
Parallel Simulation-Based Verification of RC Power Grids

Mohammad Fawaz

ECE Department
University of Toronto

Toronto, Canada
mohammad.fawaz@mail.utoronto.ca

Farid N. Najm

ECE Department
University of Toronto

Toronto, Canada
f.najm@utoronto.ca

Abstract—The power delivery network (PDN) must undergo
a sequence of verification steps throughout the integrated
circuit (IC) design flow. Typically, this is done by performing
a transient simulation of the grid under certain input current
traces, and checking that the resulting node voltages are
within some user-specified thresholds. Existing tools require
solving a large number of linear systems making them slow
for modern power grids with billions of nodes. We propose
a parallel simulation-based tool for RC grid verification
that generates envelope waveforms on the true voltage drop
waveforms. The resulting waveforms capture the peaks of the
voltage drops quite accurately and require solving a much
smaller number of linear systems than traditional tools.

Keywords-Power grid, simulation, verification, multi-threading

I. INTRODUCTION

To guarantee a correct and reliable functionality of an inte-
grated circuit (IC), the power grid must undergo a series of checks
to make sure that the right voltage levels are achieved at each node
in the grid. Unwanted voltage fluctuations often lead to a decline
in the performance of the chip both in terms of functionality and
speed. Therefore, there is a clear need for efficient power grid
verification.

The two main causes for voltage fluctuations are IR drops and
Ldi/dt noise. In many cases, the inductive effect in the grid is
ignored in order to simplify the analysis. This leads to a pure RC
model of the grid where only undershoots are observed. To check
the safety of an RC power grid, one must verify that the voltage
drop at every node never exceeds a certain user-defined threshold.

The verification processes is typically done using a transient
simulation of the grid where some of the nodes are assumed
to be loaded by a set of user-defined current waveforms that
represent the currents drawn by the underlying logic circuitry.
Typically, this is done by solving the ordinary differential equation
(ODE) resulting from applying Nodal Analysis [1]. Unfortunately,
state-of-the-art power grid verification tools suffer from serious
performance issues due to the size of modern grids containing
billions of nodes, and due to the large number of linear systems
that need to be solved for each simulation.

Many algorithms have been proposed for transient simulation
by exploiting different tradeoffs. Traditional approaches use the
standard LU factorization, Cholesky factorization [2], or the pre-
conditioned conjugate gradient (PCG) method [3]. Other tools use
random walks [4] and multigrid techniques [5]. Hierarchical ap-
proaches are proposed in [6]. Parallelization of forward/backward
substitution is proposed in [7]. A solution utilizing the matrix
exponential kernel is proposed in [8].

Figure 1: The RC grid model

In fact, for verification purposes, the true voltage drop wave-
forms are not necessary, and any set of upper bound waveforms
accurately capturing the peaks of the voltage drops can be just as
useful. In this paper, we present two parallel algorithms for power
grid verification that efficiently generate envelope waveforms
for the true voltage drop waveforms. Generating these envelope
waveforms is much faster than finding the true waveforms because
the envelope waveforms only consider the breakpoints in the input
current traces. In other words, the total number of linear systems
that need to be solved is reduced dramatically. A preliminary
version of this work appeared in [9]. Here, we also develop a
multi-threaded version of both algorithms and show that they
present significant speedups over exact simulation.

The remainder of the paper is organized as follows. In section
II, we review some background material on the power grid model
and the current waveforms. Sections III and IV, explain how
the envelope waveforms are generated. Section V explains some
implementation details and section VI discusses how our methods
are parallelized. Finally, section VII provides the test results and
section VIII concludes the paper.

II. BACKGROUND

A. Power Grid Model

The power grid is a full-chip multiple-layer mesh of metal
lines that connect the external supply pins on the package to the
underlying chip circuitry, providing the required electrical power
to all circuit components.

2017 IEEE Computer Society Annual Symposium on VLSI

2159-3477/17 $31.00 © 2017 IEEE

DOI 10.1109/ISVLSI.2017.84

445

Consider a power grid similar to the one shown in Fig. 1 where
each node is one of three types:

1) Type 1: nodes that are connected to ideal current sources
to ground, in parallel with capacitors to ground.

2) Type 2: nodes that are connected to resistors to other grid
nodes and capacitors to ground.

3) Type 3: nodes that are connected to resistors to other grid
nodes and ideal voltage sources to ground.

In the power grid of Fig 1:

• Nodes 1, 2, and 3 are of type 1.
• Nodes 4, 5, 6, 7, 8, and 9 are of type 2.
• Nodes 10 and 11 are of type 3.

The current sources with their parallel capacitors represent the
currents drawn by the underlying logic blocks, and the ideal
voltage sources represent the external voltage supply vdd. Notice
that this model assumes that every capacitor is connected to
ground. Models that include node-to-node capacitors are usually
much harder to analyze, and are not considered in this work. In
fact, there is, in general, little interest in RC models that are not
identical to the one described here.

