
HIGH-LEVEL POWER ESTIMATION AND THE

AREA COMPLEXITY OF BOOLEAN FUNCTIONS
�

Mahadevamurty Nemani and Farid N. Najm

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

1308 West Main Street, Urbana, IL 61801, USA

e-mail: najm@uiuc.edu

ABSTRACT

Estimation of the area complexity of a Boolean func-
tion from its functional description is an important step
towards a power estimation capability at the register
transfer level (RTL). This paper addresses the prob-
lem of computing the area complexity of single-output
Boolean functions given only their functional descrip-
tion, where area complexity is measured in terms of the
number of gates required for an optimal implementation
of the function. We propose an area model to estimate
the area based on a new complexity measure called the
average cube complexity. This model has been imple-
mented, and empirical results demonstrating its feasi-
bility and utility are presented.

1. Introduction

Rapid increase in the design complexity and the need to
reduce design time have resulted in a need for CAD tools
that can help make important design decisions early in
the design process. To do so, these tools must oper-
ate with a design description at a high level of abstrac-
tion. One design criterion that has received increased
attention lately is power dissipation. This is due to the
increasing demand for low power mobile and portable
electronics. As a result, there is a need for high level
power estimation and optimization. Some of the �rst
papers to report work on high level power estimation
techniques include [1, 2, 3]. However, these papers only
discuss the estimation of average switching activity in
a circuit. In order to provide a high-level estimate of
power, one should multiply the average activity value
by a measure of the circuit total capacitance.

How can one predict total capacitance given only a
high level functional view of a circuit? Among other
things, circuit capacitance depends on the circuit func-
tion, the gate library and the delay constraint.

*This work was supported in part by Intel Corp. and
by the Semiconductor Research Corp.

Obviously, a given Boolean function can be imple-
mented in di�erent ways, leading to di�erent values of
total capacitance. Thus, it seems at �rst glance that
capacitance estimation from a high level view is im-
possible. Nevertheless, we have made some signi�cant
progress towards solving this problem, based on the
following approach. We assume that the total capaci-
tance is proportional to the product of two terms: 1)
a technology-independent measure of circuit area, e.g.,
an estimate of the gate-count, and 2) a technology-
dependent measure of average capacitance per gate. The
second term depends on the gate library and on the de-
lay speci�cation, while the �rst term does not. In this
paper, we report on work related to the estimation of
the �rst term, hence the title \area complexity."

In an early work [4], Shannon studied area complex-
ity, measured in terms of the number of relay elements
used in building a Boolean function (switch-count). In
this paper Shannon proved that the asymptotic complex-
ity of Boolean functions is exponential in the number
of inputs (n), and that for large n, almost every Bool-
ean function is exponentially complex. In [5], Muller
demonstrated the same result for Boolean functions im-
plemented using logic gates (gate-count measure). A
key result of his work is that a measure of complexity
based on gate-count is independent of the nature of the
library used for implementing the function.

Several researchers have also reported results on the
relationship between area complexity and entropy (H)
of a Boolean function. These include [6], [7] [8] and
[9]. The model of [9], where area complexity was mea-
sured as literal count, was derived empirically for small
n from randomly generated Boolean functions. As one
tries to apply that model to realistic VLSI circuits, it
quickly breaks down due to the exponential dependence
on n, leading to unrealistically large predictions of cir-
cuit area. For example, for a circuit with 32 inputs, this
model predicts an area of � 400 million gates, whereas
the circuit can in reality be implemented with only 84
gates!

In this paper, we use \gate-count" as a measure
of complexity, mainly due to the key fact observed by
Muller [5], and also because of the popularity of cell-
based or library-based design. As mentioned above, it
is clear that a given Boolean function can be imple-
mented in many di�erent ways, with di�erent resulting
areas and gate-counts. For instance, a circuit may con-
tain redundant logic, which arti�cially increases its area
and is not re
ected in the circuit function. Since redun-

dant logic is undesirable anyway, we aim to estimate the
gate-count of an optimized implementation of a Boolean
function. Speci�cally, in our experiments, we have com-
pared our estimated gate-counts to the gate-counts for
optimal circuit implementations that were obtained us-
ing the SIS synthesis system.

