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Abstract—Due to continued technology scaling, electromigra-
tion (EM) signoff has become increasingly difficult, mainly due
to the use of inaccurate methods for EM assessment, such
as the empirical Black’s model. In this paper, we review the
state of the art for EM verification in on-die power/ground
grids, with emphasis on a recent finite-difference based approach
for power grid EM checking using physics-based models. The
resulting model allows the EM damage across the power grid
to be simulated based on a Linear Time Invariant (LTI) system
formulation. The model also handles early failures and accounts
for their impact on the grid lifetime. Our results, for a number of
IBM power grid benchmarks, confirm that existing approaches
for EM checking can be highly inaccurate. The lifetimes found
using our physics-based approach are on average about 2X,
or more, those based on the existing approaches, showing that
existing EM design guidelines are overly pessimistic. The method
is also quite fast, with a runtime of about 8 minutes for a 4M
node grid, and so it is suitable for large circuits.

Keywords — Electromigration, hydrostatic stress, verification,
power grid, reliability, linear time invariant system.

I. INTRODUCTION

With continued technology scaling, electromigration (EM)
in metal lines has become a major reliability concern for
integrated circuits [1]. It is well-known that EM-induced void-
ing causes increased resistance in metal lines, while hillock
formation can lead to short-circuit failures. We will focus on
voids because they are found to occur much more frequently
than hillocks in practice. On-chip metal lines (interconnect) are
either signal lines, including intra- and inter-cell connectivity,
or power supply and ground lines, whose purpose is to deliver
a well-regulated supply voltage across the whole die. We will
use the term power grid to refer to either the power supply
network, the ground network, or both.

While both signal and power lines are susceptible to EM
degradation, they have different rates of EM damage under
typical chip operation, because of the different types of current
that they carry. The majority of signal lines carry bidirectional
currents that lead to a repetitive increase and decrease of the
mechanical stress in metal lines, which results in very long EM
lifetimes. In contrast, power lines carry mostly unidirectional
currents and so they have much shorter lifetimes due to the
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negligible stress relaxation that they experience. Thus, in the
majority of cases, EM-induced chip failure is due to the failure
of the power network to deliver acceptable voltages to some
cell in the underlying circuit [2]. Hence the focus of this paper
is on EM in power grids.

Today, it is becoming harder to sign off on chip designs
using state of the art EM checking tools, as there is very little
margin left between the predicted EM stress and that allowed
by EM design rules [3]. This loss of safety margin can be
traced back to the inaccurate and oversimplified nature of EM
models used by existing tools.

A. Existing approach
The standard method for EM checking in the industry is

an extension of the traditional approach for EM assessment
(for single-link test-structures) to the domain of the power
grid. A standard single-link test-structure is typically a set of
Copper lines, as in Fig. 1a, in which the electric current flows
from the wide metal supply lines through the vias, into the
narrower test lines. The EM test is applied to a variety of such
test structures designed for different metal layers and different
current directions including upstream and downstream tests,
as in Fig. 1b. Changes in voltage and resistance over time are
measured and recorded. An increase of resistance of individual
lines above some threshold value is considered to be a failure.
Details describing this methodology characterized by a variety
of measurement techniques can be found elsewhere; see for
example [4]. Here, we will only give a brief summary of the
approach.

The time-to-failure (TTF) of each metal line, stressed by
direct current (DC) of density j at the temperature T , is
recorded for hundreds of identical lines that may be in the
test structures. Due to random manufacturing variations, these
TTF values are random samples, and they are known to follow
a lognormal distribution [5]. The average of the observed
TTFs, denoted as the mean-time-to-failure (MTF), is extracted
from the measured TTF ensembles, and it is known to follow
Black’s model [6]

MTF =
A

jn
e−EA/kT , (1)

where k is the Boltzmann constant and A is a proportionality
coefficient, which depends on line geometry, residual stress
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(a)

(b)

Fig. 1. Multi-link EM test structure (a); upstream and downstream test
structure (b), where the arrows indicate the direction of electron flow.

and temperature. Two critical parameters, the current density
exponent n and activation energy EA are extracted by regres-
sion from the measured TTFs using lognormal plots. In order
for failures to happen in reasonable time-intervals of several
hours, these measurements are carried out at so-called stressed
conditions, in a process that is called accelerated testing,
characterized by elevated temperatures Tst of 200–400oC and
high current densities jst of 3×109–5×1010A/m2. Translation
of the MTFst obtained at the stress conditions to the operating
conditions MTFop, characterized by lower temperatures and
current densities, is performed based on the equation

MTFop = MTFst

(
jst
jop

)n

exp

[
EA

k

(
1

Top
− 1

Tst

)]
. (2)