Assume that the grid has q voltage sources, m current sources,
and n+ q nodes (excluding the ground node) with n ≥ m. Also,
let the nodes be numbered 1, 2, . . . , n+ q such that:

• Nodes 1, 2, . . . , n are the nodes not connected to any voltage
source.

• Nodes (n+1), (n+2), . . . , (n+ q) are the nodes where the
q voltage sources are connected.

• Nodes 1, 2, . . . ,m are the nodes where the m current sources
are connected. The positive (reference) direction of each of
the source currents is assumed to be from node-to-ground.

The nodes in the power grid of Fig 1 are numbered according to
the convention above with q = 2, m = 3, and n = 9.

Let is(t) ≥ 0 be the n×1 vector of all source currents such that
the kth entry is,k(t) is a 1-dimensional function of time t ∈ R

and corresponds to current source k. If a node is not connected
to a current source, its corresponding entry in is(t) is set to zero.

Let u(t) be the n×1 vector of node voltages relative to ground,
such that the kth entry uk(t) is a 1-dimensional function of time
t ∈ R, and corresponds to node k. Nodes n+ 1, . . . , n+ q have
been left out because their voltage is already known to be vdd.
By superposition, the vector u(t) can be computed in three steps:

1) Open-circuit all the current sources, keep all the voltage
sources, and find the resulting voltage response, which we
call u(1)(t). Clearly, u(1)(t) = vdd because at steady state,
each capacitor will act as an open-circuit, and so, there will
be no current running through the resistors, thus keeping the
voltage at every node at vdd.

2) Short-circuit all the voltage sources, keep all the current
sources, and find the resulting voltage response, which we
call u(2)(t).

3) Find u(t) = u(1)(t) + u(2)(t).

To find u(2)(t), Kirchoff’s Current Law (KCL), at every node
k = 1, . . . , n provides, via Nodal Analysis (NA) [1], the following
matrix formulation

Gu(2)(t) + Cu̇(2)(t) = −is(t) (1)

where:

• The matrix G is the sparse n × n conductance matrix
containing information about the resistive components of the
grid. Essentially, the (j, k)th entry of G is the coefficient

of the kth component of u(2)(t) in the jth KCL equation.
It is known that G is symmetric, diagonally dominant
with positive diagonal entries and non-positive off-diagonal
entries. Under the standard assumptions that the resistive
mesh of the grid is connected and that grid has at least one
voltage source, the matrix G becomes irreducibly diagonally
dominant [1]. With this, it can be shown that G is a
symmetric M-matrix, which leads to the crucial result that
G−1 exists and G−1 ≥ 0. Moreover, being a symmetric M-
matrix, G is also a symmetric positive definite matrix [10].

• The matrix C is the n × n capacitance matrix containing
information about all the capacitive components in the grid.
Due to the fact that only node-to-ground capacitors are
considered, the matrix C is a positive diagonal matrix where
the (j, j)th entry is the value of the capacitor connected from
node j to ground. Notice that, because every node has a
capacitor to ground, C is invertible.

For voltage integrity checking, we are mostly interested in the
voltage drop at each node which is defined as vk(t) � vdd−uk(t)
for nodes k = 1, . . . , n. Voltage drops are more useful than actual
node voltages because they represent how far the node voltages
are from their nominal value vdd regardless of the value of vdd.
Moreover, most power grid voltage constraints are provided as
limits on the voltage drops. Let v(t) be the vector of all voltage
drops so that v(t) = vdd − u(t) = u(1)(t) − u(t) = −u(2)(t).
This allows rewriting (1) as

G(−v(t)) + C(−v̇(t)) = −is(t) (2)

or equivalently

Gv(t) + Cv̇(t) = is(t). (3)

A curious observation is that, based on (3), v(t) can be found
directly as the vector of node voltages resulting from an analysis
of the RC mesh modified such that all voltage sources are short-
circuited and all current source directions are reversed.

Effectively, (3) is a system of first order differential equations
that describes the dynamics of the power grid given a certain time-
varying stimulus vector is(t). Solving (3) is most commonly done
by first discretizing time using a finite-difference approximation
of the derivative. Using the Backward Euler (BE) numerical
scheme [11], the derivative is approximated as follows

v̇(t) ≈ v(t)− v(t− h)
h

(4)

for some time step h, which we assume to be fixed. This leads
to the following discretized version of (3)

Gv(t) + C
v(t)− v(t− h)

h
≈ is(t) (5)

or equivalently(
G+

C

h

)
v(t) ≈ C

h
v(t− h) + is(t). (6)

Recall that the BE scheme is motivated by the following Taylor
expansion of a one dimensional time function y(t)

y(t− h) = y(t)− hẏ(t) + h2

2
y(ξ) (7)

for some ξ ∈ [t− h, t]. Thus, the choice of h relates to only the
spectral properties of the node voltage signals. We assume that the
time step is chosen such that (6) is accurate enough irrespective of
the current stimulus is(t). Accordingly, (6) leads to the following

446

Figure 2: Piece-wise linear current waveform

recurrence relation that captures the evolution of the system over
time:

Av(t) = Bv(t− h) + is(t) (8)

where A = G+ C
h

and B = C
h

.
Similarly to G, the matrix A is an M-matrix, meaning the

inverse A−1 of A exists and A−1 ≥ 0. This allows rewriting the
recurrence in (8) as

v(t) = A−1Bv(t− h) +A−1is(t) (9)

which is a very useful form for computing the voltage drops at
time t given the voltage drops at time t−h and the current stimulus
at time t.