Our estimation technique is based on the novel con-
cept of average cube complexity of a Boolean function,
to be introduced in the paper. Based on this, we will
provide an area prediction model which gives reason-
able results for realistic circuits, which is a signi�cant
improvement over traditional techniques [9]. This will
be demonstrated with experimental results on a large
set of benchmarks, for which we compare our predicted
gate-counts to those obtained from SIS. Our technique
is, for now, limited to single-output Boolean functions
and we are in the process of generalizing it to multiple-
output functions.

Before leaving this section, it may be worthwhile, for
completeness, to mention some previous work on layout
area estimation. In [10], [11] and [12] layout area was
estimated from gate or transistor level description of the
circuit where a standard cell layout is assumed. In [13],
a layout area model for datapath and control for two
commonly used layout architectures was proposed. In
[14], the above model was modi�ed to account for e�ects
of
oorplanning. As the models of [13] and [14] require
the SOP expression for generating a netlist, they are
impractical for large circuits.

The paper is organized as follows: In section 2 we
give a background discussion of the complexity of ran-
domly generated Boolean functions. In section 3 we
de�ne the new complexity measure average cube com-
plexity, used to estimate the area complexity. In section
4 we present an algorithm for computing the average
cube complexity. We propose an area prediction model
in section 5 and present empirical results in section 6 to
demonstrate its utility and feasibility. We end the paper
with some conclusions presented in section 7.

2. Randomly Generated Boolean

Functions

We will introduce the notion of randomly generated
Boolean functions, and discuss models that were pre-
viously proposed for estimating their area complexity.
Throughout this paper, we will use terminology that is
consistent with the de�nitions in [15].

It was pointed out by Shannon [4] that for large n,
Boolean functions of n inputs have exponential complex-
ity in n, based on a switch-count measure of complex-
ity. A similar result was also shown by Pippenger [7].
While both these results are theoretical and for large
n, an empirical study by Cheng et. al. [9] shows sim-
ilar behavior for small n. Speci�cally, they observe an
exponential complexity dependence on n for randomly
generated Boolean functions with n inputs, for n = 8,
9, and 10, using a literal-count measure (the same was
observed by the authors when gate-count was used as
a measure of complexity). By randomly generated, we
mean that these functions were selected by making a
random choice for each point in the Boolean space, as
to whether it belongs in the on-set or o�-set of the func-
tion.

In [4], it was also pointed out that for su�ciently
large n, all except a fraction � of functions of n vari-

ables require at least (1 � �)2
n

n
switch elements. This

suggests that the average area complexity of an n-input
Boolean function (with the average taken over the set
of all Boolean functions on n variables) varies exponen-
tially with n. Perhaps based on the assumption that
typical logic functions used in practice may be \aver-
age" (or close to average), the method in [9] applies this
to every Boolean function, leading to the following area
model

A / 2nH (1)

where n is the number of inputs, H is the entropy of
the output of the Boolean function (with independent
inputs, each with probability 0:5), and A is the area
complexity measured as gate-count. The proportional-
ity constant depends on the library being used.

Risking abuse of terminology, we will refer to a Bool-
ean function for which the above model holds as an av-
erage function. Unfortunately, we have found that logic
functions that are typically used in VLSI are far from
being average, in the above sense, so that the above
model breaks down very quickly for reasonable values
of n. This is dramatically illustrated by the 32-input
84-gate circuit mentioned in the introduction, for which
this model predicts an area close to 400 million gates.
This behavior is typical of what we have seen.

Why is it that typical circuits are far from being
average in terms of area complexity? We have inves-
tigated this by examining the structure of the on-sets
for randomly generated functions, and found that their
on-sets consist of points that are randomly scattered in
the Boolean space, with no preferred direction. How-
ever, we have found that typical VLSI circuits have well
structured distributions of their on-sets in the Boolean
space, so that a function has certain preferred directions
in which many of its cubes lie. This seems to translate
to tremendous reduction in the area complexity relative
to the (unstructured) randomly generated functions.

