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ABSTRACT
Full-chip verification requires one to check if the power grid is
safe, i.e., if the voltage drop on the grid does not exceed a cer-
tain threshold. The traditional simulation-based solution to this
problem is computationally expensive, because of the large vari-
ety of possible circuit behaviors that would need to be simulated;
it also has the disadvantage that it requires full knowledge of the
details of the circuit attached to the grid, thereby precluding early
verification of the grid. We propose a power grid verification tech-
nique that can be applied before the complete circuit has been
designed and without exact knowledge of the circuit currents. We
use current constraints, which are upper bound constraints on the
currents that can be drawn from the grid, as a way to capture
the uncertainty about the circuit details and activity. Based on
this, we propose two solution approaches. One approach gives
an upper-bound on the worst-case voltage drop at every node of
the grid. Another, less expensive approach, applies a sufficient
condition (thus, this becomes a conservative approach) to check
if the drop on the grid exceeds a given voltage threshold.

Categories and Subject Descriptors:
B.7 [Integrated Circuits]: Design Aids

General Terms: Design, Algorithms, Theory

Keywords: Power Grid, Voltage Drop, Voltage Integrity

1. INTRODUCTION
As the supply and threshold voltages are decreasing with tech-

nology scaling, full-chip verification is becoming more and more
challenging. In particular, checking the integrity of the voltage
on the power grid is becoming crucial. With lower supply volt-
ages, smaller voltage drops become more significant and can cause
longer circuit delays and lead to soft errors. Thus, supply voltage
integrity verification is an integral part of both timing verification
and noise immunity checking.

Voltage drop on the grid is mainly due to IR drop and Ldi/dt
drop. IR drop is due to the resistance of the metal lines of the
power network. The Ldi/dt drop is due to the self and mutual
inductances of the power lines. In practice, the effect of induc-
tance in the power grid is only significant at frequencies above a
GHz or so, and it can therefore be ignored in many circuits. In
this paper, we will use an RC model of the power grid, ignoring
the inductance effects and focusing on IR drop.

Power grid verification via traditional circuit simulation re-
quires full knowledge of the current waveform drawn by every
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circuit block attached to the grid. These current waveforms would
be used to simulate the grid and get the voltage drop at every
grid node. This drop is then compared to a maximum allowable
voltage drop threshold to check if any node on the grid is unsafe
(the voltage drop at this node is higher than the threshold). To
verify the grid in this way requires a comprehensive set of current
waveforms to make sure all the regions on the grid are simulated,
and that the obtained voltage drop is a worst-case drop. Also,
this method requires full knowledge of the circuit, which is a con-
cern if one would like to verify the grid early in the design flow,
before all the circuit details are available.

To overcome these problems, we will use the concept of cur-
rent constraints [1] to capture the uncertainty about the circuit
details and circuit behavior. These current constraints are a set
of upper-bounds on the currents that would be drawn by the cir-
cuit. They can be obtained from simulations of the circuit or from
knowledge of the overall power dissipation of the circuit blocks.
Using these upper-bound constraints, we will show how to check
if the maximum voltage drop on the power grid, under all possible
transient current waveforms that satisfy the constraints, exceeds
a certain voltage threshold.

A similar verification problem was previously formulated and
solved in [1], but under the assumption that the currents on the
grid are DC, which can under-estimate the worst-case drop. In
this paper, we present a general solution to the problem, in which
the currents are allowed to be arbitrary transient waveforms. We
will present two solution approaches. First, we present an algo-
rithm that computes an upper bound on the worst-case drop at
every node of the grid. We give empirical data that shows that
the upper bound can be tight, and that therefore the pessimism in
the first approach is not too significant. In the second approach,
we will present a method to check if the grid is safe with respect
to a given voltage threshold, without attempting to find the ex-
act maximum drop on the grid. This method applies a sufficient
condition to perform the check, thereby leading to a conservative
approach by which some grids which are declared unsafe may ac-
tually be safe, but no unsafe grid would be declared safe. The
method does provide an indication of the nodes that did not pass
the safety check, which allows one to focus on specific regions of
the grid to perform more detailed analysis.