It is worth mentioning that other methods for discretizing (3)
exist such as the second order Trapezoidal Rule (TR), which leads
to the following recurrence:(

C

h
+
G

2

)
v(t) =

(
C

h
− G

2

)
v(t− h) + is(t− h) + is(t)

2
.

(10)
The trapezoidal method is generally more accurate than BE and
is the method often employed in state-of-the-art simulation tools.

B. Current Waveforms
Generally, the current sources are characterized as piecewise-

linear waveforms that result from simulating the underlying logic
blocks for a certain period of time. In this work, we assume that
the currents are given by the user in the form of a set of pairs

I = {(t0, i0) , (t1, i1) , . . . , (tN , iN)} (11)

where 0 = t0 < t1 < . . . < tN are the time points at which the
current vector is(t) is available (breakpoints), and i0, i1, . . . , iN
are n × 1 vectors containing the current values at t0, t1, . . . , tN
respectively. We also assume that is(t) = 0 for all t < 0 and
t > tN . Moreover, let T be the set of all time points

T = {t0, t1, . . . , tN}, (12)

and define the intervals

Tk = [tk, tk+1], ∀k ∈ {0, . . . , N − 1}. (13)

III. TRANSIENT ENVELOPE WAVEFORMS

For the development of our proposed approach, we are going
to use the BE discretization scheme. The trapezoidal scheme will
only be used in the experimental results section to evaluate our
tools against it, both in terms of accuracy and speed.

Applying the recurrence (9) at t− h
v(t− h) = A−1Bv(t− 2h) +A−1is(t− h), (14)

and substituting this for v(t− h) back in (9) gives

v(t) = (A−1B)2v(t− 2h) +A−1BA−1is(t− h) +A−1is(t),

(15)
and in general, for any integer p ≥ 1, we can write

v(t) = (A−1B)pv(t−h)+∑p−1
q=0(A

−1B)qA−1is(t−qh). (16)

Recall that the spectral radius of a matrix Y , denoted by ρ(Y),
is the magnitude of the largest eigenvalue of Y . From [12], we
know that ρ(A−1B) < 1. This implies [13] that

lim
p→∞(A−1B)p = 0. (17)

Therefore, because v(t − ph) is always bounded (the grid being
a stable system with bounded inputs), we also have

lim
p→∞(A−1B)pv(t− ph) = 0. (18)

Thus, we can let p→∞ in (16) to get

v(t) =
∑∞
q=0(A

−1B)qA−1is(t− qh). (19)

We are going to develop DC and transient bounds on v(t) in
the form of envelope waveforms. For that, we need to define the
following extreme-value operator.

Definition 1. (emax). Let f(x) : R → Rn be a vector function
whose components will be denoted f1(x), . . . , fn(x), and let A ⊂
R. We define the operator emax

x∈A
[f(x)] as one that provides the n×

1 vector y = emax
x∈A

[f(x)] such that, for every j ∈ {1, 2, . . . , n},

yj = max
x∈A

[fj(x)] (20)

Thus, emax[·] performs element-wise maximization over the
domain of the one dimensional variable x. The emax[·] operator
can also be used to perform element-wise maximization of a
countable set of real valued vectors, i.e. if {z1, z2, . . .} is a
(finite or countably infinite) set of vectors in Rn, one can write
emax[z1, z2, . . .] to denote the vector containing the element-wise
maximum of these vectors.

Let ψ ∈ R be the time duration that represents the largest
significant duration of the impulse response function of any node
on the grid, and let τ be the smallest multiple of h that is
larger than ψ. If τ and ψ are chosen properly as we will see in
Section V-A, then one can approximate the exact solution in (19)
as follows

v(t) ≈∑τ/h
q=0

(
A−1B

)q
A−1is(t− qh) � vτ (t). (21)

For any t ∈ R, let w(t) = A−1is(t) and

w(t) = emax
θ∈[t−τ,t]

[w(θ)]. (22)

As was shown in [9], we have

vτ (t) ≤ G−1Aw(t) � v(t). (23)

The waveform v(t) is effectively an envelope waveform repre-
senting an upper bound on the voltage drop at any time t.