Thus typical VLSI circuits belong to the small mi-
nority of circuits whose area does not satisfy the model
of Cheng et. al. [9]. Finding an area model for such
functions has remained an open problem. This paper,
to the best of the authors' knowledge, is the �rst to
utilize the structure of the Boolean space, in addition
to the entropy, to predict the area complexity. We have
found that the area complexity of realistic VLSI circuits,
rather than being exponential in n [9], is better mod-
eled as being (approximately) exponential in C, where
C is the average cube complexity of the function, to be
described below.

3. Average Cube Complexity

We start with a precise statement of the problem to
be addressed. Consider an n-input single-output Bool-
ean function f(X). Given a library, we would like to
estimate the minimum number of gates (A) required
to implement the function, given only its high level de-
scription (Boolean equations). It must be noted that we
would like to compute A without performing any logic
synthesis on the function f(X). The rationale for this is
that logic synthesis can be computationally expensive,
and is therefore best avoided in a high-level analysis in
order to maintain computational e�ciency.

It seems reasonable to say that the area complexity
of a Boolean function is related to the complexity of its
on-set and o�-set. There are many ways of quantifying

the on-set/o�-set complexity, the simplest being to con-
sider the sizes of the on-set and o�-set relative to the
size of the Boolean space of the function (this is sim-
ply the probability of the function when its inputs are
independent and set to a probability of 0:5, and a modi-
�cation of this is the entropy of the function). However,
we have found that this simple measure is too general,
in the sense that many quite di�erent functions can have
the same on-set probability or entropy. Hence, a com-
plexity measure based on more detailed analysis of the
on-set/o�-set of the function is required.

In order to measure the area complexity of a Boolean
function, we propose to use (in addition to the entropy)
the average literal-count of the prime implicants of the
function, which we will call the average cube complexity.
Thus the complexity of the cube c = x1�x2x4 is 3, and
we write jjcjj = 3. Intuitively, if a Boolean function has
a small average cube complexity, it means that it can
be represented using cubes of small literal-count, which
naturally require less area to implement. On the other
hand, a large average cube complexity would imply the
presence of cubes with large literal-counts, which would
require a large number of logic gates to implement. In
this paper we use the average cube complexity in con-
junction with the entropy of the Boolean function to
compute the area complexity of the function. In the fol-
lowing, we make the term average cube complexity more
precise.

In principle, whatever measure of cube complexity
is used, one should keep in mind that many other fac-
tors can in
uence the gate count, so that the result of
using the cube complexity to predict area will involve
some estimation error. For this reason, it does not make
sense to use very expensive procedures for estimating the
cube complexity. For instance, it would be prohibitively
expensive to try and enumerate all the essential prime
implicants of the function in order to compute their av-
erage complexity. Instead, we have chosen to estimate a
certain weighted average of the complexity of the prime
implicants, not of the essential primes. The weighted
average can be e�ciently computed by an iterative pro-
cess of logic simulation and is guaranteed to lie between
two quantities A(f) and B(f), either of which can itself
serve as a measure of the average cube complexity and
both of which are too expensive to compute directly,
de�ned as follows.

Consider an n-input single-output Boolean function
f . Let VON be the set of minterms (vertices of the Bool-
ean space) corresponding to the on-set of the function,
and let mi 2 VON denote a minterm. Also, let ai be the
largest (i.e., contains the most minterms) prime impli-
cant of f that contains the minterm mi. Then, de�ne
A(f) to be the following average of the jjaijjs over all
the minterms in VON

A(f) =
1

jVON j

X

mi2VON

jjaijj (2)

Similarly, de�ne bi to be the smallest (i.e., contains
the least minterms) prime implicant of f that contains
the minterm mi. And de�ne B(f) to be the following
average of the jjbijjs over all the minterms in VON

B(f) =
1

jVON j

X

mi2VON

jjbijj (3)

It is clear from the de�nitions that A(f) � B(f).

Each of these measures, A and B, may itself con-
tain enough information about the population of prime
implicants in the on-set of f to be useful for studying
its complexity. However, even though they are de�ned
in terms of prime implicants, and not essential prime
implicants, A and B are still too expensive to compute.
Instead, we will de�ne a measure C1 which is very easy
to compute and which lies between A and B.

