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Abstract – We present a novel macromodeling
technique for estimating the energy dissipated in
a logic circuit for every input vector pair (we call
this the energy-per-cycle). The macromodel is based
on classifying the input vector pairs on the basis
of their Hamming distances and using a different
equation-based macromodel for every Hamming dis-
tance. The variables of our macromodel are the
zero-delay transition counts at three logic levels in-
side the circuit. We present an automatic charac-
terization process by which such macromodels can
be constructed. This energy-per-cycle macromodel
provides a transient energy waveform, and can also
be used to estimate the moving average energy over
any time window. This approach has been imple-
mented and models have been built and tested for
many circuits. The average error observed in es-
timating the energy-per-cycle is under 20%. The
model can also be used to measure the long-term
average power, with an observed error of under 10%
on average.

1. INTRODUCTION

With the advent of portable and high-density micro-
electronic devices, the power dissipation of very large scale
integrated (VLSI) circuits has become a critical concern.
Due to limited battery life, reliability issues, and packag-
ing/cooling costs, power consumption has become a more
critical design concern than speed and area in some applica-
tions. In order to avoid problems associated with excessive
power consumption, there is a need for CAD tools to help
in estimating the power consumption of VLSI circuits, at
various levels of abstraction.

In order to reduce the number of design cycles, power
estimation tools are required that can estimate the power
consumption at a high level of abstraction. In response
to this need, a number of high-level power estimation tech-
niques have been recently proposed which can be grouped
into top-down and bottom-up techniques. In the top-down
techniques [1], a combinational circuit is specified only as a
Boolean function, with no information on the circuit struc-
ture, number of gates/nodes, etc. In contrast, bottom-up
methods [2–8] are useful when one is reusing a previously
designed logic block, so that all the internal structural de-
tails of the circuit are known. In this case, one develops a
power macromodel for this block which can be used during
high-level power estimation.
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The methods in [2–6] target the average power over a
long time period. However, in many applications, the av-
erage power may not be enough. Indeed, it is often im-
portant to know the instantaneous power dissipation, as a
time-waveform, i.e., what one may refer to as a transient
power waveform. The most important application where the
transient power waveform is needed is probably the analysis
of the power and ground bus networks for finding IR-drop
problems which lead to reduced circuit speed due to the re-
duced power supply voltage. Another obvious application
is noise analysis, because glitches on the power supply are
coupled into the circuit leading to noisy and possibly erro-
neous signals. This is especially important in circuits that
are designed with power-down or sleep modes. When parts
of these circuits are turned on or off, large supply current
transients will result and it is important to understand the
noise and IR-drop implications of these transients. How can
one produce a high-level macromodel for a logic block that
reports the power supply current waveform for every possible
vector stimulus? This is very difficult because the number
of vectors and the variability in the shapes of all the differ-
ent waveforms is very large. A simpler problem (assuming a
clocked system) is to build macromodel that gives the energy
dissipated in the circuit due to a given vector pair, effectively
the energy-per-cycle. This is a simpler problem, for which
some solutions [7, 8] have been proposed.

The method in [7] characterizes the power dissipation
of circuits based on input transitions. But it is not clear how
efficient the method would be on large circuits. In [8], the
authors presented a macromodel for estimating the cycle-by-
cycle power at the RTL. Their macromodels are dependent
on a training vector set, so that the accuracy is compro-
mised if the training set is not similar to the vector set to
be applied.

In this paper, we present a novel macromodeling ap-
proach that provides the energy-per-cycle without running
the risk of a combinatorial explosion and without requiring a
training set to tune the model before it is used. We classify
the input vector pairs on the basis of their Hamming dis-
tances and use a different equation-based macromodel for
every Hamming distance. The variables of our macromodel
are the zero-delay transition counts at three logic levels (see
section 3) inside the circuit. Our equation-based macromod-
els consist of 10 and 5 coefficients for real-delay and zero-
delay respectively. Moreover, this energy-per-cycle macro-
model can be used for estimating the average energy over
any specified time period.