This is then used to figure out the maximum allowable current
density jmax corresponding to a specified target MTFsp using

jmax = jst

(
MTFst

MTFsp

)1/n

exp

[
EA

nk

(
1

Top
− 1

Tst

)]
. (3)

This maximum current density jmax is then imposed as a
design guideline for any metal line with this geometry and
temperature. This is all fine and good, but it is a big “leap
of faith” to extend this sound analysis of single-link test
structures and apply it with little modification to a completely
different context, such as the analysis of a large power grid.
Unfortunately, this is exactly what has been done in industrial
tools over the last few decades. Existing methods for power
grid EM verification break up a power grid into its millions of
constitutive metal segments, as in Fig. 2, then independently
apply the single-link analysis to each segment and check if the
current density exceeds the jmax guideline for that segment. A
chip is deemed to have failed if any of its metal lines is found
to carry a current density higher than jmax. This method of
doing EM verification by means of a simple current density
check in isolated lines is prevalent across the industry.

There are many problems with this existing approach; and
this is not a new observation. Indeed, as early as 2001, SP
Hau-Riege and CV Thompson [7] wrote “It is demonstrated
that the reliability of a segment can not be predicted without

Fig. 2. An interconnect tree is decomposed into its many segments.

Fig. 3. A typical cross-sectional schematic of Cu dual damascene intercon-
nect.

knowledge of the conditions for stress migration and electro-
migration in connecting segments,” and found that “Accurate
circuit-level reliability analyses can not be based on segment-
level models, but require instead, tree-based models such as
the one developed here.”

B. Power grid structure

Modern power grids are made of Copper (Cu) and are
fabricated using a dual damascene process, in which the metal
line and via are formed simultaneously using Copper. A barrier
metal liner (usually Tantalum) completely surrounds all Cu
interconnects to prevent the Copper from diffusing into the
surrounding dielectric. The cross-section of a typical metal via
structure in a Cu dual damascene process is shown in Fig. 3.
Due to the presence of the barrier metal liner around the vias,
Cu atoms from one layer cannot diffuse to another layer. The
on-die power grid spans all metal layers, from M1 and M2
which connect to transistors in the underlying circuit, to the
top-level metal pads that connect via C4 bumps to the external
supply/ground. Every metal layer of the grid consists mostly of
parallel stripes that are connected by vias to other metal layers
right above and below, as shown in Fig. 4. On every layer,
the power and ground stripes are interleaved, as shown in the
figure. This resulting mesh pattern does not simply repeat as
is across the whole die; there are breaks, and other variations,
in order to allow for signal and other types of routing. In any
case, the point is that the grid metal structures within any
given layer are mostly trees, i.e., they contain no loops or
cycles. Thus, all previous work in this area assumes that the
grid is made up of interconnect trees. An interconnect tree is
a continuously connected acyclic structure of straight metal
lines within one layer of metalization such that atomic flux
can flow freely within it, as in the simple example in Fig. 5.



Fig. 4. A multi-layer power grid with interspersed power and ground lines.

Fig. 5. A typical interconnect tree structure.

C. Problems with the existing approach

We will outline three reasons why the existing approach is
problematic. First, the fitting parameters obtained for Black’s
model under accelerated testing conditions are not valid at
actual operating conditions, and this can lead to significant
errors in lifetime extrapolation [8], [9].

Second, the straightforward extension of the single-link
analysis based on Black’s model to power grids, by a simple
decomposition, ignores the material flow between branches.
In today’s mesh structured power grids, many branches within
the same layer are connected as part of what is called an
interconnect tree and atomic flux can flow freely between
the branches of these trees [7]. As a result, if the individual
branches happen to be short so that they are deemed immortal
due to the Blech effect [10], then the tree would appear to
be immortal, which is highly optimistic and can be entirely
misleading for design. In fact, due to material flow across the
tree, failures can and do happen even if the branches are short.
On the other hand, because the assumption of no material
flow between branches effectively means that the reliability
of nearby metal lines are independent of each other, then the
traditional approach can also be highly pessimistic, as we have
reported in earlier work [11]. Indeed, two identical connected
lines with the same current density can in practice have quite
different MTF values [12], due to the differences in material
flow into these lines from the rest of the tree.

Finally, the third problem lies with the series model assump-
tion. A series model is the case where a power grid is deemed
to have failed as soon as the first of its branches has failed,

Fig. 6. Circuit corresponding to a simple two-layer grid.

typically due to an open circuit. However, modern power grids
use a mesh structure [13]–[16], as in Fig. 4; a simple two layer
grid translates to a simple mesh circuit structure as in Fig. 6.
As such, there are many paths for the current to flow from the
C4 bumps to the underlying logic, a characteristic that we refer
to as redundancy. Mesh power grids are in fact closer to (but
not quite) a parallel system. As such, it is highly pessimistic
to assume that a single branch failure will always cause the
whole grid to fail.

