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Abstract

The lognormal has been traditionally used to model
the failure time distribution of electromigration fail-
ures. However, when used to estimate the failure
of large metal layers, it leads to a clear disagree-
ment with established empirical data. To resolve
this problem, we propose to use a shifted lognor-
mal (SLN) as a better model of the failure time
of individual wires. We will show that the SLN is
well justified because it matches other more detailed
and more physical models, such as the multilognor-
mal [1]. We will also show that the SLN exhibits
the right behavior for long wires. Finally, we will
provide an estimation methodology by which the
parameters of the SLN can be estimated from fail-
ure data. Finally, the analysis will be extended to
large metal layers where the advantages of using
SLN over LN will be clearly demonstrated.

1. Introduction
Electromigration in metal lines is the move-

ment of metal atoms due to the momentum ex-
change between electrons and the metal atoms [2].
The resulting atomic diffusion occurs mainly at
the grain-boundaries between grain regions [1, 3–
5]. Over time, the metal diffusion causes depletion
of enough material so as to create an open circuit in
a wire. Material accumulation can also occur and
cause a short circuit to a neighboring wire, but in
an IC this is suppressed somewhat by the layers of
other material around and above the wire. Fail-
ures due to depletion have therefore received more
attention, and we will be focusing only on them.

The rate of material depletion depends on the
grain boundary structure of the individual metal
line, and varies from wire to wire. As a result,
the failure time of a metal line due to electromigra-
tion is modeled as a random variable. Even though
other distributions have been proposed, the com-
monly used distribution for the time-to-failure of a
metal line has been the lognormal distribution. The
lognormal is easy to work with and seems to fit the
data well.

However, there is a problem. If one attempts to
estimate the time-to-failure distribution for a large
metal layer (or a very long line) using the lognormal,
then it will be found that the time to failure goes to
zero. This contradicts empirical data which shows
that the long wire time to failure asymptotically ap-
proaches a non-zero value. To resolve this problem,
we propose to use a shifted lognormal (SLN) as a
better model of the failure time of individual wires.
We will show that the SLN is well justified because
it matches other more detailed and more physical
models, such as the multilognormal [1]. We will
also show that the SLN exhibits the right behav-
ior for long wires and provides a better match to
chip failure times. We do not have access to actual
failure times of real chips - instead, we have used
a detailed physical model in which samples of the
grain boundary structure are generated at random
in order to investigate the failure time distributions.
Finally, we will provide an estimation methodology
by which the parameters of the SLN can be esti-
mated from failure data.

The paper is organized into 6 sections. Sec-
tion 2 is an overview of electromigration and intro-
duces the shifted lognormal. Section 3 describes the
multilognormal distribution. Section 4 introduces
the truncated multilognormal and compares it to
the shifted lognormal. Section 5 describes the pa-
rameter estimation methodology for the SLN. Sec-
tion 6 gives a case study.

2. Electromigration
For an electromigration failure to occur, flux

divergence of metal atoms must occur [3, 6]. A flux
divergence occurs in a region when the flow of metal
atoms into the region is not equal to the flow of
atoms out of the region. Depletion occurs when
flow out of a region is greater than flow into it.
Flux divergence commonly occurs at triple points.
A triple point is a site where three grain-boundaries
meet, as shown in Fig. 1.

The vulnerability of a triple point to high cur-
rent densities depends on the geometric structure
of the triple point [4, 7]. Thus, we can view a wire
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as a series of triple points, each of which represents
a possible failure site [8, 9, 1, 4]. The worst case
triple point determines the failure time of the wire.
Longer wires are more likely to contain worst-case
triple points and thus fail sooner.

Triple Point

Figure 1. A triple point in a wire.
It has been known for a while that electromi-

gration failure times seem to have a good fit to a
lognormal (LN) distribution, i.e., its logarithm has
a normal (Gaussian) distribution. If twire is the
(random) failure time for a wire, then its cumula-
tive distribution function (CDF) is:

F (t) = Pr {twire < t} = Φ
(

ln t− µ
σ

)
(1)

when t > 0 (otherwise F (t) = 0), where Φ (t) is
the CDF for the standard normal distribution, and
µ and σ2 are the mean variance of ln(twire). In
general, µ and σ depend on technology as well as
the wire length, width, & current density.