The rest of the paper is organized as follows. In the next sec-
tion, a standard RC model of the power grid is adopted and the
system equations explained, followed by a brief section 3 that
describes a time discretization of the system equations. Current
constraints are introduced in section 4 and our first solution ap-
proach is then given in section 5, whereby the worst-case voltage
drop at every node is sought. Section 6 describes our second so-
lution approach, which efficiently provides a safety check of the
grid, and is followed by our conclusion.

2. THE POWER GRID RC MODEL
We consider an RC model of the power grid, where each branch

is represented by a resistor and where there exists a capacitor from
every node to ground. In addition, some grid nodes have ideal
current sources (to ground) representing the currents drawn by
the circuits tied to the grid at those nodes, and some grid nodes



have ideal voltage sources (to ground) representing the connec-
tions to the external voltage supply.

Let the power grid consist of n+p nodes, where nodes 1,2,. . . ,n
have no voltage sources attached, and nodes (n+1), (n+2), . . . , (n+
p) are the nodes where the p voltage sources are connected. Let
ck be the capacitance from every node k to ground. Let ik(t)
be the current source connected to node k, where the direction
of positive current is from the node to ground. We assume that
ik(t) ≥0 and that ik(t) is defined for every node k = 1, . . . , n,
so that nodes with no current source attached have ik(t) = 0, ∀t.
Let i(t) be the vector of all ik(t) sources, k = 1, . . . , n. Let uk(t)
be the voltage at every node k, k = 1, . . . , n, and let u(t) be the
vector of all uk(t) signals, k = 1, . . . , n.

Applying Kirchoff’s Current Law (KCL) at every node, k =
1, . . . , n, leads to:

Gu(t) + Cu̇(t) = −i(t) + G0Vdd (1)

where G and G0 are n × n conductance matrices resulting from
the application of the traditional modified nodal analysis formu-
lation [2] (simplified by the fact that all the voltage sources in this
case are from a node to ground), C is an n × n diagonal matrix
of node capacitances, and Vdd is a constant vector each entry of
which is equal to Vdd.

If we set all ik(t) = 0, ∀t, then obviously uk(t) = Vdd, ∀t, so
that the above system equation becomes:

GVdd = G0Vdd (2)

By replacing G0Vdd by GVdd in (1), it can be re-written as:

G[Vdd − u(t)] − Cu̇(t) = i(t) (3)

If we now define vk(t) = Vdd − uk(t) to be the voltage drop at
node k, and let v(t) be the vector of voltage drops, then the
system equation can be written as:

Gv(t) + Cv̇(t) = i(t) (4)

This is a revised system equation which we can use to directly
solve for the voltage drop values. Comparing (4) to (1), it is easy
to see that the circuit described by this equation consists of the
original power grid, but with all the voltage sources set to zero
(short circuit) and all the current source directions reversed.

3. TIME DISCRETIZATION
We will be working with a discrete-time version of the system

equation, which can obtained by considering that, for small ∆t >
0, the derivative of a function x(t) can be approximated by:

ẋ(t) ≈ x(t) − x(t − ∆t)

∆t
(5)

Applying this to v̇(t) in (4), leads to:

�
G +

C

∆t

�
v(t) =

C

∆t
v(t − ∆t) + i(t) (6)

It will be useful to think of this equation as capturing the space
of voltage vectors v(t) and v(t − ∆t) that are allowed, given the
current vector i(t).

Define a matrix A as:

A =

�
G +

C

∆t

�
(7)

and let aij be the entry of A at row i and column j. As in [3],
one can show that A is an M-matrix [4] because it satisfies the
following:

1. aii > 0 ∀i

2. aij ≤ 0 ∀j �= i

3. aii >
�

j �=i |aij |, where strict inequality comes from the ad-

dition of the positive diagonal matrix C/∆t to the conduc-
tance matrix G and the fact that every node has non-zero
parasitic capacitance.