Additional discussion of the above shortcomings of existing
methods is given in [17]. In short, there is a need to reconsider
the traditional approaches and develop a new EM checking
method that accurately models EM degradation using physics-
based models, combined with a mesh model to account for grid
redundancy, while being fast enough to be practically useful.

D. Emerging solutions

Over the last few years, many approaches have been pro-
posed which overcome, to some extent, the aforementioned
shortcomings. Chatterjee et al. [13] proposed the mesh model
as an alternative to the series model. In the mesh model, a grid
is deemed to have failed, not when the first line fails, but when
enough lines have failed so that the voltage drop at some grid
nodes(s) have exceeded some pre-defined threshold (which
would cause errors in the underlying logic). However, [13]
still used Black’s model to compute the reliability of individual
branches. Huang et. al. [14] proposed an adaptation of Korho-
nen’s physical EM model [18] for interconnect trees. Hau-
Riege et al. [7] used Korhonen’s model to develop a closed-
form solution for stress evolution at a junction (a point where
multiple branches meet) by replacing its connected branches
with semi-infinite limbs, which was later used by Li et al. [19]
in their EM verification tool. Both [14] and [19] were later
extended to account for temperature variation as well [20],
[21]. However, the approach in [14] is slow, requiring up to 32
hours to estimate the failure time of a 400K node grid. In [19],
since the connected branches are replaced by semi-infinite
limbs, atomic flow across the whole tree is not accounted for.



E. EM Simulation

In [11], [22], [23], we proposed a new EM checking ap-
proach for power grids that accurately models EM degradation
using physics-based models, combined with a mesh model
to account for redundancy and using a voltage-drop failure
criterion, while being fast enough to be practically useful.
This technique is based on a finite-difference based approach,
and has the unique feature that the grid is deemed to have
failed, not when a void has formed, but when the voltage
drop somewhere (anywhere) on the grid has exceeded user
specifications; this is how redundancy in the grid is taken into
account. The method starts with Korhonen’s one-dimensional
(1D) physical model [18], and augments it by i) introducing
boundary laws at junctions to track the material flow and stress
evolution in multi-branch interconnect trees (for arbitrary
complex geometries) and ii) accounting for thermal stresses
generated by non-uniform temperature distribution across the
grid. We refer to this as the Extended Korhonen’s Model
(EKM). For each tree, the extended model starts out as a
system of Partial Differential Equations (PDE) coupled by
boundary laws which are then discretized and scaled to reduce
it to a homogeneous Linear Time Invariant (LTI) system,
where each state represents the stress at a discretized point
in the tree. We numerically solve this system to track the
stress evolution over time and find the corresponding time of
void nucleations, some of which might cause early failures,
which we account for by disconnecting a via. Once a void has
nucleated, we update the system and recompute the currents
and voltages, and restart the simulation for the next nucleation
phase. This is repeated until enough voids have formed that a
voltage drop violation has occurred; the time of the violation
is declared as the TTF and the simulation is terminated.

The random nature of EM degradation, caused by process
variation, is taken care of by using a Monte Carlo method.
Successive instances of the same grid are generated by ran-
domly sampling from a distribution of the diffusivities in the
branches. This gives a population of grids with identical ge-
ometry and topology, but with randomly varying diffusivities,
which we then simulate to get successive samples of the grid
time to failure (TTF), until the estimate of the overall MTF
has converged. We improve our runtime by using a filtering
scheme that estimates up-front the active set of trees that
are most-likely to impact the MTF assessment of the grid, a
scheme which we have found has minimal impact on accuracy.
We also propose a predictive scheme that allows for fast MTF
estimation based on extrapolation of the solution (stress curve)
obtained from a few time-points. Testing this approach on the
IBM grid benchmarks [24], with the largest grid up to 720K
nodes, shows that the MTF estimated using our physics-based
approach are on average 2.75X longer than those based on a
(calibrated) Black’s model. This justifies the claim that Black’s
model can be overly inaccurate for modern power grids and
confirms the need for physical models. With a run-time of
3.6 minutes for the largest (720K node) grid, this approach
appears to be promising for large circuits.