For a minterm mi, let ci1; ci2; : : : ; ciNi be all the
prime implicants that contain mi. In the next section,
we will describe a (logic simulation based) algorithm by
which the di�erent prime implicants cij can be obtained
from mi. Irrespective of how this is done, let pij denote
the probability that, using our algorithm, cij is obtained
from mi. Based on this, we de�ne the following

C1(f) =
1

jVON j

X

mi2VON

NiX

j=1

pijjjcijjj (4)

Since
PNi

j=1 pij = 1, 0 � pij � 1, and jjaijj � jjcijjj �
jjbijj, it follows that

A(f) � C1(f) � B(f) (5)

We refer to C1(f) as the average cube complexity of the
on-set of the Boolean function f .

Likewise, the average cube complexity of the o�-set,
denoted by C0(f), can be de�ned in a similar fashion.
If only C1 (or only C0) is used as a complexity measure,
one runs into cases where the complexity of a function
and its complement are predicted to be quite di�erent,
which is clearly unrealistic. Instead, we have found that
the following composite measure works best

C(f) = P(f)C1(f) + P(�f)C0(f) (6)

where P(f) denotes the probability of the function f ,
which can be e�ciently computed using Monte-Carlo
techniques [16]. We refer to C(f) as the average cube
complexity of the function f .

In this paper we will use C(f), along with the func-
tion entropy, to estimate the area complexity of a Bool-
ean function. In order to compute C one needs to com-
pute C1 and C0. It can be shown that C1 and C0 can
be expressed as a mean, or weighted average, of the lit-
eral counts of all the prime-implicants of the on-set of
the function. Hence, statistical techniques of mean es-
timation, i.e., Monte Carlo techniques, can be used for
estimating the above quantities. In the next section we
present the algorithm used for estimating C1. The com-
putation of C0 is similar.

4. Algorithm for Computation of C1

The following are the steps involved in computing C1
for a given Boolean function f(X). The algorithm takes
as input an arbitrary technology independent Boolean
network representation of the function. Firstly, a point
in the Boolean space and in the on-set of the Boolean
function f(X), is chosen at random. The logic vector
corresponding to this minterm is applied to the circuit
inputs and a logic simulation is performed to determine
the corresponding logic values at all gate outputs. Then,
the process of generating a prime implicant from that
minterm consists of two steps, which we call backward

scanning and forward simulation, described below. The
complexity of the generated prime implicant is used to
modify the estimate of C1, and the process is repeated
until convergence of C1 is obtained to a user speci�ed
accuracy and con�dence. A stopping criterion used to
stop the simulation can be derived using an approach
similar to that in [17]. A detailed explanation of the
prime-implicant generation algorithm is given below.

In the backward scanning step, all circuit nodes (in-
cluding the inputs) are marked don't-care without actu-
ally altering their stored logic values, and the circuit is
traversed from the output to the inputs, breadth �rst.
During the traversal, all inputs to a gate whose logic
values are controlling and which are marked don't-care
are unmarked. For example, if the output of a two input
OR gate is '1' with one input at logic '0' and the other
at '1', the input at logic '1' is unmarked as a don't-care.
If both the inputs are at logic '1', one of the inputs is
randomly picked and unmarked. At the end of this step,
the logic values of any primary inputs that are marked
don't-care are changed to 'X' (to denote a logic don't-
care). The resulting primary inputs assignment forms a
cube (not necessarily a prime implicant) which contains
the original minterm.

In order to generate a prime implicant from the above
cube, we must make sure that all the inputs not marked
as don't-care at the end of the backward scanning step
are indeed required to evaluate the function correctly.
This is done in the forward simulation step. Here, the
input nodes not marked as don't-care, are selected at
random and set to a don't-care and a logic simulation
is performed to determine if the function evaluates to
'1'. If so, then the logic value at that input is set to a
don't-care, otherwise it is reset to its original value. This
procedure is continued until all unmarked inputs have
been tested, so that the cube at the end of this step is
a prime implicant.