Among other things, being an M-matrix means that the inverse
of matrix A consists of only non-negative values.

As indicated above, we will assume throughout that i(t) ≥ 0,
so that currents flow only from the grid into the circuitry tied to
it. If we further assume that v(t − ∆t) ≥ 0, then since C is a
non-negative matrix, it is clear that (6) leads to Av(t) ≥ 0. Since
A−1 is also non-negative, then this leads to the fact that:

v(t − ∆t) ≥ 0 =⇒ v(t) ≥ 0 (8)

By induction, if we assume that at some time in the past the volt-
age drops on the grid are non-negative (meaning that no grid node
has a voltage higher than Vdd), then they will be non-negative for
all time. This is a fairly mild requirement to make, because as we
will see in section (6.2) it is possible to assume that at some time
in the (distant) past, the grid voltages were all zero. Therefore,
it will be implicitly assumed throughout this paper that:

v(t) ≥ 0, ∀t (9)

so that voltage drop is never negative.

4. CURRENT CONSTRAINTS
As in [1], we define two types of constraints, local constraints

and global constraints. Local constraints are upper bounds on in-
dividual current sources, which may represent the current drawn
by individual cells, or larger blocks. They can be fixed values
(DC) or time-waveforms (transient). They can be expressed as:

0 ≤ i(t) ≤ IL,∀t ≥ 0 or 0 ≤ i(t) ≤ iL(t), ∀t ≥ 0 (10)

where IL is a vector of fixed current values and iL(t) is a vector of
current waveforms. These constraints are defined for every node
on the grid; nodes that are not connected to a current source have
IL = 0 or iL(t) = 0, ∀t ≥ 0. Local constraints, by themselves,
are obviously insufficient for verification, because the chip compo-
nents do not simultaneously draw their maximum currents. This
is where global constraints come in.

Global constraints are upper bounds on the sum totals of cur-
rent drawn by groups of current sources, and they may also be
either DC or transient. If there is a total of k global constraints,
they may be expressed in matrix form as:

0 ≤ Si(t) ≤ IG,∀t ≥ 0 or 0 ≤ Si(t) ≤ iG(t), ∀t ≥ 0 (11)

where S is a k × n matrix of 0s and 1s that define the groups
of current sources included in every constraint, IG is a vector of
fixed current values, and iG(t) is a vector of current waveforms.

Local and global constraints can be combined as follows:

Ui(t) ≤ Im, ∀t ≥ 0 or Ui(t) ≤ im(t), ∀t ≥ 0

with i(t) ≥ 0, ∀t ≥ 0 (12)

where U is an (n + k) × n matrix, whose first n rows form an
indentity matrix, and whose last k rows are the S matrix. Notice
that every entry of the matrix U is non-negative.

Current constraints offer a useful abstraction for capturing the
uncertainty of circuit behavior, given the large number of logic
vectors that can propagate through the circuit. They also offer a
way to capture uncertainty about the circuit details early in the
design flow. For circuits that are completely determined, local
constraints may be obtained from exhaustive simulation of indi-
vidual cells, or from a simple count of the transistors in that cell
that are tied to the supply. Global constraints are chosen based on
some knowledge of the peak power dissipation of a block or a chip,
if that information is available from previous design knowledge or
from test-case simulations. When little or no information is avail-
able, such as early in the design process, the global constraints
may simply be specified as possible values to drive a “what if”
type of analysis, or may be based on an estimate of the target
block area coupled with knowledge of the typical power density
of that technology (power dissipation per unit area). Being a
means of capturing uncertainty in cases of limited information
about the circuit and/or its activity, we envision that in practice



Table 1: Test-case power grids and results of the upper-bound algorithm

Power Grid Constraints(mA) Drop stats (% of Vdd) Execution Cost
Name nodes C4s Sources Local Global Min Max Mean Std #iterations Time

G1 90 10 10 20 70 - - - 1.4 19 5.8 3.85 24 55.79 s.
G2 450 34 15 20 70 - - - 0.02 34.1 6.5 5.6 25 16.8 min.