II. BACKGROUND

For any given interconnect branch, we will refer to the time
duration before any voids have nucleated as the nucleation
phase. In this phase, the resistance of a line remains roughly
the same as that of a fresh or undamaged line. Once the
hydrostatic stress (tensile, positive) at some point in the line
has exceeded some critical value, a void is said to nucleate
at that point. At this point, the void growth phase begins
and the void starts to grow. In some cases, depending on the
geometry and the location of the void, nucleation by itself
may be enough to cause failure due to an open circuit (by
disconnecting a via) [25]. These failures are typically called
early failures. In other cases, again depending on geometry,
a line may continue to conduct current after void nucleation.
With time, the void continues to grow in the direction of the
electron flow and the line resistance increases towards some
steady-state value. In order to track the evolution of the line
(and tree) towards voiding and beyond, we need to simulate
and track the values of stress in the lines over time.

A. Korhonen’s model

Fully accurate EM analysis would require 3D simulation
of metal structures, and with a very fine mesh in order to
capture enough details, which would be prohibitively expen-
sive for practical work with integrated circuits. Fortunately,
Korhonen’s 1D model [18] offers a reasonable trade-off be-
tween accuracy and model efficiency. The model captures the
evolution over time of the hydrostatic stress σ under EM, at
any point along the length of a metal line. Hydrostatic stress is
the average of all normal components of the full stress tensor.
Consider a uniform metal line embedded in a rigid dielectric.
We are interested in the time-varying stress σ(x, t) at location
x along the length of the line, relative to some given reference
point, and at time t. Following Korhonen’s formulation, σ is
positive for tensile stress and negative for compressive stress,
and its time evolution is governed by the PDE

∂σ

∂t
=

BΩ

kbTm

∂

∂x

{
Da

(
∂σ

∂x
− q∗ρ

Ω
j

)}
, (4)

where j is the current density in the line at that point and time,
Da is the coefficient of atomic diffusion, Tm is the temperature
in Kelvin, B is the effective bulk modulus, Ω is the atomic
volume, q∗ is the absolute value of the effective charge of the
conductor, kb is the Boltzmann constant, and ρ is the resistivity
of the conductor. The corresponding atomic flux Ja(x, t) in the
line can be written as [18], [26]

Ja =
DaCΩ

kbTm

(
∂σ

∂x
− q∗ρ

Ω
j

)
, (5)

where C is the atomic concentration in the line, which in an
ideal lattice with zero stress is equal to 1/Ω. Note that Ja can
be positive or negative, depending on the reference direction
chosen and the actual direction of the electric current. The
randomness in the TTF due to EM is primarily accounted for
by the corresponding randomness in Da, which is lognormally
distributed [5] with mean Davg . Strictly speaking, Da also



depends on the value of stress. However, it has been reported
that the numerical results with stress dependent Da are “not
too different” from constant Da [18]. Hence, as in many
previous works [14], [19]–[21], we will assume that Da is
stress-independent. Finally, a void is said to nucleate in the line
once the stress exceeds a predefined threshold value σth > 0.

III. PROBLEM FORMULATION

On the face of it, simulating the stress at every point in
the power grid seems to require solving a very large number
of PDEs, which is (computationally) prohibitively expensive.
Instead, the work in [11], [22], [23] applies a number of
steps in the numerical formulation of the problem so as to
convert the system of PDEs into a system of ODEs (Ordinary
Differential Equations). Even better, the resulting system of
ODEs represents a linear time-invariant (LTI) system, which
allows a very efficient solution. We will review and summarize
this method, without too much detail; the interested reader is
referred to the original sources.

A. Preliminaries

The work starts with the Method of Lines (MoL), which is a
special finite-difference technique for solving PDEs [27]. The
basic idea is to discretize the PDE in all but one independent
variable, so that we are left with a set of ODEs that approxi-
mate the PDE. One can then use well-established methods to
numerically solve the ODE. Discretizing the PDE is achieved
by the standard method of approximating the derivative by a
central difference formula [27].

Next, as in most recent works on EM, it is assumed that
diffusivity Da is the same throughout a branch. As a result, the
atomic flux divergence is higher at branch ends, i.e. junctions,
as compared to branch interior. Thus, voids will nucleate only
at the junctions in a tree. This is a very mild assumption [19],
[25] because it is much more common in the field to find voids
at the end-points of branches.

EM is a long-term failure mechanism. As such, short-term
transients in workload typically experienced in chips do not
play a significant role in EM degradation. Thus, standard
practice in the field has been to use an effective-current
model [28] to estimate EM degradation, so that the lifetime of
a metal line when carrying the constant (DC) effective current
and the time-varying transient current is the same. We also
adopt this approach in our work, so that the circuit currents
loading the grid are assumed to be fixed (DC) currents. Hence,
between any two successive void nucleations, the power grid
has constant (effective) currents, voltages and conductances,
and can be modelled as a DC linear system. So, the effective
branch currents can be obtained directly from effective source
currents by doing a simple DC analysis.

