
High-Level Area Estimation∗

Kavel M. Büyükşahin
ECE Dept. and Coordinated Science Lab.
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, USA

buyuksah@uiuc.edu

Farid N. Najm
ECE Department

University of Toronto
Toronto, Ontario, Canada M5S 3G4

f.najm@utoronto.ca

ABSTRACT
Early power estimation requires one to estimate the area
(gate count) of a design from a high-level description. We
propose a method to do this that makes use of the con-
cept of Boolean networks (BN) and introduces an invariant
area complexity measure which captures the gate-count re-
quirement of a design. The method can be adapted to be
used at different points on the area/delay tradeoff curve,
with different synthesizer/mapper tools, and different tar-
get gate libraries. The area model is experimentally verified
and tested using a number of ISCAS and MCNC bench-
mark circuits and two different target cell libraries, on two
different synthesis systems.

Categories and Subject Descriptors
B.5.2 [RTL Implementation]: Design aids

General Terms
Design

Keywords
Area estimation, Boolean networks

1. INTRODUCTION
The rapid increase in design complexity and reduction in

design time has resulted in the need for CAD tools that
can help make design decisions early in the design process.
Area (roughly, the number of gates required to implement a
Boolean function) and power dissipation are two of the most
important criteria that have to be taken into account while
making these decisions. However, to be able make these de-
cisions early, there is a need for methods to estimate the
area and power consumption from a design description of

∗This project was supported in part by the Semiconductor
Research Corporation (SRC 99-TJ-682), with funds from
IBM Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

the circuit at a high level of abstraction. Some techniques
have been proposed to estimate the area and the power con-
sumption of a circuit given a register transfer level (RTL)
description [6, 2, 10, 11, 4]. In [6, 2], the authors propose a
method to estimate power and area given only a functional
view of the design, such as the Boolean equations. To do
this, they introduce an area model based on the number and
sizes of the prime implicants of the function. Practical use
of this technique is limited, however, as finding all the prime
implicants of a function can be computationally expensive.
In [10], the authors build an area and delay model which
uses actual design information obtained by implementing a
subset of the design, and using this model for the whole cir-
cuit. Although the method’s accuracy is quite good (when
the “correct” subset is chosen), the requirement that the
whole circuit be in a technology-independent minimal form,
and the problem of choosing the subset to implement make
it unattractive for practical use. The methods proposed
in [11] and [4] both make use of the SOP representation
of a function, and estimate the area based on the total num-
ber of AND and OR gates required in this representation.
Typically, the actual number of gates required will be much
smaller than this number after optimization.

In this paper, we propose a method to estimate the area
(based on gate count) of a design which is described at a
high-level of abstraction. Specifically, we propose an area
estimation capability, using only the Boolean network rep-
resentation (to be defined later in the paper) of the func-
tion, and a primitive-independent area complexity measure
extracted from this representation.

2. METHODOLOGY
Our method of estimating the gate count consists of three

steps. First, we build a Boolean network representation of
the given design. Then, we extract the relevant parameters
of this network to compute the area complexity measure.
In the last step, using the area complexity measure, we get
an estimate for the gate count of the design based on a
previously-characterized target gate library and a synthesis
tool. In the following subsections, we will look into each of
these steps in detail.

2.1 Boolean Networks
A Boolean network (BN) is a directed acyclic graph repre-

senting a set of Boolean equations. Each node in the BN cor-
responds to a Boolean primitive, and the edges correspond
to the connections between these primitives [1]. Building a
BN corresponding to a design is easy once the set of primi-

tives to be used as nodes is chosen. It simply involves trans-
lating the given format into a pseudo gate-level format where
each gate corresponds to a Boolean primitive (such as OR,
AND, NOR, NAND, XOR, NOT, etc).

Obviously, one can build many different Boolean networks
for a given set of Boolean equations, using different prim-
itives as nodes of the network. Thus, the BN not being
canonical, it would not seem to be a good means to asess
the computational cost implicit in a Boolean function. Nev-
ertheless, one would also expect the different BN represen-
tations of the same function to have some invariant proper-
ties as they are representing the same Boolean functionality.
This was the motivation for our work, finding an invariant
attribute of a BN that is representative of the function which
can be mapped easily to an estimate of the final gate count
that that function would require when synthesized to a given
gate library.