A key advantage of our approach is that all types of cir-
cuits are treated in the same way, i.e., we do not use different
model equation types for different circuits. As a result, the
method is very easy to use, and requires no user interven-
tion. Indeed, we will present an automatic characterization
procedure, by which such equation-based energy-per-cycle
macromodels can be built.

This paper is organized as follows. In the next sec-
tion, we give an overview of our approach. In section 3, we
describe the variable selection procedure. In section 4, we
discuss the construction of the equation-based macromodel.
In section 5, we give the characterization flow of our method.
In section 6, we present results and some applications of our
macromodels and finally in section 7, we give some conclu-
sions.



2. ENERGY-PER-CYCLE ESTIMATION

We assume that a circuit block is given that is described
at a low level of abstraction (say, at the gate level). We
assume that this circuit is clocked and, for simplicity, we
assume that a single clock drives all the memory elements
(registers or flip-flops), but this is not a limitation of this
technique. Upon every new cycle of the clock a new primary
input vector is applied, and the combinational part of the
circuit is presented with a new logic vector xi. In general, xi

consists of primary input bits and of state bits. We want to
build a macromodel for this circuit that gives the energy con-
sumed in every clock cycle, given the primary inputs vector
sequence.

We assume that the macromodel is intended to be used
in a high-level analysis in which the transient power dissipa-
tion characteristics of this block are to be examined under
some vector stimulus. As part of this analysis, this block will
be simulated to determine its outputs. By a “high-level” of
abstraction, we mean that the simulation is at higher than a
gate level. Specifically, for purposes of this high level analy-
sis, we assume that the the circuit block under consideration
would be specified as sets of Boolean functions (represent-
ing combinational logic blocks) that exist between banks of
clocked memory elements (flip-flops). This level of abstrac-
tion may be referred to as a structural RTL (Register Trans-
fer Level).

Since the inputs and outputs of the flip-flops are known,
it is easy to estimate the energy-per-cycle due to each flip-
flop, using a cell-level model for them. The main difficulty
lies in modeling the energy-per-cycle for the combinational
logic parts so that their energy-per-cycle can be found with-
out having to perform detailed gate-level simulation. For
this reason, in the remainder of this paper, we will focus on
combinational circuits.

Consider a combinational circuit with N nodes. Let
Ci be the capacitance associated with node i and ni (x1,x2)
be the number of transitions at node i due to the input
vector pair (x1, x2) (we use bold letters to denote vector
quantities). Then, the energy dissipated for the input vector
pair (x1,x2) is given by:

E(x1,x2) = 0.5V 2
dd

N∑
i=1

Cini (x1,x2) (1)

We refer to E(x1,x2) as the energy-per-cycle. As given,
this model seems to ignore the short-circuit power. However,
it is common practice to use a modified value of Ci that effec-
tively includes the contribution of the short-circuit power of
a logic gate, from a knowledge of its fanout and fanin gates.
A brute-force way of modeling E(x1,x2) is to simulate the
circuit, say at the gate-level, for all possible input vectors
and store the energy value corresponding to each vector pair
(x1,x2) in a look-up table. However, for a circuit with M
primary inputs, the total number of possible input vector
pairs is 4M , making this approach practically infeasible for
all but the smallest circuits.

Therefore, the goal of macromodeling is to find a func-

tion Ê (x1,x2) which would be a good approximation to (1)
over all possible input vector pairs (x1, x2) and which would
be less complex. Our approach, which aims to achieve this,
is a two step process:
Step 1. Identify a number of variables v1 (x1, x2) ,

v2 (x1,x2) , · · · , vL (x1,x2) which best represent the de-
pendence of the energy-per-cycle on the vector pair
(x1,x2). We call this step variable selection and is de-
scribed in section 3.

Step 2. If M is the number of bits in the vectors xi, let
h ∈ {0, 1, · · · , M}, be the Hamming distance between
x1 and x2 (i.e., h is the number of bits that are dif-
ferent). Then, choose a polynomial model (linear or

quadratic) Êh (x1,x2), for every Hamming distance, in

terms of the variables chosen in step 1. Determine the
coefficients of the model using the method of Recursive
Least Squares (RLS) [6]. We call this step macromodel
construction and is described in section 4.