G3 503 26 30 3 20 - - - 0.1 10.36 2.66 2.32 13 24.2 min.
G4 476 53 30 3 10 15 - - 0.0 3.18 0.73 0.64 6 8.5 min.
G5 450 79 30 3 10 15 15 - 0.0 2.78 0.445 0.445 2 2.23 min.

G6 477 26 30 3 20 - - - 0.0 5.6 1.63 1 13 22 min.
G7 450 26 30 2 20 10 - - 0.0 4.61 1.23 0.79 11 14.2 min.
G8 424 26 30 2 20 10 10 - 0.0 4.15 1.16 0.73 6 6 min.

G9 973 51 50 10 200 - - - 0.11 22.36 5.74 3.5 15 1.25 h.
G10 922 102 50 10 100 50 - - 0.0 19.27 2.18 2.36 7 54 min.
G11 870 154 50 20 100 50 50 - 0.0 9.72 1.36 1.445 6 33 min.

G12 922 51 50 10 200 - - - 0.26 21.54 5.45 3.24 15 1.8 h.
G13 871 51 60 10 200 200 - - 0.127 33.96 6.36 5 13 1.4 h.
G14 819 51 60 10 100 150 50 - 0.16 34.36 7.27 5.82 11 52 min.
G15 768 51 50 20 100 100 150 150 0.0 56.4 12.18 9.82 14 55 min.
G16 666 51 50 20 100 100 150 150 0.3 46 10.9 7.9 13 50 min.

G17 1924 101 100 10 200 - - - 0.27 24.8 4.81 3.27 10 9.4 h.
G18 1822 203 100 20 150 250 - - 0.0 25.54 4.54 4.18 6 4.8 h.
G19 1721 304 100 20 250 200 150 - 0.0 16.7 2.9 2.87 6 3 h.

G20 1823 101 100 20 500 - - - 0.145 36 9.8 6.45 8 6 h.
G21 1721 101 100 30 300 200 - - 0.1 68.5 17.54 11.6 9 6 h.
G22 1620 101 100 20 500 300 300 - 5 58 12.9 7.7 9 4.8 h.

G23 2420 151 100 50 700 - - - 0.0 87 15.9 16.9 17 11.4 h.

DC constraints (IL and IG) would be easier to specify than tran-
sient constraints (iL(t) and iG(t)). Thus, in this paper we will
perform the analysis under DC current constraints, although the
work can be very easily extended to handle transient constraints.
In summary, the current constraints can be expressed as:

0 ≤ Ui(t) ≤ Im, ∀t ≥ 0 with i(t) ≥ 0,∀t ≥ 0 (13)

The currents are transient but their upper bounds are DC.

5. WORST-CASE VOLTAGE DROP
We now present our first solution approach. Given a set of

current constraints we will show how to find the worst-case volt-
age drop at every node. In addition to checking if the grid is
safe, this method gives information on the extent of the problem
when the grid is unsafe. In sub-section 5.1, we will first see how
one can set up a numerical optimization approach for solving this
problem exactly, which will be seen to be too expensive. In the
following sub-section, we then develop an efficient technique for
finding an upper bound on the worst-case voltage drop on every
node. We give empirical data to show that these bounds are tight
and, therefore, useful in practice.

A starting point for the whole analysis is to assume that the
current source currents are zero for all t ≤ 0, so that the grid is
safe and has zero voltage drop at time 0, and to then examine how
the system evolves over time for t ≥ 0. Given this, it is easy to see
that the worst-case voltage at any node, over all possible currents
that satisfy the constraints, is a non-decreasing function of time
over t ≥ 0 and, because it is bounded, must therefore converge
to some steady state value. We are, naturally, interested in the
steady state condition, where the solution becomes independent
of the initial condition (i(t) = 0, ∀t ≤ 0), because that represents
the true general solution for the grid. However, it will also be
instructive to see how we approach the steady state.

