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Abstract – In this paper, we propose a model-
ing approach for the average power consumption of
macro-blocks that are typically used in digital signal
processing (DSP) systems, such as adders, multipliers
and delay elements, in terms of their input/output
signal switching statistics. The resulting power macro-
model, consisting of a quadratic or cubic equation in
four variables, can be used to estimate the average
power consumed in the macro-block for any given
input/output signal statistics. This enables high-
level power estimation and allows one to compare
the power performance of different competing DSP
systems during high-level synthesis. This approach
has been implemented and models have been built
and tested for many macro-blocks.

1. INTRODUCTION

Power consumption of very large scale integrated
(VLSI) circuits has become a critical design concern due
to high-density and high-speed micro-electronic devices.
Due to limited battery life, reliability issues, and packag-
ing/cooling costs, power reduction has become a crucial de-
sign concern, which motivates the development of low-power
synthesis tools.

A number of low-power high-level synthesis techniques
have appeared in the literature (see [1] for a survey), which
target DSP circuits. These techniques require power cost
functions to be evaluated for the different alternative ar-
chitectures. Thus, it is typically necessary to estimate the
power for a given hardware data flow graph (DFG) or for the
register transfer level (RTL) description of the fixed point
implementation of an algorithm. Each node in a DFG cor-
respond to a macro-block. The total power dissipated by a
hardware DFG is the sum of the power dissipated by each
of the macro-block. Hence, there is a need for the power
macro-models for these macro-blocks.

Recently, a number of techniques for high-level power
modeling/estimation of DSP systems has been proposed.
The method in [2], treats all the circuit input bits as dig-
ital “white noise” and due to this assumption can give er-
rors of up to 80% in comparison to gate-level tools. In [3],
the authors presented activity sensitive capacitance models
for various library components. In [4], the authors presented
macro-models for estimating the power of DSP macro-blocks
in terms of word-level statistics. However, these and other
techniques either assume some input distribution or require
a priori selection of a specific analytical equation form.
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Since filtering is a common operation in DSP systems,
we will focus on finite impulse response (FIR) digital filters.
We will present power macro-models for adders, both general
(both word values are changing) and fixed-coefficient (only
one word value is changing), fixed-coefficient multipliers, and
delay elements (latches). Our models are equation-based.
Specifically, we construct a quadratic or cubic equation on
four variables, which are functions of primary inputs and
outputs statistics. Moreover, we do not assume any specific
probability distribution for the input signals. We use an
automatic characterization procedure based on the method
of Recursive Least Squares (RLS) to build the macro-models.

This paper is organized as follows. In section 2, we will
present power macro-modeling for the macro-blocks. In sec-
tion 3 we will give an overview of macromodel construction.
In section 4, we give empirical results that show the effec-
tiveness of this model. In section 5 we present an application
of the power macro-models to high-level synthesis, and we
summarize and conclude in section 6.

2. POWER MACRO-MODELING

We have previously presented a general 4-dimensional
(4D) table-based macro-model in [5] for combinational cir-
cuits. The 4D macro-model considers the average power of
a circuit to be a function of four variables:

Pavg = f(Pin, Din, SCin , Dout) (1)

These four variables are defined as:
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where n and m are number of primary inputs and outputs
respectively, pi and di are individual signal probability and
zero-delay transition activity respectively, at the respective
input or output nodes. SCij is the probability of two signals
xi and xj being high simultaneously. It was also observed [5]
that Pin, Din and SCin should satisfy the following con-
straints:
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(4)
While the above macro-model gives very good results

in the general case, it does not give good accuracy for the
case when one of the two numbers applied to the input of a
multiplier or an adder is a constant. This, however, is a very
common case in DSP systems, where adders and multipliers
used to implement digital filters have one constant input; we
will refer to these as being fixed-coefficient multipliers and
adders. Table 1 shows the average error in estimating the
total power of fixed-coefficient multipliers and adders using
the macro-model (1). For finding the average error, 1000
blocks of input vectors having different values of Pin, Din,
and SCin satisfying (4) were generated. One of the two bi-
nary words (i.e half of the primary inputs) was kept fixed
to a randomly chosen value for every block of input vectors.