As voids nucleate due to EM, branch resistances change
fairly quickly. Correspondingly, the currents also change
quickly to their new effective values and the voltage drops
change in turn. Thus, the power grid model must include the

fact that the branch conductances change (occasionally) over
time, and so can be expressed as

G(t)v(t) = is, (6)

where G(t) is the piecewise-constant conductance matrix, v(t)
is the corresponding time-varying but piecewise-constant node
voltage drop vector and is is the vector of effective DC source
current values that model the underlying logic blocks.

Before proceeding with any analysis, one must assign ref-
erence directions to all tree branches, in order to consistently
track the signs of branch currents and atomic flux. Formally,
an interconnect tree is a acyclic graph T = (N ,B), where N
is a set of tree junctions and B is a set of resistive branches.
Fig. 5 shows a typical interconnect tree structure. A branch is
a continuous straight metal line of uniform width. A junction
is any point on the interconnect tree where a branch ends
or where a via is located. Junctions are classified based on
their degree, which is defined to be the number of branches
connected to it, as shown in Fig. 5. Note that vias do not
contribute to the degree of a junction. Reference directions
are created by using Breadth First Search (BFS) to assign
directions to all branches in the tree (shown by dashed arrow
lines in Fig. 5). The current density jk and the atomic flux Ja,k
for branch bk is positive if it flows in the reference direction,
otherwise it is negative. The initial stress at t = 0 in branch
bk is assumed equal to its residual thermal stress σT,k, which
can be computed as shown in [29].

B. Extending Korhonen’s model to trees

In order to find the stress across the whole interconnect tree,
Korhonen’s model is extended to account for the coupling
between the tree branches. For any point xk within branch
bk, the stress σk(xk, t) is found using the original Korhonen’s
model (4). In order to couple the equations corresponding to
the various branches, a pair of boundary laws have been for-
mulated to capture the behaviour of stress at branch ends, i.e. at
junctions. The first of these, which follows from basic physical
laws of mass conservation and continuity, governs behaviour
during the nucleation phase, and is given below [22].

Law 1. Before a void nucleates at a junction, stress is
continuous across a junction and the number of metal atoms
flowing into a junction per unit time is equal to the number
of number of metal atoms flowing out from it.

The second law governs behaviour during the void growth
phase. The recent work in [29] provides an extension of the
Korhonen 1D model to describe behaviour of stress around
a void. From this, stress falls to zero at the void surface but
remains at its original value a very short distance δ ≈ 1nm
from the void surface, called the thickness of the void interface.
Using [29], this leads to the second law, given below [22].

Law 2. After a void nucleates at a junction, there is no flow
of atomic flux between the connected branches. The stress
gradient at junction n in branch k is

∂σjn/∂xk = ±σjn/δ, (7)



Fig. 7. A simple 3-terminal tree Td.

where σjn is the stress value at the junction and δ is the thick-
ness of the void interface. The sign is positive for branches
with reference directions going out of the junction and negative
for branches with reference directions going into the junction.

For better understanding, we illustrate our approach with a
simple example. Consider a simple tree Td = (N ,B), with
N = {n1, n2, n3} and B = {b1, b2}, with reference directions
as shown by the dashed arrows in Fig. 7. Branch bk has
dimensions Lk ×wk × hk (length × width × height), carries
a current density jk, has an atomic diffusivity of Da,k and
temperature Tm,k, where k is 1 or 2 in this case. Note that
x1 = L1 and x2 = 0 denote the same point: the location of
n2. We are interested in the stress as a function of position
and time, i.e. σ1(x1, t) and σ2(x2, t) for branches b1 and b2,
respectively. Once these are known, we can easily determine
the EM degradation in the branches.

Korhonen’s model (4) gives the time rate of change of stress
for a point within a branch k, as follows:

∂σk

∂t
=

BΩDa,k

kbTm,k

∂

∂xk

(
∂σk

∂xk
− q∗ρ

Ω
jk

)
, xk ∈ (0, Lk) (8)

However, in order to solve the PDE for the whole tree, we
need to also state the boundary conditions at all end-points
of branches. The boundary conditions describe the behaviour
of stress and atomic flux at the junctions. For the example in
Fig. 7, we will discuss the two cases of a diffusion barrier and
a dotted-I junction, based on the above two laws.