5. The Area Model

In this section we present the area model to compute the
area complexity A(f) of Boolean functions. The area
model is based on the concept of average cube complexity
C(f) introduced earlier.

Empirical data based on straightforward application
of the algorithmoutlined above for computation of C1(f)
and C0(f) showed us that our complexity measure works
well, but it somewhat under-estimates the area complex-
ity in many cases. We have been able to �x this bias by
devising a slight modi�cation of the algorithm, which
is described below, and which may be thought of as a
tuning of the model.

The values of C1(f) and C0(f) depend on the prob-
ability of occurrence of various cubes (which are de-
termined by the algorithm). Since cubes with smaller
cube complexities have a higher probability of occur-
rence than those with larger cube complexities, the stra-
ightforward application of the above algorithm can lead
to situations where the estimates of C1(f) and C0(f)
are severely biased towards cubes with small complex-
ities. We have come up with a strategy of overcoming
this bias in the estimate, in a way that does not hurt
other good data points (benchmarks on which the model
works well) of the model and maintains computational
e�ciency.

We have done this by placing a ceiling on the fre-

quency (i.e., probability) with which any speci�c prime
implicant ci is allowed to be sampled by the algorithm.
This ceiling value is the same for all prime implicants.
This procedure ensures that the probability distribution
is somewhat
attened on the side of cubes with smaller
cube complexities and somewhat raised on the side of
cubes with larger cube complexities. This raises the es-
timates of C1(f) and C0(f) and corrects the bias in the
original algorithm. The above modi�cation only alters
the distribution with which certain cubes are obtained
by our algorithm, but does not alter the de�nition and
properties of the measures C1 and C0 given previously.
Likewise, the convergence criterion does not change. We
have found that a ceiling of 0.15 seems to produce the
best results. With this modi�cation, we have used the
C(f) complexity measure to predict the area complexity,
as follows.

We �rst discuss how the data corresponding to the
average functions shown in Fig. 1 was generated. For
a given value of n, we computed C(f) and obtained an
estimate of the gate-count, A(f), from an optimized im-
plementation for a number of randomly generated Bool-
ean functions whose output entropy is H(f) = 1, based
on all inputs being independent and with 0.5 probabil-
ity. These points, for each n, were very closely clustered.
This means that the distribution of A(f) of randomly
generated Boolean functions (given n and H) is tight. It
also implies that the distribution of C(f) is tight. The
curve referring to average functions in Fig. 1 corresponds
to the average values of each cluster and is close, but not
exactly equal, to an exponential.

3 4 5 6 7 8
C(f)

0

200

400

600

A
(f

)

Average Functions at H = 1
VLSI Functions at H = 1

Figure 1: Typical VLSI functions fall close to the curve

This almost-exponentialA versus C curve is very im-
portant and is in fact the essence of our area prediction
model. This is because we have found that not only do
randomly generated Boolean functions fall on this curve,
but also typical VLSI functions fall on it or close to it,
as shown in Fig. 1. The data points shown in Fig. 1 cor-
respond to the subset of the test cases to be presented
in section 6 for which the output entropy is equal to
1. It is noteworthy that the points are not clustered at
speci�c points, but spread all over the curve. This illus-
trates the point made earlier about typical VLSI func-
tions not being average. Further results will be given
in the empirical results section, where we will use this
curve to predict A(f), having �rst computed C(f). In
fact, we use a family of such curves, corresponding to
di�erent entropy values, as shown in Fig. 2. Additional
curves can be easily generated for other entropy values.
These curves need to be generated only once, which is
an up-front once-only cost, and they can then be used

to predict the area of various functions.

0 2 4 6 8
C(f)

0

200

400

600

800

A
(f

)
H = 0.02
H = 0.2
H = 0.543
H = 0.811
H = 0.924
H = 1.00

Figure 2: A(�) versus C(�) for di�erent values of entropy.