Total power was estimated using [7] which also provides es-
timate of Dout. Total power was also estimated using (1)
and the relative absolute value of the error was calculated
between the simulated and predicted power and the aver-
age of this error was calculated for all blocks of input vec-
tors. The macro-blocks that we tested are signed multipliers
(Baugh-Wooley, bit sizes of 8 × 8, 10 × 10, and 16 × 16),
unsigned multipliers (Array, bit sizes of 8 × 8, 12 × 12, and
16×16), and ripple carry adder (RCA, bit sizes of 8, 16, and
20). It is clear from the table that macro-model (1) needs to
be improved for this case of fixed-coefficient multipliers and
adders.

Table 1. Average error when total power of
fixed-coefficient multipliers and adders is estimated
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Let us assume A and B are the two input words of a
multiplier or adder and A is fixed coefficient (or constant).
We start by expressing (1) in-terms of separate statistics at
A and B, as follows:

P FC
avg = f(P A
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in, SCA

in, P B
in, DB
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where superscript FC denotes fixed-coefficient.
Let us consider that we have to generate a block of N

consecutive input vectors and let us denote the kth vector
by Vk . SCin and Pin can be written in terms of the input
vectors as [5]:
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where n1 (k) is number of 1s in Vk . For the constant word
A, the number of 1s in each vector Vk is the same. Let us
denote this by n1, then SCin becomes:
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Similarly, for word A, P A
in can be written as:
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Substituting (8) into (7) leads to:
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It is clear from (9) that SCA
in is completely determined

from the value of P A
in. Therefore, we do not consider SCA

in

as one of the variable in our macro-model. Moreover, DA
in

is 0 in (5) as A is a constant word. Furthermore, we found

experimentally that dropping P B
in also, does not reduce the

accuracy significantly. Therefore, by dropping these three
variables, (5) reduces to:
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For the delay element, the macro-model is constructed
for one-bit, as there is no interaction between different bit
slices, and the capacitance associated with each bit is ap-
proximately same for all the bits. Furthermore, we assume
that all the internal capacitances are lumped at the out-
put node, given by Cout. Since, this is the only capacitance
which is going to switch, the simplified macro-model for one
bit delay element becomes:

P L
avg = 0.5fV 2

ddCoutDout (11)

where superscript L represents delay (or latch) power. For a
0.5µ CMOS technology we choose Cout = 100fF as being a
typical output capacitance value. Normally, of course, this
value would be imported from the library for different latch
types. Note that the clock power is not considered, while
making the power macro-model for one-bit delay element,
as it is a constant number.

3. MACRO-MODEL CONSTRUCTION

We have demonstrated in [6] that it is possible to fit
a quadratic or cubic polynomial to the function f (·) in (1).
We have found that the same methodology works as well
for fixed coefficient multipliers and adders. By following the
procedure of [6], we found that a good choice of the function
f (·) in (10), was cubic and quadratic for fixed coefficient
multipliers and adders respectively. Furthermore, we also
used automatic characterization procedure based on RLS [6],
to construct these analytical macromodels. More details on
macromodel construction and characterization, can be found
in [6].

4. MODEL ACCURACY EVALUATION

In this section we show the results of our power macro-
modeling approach for different adder and multiplier cir-
cuits. We have considered both sign (Baugh-Wooley, bit
width of 8, 10, and 16) and unsigned (Array, bit width of 8,
12 and 16) fixed-coefficient multipliers. We also considered
both general and fixed-coefficient ripple carry (bit width of
8, 16, and 20) adders.

For general adders, we start by randomly generating
blocks of input vectors for various values of Pin, Din, and
SCin that satisfy (4), using the approach described in [5].
Similarly, for fixed-coefficientmultipliers and adders, we gen-
erated blocks of input vectors for various values of P A