1) Diffusion Barrier: Junctions n1 and n3 are diffusion
barriers, where the atomic flux is blocked. Considering the
nucleation phase first, by Law 1, Ja is zero at the barrier so
that from (5):

Ja,1(0, t) = 0 =⇒ ∂σ1(0, t)

∂x1
=

q∗ρ
Ω

j1 (9a)

Ja,2(L2, t) = 0 =⇒ ∂σ2(L2, t)

∂x2
=

q∗ρ
Ω

j2 (9b)

We next move to the void growth phase. For a void to nucleate
at n1 (n3), we must have j1 < 0 (j2 > 0) so that the electron
flow pushes the metal atoms away from n1 (n3). Using Law 2,
the stress gradients at junctions n1 and n3 throughout the void
growth phase are:

∂σ1(0, t)

∂x1
=

σ1(0, t)

δ
,

∂σ2(L2, t)

∂x2
= −σ2(L2, t)

δ
(10)

where σ1(0, t) = σ2(L2, t) = σth at the time of void
nucleation.

Fig. 8. Early failures and Conventional Failures.

2) Dotted-I Junction: The atomic flux interaction at dotted-
I junction n2 is the key to describing the coupling of stresses
in branches b1 and b2. Considering the nucleation phase first,
by Law 1 the stress is continuous across n2, which is the same
physical point of both b1 and b2, so that:

σ1(L1, t) = σ2(0, t) (11)

and atomic flux can flow freely between b1 and b2. Because
the material flow across an infinitesimal boundary at n2 has
to be continuous, by Law 1, we have:

w1h1Ja,1(L1, t) = w2h2Ja,2(0, t) (12)

Next, considering the void growth phase, once a void nucleates
at n2, it is shared by both branches b1 and b2. By Law 2, we
effectively treat n2 as a diffusion barrier for both branches b1
and b2, with:

∂σ1(L1, t)

∂x1
= −σ1(L1, t)

δ
,

∂σ2(0, t)

∂x2
=

σ2(0, t)

δ
(13)

Combining the boundary conditions obtained from (9)-(13),
and the initial condition as stated earlier, with (8), we can for-
mulate a Linear Time Invariant (LTI) system that completely
determines σ1(x, t) and σ2(x, t).

C. Void size and early failures

Tracking void growth is useful in order to determine the
change in branch resistances and in the corresponding current
densities. We assume that once a void nucleates at a junction, it
is shared by all the branches connected to that junction. Recent
work [29] shows that the initial void growth rate is very high,
and gives the steady state void volume. Hence, as a conserva-
tive approximation, we assume that once a void nucleates at
any junction np, the void lengths for all branches bk connected
to np reach their steady state values in a very short period of
time. As a result, the line resistance rises immediately to its
steady state value for all connected branches. Based on this,
we iteratively find jk and the corresponding steady-state void
volume using a modified Richardson iteration [11]. We ignore
void healing and void migration.

In addition, we also check for early failures based on the
location of the void. Depending on its location and size, a void
might lead to an early failure. Specifically, if a large enough
void forms below a via, it might in some cases cause an open
circuit failure by disconnecting the via, as in Fig. 8. This
happens because the capping layer is not conductive; hence



if the void covers the entire cross-section of a via, there is no
conductive path left between the via and the tree below and
the current in the via completely falls to 0, as shown in Fig.
8. On the other hand, voids that form above the via generally
happen at the top of the line away from the via, and so take
a long time to completely fill the cross-section, and even then
do not translate to an open circuit because the current can
continue to flow through the metal liner. The appearance of
an open circuit right under a via, as happens during the early
failures, can have a significant impact on the voltage drop
and grid reliability and thus should be accounted for. In our
model, once we have determined the steady state void volume,
we check for i) whether the void is located below a via (this
is determined based on the given geometry of the grid) and
ii) whether the void is large enough to disconnect the via. If
both conditions are met, this void leads to an early failure, so
we remove the via from the power grid and update the voltage
drops and current density values.

D. Discretization, ODEs and the LTI system

Korhonen’s model (4) is often scaled by introducing dimen-
sionless variants of stress, length and time [26]. This leads to
stable PDEs that are easier to solve numerically. We define
the following scaling factors for any branch bk ∈ B:

τ
�
=

BΩ

kbT �
m

D�
at

L2
c

, ηk
�
=

Ωσk

kbT �
m

, ξk
�
=

xk

Lk
(14)

where D�
a is the atomic diffusivity at some chosen nominal

temperature T �
m, Lc is some chosen characteristic length and

0 ≤ xk ≤ Lk. The new variables τ , η and ξ are referred to
as reduced time, stress and distance, respectively. After some
manipulation [11], this leads to

∂ηk
∂τ

= θk
∂2ηk
∂ξ2k

(15)

where θk = L2
cDa,kT

�
m/(L2

kD
�
aTm,k). Also, the atomic flux

in bk can be restated in terms of reduced variables:

