. Again, the numbers in the figure are normalized
to the 4-LUT, depth-optimal solution produced by our
algorithm. As depth is increased, we see that greater
amounts of logic replication can be eliminated, which

permits further reductions in power. Specifically, relaxing
the depth constraint by one level allows our algorithm to
reduce power by about 8% over the depth-optimal case for
4-LUTs and 10% for 5-LUTs. Note that the 4-LUT
mapping solution produced by FlowMap-r + MP-Pack
with relaxed depth uses more power than the depth-
optimal solution produced by our approach.

Table 1. Detailed results for depth-optimal
4-LUT mapping solutions

Circuit Depth

Power increase
FlowMap-r + MP
versus ours + MP

Area increase
FlowMap-r + MP
versus ours + MP

conns increase
FlowMap-r + MP
versus ours + MP

C3540 15 1.11 1.09 1.05
C5315 11 1.02 1.03 1.04
alu4 7 1.20 1.11 1.11
apex1 7 1.14 1.00 1.00
apex2 8 1.15 1.08 1.07
apex3 6 1.19 1.10 1.09
ex5p 7 1.26 0.97 0.97
apex5 5 1.05 1.05 1.03
cordic 9 1.08 1.04 1.06
cps 5 1.16 1.06 1.05
dalu 6 1.16 1.03 1.07
des 7 1.06 1.01 1.02

Average
for these
circuits 1.13 1.05 1.05
Average
across 29
circuits 1.14 1.05 1.06

Modern commercial FPGAs contain 4-input LUTs;
however, some devices allow two 4-LUTs to be combined
into a 5-LUT [1]. Hence, mapping to 5-LUTs is also an
important problem. The results in Figure 5 show that for
FlowMap-r + MP-Pack, 5-LUT mapping solutions actually
require more power than the 4-LUT solutions; whereas, for
our algorithm, the 5-LUT solutions require slightly less
power than the 4-LUT solutions. The depth of the 5-LUT
mapping solutions is generally smaller than the depth of
the 4-LUT mapping solutions - it appears to be more
expensive from the power viewpoint for FlowMap-r to
achieve this smaller depth. Figure 5 shows that the
improvements offered by our algorithm over FlowMap-r
are larger for 5-LUTs than 4-LUTs. The larger LUTs can

cover a larger portion of the input network and thus appear
to offer more potential for power optimization. For one of
the circuits, spla, the depth-optimal 5-LUT solution
produced by FlowMap-r + MP-Pack used 7 times more
power than the solution produced by our algorithm. Since
this circuit affected the average substantially, we removed
it from the data presented in Figure 5. If this circuit is
included, the average power of the 5-LUT mapping
solutions of FlowMap-r + MP-Pack increases to nearly 1.5
for the depth optimal case and 1.16 for the relaxed depth
case.

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Optimal depth Optimal depth + 1

Depth

N
o

rm
al

iz
ed

 p
o

w
er

Ours + MP (4-LUTs)

Flow map-r + MP (4-LUTs)

Ours + MP (5-LUTs)

Flow map-r + MP (5-LUTs)

Figure 5: Power results for other depths, 5-LUTs

The power results presented above were computed
based on the primary inputs of each circuit being set to
have identical switching activities (0.5). A problem that
arises frequently in low-power synthesis is that input
switching activities are not known at synthesis time, or the
set of switching activities used during synthesis do not
reflect the stimulus applied to a circuit in actual field
operation. To investigate the dependence of our results on
switching activities used during technology mapping, we
re-computed the power for the already mapped circuits
using randomly chosen input switching activities.
Specifically, we set the signal probability for each primary
input to a random number between 0.1 and 0.9,
corresponding to a randomly chosen switching activity

0.90

1.00

1.10

1.20

1.30

1.40

1.50

O
ur

s
+

 M
P

F
lo

w
M

ap

F
lo

w
M

ap
 +

 F
P

F
lo

w
M

ap
 +

 M
P

F
lo

w
M

ap
-r

F
lo

w
M

ap
-r

 +
 F

P

F
lo

w
M

ap
-r

 +
 M

P

O
ur

s
+

 M
P

F
lo

w
M

ap

F
lo

w
M

ap
 +

 F
P

F
lo

w
M

ap
 +

 M
P

F
lo

w
M

ap
-r

F
lo

w
M

ap
-r

 +
 F

P

F
lo

w
M

ap
-r

 +
 M

P

O
ur

s
+

 M
P

F
lo

w
M

ap

F
lo

w
M

ap
 +

 F
P

F
lo

w
M

ap
 +

 M
P

F
lo

w
M

ap
-r

F
lo

w
M

ap
-r

 +
 F

P

F
lo

w
M

ap
-r

 +
 M

P

Area (# LUTs) # of connectionsPower

N
o

rm
al

iz
ed

 p
o

w
er

, a
re

a
(#

 L
U

T
s)

,

co
n

n
ec

ti
o

n
s

Figure 4. Power, area, number of connections in depth-optimal 4-LUT mapping solutions

between 0.18 and 0.5. We re-computed the power of the
depth-optimal 4-LUT mapping solutions produced by our
algorithm as well as FlowMap-r + MP-Pack. The results
showed that the improvements offered by our algorithm
over FlowMap-r + MP-Pack degraded by only 1-2% on
average. Thus, it appears that our improvements to power
remain considerable, even when switching activities
deviate from those used during technology mapping.