5.1 Exact worst-case
Consider a sequence of (fixed value) time steps ∆t, taken start-

ing at time 0, and let t = k∆t, where k > 0 is an integer. Recall
the discrete-time system equation (6), which can be written as:�

G +
C

∆t

�
v(t) − C

∆t
v(t − ∆t) = i(t) (14)

We can write the same equation at the previous time step as:�
G +

C

∆t

�
v(t − ∆t) − C

∆t
v(t − 2∆t) = i(t − ∆t) (15)

This is repeated until we get to time t − k∆t = 0, where we get:�
G +

C

∆t

�
v(t − (k − 1)∆t) = i(t − (k − 1)∆t) (16)

because v(t − k∆t) = v(0) = 0. Notice that every equation of
the above sequence expresses the current at every time point as
a linear combination of the voltage drop vectors at the current
and the previous time steps. If we are interested in finding the
maximum voltage drop at node i at time t, we would have to
perform the following optimization:

Maximize: vi(t)
Subject to: for q = 0, . . . , (k − 1):

0 ≤ U
�
G + C

∆t

�
v(t − q∆t) − U C

∆t
v(t − (q + 1)∆t) ≤ Im

whereby we have enforced the current constraints (13) at every
time point. The number of constraints is thus multiplied by the
number of time steps, leading to a potentially very large problem,
which can be prohibitively expensive in practice. For small grids,
we can construct and solve the optimization problem, as we will
show below, starting with k = 1, and gradually increasing k until
we get the same result for two consecutive values of k, within
some error tolerance ε. That steady-state result would be the
worst-case voltage drop at every node in the general case, i.e., in
the absence of a specific initial condition.

5.2 Upper bounds
We define a voltage vector v(t) to be feasible if there exist

current source waveforms (with i(t) = 0,∀t ≤ 0) that satisfy the
current constraints and which can cause the grid to realize the
voltage values in v(t) at time t (starting as always with v(0) = 0).
We define Vf (t) to be the set of all feasible voltage vectors at time
t. We also define a voltage vector vopt(t) as the solution of the
following optimization problem:

∀i : vopt,i(t) = max
v(t)∈Vf (t)

vi(t) (17)
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Figure 1: Voltage drop comparisons for all nodes in
grids G1 and G2.

Notice that vopt,i(t) is nothing but the solution of the exact worst-
case problem described in the preceding section. Notice also that
vopt(t) may not be a feasible voltage vector. Ideally, one would
like to find vopt(t) for every t, and especially for t → ∞, but that
can be very expensive, as we saw above. Instead, we will now
propose an algorithm by which a vector vb(t) can be efficiently
computed such that vb(t) ≥ vopt(t), ∀t.

From (6), the space of voltages allowed by the current con-
straints can be expressed as:

U
C

∆t
v(t−∆t) ≤ U

�
G +

C

∆t

�
v(t) ≤ U

C

∆t
v(t−∆t)+Im (18)

Suppose that we know that, at a certain time t−∆t, the voltage
drop on the grid satisfies:

0 ≤ v(t − ∆t) ≤ vb(t − ∆t) (19)

Since U and C are non-negative matrices, then (18) and (19) lead
to:

0 ≤ U

�
G +

C

∆t

�
v(t) ≤ U

C

∆t
vb(t − ∆t) + Im (20)

Based on this, we can now present an algorithm to find the upper-
bound on vopt(t), as follows:

Step 1. t = 0, vb(0) = 0

Step 2. t = t + ∆t

Step 3. For i = 1, . . . , n:
Maximize: vb,i(t)
Subject to:

0 ≤ U
�
G + C

∆t

�
vb(t) ≤ U C

∆t
vb(t − ∆t) + Im

Step 4. If vb(t) ≈ vb(t − ∆t), exit, else go to Step 2.

The algorithm is obviously much simpler than running the ex-
act approach, because it involves an optimization across only one
time step. The following claim proves the correctness of this al-
gorithm.

Claim 1. If vb(t) is generated according to the above algo-
rithm, then vb(t) ≥ vopt(t), ∀t ≥ 0.