Based on the above, our macromodel is:

Êh (x1,x2) = fh (v1 (x1,x2) , v2 (x1,x2) , · · · , vL (x1,x2))
(2)

Since the Hamming distance can take M possible values
(0 is not considered, as the energy-per-cycle is zero for no
input transition), we will have M such macromodels. In the
next section we will describe an approach for choosing the
variables vi (x1,x2).

3. VARIABLE SELECTION

A combinational circuit can always be levelized so that
its gates are tagged with the level values that represent their
distance from the primary inputs. Thus every gate whose
inputs are all primary inputs is said to have level 1. Ev-
ery other gate whose inputs are either outputs of level 1
gates or are primary inputs is said to have level 2, etc. The
levelization algorithm [11] has linear time complexity and
is standard in most logic/timing simulation systems. The
largest level number K used in levelizing a circuit is called
the circuit depth. By grouping the nodes which are at the
same level, (1) can be rewritten as:

E (x1,x2) = 0.5V 2
dd

K∑
i=1

Gi∑
j=1

Cjnj (x1,x2) (3)

where Gi is number of nodes that are outputs of gates at
level i. Since we are trying to estimate the energy-per-cycle
at RTL, some approximations seem inevitable. We start
with the simplifying assumption that the capacitance of a
node at a certain level is approximately equal to the average
capacitance of all the nodes at that level. Therefore, (3)
simplifies to:

E (x1,x2) ≈ 0.5V 2
dd

K∑
i=1

QiNi (x1,x2) (4)

where

Qi =
1

Gi

Gi∑
j=1

Cj and Ni (x1,x2) =

Gi∑
j=1

nj (x1,x2)

(5)
It turns out that this is a very good approximation

in practice, as seen in Fig. 1 which show a scatter plot
of energy-per-cycle obtained from (4) (x-axis) and that ob-
tained from (3) (y-axis), for c6288, one of the ISCAS-85 [9]
benchmark circuits. The number of input vector pairs in
the plot are 15000, which were generated randomly and the
energy-per-cycle was estimated using [10]. It can be seen
from the figure that energy-per-cycle values correlate very
well and this behavior was observed for all the ISCAS-85 [9]
benchmark circuits, which supports the approximation made
in (4).
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Figure 1. Plot of energy-per-cycle for c6288.

In (4), Qi is known, as it can be obtained from the
gate-level net-list and stored in a look-up table, to be used



at RTL. But Ni (x1,x2) in (4) is unknown at RTL, as de-
termining it requires the real-delay simulation of the whole
circuit, which is prohibitive at RTL. One possibility is to
estimate the real-delay energy-per-cycle from the zero-delay
transitions at every level, i.e., from a simulation of the cir-
cuit that uses a zero-delay model for all the gates. In this
case the macromodel would be:

Ê (x1,x2) ≈ 0.5V 2
dd

K∑
i=1

QiN z
i (x1,x2) (6)

where the superscript z signifies that the transitions are mea-
sured from a zero-delay simulation. To check the accuracy
of this macromodel, input vector pairs were randomly gen-
erated and energy-per-cycle, E (x1,x2), was estimated us-
ing [10] which also provides an estimate of Nz

i (x1,x2). Us-

ing this, Ê (x1,x2), was also estimated using (6) and the
relative error between the two energy values was computed.
Table 1 shows the average of this error, for the ISCAS-85 [9]
benchmark circuits, which is computed as:

Avg. Error =
1

P

P∑
i=1

|Ei (x1,x2) − Êi (x1,x2) |
Ei (x1,x2)

(7)

where P = 100, 000 is the number of input vector pairs.
It is clear from the table that the simple model of (6)

is not good enough for estimating the real-delay energy-per-
cycle as the glitches are not accounted for in (6). Another
possibility is to construct the model as follows:

Ê (x1,x2) = c0 +

K∑
i=1

ciN z
i (x1,x2) (8)

where the regression coefficients ci would be determined us-
ing least squares fitting. Note that Qi does not appear in (8),
as it is contained in the regression coefficient ci. In fact,
we have found that the accuracy of (8) can be significantly
improved if we generate different coefficients for every Ham-
ming distance. One reason for this is that the energy per cy-
cle depends strongly on the Hamming distance, as shown in
Fig. 2 for c3540, an ISCAS-85 [9] benchmark circuit. Fig. 2
shows the energy-per-cycle for each Hamming distance, av-
eraged over 1000 randomly generated input vector pairs for
each Hamming distance.