The failure time for a group of wires is the min-
imum of the failure times of the individual wires.
The wire failure times are typically assumed to be
independent, so that the CDF for the group failure
time is [1]:

Fgrp(t) = 1−
n∏
i=1

{
1−Φ

(
ln t − µi
σi

)}
(2)

If the number of wires is very large, it is easy to
show that the CDF approaches a unit step function
while the probability density function (PDF) ap-
proaches a unit impulse function. Therefore, a large
group of wires should fail immediately after power
up! This is in contradiction with common experi-
ence and with empirical data. It is well-known that
long wires (which can be considered as large collec-
tions of unit length wires) have failure times whose
mean decreases with length but does not go to zero.
Instead, the long wire mean time-to-failure (MTF)
approaches a certain minimum non-zero value. We
will refer to this as the long wire asymptote (LWA).

2.1. The Shifted Lognormal
One obvious way to fix the lognormal distribu-

tion is by adding a shift parameter δ to the model.

We call this new distribution the shifted lognormal
(SLN) distribution:

F (t) = Φ
(

ln (t − δ) − µ
σ

)
(3)

when t > δ (otherwise F (t) = 0), where µ and
σ2 are the mean and variance of ln(t − δ). Using
the SLN distribution, the failure time distribution
for a large group of wires can be shown to have a
distribution whose CDF approaches the unit step
function at δ and whose PDF approaches the unit
impulse function centered at δ.

The parameter δ represents the minimum fail-
ure time for a wire under electromigration stress.
In practice it is equal to the long wire failure time,
for a given current density and temperature. But
is this enough to discard the traditional lognormal
in favor of the SLN? In the following, we will show
that there is, in fact, sufficient physical reasons to
support the use of the SLN distribution instead of
the lognormal.

3. The Multilognormal
The lognormal distribution is not a physical

model, i.e., it is not derived from the underlying
physics of failure of metal wires. In [1], a more
physical model was introduced, called the multilog-
normal (MLN) distribution. Since the model [1] is
derived for narrow metal lines, so called “fine lines”
in [1], this is also a feature of the work presented in
this paper. Future extensions of this work will aim
to extend these results to the general case.

Not all triple points are potential failure sites
either. A lot depends on the distance between triple
points, and there are differing opinions on this [1].
Nevertheless, only a finite number of points along
the wire length are potential failure sites, which may
be separated by distances of tens to hundreds of
microns [1]. These potential failure sites create a
partitioning of a wire into a series of segments, also
called characteristic elements or failure units in [1].
Failures occur only at the junctions between seg-
ments.

For a given segment in a wire, one can define
an effective diffusion constant as the sum of the dif-
fusion constants for the grain boundaries in that
segment, D(n) =

∑n
i=1 D0 exp

(
−∆Hi

kT

)
, where n is

the number of grain boundaries in the segment, T
is the absolute temperature, k is Boltzmann’s con-
stant, and ∆Hi is the activation energy for the ith
grain-boundary. The activation energy is different
for different grain boundaries depending on their
geometry and structure. Indeed, in [1] ∆H was
modeled as a normally distributed random variable,



with mean µ∆H and variance σ2
∆H . It reflects the

random nature of grain boundaries, with variations
due to angle mismatch between grains and orienta-
tion of the grain boundary with respect to current
flow. Assuming a fine line, and if the wire has N
segment pairs (potential failure sites), then the fail-
ure time CDF is found [1] to be:

F (t;N) = 1−
[
1−Φ

{
ln t− µtot

σtot

}]Np1

(4)

where µtot = ln
[(
γT 2/j2

)
exp (µ∆H/kT )

]
& σtot =

σ∆H/kT , and where N is the number of potential
failure sites, j is the current density, p1 is the proba-
bility that one grain-boundary is present in the seg-
ment, which depends on the distribution of grain
sizes, and γ is a constant.

According to [1], N is a linear function of
length. By letting N go to infinity, it is easy to
show that the failure time goes to zero so that the
MLN, as is the case with the LN, does not exhibit
the correct LWA behavior.