Proof. Since the base case vb(0) ≥ vopt(0) is trivially satis-
fied (as an equality) at time 0, then the claim is true by induction
if we can prove the following:

vb(t − ∆t) ≥ vopt(t − ∆t) ⇒ vb(t) ≥ vopt(t) (21)

Define Vb(t) to be the set of all vectors v(t) that satisfy (20).
Notice that Vb(t) is the solution space of the core optimization
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Figure 2: Voltage drop comparisons, over time, for
a node in grid G1, with ∆t = 0.5ps.

step in our algorithm, which gives vb(t), and which may be sum-
marized as:

∀i : vb,i(t) = max
v(t)∈Vb(t)

vi(t) (22)

Consider any v(t) ∈ Vf (t), then there exists another feasible volt-
age vector v(t − ∆t) such that v(t) and v(t − ∆t) satisfy (18).
Since 0 ≤ v(t − ∆t) ≤ vopt(t − ∆t), due to (17), and assuming
vopt(t−∆t) ≤ vb(t−∆t), consistent with (21), then (19) is true,
leading to (20), so that that v(t) ∈ Vb(t). This means that Vf (t)
is a subset of Vb(t), i.e.:

Vf (t) ⊂ Vb(t) (23)

Given the definition of vopt(t) in (17) and given (22), it then
follows that vb(t) ≥ vopt(t), because maximizing over a superset
of Vf (t) must give a result that is at least as large as maximizing
over Vf (t). This completes the proof.

When the algorithm terminates, we exit with the values ob-
tained at the last iteration, and we take these values as the upper
bounds on the worst-case voltage drop at every node.

5.3 Experimental Results
It is clear that the optimization step in the above algorithm is a

linear program (LP). To solve this LP, we have used a Primal-Dual
Interior Point Method algorithm [5], using the PCx package [6].
A number of tests were conducted on a set of randomly-generated
test-bench power grids (as was done in [1]) and simulated on a
1 GHz SUN machine with 4 GB of memory. For every grid, the
number of nodes and the number of voltage sources (C4) are spec-
ified up-front and an initial uniform (regular) grid is generated.
Then, a certain percentage of nodes are eliminated from the grid
in order to make it somewhat non-uniform.

Table 1 shows all the test cases. It also shows the number of
sources that are connected to the grid (#C4s). These sources are
randomly placed on the grid. For each test case, a single value
is chosen as the local upper-bound constraint, as shown in the
table, and a set of global constraints are specified. The simula-
tion results, showing the number of iterations (time steps) before
completion and the total CPU time required, are also shown in
Table 1. The results indicate that the number of time steps by
which convergence is reached is fairly small.

For each grid, the table also shows statistics of the worst-case
voltage drop values found at all the nodes: minimum, maximum,
mean, and standard deviation. Notice how increasing the number
of voltage supplies (C4s) on the grid decreases the maximum and
other stats of the voltage drop. Fig. 1 shows a correlation plot
with the exact maximum voltage drop on one axis and the upper
bound on the drop on the other. The figure shows closely aligned
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Figure 3: Voltage drop comparisons, over time, for
a node in grid G2, with ∆t = 0.5ps.
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Figure 4: Voltage drop histogram for grid G17.

points, which means that the upper bound is fairly tight, for
all nodes in grids G1 and G2. Figs. 2 and 3 show the voltage
drop versus time for a node in grid G1 and another in grid G2,
respectively. The exact solution for G1 took 7 minutes while
the upper bound algorithm took only 55 seconds, and the exact
solution for G2 took 18 hours, while the upper bound algorithm
took only 17 minutes. This obviously limits the size of the grids
for which we can offer comparisons to the exact solution, and the
comparison results for these two small grids were typical of what
we saw. Finally, Fig. 4 shows a histogram of the node voltage
drops in grid G17, obtained with the upper bound algorithm.

6. GRID SAFETY CHECK
We will now present our second solution approach. Given the

set of current constraints and a maximum voltage drop threshold,
we will show how one can check if the grid is safe, i.e., if the
voltage drop is below threshold at all the nodes, under all possible
transient currents that satisfy the constraints, without having to
find the worst case voltage drop at every node.