When the loading currents are piecewise linear, w(t) must also
be piece-wise linear because w(t) is the result of applying a linear
transformation A−1 to is(t). Accordingly, w(t) can be found by
finding w0 = w(t0), w1 = w(t1), . . . , wN = w(tN) using the
following linear systems

Awk = ik, ∀k ∈ {0, 1, . . . , N}. (24)

447

The result would be a piece-wise linear function with the set
of breakpoints W = {(t0, w0) , (t1, w1) , . . . , (tN , wN)}. Notice
that for t < 0 and t > tN , we have w(t) = 0.

Once W is found, w(t) can be computed using the emax[·]
operator applied at every time point t ∈ R as in (22), and so,
finding w(t) exactly is not very practical. Instead, we proposed
the following.

For any time point tk ∈ T , let tk be the largest time point in T
smaller than or equal to tk − τ if tk − τ ≥ t0, and t0 otherwise.
In other words

tk =

⎧⎨
⎩

t0 if tk − τ < t0;
max
t∈T

t≤tk−τ
(t) if tk − τ ≥ t0. (25)

Now, let

w′k =

{
w(t0) if k = 0;

emax
θ∈{tk−1,...,tk}

[w(θ)] if k ∈ {1, . . . , N}, (26)

and let w′(t) be piece-wise linear with the set of breakpoints

W ′
=

{(
t0, w′0

)
,
(
t1, w′1

)
, . . . ,

(
tN , w

′
N

)}
, and such that

w′(t) =
{

0 if t < 0;

w′N if t > tN .
(27)

We now present two lemmas that will help us in developing
the final solution.

Lemma 1. For every p, q ∈ {0, . . . , N}, p < q, we have

emax
θ∈[tp,tq]

[w(θ)] = emax
θ∈{tp,...,tq}

[w(θ)]. (28)

Proof: For every k ∈ {0, . . . , N − 1}, we have

emax
θ∈Tk

[w(θ)] = emax[w(tk), w(tk+1)] (29)

because w is linear in [tk, tk + 1]. Therefore

emax
θ∈[tp,tq]

[w(θ)] = emax
θ∈Tp∪...∪Tq−1

[w(θ)]

= emax
k∈{p,...,q−1}

[
emax
θ∈Tk

[w(θ)]

]
= emax
k∈{p,...,q−1}

[emax[w(tk), w(tk+1)]] (by (29))

= emax
θ∈{tp,...,tq}

[w(θ)].

Lemma 1 is useful to prove Lemma 2 below. It is also useful
for proving the result of section IV.

Lemma 2. For every t ∈ R, w(t) ≤ w′(t).

Proof: The result is obvious for t < 0 because when t < 0,
w(t) = w′(t) = 0. On the other hand, If t > tN , then

w(t) = emax
θ∈[t−τ,t]

[w(θ)] = emax
θ∈[t−τ,tN]

[w(θ)]

≤ emax
θ∈[tN−1,tN]

[w(θ)] (because tN−1 < tN − τ < t− τ)

= emax
θ∈{tN−1,...,tN}

[w(θ)] (due to Lemma 1)

= w′N = w′(t).

Finally, if t0 ≤ t ≤ tN , then there exists a value for k for
which t ∈ Tk. Because w′(t) is linear for t ∈ Tk = [tk, tk+1],
then we have:

w′(t) = αw′(tk) + (1− α)w′(tk+1) (30)

where α =
tk+1−t
tk+1−tk . Observe that for the same value of α, and

because w(t) is linear between tk and tk+1, we have

w(t) = αw(tk) + (1− α)w(tk+1). (31)

Let

w†(tk) = emax
θ∈[tk,tk]

[w(θ)]. (32)

If k > 0, then by Lemma 1, we have

emax
θ∈[tk−1,tk]

[w(θ)] = emax
θ∈{tk−1,...,tk}

[w(θ)] = w′(tk) (33)

and

emax
θ∈[tk,tk+1]

[w(θ)] = emax
θ∈{tk,...,tk+1}

[w(θ)] = w′(tk+1). (34)

Because tk−1 ≤ tk < tk < tk+1, then [tk, tk] ⊆ [tk−1, tk] and
[tk, tk] ⊂ [tk, tk+1] so that we have

w†(tk) ≤ w′(tk) (35)

and

w†(tk) ≤ w′(tk+1). (36)

Otherwise, if k = 0, then w†(tk) = w(t0) = w′(tk) ≤ w′(tk+1),
and so the above inequalities (35) and (36) are also true. Accord-
ingly, ∀k ∈ {0, . . . , N}, we have

w†(tk) ≤ αw′(tk) + (1− α)w′(tk+1) = w′(t). (37)

Now, observe that we can write [t − τ, t] = [t − τ, tk] ∪ [tk, t],
and hence

w(t) = emax
θ∈[t−τ,t]

[w(θ)] =emax

[
emax

θ∈[t−τ,tk]
[w(θ)], emax

θ∈[tk,t]
[w(θ)]

]
.

