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ABSTRACT
In order to perform block level analysis of the on-chip power
distribution network, a high-level model is required that cap-
tures the dependence of the current waveform drawn by a
logic block, per cycle, on its input vector pair. We present a
frequency domain macro-modeling technique for capturing
this dependence. The macro-model is based on estimating
the Discrete Cosine Transform (DCT) of the current wave-
form and then taking the inverse transform to estimate the
time domain current waveform.

1. INTRODUCTION
The International Technology Roadmap for Semiconduc-

tors (ITRS-99) indicates that the total power supply cur-
rent delivered to a high performance integrated circuit will
grow to about 150 Amperes in 2006, and 300 Amperes in
2012. These large current values will seriously complicate
the design of the on-chip power/ground distribution net-
work, which we refer to simply as the power grid. Large
current density in the grid would reduce its physical relia-
bility, and can lead to significant voltage drop causing the
circuit to slow down and not meet the performance spec.
Therefore, it is important to do early design planning of the
power grid, and to reduce the chances of having to redesign
large parts of the grid [1]. In an environment where design
blocks are being reused (hard IP blocks), it becomes highly
advantageous to have block-level models that can give the
current waveform drawn by a logic block in response to a
given input vector stream. With these current models, one
can perform early and fast block-level analysis of the cur-
rents and voltages in the power grid.

We propose a bottom-up current waveform macro-model
for logic blocks. Existing bottom up macro-modeling tech-
niques have targeted either the average power [11, 9, 3,
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6, 2] or energy-per-cycle [4, 7]. Current waveform macro-
modeling is difficult because of large variations in current
waveform shapes in time domain. To overcome this prob-
lem, we have developed an approach for current waveform
modeling that is based on a transformation to the frequency
domain. We create a model for predicting the frequency-
domain transform, which we then inverse-transform to ob-
tain the time-domain current waveform.

Specifically, large variations in waveform shapes in the
time domain translate to variations only in the parameters
of the frequency-domain transforms, but not in their overall
shape. Given a certain transform, we propose to construct
a model that captures the dependence of its parameters on
the input vector pairs. We have found that one can use low-
order polynomial models to capture this dependence, and
we use regression to generate these polynomials, based on
a number of randomly generated vector pairs for which the
circuit is simulated in HSPICE, in a process that is similar
to cell library characterization.

2. DISCRETE COSINE TRANSFORM
The supply current waveform obtained from SPICE is a

discrete time signal. The sampling time-period [10] of the
signal is the time step specified in the transient simulation.
The length of this discrete signal, denoted by N is the to-
tal number of samples obtained over the entire transient
simulation period, for a given input vector pair. The 1-
dimensional Discrete Cosine Transform [8] (DCT) of a se-
quence {x [n] , 0 ≤ n ≤ N − 1} is defined as:

X[k] = α (k)

N−1X
n=0

x [n] cos

�
π (2n + 1) k

2N

�
, 0 ≤ k ≤ N − 1

where:

α (0) =

r
1

N
, α (k) =

r
2

N
for 1 ≤ k ≤ N − 1

The inverse transformation is given by:

x[n] =

N−1X
k=0

α (k) X[k] cos

�
π (2n + 1) k

2N

�
, 0 ≤ n ≤ N − 1

In our case, x[n] is the sequence of current samples, and
X[k] is the sequence of DCT values. The DCT is related
to the Discrete Fourier Transform (DFT), as follows. The
DCT can be computed by extending the input sequence of
N samples to a 2N-sample sequence with even symmetry,
taking a 2N-point DFT, and saving only N terms of it.
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Figure 1: DCT plot of a typical current waveform.

For example, the DCT of a simple triangular current wave-
form i(t) = t − a, for 0 ≤ t ≤ a (and zero otherwise), can
be obtained by uniformly sampling the following continuous
transform (here, x is frequency):

I(x) =
2ax cos(ax)− 2 sin(ax)

x2

This simple example is instructive because it shows an essen-
tial feature of a sinusoidal function that decays in amplitude
according to 1/x2. This feature turns out to be common
with the DCT of typical current waveforms, as shown in
Fig. 1. We picked the DCT (as opposed to FFT or other
transforms) because it has the most regular shape, offer-
ing an excellent candidate for model construction. Fig. 1
shows only the first 100 points of the 10,000 point DCT,
for clarity, and is typical of most current waveform shapes
that we have seen. Instead of constructing a model for each
point on the DCT, we estimate the parameters of the de-
caying sinusoid as a function of input variables. We use
a generalized function of a decaying sinusoid as: I(k) =
D(k)A cos(ω(k− 1) + π), k = 1, 2, . . . In order to completely
describe a function of this form, we need four parameters:

Decay Factor D(k): Motivated by the transform of the
simple triangular waveform, seen above, we include a
1/k2 dependence in this function, among other things,
as explained in section 3.1, below.