4. Truncated MLN & the SLN
The MLN distribution of [1] was based on an

assumption that ∆H is normal. This in effect re-
sults in a lognormal distribution for the individual
grain-boundary diffusion constants, since D(1) ∝
e−∆H . We propose that a truncated normal is a bet-
ter distribution to use for ∆H because it is reason-
able that the activation energy should have a non-
zero minimum value and because it leads directly
to a failure time distribution that shows the LWA
behavior. Note that a lower bound on ∆H leads to
an upper bound on D(1). There are precedents for
this, such as [10], which suggests that a truncated
distribution be used for the grain-boundary activa-
tion energy. In addition, in [4] the diffusion constant
has a maximum value, due to a maximum that is
imposed on the angle mismatch between neighbor-
ing grain lattices. Finally, in [7] the atomic flux is
proportional to a value called the structural factor
∆Y , which also has an upper bound due to bounds
on the angles that are part of the grain boundary
structure and due to bounds on the activation en-
ergy. Since a truncated distribution for the diffusion
constant (and therefore for the activation energy)
is justified, we have used the model of Lloyd and
Kitchin [1] but have based it on a truncated normal
distribution of the activation energy, rather than a
normal distribution, with PDF:

φ∆ (x) =
{

0, if x−µ
σ < −∆

1
αφ
(
x−µ
σ

)
, otherwise

(5)

where α = 1−Φ (−∆) and φ is the standard normal
PDF. If we replace the normal distribution assumed
in [1] with the truncated normal distribution given
above and then use the same approximation and
derivation as [1] (we validated that all approxima-
tions are still valid for the case of the truncated
normal), the result is the following CDF for what
we will call the truncated MLN distribution:

F (t;N) = 1−
[
1− Φ∆

{
ln t − µtot
σtot

}]Np1

(6)

It is easy to show that the truncated MLN is con-
sistent with the LWA.

We have found that the shifted lognormal and
the truncated MLN are very similar. For one thing,
we can show that δ = exp (µtot −∆σtot). In Fig. 2,
we show CDF plots for the shifted lognormal (SLN)
and truncated MLN distributions. Since the distri-
butions are similar and since the SLN is a simpler
expression and therefore easier to work with (for one
thing, it does not require one to resolve the contro-
versy regarding the meaning of N in the truncated
MLN), we propose to use the SLN to model the
failure time distribution of metal lines.
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Figure 2. The SLN and the truncated MLN.

5. SLN Parameter Estimation
To get a complete SLN distribution for a wire,

a direct approach would be to collect enough data
in order to estimate values for the shift factor, δ,
as a function of width and current density, and the
mean, µ, and standard deviation, σ as functions of
length, width, and current density. The first step
would be to find values for δ(w, j), because it is
needed to compute the random variable ln(t − δ).
To measure the value of δ, we must test long wires
until they fail. Then, one would find the mean and
variance using standard methods of statistical esti-
mation. This procedure would require a large num-
ber of wires to be tested in order to predict the
dependence on width, length, and current density.



We propose a simplification of this based on an un-
derlying physical failure model given in [1] and [7],
as follows.

In [1], the failure time for a single triple point
was found to be:

t1 =

{
γ∗T 2

j2(D(2)−D(1)) , for D(2) > D(1)

∞, otherwise
(7)

where γ∗ is a constant. The term (D(2) − D(1))
represents the diffusion constant for material deple-
tion out of the triple point, but does not take into
account full information about the grain-boundary
microstructure of the metal. The structural fac-
tor ∆Y of [7] provides a better measure of the dif-
fusion constant at the triple point because it fac-
tors in the various angles of the geometry around
the triple point. Actually, ∆Y is proportional to
the sum of the diffusion constants at a triple point,
which necessitates a change of the proportionality
constant (from γ∗ to γ). Based on [7], we can write
that D(2) −D(1) ∝ exp (−H0/kT ) ∆Y where H0 is
the average activation energy for a grain-boundary.
In [1] H0 = 0.75eV is used. Therefore, the failure
time of a wire with N failure sites is given by:

t =


γT 2 exp(H0

kT )
j2 max

N
{∆Y } , for max

N
{∆Y } > 0

∞, otherwise
(8)

This physical model constitutes our golden model.
In the absence of actual failure times, we will use
this model to randomly generate failure data for in-
dividual wires, whole metal layers, etc. To do this
for a given wire, N is assumed to be Poisson dis-
tributed as in [8]. As for the ∆Y , we have aug-
mented the model of [7] by including in it the de-
pendence on the angle mismatch between neighbor-
ing grain lattices, as was done in [4]. The several
angles around a triple point are then assumed ran-
dom, and uniformly distributed, as in [7].