6.1 Conditional safety
Let vmax be an (n × 1) vector, where vmax,i is the maximum

allowable voltage drop at node i, for i = 1, . . . , n, and suppose
that we know that at a certain time (t − ∆t), the grid was safe,

so that:
0 ≤ v(t − ∆t) ≤ vmax (24)

Since U and C are non-negative matrices, then (18) and (24) lead
to:

0 ≤ U

�
G +

C

∆t

�
v(t) ≤ U

C

∆t
vmax + Im (25)

Notice that the space of voltages v(t) captured by (25) is a super-
set of that captured by (18). We can now formulate the following
conditional safety checking problem:

Problem 1. If the grid is safe at time (t − ∆t), check if it is
safe at time t.

To solve this problem, it is sufficient to try and maximize every
component of v(t), subject to the constraints (25), as follows:

For i = 1, . . . , n:
Maximize: vi(t)

Subject to: 0 ≤ U
�
G + C

∆t

�
v(t) ≤ U C

∆t
vmax + Im

If it turns out that the answer is yes, so that v(t) ≤ vmax,
then by induction we can say that if the grid is safe at some
previous time t0, it will be safe for all times t ≥ t0. If the answer
is no, then the result is inconclusive. Those nodes that violate
the threshold, leading to the no answer, are possibly unsafe, but
one doesn’t know for sure. Thus, the approach is conservative.

If we are seeking more accuracy, we can use an algorithm sim-
ilar to the one used in the exact worst-case solution, but using
only a few time steps, as follows. Suppose that we know that the
grid was safe between time (t − k∆t) and (t − ∆t), so that:

0 ≤ v(t − q∆t) ≤ vmax for q = 1, . . . , k (26)

We can formulate a new conditional safety checking problem as
follows:

Problem 2. If the grid is safe at all times (t − q∆t), for q =
1, . . . , k check if it is safe at time t.

As in section 5, we can write the following inequality:

�
G +

C

∆t

�
v(t−(q−1)∆t)− C

∆t
v(t−q∆t) = i(t−(q−1)∆t) (27)

To find the maximum voltage drop at time t, we should maximize
the drop at each node, given the two sets of constraints in (26)
and (27), as follows:

For i = 1, . . . , n:
Maximize: vi(t)

Subject to: for q = 1, . . . , k:

0 ≤ v(t − q∆t) ≤ vmax

0 ≤ U
�
G + C

∆t

�
v(t−(q−1)∆t)−U C

∆t
v(t−q∆t) ≤ Im

In the next sub-section, we will show that the grid can always
be assumed to have been safe prior to some time in the distant
past. This will provide us with a base case that can be com-
bined with the inductive step in Problems 1 and 2, to check if the
sufficient condition for the grid safety is met at all time.

6.2 Initial condition
In order to guarantee that the grid was safe before some time

t0 in the past, it is sufficient to consider that the circuit currents
are zero for all t ≤ t0, and then become possibly non-zero after
that. This is such a trivial condition that one may want to simply
assume it and move on. However, in order to satisfy the critical
reader, we will show that even if nothing is known about the cur-
rents for all previous times (−∞, t], we can identify a previous
time prior to which the grid may be assumed to have been safe.
To see this, consider that the grid is a stable linear system with
bounded inputs (the source currents) and bounded outputs (the



Table 2: Verification results showing the number of nodes that violate the different voltage drop constraints.

Voltage Drop Threshold (% of Vdd)
Vmax = 5 % Vmax = 10 % Vmax = 50 % Execution Time

Name k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3

G1 50 29 40 22 0 0 2.01 s. 30.1 s.
G2 153 88 72 37 0 0 59.12 s. 10 min.

G3 146 62 81 41 0 0 71.38 s. 12 min.
G4 47 17 5 0 0 0 57.65 s. 11 min.
G5 6 4 54 25 0 0 51.17 s. 11 min.