Amplitude A: We take the first largest sample point as the
amplitude, and then all the sample points are mea-
sured with respect to this reference. This is further
explained in section 3.2, below.

Frequency ω: This is the frequency of the sinusoid, which
turns out to be not quite a constant. Our approach
involves estimating the first few periods of the sinusoid
as separate parameters, as explained in section 3.2,
below.

DC Value I(0): More on this below in section 3.2.

3. MACRO-MODEL CONSTRUCTION
In order to use the input vector pair as an input variable

to the model, we need a function which maps the vector pair
to a set of real numbers that can themselves be the input
variables to the model. For a single input node, we want to
perform a mapping f(·) to the real line as follows:

f(y) → <, where y ∈ {0 → 1, 1 → 0, 1 → 1, 0 → 0}

Table 1: Function for large Hamming distances.

y f1(y)
0 → 1 1
1 → 0 2
1 → 1 3
0 → 0 4

If one proposes to build a regression-based model on y, then
it must be viewed, strictly speaking, as a categorical variable
[5] and 3 variables would be needed to capture the 4 possible
values of y (f(·) would have to be a vector-valued function
with 3 elements). This is undesirable because it increases the
number of variables. We have found that, depending on the
Hamming distance of the vector pair, we can introduce a less
expensive solution as follows. For large Hamming distances
(more the 70% of the inputs are switching) we use f1(y), as
shown in Table 1, where each input variable y, is mapped
to a unique integer. In case of low Hamming distance, we
use three variables as statistically required (and as shown in
[4]), i.e each y is mapped to a three tuple of 0’s and 1’s such
that the inner product between the tuples is zero.

This case-analysis based on Hamming distance was found
to be useful for another reason, as follows. It was found
that if we build a single model for all input vector pairs
(in which the Hamming distance is implicit, not an explicit
variable), we would need at least a second order polynomial
for most of the parameters. However, if we partition the
model based on the Hamming distance, we can use just a
linear model for the amplitude (A), and we do not need to
to estimate the time period at all, because the time period
does not vary significantly for the same Hamming distance.
Therefore we partitioned our model based on the Hamming
distance of the input vector pairs. It remains to identify the
functions which can be used to estimate the parameters of
the function I(k), which can capture the internal behavior of
a given circuit as a function of the input variables, thereby
providing a current waveform estimate.

3.1 Decay factor
In order to represent the delay factor D(k), we use a func-

tion of the following form (which is motivated by the form
of I(k) for the triangular waveform that we saw earlier):
D(k) = ak

bk2+c
where k is the sample point, a, b and c are

linear functions of the input variables yi, i = 1, . . . , p. Thus
a, b and c are given by:

a =

pX
i=1

αifj(yi), b =

pX
i=1

βifj(yi), c =

pX
i=1

γifj(yi)

The values of αi, βi, γi are obtained by substituting the
above expressions of a, b, c in the function D(k) and using
regression, based on the results of HSPICE simulations using
randomly generated vector pairs, in a process of characteri-
zation. As part of the regression, we consider the points on
the DCT corresponding to the maxima and minima of the si-
nusoid, and we normalize them by the amplitude A (so that
D(1) = 1; the normalization is required because the model
for I(k) given above includes an explicit term for the ampli-
tude). Furthermore, in order to reduce the computational
cost of building the model, we only consider the maxima
and minima in the first five cycles during regression. Some
typical decay curves and their corresponding estimates ob-
tained using our model are shown in Fig. 2(a). These were
obtained from the c432 ISCAS-85 benchmark circuit.
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Figure 2. For c432 (a) decay factor and its estimate

(b) typical amplitude and its estimate
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Figure 3. Distribution of the first time period, for c432

3.2 Amplitude, dc value and time Period
After partitioning the model based on Hamming distance,

it was found that the amplitude A can be estimated with
simply a linear model. It was also observed that for higher
Hamming distances the amplitude estimation was more ac-
curate than for low Hamming distances, but the magnitude
of the current for low Hamming distance is also typically
much smaller. Thus the linear model for amplitude is given
by, A =

Pp
i=1 aifj(yi), where the coefficients ai are obtained

using regression on the same set of waveforms used for D(k).
The average error in case of amplitude estimation with a lin-
ear model is around 20%. A typical plot of actual amplitude
vs estimated amplitude is shown in Fig 2(b).