With this modification, the model of (8) becomes:

Êh (x1,x2) = c0 (h) +

K∑
i=1

ci (h)N z
i (x1,x2) (9)

where the regression coefficients ci(h) are determined for
each Hamming distance using RLS [6].

We call the macromodel of (9), the golden model. To
check the accuracy of this model, 100, 000 input vector pairs
were generated randomly. For each input vector pair, the
actual energy-per-cycle was obtained using [10], which also
provides estimate of N z

i (x1,x2). Energy-per-cycle was also
estimated using (9) and the relative error was computed for
every input pair. Table 2, shows the average of this error,
for ISCAS-85 [9] benchmark circuits, which is computed us-
ing (7) with P = 100, 000. Also, shown in Fig. 3 is the
real-delay energy-per-cycle waveform for c1908, an ISCAS-
85 [9] benchmark circuit, where one trace was measured from
simulation and the other was predicted from our model. The
simulation was performed using a real-delay (not zero-delay)
gate-level timing model, so that multiple transitions per cy-
cle (glitches) were not ignored during the simulation. In
order to generate this figure, we applied a low activity vec-
tor sequence for a while and then immediately applied a
high activity vector sequence. While the agreement demon-
strated in Fig. 3 is not exact (one would not expect that
in a high-level model), it is clear that the accuracy is good
enough to permit one to closely track the changes in power
dissipation over time. Furthermore, the model has no time

lag, it immediately reflects the change in power, which is a
useful feature in practice. We consider this capability to be
a major strength of this approach.

Table 1. Error in estimating
real-delay energy-per-cycle using
macromodel given by (6).

Table 2. Error in the golden
model while estimating real-
delay energy-per-cycle.
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Figure 2. Showing the variation
in energy for different Hamming
distances, for c3540.

Figure 3. Energy waveform
predicted using golden model
for c1908.

Using the golden model requires one to perform a func-
tional (zero-delay) simulation of the circuit, while monitor-
ing the Boolean values at its internal nodes. Granted, for
RTL simulation, we would have to simulate the circuit func-
tionally anyway, but we normally would not evaluate the
Boolean functions at every internal nodes. Thus the golden
model probably requires more work than one is willing to do
at RTL.

To resolve this problem, we propose to simplify (9) so
that it does not require one to evaluate the Boolean func-
tions at all the circuit nodes, but only at some. Specifically,
we identify three logic levels inside the circuit, and require
the user to measure the number of transitions only at the
nodes in these levels. We have found experimentally, that by
choosing only three levels, the percentage average error (7),
over a large number of input vector pairs, was within 20%
(see section 6), so that we lose only 5% in accuracy relative
to our golden macromodel (9), for most of the circuits that
we tested. Hence in our approach, E (x1,x2) for the given
input vector pair (x1,x2), is determined from the zero-delay
transitions at the chosen three levels. We use a stepwise re-
gression procedure [12] to find these three levels. Stepwise
regression is a well known variable selection method based
on F ∗ statistics from regression theory [12].

Before explaining the algorithm, we begin with some
useful terms for regression analysis:
1. Sum of squares error:

SSE =
∑P

j=1

(
Ej (x1,x2) − Êj (x1,x2)

)2

2. SSE(vp, . . . , vq) is defined as SSE when Ê(x1,x2) is for-
mulated as a regression equation on only the variables
vp, . . . , vq, where vi = N z

i (x1,x2) are the variables of
the regression equation (8).