Unfortunately, we were not able to compare our
algorithm directly with PowerMap [9], which, like our
algorithm, optimizes depth and power. However, the
results in that paper compare PowerMap with FlowMap
for LUTs with 5-inputs, showing a power improvement of
about 15%. The results in Figures 4 and 5 show our
approach provides gains over FlowMap that exceed this
margin.

5. Conclusions and Future Work

In this paper, we presented a new algorithm for power-
aware mapping that allows one to trade-off depth and
power. One novel aspect of our approach is that it takes
an activity-aware approach to logic replication, which has
been shown to significantly affect the power of technology
mapped circuits. In an experimental study, we showed that
our algorithm produces solutions that require less power
than competing techniques. We also showed that for a
given depth of mapping solution, circuit power can vary
considerably, depending on the technology mapping
approach used and the choice of area-reducing post-
processing routine. We observed that power reductions
are possible when the requirement of depth optimality is
relaxed.

One direction for future work is to further validate our
results by placing and routing the mapping solutions with
power-aware placement and routing tools, allowing actual
capacitance values to be used when computing power. A
second area for future work is to simultaneously consider
the trade-offs between depth, area and power in LUT-
based technology mapping.

6. Acknowledgments

The authors thank Andy Ye for his help with extracting
routing data from VPR, Jason Cong (UCLA) for providing
the RASP package, and Vaughn Betz and Jonathan Rose
for supplying VPR. The authors gratefully acknowledge
the financial support of the Natural Sciences and
Engineering Research Council of Canada.

7. References
[1] Virtex II Platform FPGA Data Sheet, Xili nx Inc., 2002,
http://www.xili nx.com/apps/virtexapp.htm.

[2] V. George and J. Rabaey, Low-Energy FPGAs: Architecture
and Design, Kluwer Academic Publishers, Boston, 2001.

[3] R.J Francis, J. Rose, Z. Vranesic, “Chortle-crf: Fast
Technology Mapping for Lookup Table-Based FPGAs,”
ACM/IEEE Design Automation Conf., 1991, pp. 227 - 233.

[4] J. Cong and Y. Ding, “FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs,” IEEE Trans. on CAD, Vol. 13, No. 1,
1994, pp. 1 – 12.

[5] J. Cong and Y. Ding, “On Area/Depth Trade-off in LUT-
Based FPGA Technology Mapping,” IEEE Trans. on VLSI
Systems, Vol. 2, No. 2, 1994, pp. 137 – 148.

[6] L. Shang, A. Kaviani, K. Bathala, “Dynamic Power
Consumption Virtex-II FPGA Family,” ACM Int. Symp. on
FPGAs, 2002, pp. 157 – 164.

[7] G. Yeap, Practical Low Power Digital VLSI Design,
Kluwer Academic Publishers, Boston, 1998.

[8] A. H. Farrahi and J. Sarrafzadeh, “FPGA Technology
Mapping for Power Minimization,” Int. Workshop on Field-
Programmable Logic and Applications, 1994, pp. 66 – 77.

[9] H. Li, W-K. Mak and Srinivas Katkoori, “LUT-Based
FPGA Technology Mapping for Power Minimization with
Optimal Depth,” IEEE Computer Society Workshop on VLSI,
2001, pp. 123 – 128.

[10] Z-H. Hong Wang, E-C. Liu, J. Lai and T-C. Wang, “Power
Minimization in LUT-Based FPGA Technology Mapping,”
ACM/IEEE Asia South Pacific Design Automation Conf., 2001,
pp. 635 – 640.

[11] M. Nemani and F. Najm, “Towards a High-Level Power
Estimation Capabilit y,” IEEE Trans. on CAD, Vol. 15, No. 6,
1996, pp. 588 – 598.

[12] J. Cong, C. Wu and E. Ding, “Cut Ranking and Pruning:
Enabling A General And Eff icient FPGA Mapping Solution,”
ACM Int. Symp. on FPGAs, 1999, pp. 29 - 35.

[13] M. Schlag, J. Kong and P.K. Chan, “Routabilit y-Driven
Technology Mapping for Lookup Table-Based FPGAs,” IEEE
Trans. on CAD, Vol. 13, No. 1, 1994, pp. 13 – 26.

[14] E.M. Sentovich et al., “SIS: A System for Sequential Circuit
Synthesis,” UC Berkeley, Memorandum No. UCB/ERL M92/41,
Electronics Research Laboratory, May 1992.

[15] K.C. Chen et al., “DAG-Map: Graph-Based FPGA
Technology Mapping for Delay Optimization,” IEEE Design and
Test of Computers, September 1992, pp. 7 – 20.

[16] V. Betz and J. Rose, “VPR: A New Packing, Placement and
Routing Tool for FPGA Research,” Int. Workshop on Field-
Programmable Logic and Applications, 1997, pp. 213 – 222.

[17] V. Betz, J. Rose and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs, Kluwer Academic Publishers,
Boston, 1999.

[18] TSMC 0.18µm process, TSMC Corp., 2002,
http://www.tsmc.com/english/technology/t0103.htm.