2.2 Complexity measure
There is a lot of work in the literature that addresses the

complexity of Boolean functions [9, 5, 7, 3]. In many cases,
the complexity measure of a Boolean function has been ex-
pressed in terms of the function’s output entropy and an
exponential in the number of nodes. It has also been ob-
served [6] that many of these measures break down in prac-
tice, hence the need for more practical, efficient, techniques
for assessing complexity and relating it to a gate count es-
timate.

In our work, a BN is simply a graph. Given any graph,
there are many parameters that can be extracted, such as
the number of nodes, number of edges, average in-degree
(fan-in), average out-degree (fan-out), depth, size of cut-
sets, topological order of the nodes, minimum spanning trees,
etc. Therefore, we can talk about the number of nodes, av-
erage fan-in, average fan-out, or depth of a BN.

Our gate count estimation method is based on an area
complexity measure extracted from a BN that represents the
given design. To be useful, this measure should satisfy two
conditions: (i) It should be invariant among the different
BN representations of the same design. The original design
may be in any of the various formats, and users might want
to build the BN using any set of primitives that is convenient
for them. These will result in very different BN represen-
tations of the same function. We want our area complexity
measure to be constant for all those representations, at least
with some approximation. (ii) Obviously, the area complex-
ity measure should have a well-defined relationship with the
optimized gate count of the final circuit in the target gate
library. Furthermore, this “model” should be applicable for
different cell libraries, or different synthesizer/mapper tools.

We have found that one complexity measure satisfying
these conditions is given by:

C(B) = n · fin · fout (1)

where C(B) is the area complexity measure extracted from
Boolean network B, n is the number of nodes in B, fin is
the average fan-in (in-degree), and fout is the average fan-
out (out-degree), of the nodes of B. We can re-write this
complexity measure as:

C(B) = fin · Eout

where Eout = n ·fout is the total number of out-going edges.

We have found that this complexity measure is approxi-
mately invariant for different BNs of the same function. One
reason for this is as follows. Notice that fin for a BN node
represents a rough measure of gate count, or silicon cost re-
quired to implement that node. One can also think of fin for
a BN node as a first-order measure of the “computational
work” being performed at that node. Thus, fin is the aver-
age computational work per node in the BN. On the other
hand, Eout, which is the total number of all out-going edges,
is a measure of the connectedness of the BN. It is, in fact, a
measure of the overall “communication cost” inside the BN.

If fin is somehow increased (due to the use of a differ-
ent set of primitives), then more of the overall computa-
tion would be done inside the BN nodes themselves and
there would be less overall communication that is needed
between the nodes. Hence, as fin is increased (decreased),
Eout should decrease (increase). Our experiments verify this
claim, and actually indicate a very simple relationship be-
tween the two: fin · Eout ≈ constant.

The preceding argument also helps explain why this con-
stant can be used as an area complexity measure. Since
the constant value combines the cost of computation and
communication, it can be viewed as the overall computa-
tional work of the Boolean function, and it can be used as
a measure of its complexity, and ultimately, gate count re-
quirements. The next section explains how this can be done.

2.3 Gate count estimation
The preceding two sections explained how we can get an

area complexity measure given a high-level (Boolean) de-
scription of a design. All the steps taken to do that were
independent of the target gate library and the synthesis tool
that will be used to synthesize/map this design. The third
step in our estimation process relates this (library indepen-
dent) complexity measure to the actual gate count of the
optimal circuit in a given target gate library.

This step can be explained in two phases. The first phase
is the characterization phase. In this phase, we find the
relationship between the area complexity measure and the
actual gate count obtained by optimizing, synthesizing, and
mapping the function to a target gate library using a syn-
thesizer/mapper. Once the tool and the target gate library
are characterized, we can use this relationship to estimate
the gate count requirements of other designs without going
through the optimization-synthesis-mapping process. We
were able to find a very simple and well-defined relationship
between the complexity measure and the gate-count require-
ment for two different synthesis tools. The details will be
explained in the experimental results section.

3. EXPERIMENTAL RESULTS
We will demonstrate the invariance of the complexity mea-

sure, as well as discuss tunability and verification of the
model.

3.1 Verification of the area complexity model
We will show that the proposed complexity measure is

invariant for different BN representations of the same circuit
and that it has a well defined relationship with the optimized
gate count of the synthesized circuit. We will also show
that this complexity measure performs better than a simpler
measure such as node count.