(38)
But [t− τ, tk] ⊆ [tk, tk], hence (38) becomes

w(t) ≤ emax

[
emax

θ∈[tk,tk]
[w(θ)], emax

θ∈[tk,t]
[w(θ)]

]

= emax

[
w†(tk), emax

θ∈[tk,t]
[w(θ)]

]
. (39)

Using the fact that w is linear in [tk, t], we have

emax
θ∈[tk,t]

[w(θ)] = emax [w(tk), w(t)] (40)

Therefore, (39) implies

w(t) ≤ emax
[
w†(tk), w(tk), w(t)

]
. (41)

But w(tk) ≤ w†(tk) = emax
θ∈[tk,tk]

[w(θ)], and hence (41) gives

w(t) ≤ emax
[
w†(tk), w†(tk), αw(tk) + (1− α)w(tk+1)

]
= emax

[
w†(tk), αw(tk) + (1− α)w(tk+1)

]
, (42)

where we have used (31) to replace w(t) in (41).

Now, because w(tk) ≤ w′(tk) and w(tk+1) ≤ w′(tk+1), we
can obtain from (42)

w(t) ≤ emax
[
w†(tk), αw′(tk) + (1− α)w′(tk+1)

]
, (43)

which allows us to write using (37) and (30)

w(t) ≤ emax
[
w′(t), w′(t))

]
= w′(t).

448

Algorithm 1 GENERATE TRANSIENT ENVELOPES

Input: G, C, I, τ
Output: Envelope waveform V ′
1: Solve Aw0 = i0 for w0, and set w′0 = w0

2: for k = 1, . . . , N do
3: Solve Awk = ik for wk

4: Set tk−1 =

⎧⎨
⎩

t0 if tk − τ < t0
max
t∈T

t≤tk−1−τ
(t) if tk − τ ≥ t0

5: Set w′k = emax
θ∈{tk−1,...,tk}

[w(θ)]

6: Solve Gv′k = Aw′k for v′k
7: end for
8: return V ′ = {(

t0, v′0
)
,
(
t1, v′1

)
, . . . ,

(
tN , v

′
N

)}

Let In be the n × n identity matrix. Using the result of
Lemma 2, and the fact that G−1A = G−1

(
G+ C

h

)
= In +

G−1 C
h
≥ 0 since G−1 ≥ 0 and C ≥ 0, we can write using (23)

vτ (t) ≤ G−1Aw(t) ≤ G−1Aw′(t) � v′(t), (44)

which means that v′(t) is an envelope waveform representing an
upper bound on the voltage drop at any time t. Because w′(t)
is piece-wise linear, v′(t) must also be piece-wise linear because
v′(t) is the result of applying a linear transformation G−1A to
w′(t). Accordingly, one can find v′(t) by finding v′0 = v′(t0),
v′1 = v′(t1) . . . , v′N = v′(tN) by solving the following set of
linear systems

Gv′k = Aw′k, ∀k ∈ {0, 1, . . . , N}, (45)

so that the result is piece-wise linear with the set of breakpoints

V ′ = {(
t0, v

′
0

)
,
(
t1, v

′
1

)
, . . . ,

(
tN , v

′
N

)}
. (46)

Notice that for t < 0, we have v′(t) = 0 and for t > tN , we have
v′(t) = v′(tN).

Algorithm 1 presents a high level description of how to find the
envelope waveform v′(t). The algorithm requires 2N +2 system
solves which can be done using a Cholesky factorization [13] of
each of A and G. Cholesky factorization can be used because
both A and G are positive definite matrices.

IV. DC ENVELOPE WAVEFORMS

In many cases, simple DC bounds on the true voltage drop
waveforms are sufficient for power grid dynamic verification. In
this section, we will show how such DC bounds can be generated
and used for verification. These bounds turn out to be easier to
compute.

Recall that w(t) = A−1is(t), and consider the vector

W = emax
θ∈R

[w(θ)]. (47)

As was shown in [9],

v(t) ≤ G−1AW � V . (48)

Effectively, V is a DC envelope waveform representing an upper
bound on the voltage drop at any time t.

In the case of piece-wise linear loading currents, we first find
w(t) as in (24), and then we compute

W
′
= emax

θ∈T
[w(θ)]. (49)

Algorithm 2 GENERATE DC ENVELOPES

Input: G, C, I
Output: DC envelope V

′

1: for k = 0, . . . , N do
2: Solve Awk = ik for wk
3: end for
4: W

′
= emax

θ∈T
[w(θ)]

5: Solve GV
′
= AW

′
for V

′

6: return V
′

Using Lemma 1 with p = 0 and q = N , and because w(t) = 0 for

t < t0 and t > tN , it should be clear that W =W
′
. Therefore, a

good way of finding DC bounds is by computing W
′

using (49),
and then solving

GV
′
= AW

′
(50)

for V
′
, which is equal to V because W =W

′
.

Algorithm 2 presents a high level description of how to find
the DC envelope V

′
. The algorithm requires N+1 system solves

which can be done, as before, using a Cholesky factorization of
each A and G.