As far as the dc value I(0) is concerned, for the same
reasons as mentioned for amplitude, we use a linear model
to estimate I(0). Thus, I(0) is also given by a function
similar to A, with a different set of coefficients, obtained
using linear regression.

If one attempts to build a single comprehensive model
in which the Hamming distance is implicit, the time period
(variation in the frequency of the sinusoidal DCT) turns out
to be the most difficult parameter to model. To make things
worse, this parameter has the largest impact on the current
model, because any error in time period causes significant
change in the frequency spectrum. However, if we parti-
tion the model based on Hamming distances, as proposed
above, we find that within a Hamming distance, there is
not a significant variation in the time period. For every
Hamming distance, we compute during characterization a
nominal value of the first five time periods. This is selected
as the time period value that corresponds to the peak of
the distribution of observed time periods for that Hamming
distance. The choice of just five time periods has given suf-
ficient accuracy, but is not a limitation of the model and
can be increased if need be. A typical histogram of the first
time period is shown in Fig 3.

3.3 Multiple peaks
Another issue regarding current estimation is when we

have multiple peaks in time domain. In case of multiple
peaks, the shape of the DCT can change from the straight-
forward decaying sinusoid, and can develop some high fre-
quency changes. In such cases, our model can still offer good
agreement, as seen in Figs. 5, 7, 9 & 10. We have developed
an alternate flow whereby one can partition the time do-
main waveform into sub-intervals so that each sub-interval
contains a single peak, and then we build a model for that
sub-interval. This can lead to results such as in Fig. 5 where
the agreement for multiple peaks is improved.

4. EXPERIMENTAL RESULTS
The current macro-model was obtained for various bench-

mark circuits using the methodology discussed in this paper.
Basically a set of randomly generated test vectors were used
to estimate the coefficients of the model, and then another
set of randomly generated vectors were used to test the ac-
curacy of the model. The resulting waveforms for some of
those vector pairs are shown in Fig 4–11. The benchmark
circuits used to test our model are given in Table 2. Since
we are ignoring most of the high frequency components, the
estimated waveforms are very smooth, and we don’t see very
sharp variations.
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Figure 4. For c432, ham dist = 32, Actual vs. estimated
current waveform

0.0 500.0 1000.0
Sample index

−0.002

0.000

0.002

0.004

C
ur

re
nt

 (
in

 A
)

Actual current waveform
Estimated current waveform

0.0 500.0 1000.0
Sample index

−0.002

0.000

0.002

0.004

C
ur

re
nt

 (
in

 A
)

Actual current waveform
Estimated current waveform

Figure 5. For c432, ham dist = 4, Actual vs. estimated
current waveform
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Figure 6. For cu, ham dist = 12, Actual vs. estimated
current waveform
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Figure 7. For f51m, ham dist = 4, Actual vs. estimated
current waveform
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Figure 8. For mux, ham dist = 19, Actual vs. estimated
current waveform
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Figure 9. For parity, ham dist = 4, Actual vs. estimated
current waveform

5. CONCLUSION
In order to enable early block-level analysis of the power

grid, when using hard IP blocks, we have proposed a cycle-
based current waveform modeling technique that involves
predicting the frequency transform from the input vector
pairs, and using the inverse transformation to get back the
time-domain waveform. The use of frequency domain anal-
ysis is motivated by our observation that, while the time
domain waveforms show large variations in shape (making
them hard to model in the time domain), the frequency do-
main transforms (such as DCT) show much less variation
and are mostly limited to variations in their parameters.
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Figure 10. For random8, ham dist = 4, Actual vs. esti-
mated current waveform

Table 2: Benchmark circuits used for characteriza-
tion.

Circuit #I #O #Gates
c432 36 7 217
cu 14 11 48

parity 16 1 68
mux 21 1 91

f51m1 8 3 105
random8 8 1 158

x2 10 3 50
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Figure 11. For x2, ham dist = 8, Actual vs. estimated
current waveform
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