To obtain different BNs for the same function, we have

used different sets of primitive Boolean nodes and have built
five different BNs from each of the benchmark circuits, and
extracted the relevant parameters. Using these parameters,
we have computed the area complexity measure as defined
in (1). The results are shown in Fig. 1 for a number of
ISCAS and MCNC benchmark circuits. The primitive sets
we have used consist of inverters, OR and AND gates with
various support set sizes. The set OR2 consists of inverters
and 2-input OR gates. For OR4, we have added 4-input
OR gates to the primitive set, and so on. As can be seen
from the figure, the area complexity measure for a design
is approximately constant across different BNs built with
different Boolean primitives.

C1355 C1908 C499 C880 alu2 apex6 example2 i5 my_adder ttt2
0

500

1000

1500

2000

2500

OR2
OR4
AND2
AND4
OR3/AND3

Figure 1. Complexity measure for some designs under
different sets of primitives.

To show that our complexity measure performs better
than the node count, we show a bar chart of the node count
for different BNs, in Fig. 2. As can be seen from the figure,
the node counts obtained by using different primitive sets
vary substantially. This makes node count a poor choice as
a complexity measure, because it varies with variations in
the structure of the BN even though the Boolean function
itself is not changing.

C1355 C1908 C499 C880 alu2 apex6 example2 i5 my_adder ttt2
Benchmark Circuits

0

100

200

300

400

500

600

700

N
um

be
r

of
 N

od
es

OR2
OR3
OR4
OR5
OR6

Figure 2. Node count of BNs for different sets of
primitives.

In order to study the relationship between our complexity
measure and the gate count of the optimized circuit, we have
built BNs for a number of benchmark circuits and extracted
the area complexity measure from them. We optimized these
circuits for minimum area using Synopsys Design Compiler

0 5000 10000 15000 20000 25000 30000
Complexity Measure

0

500

1000

1500

2000

G
at

e
C

o
u
n
t

0 5000 10000 15000 20000 25000
Complexity Measure

0

1000

2000

3000

4000

G
at

e
C

o
u
n
t

(a) (b)
Figure 3. Gate count vs. Complexity measure

for Synopsys DC and class library
(a) at minimum area point (b) at minimum delay point

0 1000 2000 3000 4000
Complexity Measure

0

100

200

300

400

500

G
at

e
C

o
u
n
t

0 5000 10000 15000 20000 25000
Complexity Measure

0

500

1000

1500

2000

G
at

e
C

o
u
n
t

(a) (b)
Figure 4. Gate count vs. Complexity measure,

(a) for SIS and the class library, and (b) for
Synopsys DC and the Odyssey library.

(DC) and mapped the optimized circuits to cell library (the
class library that comes with DC). The correlation plot in
Fig. 3a shows a clear relationship with the optimized gate
count of the synthesized circuit. The relationship is a simple
power law of the form y = A · xB.

In the next section, we will show that this model can be
tuned for different synthesis tools, different target libraries,
and different points on the delay/area trade-off curve simply
by re-calculating the model parameters A and B, without
any change to the complexity measure.

3.2 Verification of the tunability of the model
To be practically usable, the model should be tunable

with respect to the synthesis tool, the target library, and the
delay specification. To begin with, we will show that circuits
that are optimized for points other than the minimum area
point still have the same well-defined relationship, only with
different model parameters. Fig. 3b is a plot showing the
relationship between the gate count at the minimum delay
point and the area complexity measure. The model is of the
form y = A · xB with A = 1.5153 and B = 0.7642.

To show that our model is tunable with respect to the syn-
thesis tool, we have generated a plot similar to Fig. 3a using
SIS [8]. We have used the script.rugged of SIS to optimize
the benchmark circuits for minimum area, and mapped them
on the same target library (class). Fig. 4a shows that our
model is still valid with a different synthesis tool. The model
parameters in this case are A = 0.4911 and B = 0.8352.

Finally, and as for tunability of the model for different
target libraries, we have optimized and mapped the bench-
mark circuits using Synopsys DC and the Odyssey cell li-
brary for TSMC 0.25µ technology. The correlation plot is
shown in Fig. 4b, and the model parameters are A = 0.4000
and B = 0.8301.

3.3 Testing the model
To test our model, we have used a number of ISCAS and

MCNC benchmark circuits. These circuits were synthesized
and mapped on two different target gate libraries using SIS,
and Synopsys DC. The set of primitives used for building
the BNs were inverters and 2-input OR gates.