V. IMPLEMENTATION DETAILS

A. Computing the Duration ψ
The duration ψ is a parameter that depends on the dynamics of

the power grid as a linear system. For any value of ψ, the exact
solution, at any time t, of the differential equation (3) is

v(t) = e−C
−1Gψv(t− ψ) +

∫ t

t−ψ
e−C

−1G(t−ν)C−1is(ν)dν.

(51)
For (21) to be accurate, ψ should be chosen such the term

e−C
−1Gψv(t− ψ) in (51) is negligible. If this is true, then v(t)

can be approximated by the integral term of (51), which only
requires information about the input in the duration [t − ψ, t].
The error vector introduced by this approximation is

e(t) = e−C
−1Gψv(t− ψ). (52)

Let η > 0 be a user-defined error tolerance on the voltage drop
at every node. If ψ is chosen such that

‖e(t)‖∞ ≤ η, (53)

then this guarantees that every entry of the integral term is at
most η away from the corresponding entry of v(t). The lemma
below, first introduced in [9], shows how to choose ψ to guarantee
‖e(t)‖∞ ≤ η. It requires an upper bound Υ on ‖v(t)‖2 for
all t which can be obtained from the DC envelope waveforms
of section IV or using the simple bound vdd on the voltage
drop of each node. Note that the matrix C−1G has real positive
eigenvalues because both C−1 and G are symmetric [14].

Lemma 3. Let λmin be the smallest eigenvalue of C−1G, and
cmax and cmin be the largest and the smallest diagonal elements
of C, respectively. If ψ is chosen such that

ψ ≥ 1

λmin
ln

(√
cmax/cmin

η/Υ

)
, (54)

then
‖e(t)‖∞ ≤ η. (55)

449

Algorithm 3 FIND ψ

Input: G, C, η, ε
Output: ψ
1: x0 = [1 1 . . . 1] ∈ Rn, k = 0
2: Solve Gx1 = Cx0 for x1

3: λ
(1)
d =

xT1 x0
xT0 x0

4: while
(∣∣∣∣λ(k)

d
−λ(k−1)

d

λ
(k−1)
d

∣∣∣∣ ≥ ε

)
do

5: k = k + 1
6: Solve Gxk+1 = Cxk for xk+1

7: λ
(k)
d =

xTk+1xk

xT
k
xk

8: end while
9: λmin = 1

λ
(k)
d

10: Find cmin, cmax, and Υ

11: return 1
λmin

ln

(√
cmax/cmin

η/Υ

)

Proof: The proof requires the notion of the Logarithmic
norm [15] of a square matrix X with respect to the 2-norm,
defined as

μ2(X) = max

{
λ|λ ∈ σ

(
XT +X

2

)}
(56)

where σ
(
XT+X

2

)
is the set of eigenvalues of XT+X

2
.

We also require the notion of the square root of a matrix defined
as follows. For any matrix X, the square root of X, denoted

√
X

is a matrix satisfying
√
X
√
X = X [10]. The square root of a

matrix may or may not exist. If X is a diagonal matrix, then
√
X

exists and is a diagonal matrix with diagonal elements equal to
the square root of the diagonal elements of X. Let

S � −
√
C−1G

√
C−1, (57)

and notice that

−C−1G =
√
C−1(−

√
C−1G

√
C−1)

√
C =

√
C−1S

√
C (58)

because
√
C−1

√
C = In. In essence, the matrices −C−1G

and S are related by a similarity transformation. This implies

that σ(−C−1G) = σ(S) and e−C
−1Gψ =

√
C−1eSψ

√
C [10].

Accordingly,

‖e(t)‖∞ = ‖e−C−1Gψv(t− ψ)‖∞
= ‖

√
C−1eSψ

√
Cv(t− ψ)‖∞

≤ ‖
√
C−1eSψ

√
Cv(t− ψ)‖2

≤ ‖
√
C−1‖2‖eSψ‖2‖

√
C‖2‖v(t− ψ)‖2. (59)

Clearly,

‖v(t− ψ)‖2 ≤ Υ. (60)

Also, because C is a positive diagonal matrix, and because
the 2-norm of a diagonal matrix is the entry with the largest
magnitude [10], then ‖√C‖2 =

√
cmax . Similarly, ‖

√
C−1‖2 =√

1
cmin

. Furthermore, the following is true from [15]

‖eSψ‖2 ≤ eμ2(S)ψ . (61)

But G is an M matrix, i.e. a symmetric positive definite matrix,
and

√
C−1 is a diagonal matrix. Therefore,

√
C−1G

√
C−1 is

Figure 3: A parallel implementation of Algorithm 1

symmetric, meaning

σ

(
ST + S

2

)
= σ(S) = σ(−C−1G). (62)

Hence,

μ2(S) = max
{
λ|λ ∈ σ(−C−1G)

}
= −min

{
λ|λ ∈ σ(C−1G)

}
= −λmin ≤ 0.