Ja,k =
Da,kCT �

m

LkTm,k

(
∂ηk
∂ξk

− αk

)
(16)

where αk = q∗ρjkLk/(kbT
�
m), jk is the current density,

Tm,k is the temperature and Da,k is the diffusivity for bk.
We uniformly discretize branch bk into N segments, as in
the Method of Lines, where N is the same for all branches
(because we have scaled all branch lengths to 1 as in (14)).
The reduced stress at each of the N +1 discrete spatial points
{0, . . . N} is denoted by ηk,i and the time rate of change of
ηk,i is (from (15)):

∂ηk,i
∂τ

= θk
∂2ηk,i
∂ξ2k

for i = 0, 1, . . . N (17)

Further, we approximate the partial derivatives with respect to
ξ using a central difference approximation, so that (17) gives:

dηk,i
dτ

= γkηk,i+1 − 2γkηk,i + γkηk,i−1 (18)

where γk = θk/(Δξ)2 and Δξ = Δξk = 1/N , ∀k. This (18)
is basically the governing linear ODE equation for every
discretized point in the tree, and leads directly to the matrix
equation that forms the linear system, once combined with the
boundary conditions. As for these boundary conditions, note
that the corresponding atomic flux Ja,k,i at the ith point is:

Ja,k,i =
Da,kCT �

m

LkTm,k

(
ηk,i+1 − ηk,i−1

2Δξ
− αk

)
(19)

This, combined with the two boundary laws introduced earlier,
gives additional terms that enter into the ODE system formula-
tion. Note that for each branch, the ODEs at the two junctions
(i = {0, N}) require the values for ηk,−1 and ηk,N+1, which
are not part of the ξk domain. The values at these ghost
points are obtained by solving for the respective boundary
condition(s). After much manipulation [11], these equations
combine to provide a non-singular matrix A that forms the
homogeneous LTI system

ż(t) = Az(t), (20)

which incorporates the system inputs (fixed (DC) branch
currents) by a simple variable transformation.

IV. NUMERICAL SOLUTION

This above system (20) is easily solved using existing
techniques for solving large ODE systems, such as used in
standard circuit simulation [30]. One discretizes the derivative,
leading to an algebraic system, then steps forward in time,
solving a linear algebraic system at every time point. We have
found [23] that this is a stiff system, again similar to circuit
simulation, so that numerical formulas like the 2nd order Gear
(BDF2) are best suited to the task. This provides, at every time
point, the stress values at every discretized point along the tree.

We have found that numerical solutions of the above 1D
problem formulation produce excellent results, in comparison
with analytical solutions, with 3D simulation, as well as with
experimental measurements. For the 3-terminal tree Td with a
dotted-I junction in Fig. 7, the kinetics of stress evolution of
all three junctions and the evolution of the stress distribution
across the 3-terminal tree are shown in Fig. 9. Comparisons
of our solution for a 4-terminal T-structure with the analytical
solution of [31] (CTHKS) for the same structure are shown
in Fig. 10 and show excellent agreement. Finally, a comparison
with a detailed 3D solver was shown in [32] and again shows
excellent agreement.

A. Solving the full grid

As mentioned earlier, the power grid TTF is estimated using
the mesh model, in which a grid is deemed to have failed
when enough voids have nucleated so that the voltage drop at
a node exceeds the user-provided voltage drop specification.
The temperature distribution of the grid is determined at t = 0
using compact thermal models, which gives the initial stress
profile for the trees. A subset of trees, called the active set, is
chosen such that the first void nucleation time for each tree
in the active set is less than some time threshold t = tm. All



0 1 2 3 4 5 6
time(yrs)

0

100

200

300

400

500

600

700

S
tr

es
s 

(M
P

a)

0 20 40 60 80 100
x ( 10 -6m)

0

100

200

300

400

500

600

700

S
tr

es
s 

(M
P

a)

0.00 yrs
0.59 yrs
2.98 yrs

6.00 yrs

4.76 yrs
4.79 yrs

(a) (b)

Fig. 9. For Td, (a) evolution of stress at junctions with time and (b) stress profile with time. Here, L1 = L2 = 50µm, and j1 = −j2 = 6e9 A/m2.

0 1 2 3 4 5 6 7 8 9 10

time (yrs)

-100

-80

-60

-40

-20

0

20

40

S
tr

es
s 

(M
P

a)

n
1

 EKM

n
1

 CTHKS

n
2

 EKM

n
2

 CTHKS

n
3

 EKM

n
3

 CTHKS

n
4

 EKM

n
4

 CTHKS

Fig. 10. Comparing our numerical solution for stress evolution in 4-terminal
T-structure with an analytical solution using [31].

trees in the active set are then numerically integrated using the
LTI formulation to obtain their stress as a function of position
and time. Every time a void nucleates at a junction, the steady
state void volume is calculated for all connected branches and
the corresponding resistances are updated. If a void leads to an
early failure by virtue of its location, the corresponding via is
removed from the grid. Next, the node voltage drops and the
temperature distribution are updated. Finally, the equations for
all trees in the active set are reformulated using the updated
boundary conditions and the simulation is carried on until the
next void failure. Due to increasing branch resistances, the
conductivity of the grid degrades over time and the voltage
drops eventually exceed the specification. The earliest time
when a voltage drop violation occurs is the TTF of the grid.