3. Mean squares error: MSE(v1, . . . , vk) = SSE(v1 ,...,vk)
P−k−1

4. Regression sum of squares:

SSR =
∑P

j=1

(
Êj (x1,x2) − Ē (x1,x2)

)2

where Ē (x1,x2) = 1
P

∑P

j=1
Ej(x1,x2).

5. SSR (vk | vp, · · · , vq) = SSE (vp, · · · , vq)
−SSE (vp, · · · , vq, vk).



Given the model (8), the aim of stepwise regression is
to select 3 of the K variables vi = N z

i (x1,x2) that would be

sufficient to compute Ê (x1,x2) with good accuracy. Step-
wise regression is a heuristic procedure that considers only a
limited number of the large (2k − 1) number of possibilities.
It does this by iteratively adding (and removing) selected
variables to (and from) a pool of candidate variables. The
method is not optimal and is not flawless but is considered
to be one of the best available. It is based on hypothesis test-
ing, and requires one to select a level of significance which
is used to check if a certain variable should be added to or
removed from the pool. In [12], this is selected according to
a percentile of the F-distribution, which depends on a spec-
ified level of confidence (we chose 95%) and on the number
of variables in the pool. Since we are interested in selecting
a pool of 3 variables only, the three resulting percentiles of
the F-distribution are F1 = 3.84, F2 = 3.00, and F3 = 2.60.
Finally, we used P = 500 as the number of data points to be
used for computing the regression coefficients and for com-
puting SSE and the other statistics - this proved to be a
good number to use in practice.

The flow of the stepwise regression procedure is as fol-
lows:
Step 1. Consider the possibility of using only a single vari-
able vi = N z

i (x1,x2) in the regression equation. Find the
regression coefficients and compute the errors in every case
v1, v2, . . . , vK . For every case, compute the F ∗ statistic:

F ∗
k =

SSR (vk)

MSE (vk)
(10)

The variable vi with the largest F ∗ value is a candidate for
addition to the pool. If this F ∗ exceeds a threshold value (F1,
in this case), the variable is added. Otherwise, terminate
with failure.
Step 2. Assume vi is the variable selected in step 1. Now
calculate all regressions with two variables, with vi being one
of the pair, and compute F ∗ for each case:

F ∗
k =

SSR (vk | vi)

MSE (vi, vk)
(11)

Choose the variable with largest F ∗ value as the candidate
for addition at the second stage. If this F ∗ value exceeds a
threshold value (F2, in this case), the new variable is added.
Otherwise, terminate with failure.
Step 3. Suppose vj is added at the second stage. Now
the stepwise regression routine examines whether any of the
other variables already in the pool should be removed. For
our illustration, there is at this stage only one other variable
in the model, vi, so that only one F ∗ statistic is obtained:

F ∗
i =

SSR (vi | vj)

MSE (vj , vi)
(12)

At later stages there would be a number of these F ∗
statistics, for each of the variables in the pool besides the last
added, given all the other variables in the pool. The variable
for which this F ∗ value is the smallest is the candidate for
deletion. If this F ∗ value falls below a threshold value (either
F1, F2, or F3), the new variable is removed from the pool;
otherwise it is retained.
Step 4. Suppose vi is retained, so that both vi and vj

are now in the pool. The stepwise regression routine now
examines which variable is the next candidate for addition
(repeat step 2), then examines whether any of the variables
already in the pool should now be removed (repeat step 3),
and so on until no further variables can be added or removed,
at which point the search terminates. We actually terminate
the search as soon as three variables have been added to the
pool.

Let us denote the three variables chosen by the step-
wise regression procedure, by N z

s1(x1,x2), N z
s2(x1,x2), and

N z
s3(x1,x2). In order to determine these variables at RTL,

for the given input vector pair (x1,x2), we have to perform

fast functional simulation of the Boolean functions at the
selected three levels. Note that we have employed a linear
regression equation (8) in the stepwise regression procedure,
in order to select the desired variables. We excluded cross-
product terms and powers of the independent variables in
order to keep the selection problem computationally inex-
pensive. However, one should keep in mind that he selection
accuracy may be improved if one considers these additional
terms.