Accordingly, using (54), we have

μ2(S)ψ = −λminψ ≤ − ln

(√
cmax/cmin

η/Υ

)
(63)

= ln

(
η/Υ√

cmax/cmin

)
, (64)

and combining (59), (60), (61), and (64), we get

‖e(t)‖∞ ≤
√

1

cmin

η/Υ√
cmax/cmin

√
cmaxΥ = η, (65)

which completes the proof.

Computing λmin can be easily done using the power
method [13] as was proposed in [14]. The full procedure is shown
in Algorithm 3. Effectively, the algorithm computes the dominant
eigenvalue of the matrix G−1C, which is the same as its largest
eigenvalue because all the eigenvalues of G−1C are real and
positive. The smallest eigenvalue of C−1G is simply the inverse
of the result. Moreover, the algorithm requires a tolerance ε on
the relative error between two consecutive estimates of λmin.

B. Time-Step

The choice of the time step h is done based on the algorithm
proposed in [14]. The algorithm requires λmin which is already
being computed to find ψ. The resulting time step is simply h =

1
λmin

. This choice of h was proven to be useful in the case of

vectorless RC verification in [14] where we have used a similar
upper bound to the one we are using in this paper. As we will
see in the results section, the same choice of h turns out to be
adequate in this context as well.

450

VI. PARALLELIZATION

Observing Algorithms 1 and 2, one can notice that the most
expensive operations are solving the linear systems. However,
one can also notice that, unlike traditional transient simulation
approaches, the linear systems in our approaches can be solved
independently. This is a key point because it implies that our
algorithms are embarrassingly parallel. Thus, we implement
multi-threaded versions of our algorithms. Fig 3 shows how
Algorithm 1 can be parallelized. Algorithm 2 can be parallelized
in a similar fashion. In the figure, The master thread branches
off into 4 threads T0, T1, T2, and T3 where each thread takes
care of a portion of the input. The threads branch off and merge
appropriately as to respect data dependencies.

In the first step, each thread uses the Cholesky solver to
compute a portion of the wk’s. Once all the wk’s are computed,
the master thread collects the results and combines them into
a big set of vectors. Given the parameter τ and the set of
vectors generated, each thread will then compute a portion of
the w′k’s using the emax[·] operator. Finally, the Cholesky solver
is used once again by each thread to compute the v′k’s by solving
Gv′k = Aw′k.

VII. EXPERIMENTAL RESULTS

We implement all the algorithms proposed in C++. All the
linear systems are solved using CHOLMOD [16] from SuiteS-
parse [17]. The tested grids were generated based on user-defined
industrial geometry parameters consistent with 1V 45nm CMOS
technology. The sizes of the grids generated range from 250K
to 4M nodes with around 20% of the nodes attached to current
sources. The input current waveforms are piece-wise linear with
breakpoints that are generated randomly. All the computations
were done on a 3.4GHz quad-core Linux machine with 32GB of
RAM.

In order to verify the accuracy of our approaches, we compare
the resulting envelopes with the exact voltage drop waveforms
resulting from performing the traditional trapezoidal (TR) method
with a fixed time step. We understand that the traditional TR
method is not the most efficient method out there. However, we
decided to compare our method to TR for two reasons: 1) TR
provides a baseline that is easy to implement and that every
method out there can compare to. Knowing the speedups with
respect to TR, one can easily figure out the relative speedups. 2)
The runtime of other published methods is only meaningful on the
specific machines that were used to simulate them. Comparing our
data to their data is not particularly fair because we are running
our simulations on a different platform.

The current waveforms are chosen such that the minimum
distance between two consecutive breakpoints is 10ps, and so,
the time step used to compute the exact solution is also chosen to
be 10ps. The duration of the simulation is set to 100ns, so there
are 10,000 pairs of forward and backward substitutions that have
to be done during the process of exact transient simulation. The
number of breakpoints is much smaller than that as the distance
between two consecutive breakpoints is chosen randomly between
10ps and 1ns. It should be noted that using a dynamic time step
for the TR method (adaptive stepping) leads to multiple matrices
that need to be factorized, thus degrading the performance of the
TR method. For that reason, a fixed time step is used.

In Table I we report the maximum and average overestimation
errors of the DC envelopes as compared to the peaks of the
exact voltage drop waveforms. In the table, “TR”, “DC-ENV”,
and “TRAN-ENV” refer to the trapezoidal method, the DC

0 10 20 30 40 50 60 70 80 90 100
40

42

44

46

48

50

52

54

Time (ns)

V
ol

ta
ge

 d
ro

p
(m

V
)

Exact voltage drop waveform
Transient envelope waveform
DC envelope waveform

Figure 4: Envelope waveform at node indexed 20,000 in G1

envelope method, and the transient envelope method respectively.
We observe that the overestimation is always below 1mV with
an average that is never exceeding 300μV. Moreover, it can be
shown that the DC envelopes are upper bounds on the transient
envelopes, and so, the transient envelopes will also capture the
peaks of the exact voltage drop quite accurately. To make this
clearer, Fig 4 shows the exact voltage drop waveform and the
resulting envelope waveforms for node indexed 20,000 in G1. We
can observe how well the transient envelope waveform follows the
peaks of the exact waveform, making it very useful for verification
purposes. Using the transient envelope, one can figure out if a
given node is safe or not. If the node is not safe, the envelope
waveform provides the user an idea of the time intervals at which
the node is becoming unsafe. This could potentially be very useful
for debugging.