G6 72 28 48 28 10 4 60.06 s. 12 min.
G7 57 29 35 14 0 0 56.25 s. 8.6 min.
G8 98 47 422 2 12 8 47.48 s. 5.6 min

G9 238 129 59 30 0 0 6.06 min. 73 min.
G10 199 112 99 48 5 0 5.92 min. 63 min.
G11 170 117 80 56 0 0 5.63 min. 43.4 min.

G12 301 209 193 120 1 1 4.31 min. 50 min.
G13 380 267 273 188 130 55 3.6 min. 33 min.
G14 368 266 272 181 82 28 3.44 min. 26.8 min.
G15 459 361 337 262 206 115 2.84 min. 21.7 min.
G16 441 358 303 210 108 66 2.96 min. 24.3 min.

G17 776 693 439 271 73 50 33.36 min. 11 h.
G18 486 316 324 252 0 0 29.9 min. 6 h.
G19 339 219 57 34 0 0 21.56 min. 3.4 h.

G20 1231 1093 728 561 25 15 24.18 min. 5.8 h.
G21 1293 1082 785 575 162 125 25.34 min. 4.3 h.
G22 1137 932 704 500 65 47 14.67 min. 2.38 h.

G23 1205 982 1113 970 281 217 51.72 min. 7.8 h.

node voltages). Using standard linear system theory, if the volt-
age drop at time t0 is v(t0), then the voltage drop at any time
t ≥ t0 is given by:

v(t) = e−C−1G(t−t0)v(t0) + vs(t) (28)

where vs(t) is the response due to the input currents alone, over
[t0, t], with zero initial conditions. A key point to remember is
that, as t increases, the dependence of the voltage drop on the
initial conditions decreases. Therefore, if one considers a t0 � t,
such that v(t) is insensitive to v(t0), then one may assume that
v(t0) = 0 without affecting the voltages at time t. As a matter
of fact, we can assume that at all time t′ ≤ t0, we have v(t′) = 0.
Thus, the grid can be assumed safe at all times before t0 without
affecting the grid safety at time t. Therefore, for any grid, we can
assume that it was safe at some number of time steps k in the
past. With this, solving Problems 1 or 2, two approaches which
were introduced to check conditional safety, thus turns out to be
sufficient to check safety unconditionally.

6.3 Experimental Results
The optimization problems above were implemented using the

same optimization package as before, for the same test cases in
Table 1. For each grid, we check the safety under three different
voltage drop thresholds (vmax). Table 2 shows the number of
nodes that violate every threshold and the number of nodes that
are safe, using both a one-step only solution (k = 1) and a solution
with 3 steps involved (k = 3). Notice how the number of unsafe
nodes decreases with increasing threshold and how increasing the
number of voltage sources on the grid decreases the number of
unsafe nodes. Also notice how the solution including 3 time steps
indicates a smaller number of unsafe nodes. Table 2 also shows
the CPU time required.

Looking at the CPU time, we notice that a grid of just under
2,500 nodes takes just under an hour to be checked. Such a grid is
of course extremely small compared to full-chip grids that contain
millions of nodes. Nevertheless, our approach is important for at
least two reasons: 1) it is the first approach to rigorously check
the safety of the grid in a truly vectorless approach - remember
that we are checking the grid over all transient currents that

satisfy the constraints, 2) coupled with a hierarchical modeling
approach, our method can be applied either to parts of the grid,
or to the top-level main feeder network of the grid. The ability to
test the main feeder network early in the design flow is a major
advantage of our technique. We believe that these techniques can
lead to practical methods for early vectorless grid verification.

7. CONCLUSION
Checking the safety of the power grid is an essential part of

chip verification. To do this by circuit simulation requires gath-
ering complete information about the circuit and doing expensive
simulation. Instead, we propose a verification approach based on
a set of current constraints (upper bounds on the current sources
attached to the grid). We first gave a conservative algorithm to
get an upper bound on the maximum voltage drop at every node
of the grid, we then offered two simple safety check algorithms.
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