in, DB
in,

and SCB
in. A total of 1000 such blocks were generated for ev-

ery macro-block, for which power was estimated using Monte
Carlo simulation [7], based on a gate-level simulation with a
scalable-delay gate timing model. The Monte Carlo simula-
tion also provides accurate estimation of Dout. The power
values predicted by the analytical function were compared
to those from the gate-level Monte Carlo simulation, and
the average relative errors are shown in Table. 2. In ta-
ble 2 also shown, is the order of the model finally used by
RLS (where C and Q implies cubic and quadratic respec-
tively), and the number of RLS iterations (#RLS) required
to build the equation. Moreover, under the column marked
“Circuit”, the superscript FC signifies fixed-coefficient. It
can be seen from the table that the average error for all the
macro-blocks is less than 20%. Also, shown in Figs. 1 and 2
are the scatter plots for fixed-coefficient 10 × 10-bit Baugh-
Wooley multiplier and 20-bit ripple carry adder respectively.
The fit is very good and shows that it is indeed possible to
do high-level power modeling across the whole range of input
switching statistics.

5. APPLICATION TO HIGH-LEVEL SYNTHESIS
OF DSP SYSTEMS

In this section, we present an application of power
macro-models in the context of high-level synthesis of DSP
systems. The application is to find the power savings ob-
tained after applying an algorithm transformation technique
(ATT) under which we have considered decorrelating trans-
formation [8] (DECOR).

We constructed macro-models for general adder, fixed-
coefficient multiplier and delay-element. The macro-model
for fixed-coefficient adder was not used, as in the appli-
cation that we considered, there were no fixed-coefficient
adder. Therefore, in the remainder of the section when-
ever we say adder and multiplier we imply general adder



and fixed-coefficient multiplier respectively. Also note that
the FIR filters considered below are the FIR sections of an
adaptive filter.

Table 2. Average error when total power is estimated
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Figure 1. Scatter plot for
10 × 10-bit Baugh-Wooley
fixed-coefficient multiplier.

Figure 2. Scatter plot for
20-bit ripple carry fixed-
coefficient adder.

5.1 ATT-DECOR

In DECOR [8], correlations between adjacent coeffi-
cients are exploited to decrease the coefficient precision,
which leads to less complex multiplier with reduced power
dissipation. Fig. 3 shows a direct-form [9] (DF) imple-
mentation of an N -tap FIR filter with coefficients ci, i =
0, · · · , N −1. The coefficients ci are chosen to satisfy the de-
sired frequency spectrum. For this study, we assume N = 41,
and a low-pass frequency spectrum with cut-off frequency
0.2π. The floating point filter coefficients are designed via
the fir1.m program in MATLAB, and then quantized to 10
bits to get their integer values. The precision of input signal
x (n) and output signal y (n) was chosen to be 10 and 20
bits respectively. The sizes of the different hardware blocks
in Fig. 3 were chosen as follows:
1. multipliers: 10 × 10-bit Baugh-Wooley multiplier
2. adders: 20-bit Ripple Carry Adder
3. latches: 10-bit static latches

The filter obtained after applying DECOR [8] to the
direct-form filter in Fig. 3 is shown in Fig. 4. The filter in
Fig. 4 has two extra multipliers, adders and latches, but the
precision of the coefficient in the multiplier has been reduced
to 8 bits, which leads to reduction in power dissipation.

We applied different input vectors, having different
mean, variance, and correlation values, and estimated the
power of the filters by using our macro-models and by using
gate-level power estimation [7]. To use our macro-models
and power estimator, input/output statistics were obtained
for each of the adders, multipliers and latches, by propagat-
ing word values from input to the output. Fig. 5 shows the
total power dissipation of the filters. It can be seen from
the figure that power estimates from the macromodel and
those from the gate-level simulation of the filters are very
close. Moreover, power savings from macromodel and ac-
tual simulations are approximately the same, which shows
the feasibility of our approach.

6. CONCLUSION

In this paper, we proposed a modeling approach for
the average power consumption of DSP macro-blocks, such

as adders, multipliers and delay elements, in the special
case when one of the inputs is a constant. These macro-
models can be used as part of high-level synthesis or design
exploration to estimate the power consumed in the macro-
block for any given input/output signal statistics. We pre-
sented experimental validation of the proposed models. The
average error was shown to be less than 20% for all the
macro-blocks. We also presented an application of these
macro-models in the context of high-level synthesis, to ob-
tain power-optimal DSP circuits.
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Figure 5. Power comparison between DF and DECOR.
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