For the characterization step, we randomly chose a num-
ber of circuits, and built the BN for each of them. Then
we extracted the number of nodes, average fan-in, and av-
erage fan-out from these BNs. We computed the area com-
plexity measure using (1) with these parameters. We then
optimized the circuits using the desired tool and the tar-
get library and extracted the gate counts of the optimized
circuits. Performing regression analysis on these data, we
computed the model parameters A and B, and hence char-
acterized the tool/library/delay point. We then estimated
the optimized gate count for other benchmark circuits using
the model obtained by the characterization step and com-
pared these estimates with the optimized gate counts. Fig. 5
shows the characterization step for Synopsys DC and class
library at the minimum area point. The values of A and B
are 0.3664 and 0.8457 respectively.

0 5000 10000 15000 20000 25000
Complexity Measure

0

500

1000

1500

2000

G
at

e
C

ou
nt

Figure 5. The characterization step for
DC and the class library at min area point.

Fig. 6 shows the estimated gate count vs. actual gate
count for Synopsys DC and the class library at the minimum
area point. The average error in our estimation is 24.5%. We
have observed an average estimation error of 23.3% using
SIS and the class library, and 25.3% for Synopsys DC with
Odyssey cell library. Due to space limitations, we cannot
include the correlation plots for these data.

0 250 500 750 1000 1250
Actual Gate Count

0

250

500

750

1000

1250

E
st

im
at

ed
 G

at
e

C
ou

nt

Figure 6. Estimated vs. actual gate count for
Synopsys DC and the class library.

3.4 Limitations
The proposed complexity measure has some limitations.

For instance, if a BN contains significant redundant logic,
such as when large parts of the function are redundant and
would be removed if synthesized, then it is clear that a sim-
ply structural complexity measure as we have proposed will
over-estimate the gate count. One point to be made in this
regard is that it is good that the estimation is conservative
in this case. Another point to be made is that we did not en-
counter this behavior in any of the test cases that we looked

at, and thus we are inclined to think that this measure has
some virtue.

Another point worth making relates to the use of this
complexity measure as a way to predict the requirements
of a soft IP (intellectual property) block. If one is to make
available a synthesizable description of a large design, as soft
IP, it is hardly likely that they will package this IP in a way
that includes large redundant logic portions. Thus, it seems
likely that the proposed complexity measure would be very
useful to the end user in this case.

4. CONCLUSION
In this paper, we have presented a method for estimating

the gate-count (area) requirement of a combinational circuit
given a high-level design description. This method makes
use of the Boolean network concept, and defines an area
complexity measure which is invariant across the different
BN representations of the same design. The method can be
tuned for different synthesizer/mappers, target gate libraries
and delay specifications. It is shown to be very robust with
respect to changes in the BN primitives.

5. REFERENCES
[1] K. A. Bartlett and et. al. Multilevel logic minimization

using implicit don’t cares. IEEE Transactions on
Computer-Aided Design, 7(6):723–740, June 1988.

[2] K. M. Buyuksahin and F. N. Najm. High-level power
estimation with interconnect effects. In Proc.
International Symposium on Low Power Electronics
and Design (ISLPED), pages 197–202, Italy, July
2000.

[3] K.-T. Cheng and V. Agrawal. An entropy measure for
the complexity of multi-output Boolean functions. In
Proc. ACM/IEEE Design Automation Conference,
pages 302–305, 1990.

[4] F. J. Kurdahi and et. al. Linking register-transfer and
physical levels of design. IEICE Transactions on
Information and Systems, 76(9):991–1002, 1993.

[5] D. E. Muller. Complexity in electronic switching
circuits. IRE Trans. on Electronic Computers,
5(1):15–19, 1956.

[6] M. Nemani and F. N. Najm. High-level area and
power estimation for VLSI circuits. IEEE Transactions
on Computer-Aided Design, 18(6):697–713, June 1999.

[7] N. Pippenger. Information theory and the complexity
of Boolean functions. Mathematical Systems Theory,
10(1):129–167, 1977.

[8] E. M. Sentovich and et. al. SIS: A system for
sequential circuit synthesis. Memorandum UCB/ERL
M92/41, Electronics Research Laboratory,
Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720,
May 1992.

[9] C. E. Shannon. The synthesis of two-terminal
switching circuits. Bell System Technical Journal,
28(1):59–98, 1949.

[10] A. Srinivasan and et. al. Accurate area and delay
estimation from RTL descriptions. IEEE Transactions
on VLSI Systems, 6(1):168–172, Mar. 1998.

[11] A. C.-H. Wu and et. al. Layout-area models for
high-level synthesis. In Proc. International Conf.
Computer-Aided Design (ICCAD), pages 34–37, 1991.