Given any Hamming distance h, (2) now reduces to:

Êh (x1,x2) = fh (N z
s1 (x1,x2) ,N z

s2 (x1,x2) ,N z
s3 (x1,x2))

(13)
where the function fh(·) is still unknown. In the next sec-
tion, a methodology for determining this function will be
presented.

4. MACRO-MODEL CONSTRUCTION

In this section, a procedure for determining the order of
the polynomial function fh(·) in (13) is presented. Moreover,
we generate two different equations, for estimating the real-
delay and zero-delay energy-per-cycle.

4.1 MACRO-MODEL FOR REAL-DELAY ENERGY

One would like to choose the lowest order polynomial
equation that works well. One option is the linear function:

Êh (x1,x2) = c0(h) +

3∑
i=1

ci(h)N z
si (x1,x2) (14)

where the coefficients ci(h), i = 0, 1, 2, 3 are unknown and are
to be determined during the characterization using RLS [6].
In RLS, the coefficients ci(h) are determined such that they
minimize the following error term:

e =

P∑
j=1

(
E (x1,x2) − Êh (x1,x2)

)2
(15)

where P is the number of input vector pairs used for fitting
and E (x1,x2) is obtained using real-delay gate-level simu-
lator [10], which also provides zero-delay transitions at all
levels for the given input vector pair (x1,x2). One advan-
tage of using RLS is that we do not have to predefine the
value of P , because RLS stops computing the coefficients
when the user defined accuracy is achieved.

But our goal is to reduce the relative error

(
|E(x1 ,x2)−Êh(x1,x2)|

E(x1,x2) ), therefore (15) should be modified to

incorporate this. Considering relative error instead of abso-
lute error, (15) becomes:

em =

P∑
j=1

(
E (x1,x2) − Êh (x1, x2)

E (x1, x2)

)2

(16)

where the subscript m stands for modified. This simplifies
to:

em =

P∑
j=1

(1− Rh (x1,x2))
2 (17)

where Rh (x1,x2) =
Êh(x1 ,x2)
E(x1,x2) . We rewrite (17) as:

em =

P∑
j=1

(ym (x1,x2) − ŷm (x1,x2))
2 (18)

where ym (x1, x2) = 1.0 and ŷm (x1,x2) = Rh (x1,x2). The
above equation (18), is a standard RLS [6] problem. Since
we are monitoring relative error, we have found that by min-
imizing (18) instead of (15), the accuracy is improved by 5%.
Hence, while using RLS to estimate the regression variables
ci(h) for each Hamming distance, the modified error crite-
ria (18) is used.



To test the accuracy of the fit, 500 input vector
pairs having Hamming distance equal to h, were randomly
generated, and E (x1,x2), N z

s1 (x1,x2), N z
s2 (x1, x2), and

N z
s3 (x1,x2) were estimated for every input vector pair

(x1,x2) using [10]. Also, Êh (x1,x2) was estimated for ev-
ery input vector pair using (14) and the relative error was
computed. This procedure was carried out for all Hamming
distances h ∈ H . The average of this error over all Hamming
distances, is shown for ISCAS-85 [9] benchmark circuits, in
Table 3 under the column “LAvg.Error”, which is calculated
as:

LAvg.Error =
1

M

M∑
i=1

1

P

P∑
j=1

|Êh,j (x1,x2) − Ej (x1,x2) |
Ej (x1,x2)

(19)
where P = 500. It is clear from the table that the linear
model works well for some circuits but not for all.

Another option is to choose the quadratic function,
which will have 10 regression coefficients. It is not shown
here due to space limitations. Again the accuracy of the
quadratic function was estimated using the same approach
as above. The results are shown in Table 3, under the col-
umn “QAvg.Error”. It can be seen that the average error
for all of the circuits is less than 20%. We also investigated
the general cubic model. It is again not shown here, due
to space limitations, as it consists of 20 regression variables.
The error for the cubic function is shown in Table 3, under
the column marked “CAvg.Error ”. It can be seen from the
table that there is little or no improvement, in going from
a quadratic to a cubic model. Therefore, we start with a
linear model in (13) and change to a quadratic model if the
desired user accuracy is not satisfied. We do not go beyond
quadratic model.