An important consideration is what the largest n
should be for which these curves need to be generated.
Obviously, the curves are going to be more di�cult to
generate for larger n because of the cost of running syn-
thesis to obtain the A(f) values. Luckily, there are two
reasons why this is not a problem so that considering
n � 8 as in Fig. 2 is su�cient. Firstly, we have found
that for typical VLSI functions, the value of C(f) turns
out to be much smaller than n in most cases. Indeed, all
the test cases that we will present (for which n ranges
from 8 to 67) had C(f) � 8, so that the curves in Fig. 2
were su�cient. This fact is key because it illustrates why
the traditional (exponential in n) model breaks down
while our (almost-exponential in C) model gives reason-
able results for typical VLSI functions.

The second reason why generating the curves only
for small n is su�cient is that for larger values of n
the curves become closer to the exponential and can be
modeled analytically. For larger values of n, one can
simply compute the area complexity as

A(f) = 2C(f)k(H) (7)

where k(H) is a proportionality constant that depends
on the entropy H.

6. Empirical Results

Before presenting the actual data, a word on how the
benchmarks were generated is in order. Since most of
the ISCAS-85, ISCAS-89 and MCNC benchmarks are
multiple-output Boolean functions, these circuits were
used to generate single-output Boolean functions by delet-
ing all but one output. The resulting single output func-
tion was optimized using SIS, for minimum area. The
script used for optimization was rugged.script of the SIS
optimizer. Mapping was done using a library consisting
of a nand2, nor2 and an inverter. The gate count of the
SIS-optimized circuit was used as the reference value for
area. A number of single output circuits were generated
using this method.

The area complexity values (gate-count predictions)
of these benchmarks, using our model, were computed
as follows. Firstly, the probability and the entropy of
the Boolean function were estimated to a prescribed er-
ror tolerance and con�dence statistically using a Monte-
Carlo approach [16]. The probability was estimated to
an accuracy of 95% with a con�dence of 95%. The en-
tropy of the output was computed using the estimated

probability. Parameters C1 and C0 were estimated to an
accuracy of 90% with a con�dence of 90%. Equation
(6) was used to estimate C(f) and the parameters C(f)
and H(f) were then used to compute the area using the
approach discussed in the previous section.

0 100 200 300 400 500
Actual Area

0

200

400

600

P
re

di
ct

ed
 A

re
a

Figure 3: Actual versus Predicted Area.

The comparison between the predicted and SIS op-
timized gate count values is given in Fig. 3. While the
agreement is not perfect, it is nevertheless reasonable,
especially considering that the predicted gate counts
were obtained only from a knowledge of the function,
and no structural information or synthesis procedures
were required to make those predictions. This repre-
sents a unique contribution and indicates that high-level
analysis for power prediction can be realized. It must
be mentioned that our current approach does not work
well on circuits which can be realized as xor trees. We
are currently working on this problem.

Finally, some words on run time are in order. The
run times corresponding to 90% con�dence with 10%
error tolerance, on a SUN sparc-5 workstation, for a
majority of the benchmarks was under 3 minutes. The
worst case run time was for the circuit C3540 o10. For
this circuit the run time was about 7 minutes. The
number of iterations for C(f) algorithm were typically
around 50 or 60 for most circuits, and only rarely did
the iteration count go over 100.

7. Conclusions

Motivated by the need for high-level power estimation
techniques, we have proposed a new model for predict-
ing the area of a single-output Boolean function, given
only its functional speci�cation and no structural infor-
mation. This was achieved by reformulating the area
complexity problem in terms of the average cube com-
plexity, which was introduced in this paper and for which
an e�cient algorithm was presented. The relationship
between area complexity and the average cube complex-
ity was found empirically to be almost-exponential, in-
cluding a dependence on the function output entropy.
Unlike other existing area models which fail on realistic
VLSI circuits, this model is reasonably accurate, com-
pared to SIS-optimized circuit implementations.

The signi�cance of this work is that it relates a struc-
tural attribute (area) to a functional attribute (average
cube complexity), which is a de�nite requirement for
high-level power estimation. Future work includes ex-
tension of the area model in order to handle multiple-
output functions.

8. References

[1] F. N. Najm, \Towards a high-level power estimation

capability," ISLPD, pp. 87{92, 1995.

[2] D. Marculescu, R. Marculescu, and M. Pedram, \In-

formation theoretic measures of energy consumption at

register transfer level," ISLPD, pp. 81{86, 1995.