In order to account for the randomness in EM degradation,
we perform Monte Carlo random sampling to estimate the
Mean Time to Failure (MTF) to within a user-specified error
tolerance. The time threshold tm for selecting trees in the

TABLE I
PERFORMANCE RESULTS

Power Grids Performance Metrics
Grid num. of num. of num. of MTFs MTFm tCPU

Name nodes branches trees (years) (years) (mins)

ibmpg1 6K 11K 709 3.3 7.1 0.6

ibmpg2 62K 61K 462 6.7 12.0 1.2

ibmpg3 410K 401K 8.1K 4.5 6.8 4.2

ibmpg4 475K 465K 9.6K 9.0 16.8 6.6

ibmpg5 249K 496K 2K 4.5 6.4 1.8

ibmpg6 404K 798K 10.2K 5.6 11.2 14.0

ibmpgnew1 316K 698K 19.5K 3.8 13.3 4.8

ibmpgnew2 718K 698K 19.5K 4.7 7.4 3.6

PG1 560K 558K 2.6K 4.4 17.2 2.4

PG2 1.2M 1.2M 5.6K 3.6 10.4 7.2

PG3 1.6M 1.6M 6.9K 3.9 8.5 3.6

PG4 2.6M 2.6M 12.2K 3.3 14.8 9.0

PG5 4.1M 4.1M 12.7K 4.4 9.2 8.4

active set is part of the Monte-Carlo (MC) process. It is
initially set to a sufficiently high value and is updated as
more mesh TTF samples are obtained form the subsequent MC
iterations. The overall flow chart is shown in Fig. 12. Finally,
Table I shows performance results on a number of test grids,
including IBM benchmarks [24] and specially synthesized
grids [23]. The column for MTFs shows the MTF when,
having simulated the stress using our EKM engine, we declare
grid to have failed when the very first void occurs; i.e., using a
series model approach, and this is shown only for comparison.
The table also shows the MTF using our mesh model (MTFm)
and the total wall-clock computational (CPU) time (tCPU)
that our approach took to generate the MTFm. Clearly, the
series model is highly pessimistic compared to the voltage-
drop based mesh model, and the compute time is very good
and promising for practical work.
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Fig. 12. Flow chart showing the Monte Carlo loop around the numerical
solver, including the termination check and the check for early failures.

In order to assess the impact of early failures on the grid
lifetime, we present a case study using the ibmpg2 grid;
we estimate its mesh MTF under two settings, one where
early failure detection is on and the other where early failure
detection is turned off. As can be seen from Fig. 11b, turning

off early failures gives an optimistic MTF estimate which is
34% longer than the actual MTF. Thus, if the target product
lifetime is set as 15 yrs, this grid will fail EM sign off due
to the impact of early failures, but would erroneously succeed
if early failures are ignored. The difference in MTFs stems
from the influence of early failures on node voltage drops.
In Fig. 11a, we show how the maximum node voltage drop
changes with time (for one sample grid) as the voids nucleate
due to EM. Since early failures lead to removal of a via, their
impact on voltage drops is more severe, which ultimately leads
to shorter lifetimes. In general, the effect of early failures
gets more pronounced as the difference between the maximum
initial voltage drop and vth increases.

V. CONCLUSION

For many decades, EM checking for complex on-die metal
structures under realistic (complex and time-varying) operating
conditions has been virtually impossible. The only available
option for users had been a current density check that is
mapped empirically to an MTF value, via the venerable but
limited Black’s model. The dynamics of the failure over time,
how it is impacted by the stress in the metal around it, how it
depends on the currents as they evolve in time, all that has been
simply unavailable for tool developers and chip design teams.
Now, things are changing. With the availability of an accurate
1D physical model and its extension to large metal structures,
we can finally deal with EM damage as a well-understood
physical concept, much like familiar circuit concepts like
voltage and current. Even though we have assumed acyclic
metal structures and DC currents, the method is very easily
extended to eliminate both these limitations. The task now is
to integrate this new knowledge into design tools, so as to
enable not only reliable design but better design overall. In
this work, we have taken a first step in that direction, and we
look forward to seeing this approach adopted and extended.
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