Table 3. Error in the various models while
estimating real-delay energy-per-cycle

Circuit

c5315

c2670

c3540

c7552

c6288

13.3%

21.9%

21.7%

16.5%

21.7%

LAvg.Error C Avg.ErrorQ
Avg.Error

L C Avg.Error

c499

c880

Circuit

c1355

c432

c1908

15.8%

12.1%

13.6%

18.1%

20.2%

15.8%

17.8%

17.7%

19.2%

14.6%

17.1%

Q
Avg.Error

9.7% 9.8%4.4%

13.5%

8.9%

12.4%

15.7%

Avg.Error

18.5%

4.5% 5.4%

14.2%

14.6%

15.1%

9.4%

4.2 MACRO-MODEL FOR ZERO-DELAY ENERGY

Similar experiments, as that for real-delay, were carried
out for zero-delay. It was found that the linear function is
“good enough”. Hence for estimating zero-delay energy-per-
cycle, the macromodel is:

Êzd
h (x1,x2) = c0(h) +

3∑
i=1

ci(h)N z
si (x1,x2) (20)

where the superscript zd signifies zero-delay energy-per-
cycle.

5. CHARACTERIZATION FLOW

Once we have chosen the function fh(·), the macro-
model is complete for estimating both real-delay and zero-
delay energy-per-cycle. The complete characterization flow
for constructing the macromodel is as follows:
Step 1. Choose the three levels, using the approach de-

scribed in section 3. Store their Boolean descriptions
as a function of primary inputs, in the form of Boolean
equations.

Step 2. Find the polynomial model type and the regression
coefficients using RLS [6], for all Hamming distances.

Step 3. Store the analytical equations for use at RTL.
Now a word about the complexity of our approach. Ev-

ery RLS iteration involves a real-delay simulation of the cir-
cuit for one input vector pair. If the time required for such

a simulation is T , and if W RLS iterations are performed in
total, then the time cost of building the macromodel is:

Cost = WMT (21)

In practice, W for most of the circuits was less than 1000.
Once the macromodel has been built, the flow for using

it to do power estimation is as follows:
Step 1. For a given input vector pair (x1,x2), perform

fast functional simulation to determine N z
s1 (x1,x2),

N z
s2 (x1,x2), and N z

s3 (x1,x2).
Step 2. Substitute the values determined in step 1, in the re-

gression equations (obtained in section 4) for estimating
real-delay and zero-delay energy-per-cycle, correspond-
ing to Hamming distance h.

6. RESULTS

In order to test the accuracy of our approach, we ran-
domly generated around 100,000 input vector pairs. Energy-

per-cycle (Êi (x1,x2)) was estimated, for every input pair
(x1,x2), using the flow described in section 5. Energy-per-
cycle (Ei (x1,x2)) was also estimated using [10]. Table 4
shows the average error, for the ISCAS-85 [14] benchmark
circuits, a 16-bit ripple carry adder (RCA 16), and a 10×10-
bit Baugh-Wooley (BW10) multiplier, under “RD” in the
column “CEAvg.Error ”. This error is calculated as:

CEAvg.Error =
1

P

P∑
i=1

|Ei (x1,x2) − Êi (x1,x2) |
Ei (x1,x2)

(22)

where P = 100, 000 is the number of test points. The error
is less than 20% for all the circuits that we tested. Moreover,
under “RD” in column “AEError”, is shown the relative er-
ror, while estimating the average energy, which is computed
as:

AEError =
|∑P

i=1
Ei (x1,x2) −

∑P

i=1
Êi (x1,x2) |∑P

i=1
Ei (x1,x2)

(23)

where P = 100, 000. Again, the error is less than 10% for all
the circuits. In Table 4, the columns marked “#I”, “#O”,
and “#L”, show the number of inputs, number of outputs
and number of levels in the circuit respectively. Also, shown
in Table 4 is the time taken to construct the macromodel.
The execution times (in hours) are on a SUN Ultra Sparc
1 with 64MB of RAM. The longest time is taken by c7552
which has the highest number of primary inputs. It took
only a couple of hours to build the macromodel for most of
the circuits.