[3] M. Nemani and F. N. Najm, \Towards a high-level

power estimation capability," IEEE Transactions on

Computer Aided Design of Integrated Circuits and Sys-

tems, to appear, June, 1996.

[4] C. E. Shannon, \The synthesis of two-terminal switching

circuits," Bell System Technical Journal, vol. 28, no. 1,

pp. 59{98, 1949.

[5] D. E. Muller, \Complexity in electronic switching cir-

cuits," IRE Transactions on Electronic Computers,

vol. 5, pp. 15{19, 1956.

[6] E. Kellerman, \A formula for logical network cost,"

IEEE Transactions on Computers, vol. 17, no. 9,

pp. 881{884, 1968.

[7] N. Pippenger, \Information theory and the complexity

of boolean functions," Mathematical Systems Theory,

vol. 10, pp. 129{167, 1977.

[8] R. W. Cook and M. J. Flynn, \Logical network cost and

entropy," IEEE Transactions on Computers, vol. 22,

no. 9, pp. 823{826, 1973.

[9] K.-T. Cheng and V. Agrawal, \An entropy measure

for the complexity of multi-output boolean functions,"

DAC, pp. 302{305, 1990.

[10] M. Pedram and B. Preas, \Interconnection length es-

timation for optimized standard cell layouts," ICCAD,

pp. 390{393, 1989.

[11] G. Zimmerman, \A new area and shape function es-

timation technique for vlsi layouts," DAC, pp. 60{65,

1988.

[12] C. Ramachandran and F. J. Kurdahi, \Tele: A timing

evaluator using layout estimation for high level applica-

tions," EDAC, 1992.

[13] A. C.-H. Wu, V. Chaiyakul, and D. D. Gajski, \Layout-

area models for high-level synthesis," ICCAD, pp. 34{

37, 1991.

[14] F. J. Kurdahi, D. D. Gajski, C. Ramachandran, and

V. Chaiyakul, \Linking register-transfer and physical

levels of design," IEICE Transactions on Information

and Systems, Sept., 1993.

[15] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and

A. L. Sangiovanni-Vincentelli, Logic Minimization Al-

gorithms for VLSI Synthesis. Kluwer Academic Pub-

lishers, 1984.

[16] F. N. Najm, \Statistical estimation of the signal prob-

ability in vlsi circuits," CSL Report #UILU-ENG-93-

2211, April 1995.

[17] M. Xakellis and F. Najm, \Statistical estimation of the

switching activity in digital circuits," DAC, pp. 728{733,

1994.

Table 1: Analysis of the area Model
Circuit Input Opt. area Model

name # # Gates Pred.

s1494 o17 11 50 53

c2670 o1 16 51 76

s1196 o5 17 54 48

frg1 d0 25 58 68

s1238 o5 17 58 50

s1488 o1 14 61 37

s1494 o1 14 62 36

cm150a 21 63 89

s1488 o19 14 67 47

c880 o18 29 69 110

c5315 o7 25 69 106

s1488 o24 10 73 37

c880 o21 32 84 110

s1488 o12 14 86 54

s1238 o19 19 89 73

c5315 o25 28 90 63

s1494 012 14 91 58

s510 o6 20 96 72

c5315 o85 30 101 72

s1494 o18 14 105 60

c880 o19 36 110 121

rot p4 46 102 50

alu2 k 8 115 115

s1238 o22 21 121 125

myadder x0 33 128 59

c5315 o75 33 129 122

dalu O15 42 129 95

c2670 o39 35 129 525

s1196 o17 21 135 110

s1196 o22 21 136 143

alu4 o 8 137 112

dalu O0 29 137 190

rot q5 55 137 96

dalu O5 39 149 207

dalu O10 41 164 114

c880 o24 45 186 119

c5315 o34 55 190 125

s1196 o20 21 193 311

alu2 o 10 194 127

s1238 o23 21 195 170

c1908 o1 32 236 267

c1908 o8 32 236 235

c1908 o6 32 242 171

c5315 o37 67 242 95

alu4 p 10 289 230

alu4 r 14 489 554