Given the above physical model, it becomes
possible to establish relationships between param-
eters of the SLN distribution and the underlying
physical model. To begin with, we have:

δ =
γT 2 exp

(
H0
kT

)
j2 max

∞
{∆Y } (9)

Notice that max
∞
{∆Y } is fixed while maxN{∆Y } is

dependent on wire length. If we use E[·] to denote
the expected value (mean) operator, then using (8)

and (9) we get:

µ = E [ln(t− δ)] = ln

(
γT 2 exp

(
H0
kT

)
j2

)
+ µ̂(l)

(10)

where µ̂(l) = E

[
ln
(

1
max
N
{∆Y } −

1
max
∞
{∆Y }

)]
. We

can also derive an expression for σ2 as follows:

σ2 = E
[
(ln(t− δ) − µ)2

]
= σ̂2(l) (11)

where σ̂2(l) = V

[
ln
(

1
max
N
{∆Y } −

1
max
∞
{∆Y }

)]
and

V [·] denotes the variance.
Thus we see that we can relate µ and σ to the

mean and standard deviation of a new random vari-
able YN, defined as follows:

YN = ln

 1
max
N
{∆Y } −

1
max
∞
{∆Y }

 (12)

so that µ̂(l) & σ̂2(l) are the mean & variance of YN.
With this, a parameter estimation methodol-

ogy can be proposed, as follows. For one thing, δ
can be be computed from empirical measurements
of lifetimes for long wires. Then, given knowledge
of the grain-boundary microstructure for a certain
metal technology, one can model the angles around
a triple point as uniform random variables and pro-
ceed to compute max

∞
{∆Y } in a way similar to [10].

This value is required only in order to estimate
γ from (9). With this, we can use random sam-
pling (Monte Carlo simulation) to construct tables
for µ̂(l) and σ̂(l) as functions of l. To do this, re-
quires knowledge of the distribution of YN. Using
a standard normal scores test, we have found YN

to have an approximately normal distribution, so
that standard techniques from [11] can be used. An
important feature of this methodology is that µ̂(l)
and σ̂(l) are independent of j and w. Therefore,
in order to generate tables for µ̂(l) and σ̂(l), it is
enough to test a batch of wires that have the same
value of width and current density. Only the length
needs to be varied.

6. Case Analysis
We will demonstrate our approach method on

the power and ground interconnects for circuit C17,
from the ISCAS’85 benchmark suite [12]. The cir-
cuit with the power and ground grids was laid out
in a 0.35µm CMOS technology [13].
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Figure 3. CDF comparisons for the failure time
of the power and ground gids in C17.

To start with, we have built tables for µ̂(l) and
σ̂(l) as described above using our golden model.
In [5], Kinsbron gives data for a 250 µm wire of
varying widths. For the 8 µm width, the mean time
to failure (MTF) is given to be 65 hours. We will
assume that this is the LWA time δ. The current
density is approximately 2×106A/cm2 in [5] and the
temperature is 473K. As for max

∞
{∆Y }, we found

it to be 1.137. Using these values, we found that
γ = 1.132A2/K2cm4. With this value and the µ̂(l)
and σ̂(l) tables, we can use (10) to get values for
µ as a function of length, width, and current den-
sity for every wire. To compute the current density
in every wire we used [14] to get the average gate
currents then simulated the power and ground grids
to find the average current density (it is justified to
use just the average [15, 16]).
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Figure 4. CDF comparisons for the failure time
of a 6000 wire circuit.

Finally, we compared the CDFs resulting from
three types of analyses: 1) Having characterized
metal wires, using a LN distribution for failure time
of each wire, combine them to get the CDF for the
circuit, 2) Having characterized metal wires, using
an SLN distribution for failure time of each wire,
combine them to get the CDF for the circuit, and
3) Collect actual failure times for the circuit using

our golden model, build the CDF for the circuit fail-
ure time. Fig. 3 compares these for circuit C17 with
60 interconnects. We see in this figure that using
the SLN distribution has little effect on the result-
ing predicted distribution because the circuit is very
small. Fig. 4 plots the same for a 6000 wire circuit.
In this case, the predicted distribution using the
SLN distribution is much more accurate than the
CDF obtained assuming the LN distribution. This
fits our expectation that the LN distribution is less
accurate than the SLN distribution for larger cir-
cuits. Both simulations were at 333 K.
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