Table 4. Error while estimating energy-per-cycle

CEAvg.Error AEError

13.4%

9.2%

15.7%

10.3%

17.7%

19.3%

14.5%

17.2%

12.5%

11.6%

14.1%

#I

41

c499 41

Time (hrs)

1.56

RD ZD RD ZD

4.4% 4.1% 0.6%

#L

11

#O

32

32

32

c880

Circuit

c1355

c432

c5315

c2670

c3540

c7552

c6288

c1908

BW10

RCA16

60

36

178

50

32

33

32

20

157

207

26

7

22

25

16

20

123

140

108

24

24

17

49

32

47

43

40

33

50

124

5.8%

6.4%

9.5%

6.5%

7.6%

8.9%

9.8%

9.2%

1.0%

4.1%

1.9%

7.3%

1.7%

5.8%

6.5%

4.4%

3.4%

7.6%

2.7%

3.2%

1.9%

0.2%

5.0%

0.3%

1.4%

1.0%

0.3%

0.7%

1.0%

0.9%

1.2%

3.99

2.83

1.75

8.72

8.04

2.69

11.73

4.59

2.41

2.21

1.57

11.9%

13.4%

11.0%



Similar experiments were carried out for zero-delay
energy-per-cycle and the results are shown in Table 4, in the
columns marked “ZD.” The error is less than 15% and 5% re-
spectively, for all the circuits. Note that the execution times
are the same as that for real-delay energy-per-cycle macro-
model, because both the real-delay and zero-delay energy-
per-cycle macromodels were constructed simultaneously.

In any case, the power of this approach becomes clear
when one considers Figs. 4 and 5, which were generated by
first applying a low-activity vector sequence, followed by a
high activity sequence, as was done for Fig. 3. Figs. 4 and 5
show the real-delay and zero-delay transient energy wave-
forms respectively, for c1908 and c5315. This behavior is
similar to what was shown in Fig. 3 for the golden model.
This shows that the model is very useful for tracking changes
in the power dissipation over time, and it has no lag time, so
that it reacts immediately to a change in the characteristics
of the input stream.

Finally, the energy-per-cycle macromodels can be used
for estimating the average energy over m input vector pairs
{(x1,x2), (x2,x3), · · · , (xm,xm+1)}. The actual and pre-
dicted energy, averaged over m input vector pairs, are given
by the following expressions:

Em =
1

m

m∑
i=1

E (xi, xi+1) Êm =
1

m

m∑
i=1

Êh (xi,xi+1)

(24)
Shown in Figs. 6a, and 6b are scatter plots of the mov-

ing average real-delay energy, for m = 1, and m = 15 re-
spectively, for c880, one of the ISCAS-85 [9] benchmark cir-
cuit. The number of data points in each plot is 10,000. As
the value of m increases, the accuracy in the estimation in-
creases.
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Figure 4. Transient energy waveforms for c1908.
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Figure 5. Transient energy waveforms for c5315.

7. CONCLUSION
We presented a novel macromodeling approach for es-

timating the energy for every input vector pair (energy-per-
cycle). This capability is useful in order to study the changes
over time in the power dissipation of logic circuits, with

applications in power grid analysis (IR-drop, noise, induc-
tive kick), thermal analysis, etc. The macromodel is based
on classifying vector pairs on the basis of their Hamming
distances and using equation-based macromodels for every
Hamming distance. The equations are in terms of three vari-
ables, namely the transition counts resulting from evaluation
of Boolean functions at three internal logic levels.

The average error while estimating the energy-per-cycle
was found to be under 20%. If one ignores glitches, the aver-
age error becomes under 15%. The model can also be used to
measure the long-term average power, with an observed error
of under 10%, on average. If glitches are ignored, this be-
comes 5%. But the power of this technique becomes evident
in figures like Figs. 4 and 5, which show that the method is
very good at tracking changes in the power dissipation over
time, with a zero lag time.
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Figure 6. Scatter plots of moving average energy for c880.
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