In terms of speed, we first compare the runtime of the se-
quential implementation of our approaches to the TR method.
For each of the three methods (TR, DC-ENV, and TRAN-ENV),
the runtime is divided into two portions: DC and transient. The
DC portion represents all the fixed cost that has to be done no
matter how long the simulation is. For example, this includes any
matrix computations and factorizations. The speedups reported are
computed using the second portion of the runtime (tran) of each
method for the given current waveforms because the fixed costs
for the three methods is roughly the same for a given grid. We
can see how well our algorithms perform in comparison with the
TR method as the speedups can reach 228.79× for DC-ENV and
75.78× for TRAN-ENV. This shows that our approaches are quite
practical and present significant performance advantages over the
traditional TR method.

Multi-threaded implementations of our algorithms are also
implemented in C++ using OpenMP with 4 threads. The im-
plementations were tested on the quad-core machine described
earlier. The overall runtimes and speedups in comparison with TR
are reported in Table II. In the table, “MT-DC-ENV” and “MT-
TRAN-ENV” refer to the multi-threaded versions of DC-ENV
and TRAN-ENV respectively. The speedups over the sequential
implementations are up to 3.26× for MT-DC-ENV and 2.42×
for MT-TRAN-ENV. The overall speedups obtained are up to
732.87× for MT-DC-ENV and 181.59× for MT-TRAN-ENV.
Notice that the parallelism invoked is across time. This cannot
be done for TR due to the inherent data dependencies that exist
in the recurrence (10).

451

Table I: Speed and Accuracy of the Sequential Implementations of the Proposed Approaches

Grid TR DC-ENV TRAN-ENV

Name Nodes ψ (ns) DC(s) Tran(s) DC(s) Tran(s) Speedup
Maximum
Error (μV)

Average
Error (μV)

DC (s) Tran (s) Speedup

G1 251,122 30.15 1.45 425.32 1.67 2.22 191.59× 598 221 1.61 6.99 60.85×
G2 506,488 12.67 3.73 946.16 4.25 4.58 206.56× 735 272 4.18 12.69 74.56×
G3 1,007,064 13.13 9.57 2,038.45 10.68 9.51 214.35× 778 215 10.6 27.03 75.41×
G4 2,030,668 13.32 24.47 4,482.43 26.93 20.72 216.33× 774 187 26.59 59.15 75.78×
G5 4,022,448 13.77 63.25 9,593.28 69.54 41.93 228.79× 736 159 68.73 128.06 74.91×

Table II: Performance of the Multi-threaded Implementations of the Proposed Approaches

Grid MT-DC-ENV MT-TRAN-ENV

Tran (s)
Speedup vs.

DC-ENV
Speedup
v.s. TR

Tran (s)
Speedup vs.
TRAN-ENV

Speedup
vs. TR

G1 0.69 3.21× 616.41× 3.33 2.10× 127.72×
G2 1.45 3.16× 652.52× 5.92 2.14× 159.82×
G3 2.92 3.26× 698.10× 12.26 2.20× 166.27×
G4 6.41 3.23× 699.29× 25.82 2.29× 173.60×
G5 13.09 3.20× 732.87× 52.83 2.42× 181.59×

VIII. CONCLUSION

In this paper, we proposed a parallel simulation-based approach
for checking RC power grids. The algorithms we proposed
generate envelope upper bound waveforms on the exact voltage
drop waveforms. The overestimation of the envelopes was shown
to be minimal and the speedup over the traditional trapezoidal
approach was shown to be dramatic. The generated envelopes
can be very useful for checking the safety of the grid, as well as
for debugging purposes in the cases where particular nodes were
found to be unsafe.

REFERENCES

[1] F. N. Najm, Circuit Simulation. Hoboken, NJ: John Wiley
& Sons, Inc, 2010.

[2] Z. Zeng, T. Xu, Z. Feng, and P. Li, “Fast static analy-
sis of power grids: Algorithms and implementations,” in
ACM/IEEE International Conference on Computer-Aided
Design (ICCAD-12), San Jose, CA, Nov. 7-10 2011.

[3] C.-H. Chou, N.-Y. Tsai, H. Yu, C.-R. Lee, Y. Shi, and S.-C.
Chang, “On the preconditioner of conjugate gradient method
- A power grid simulation perspective,” in ACM/IEEE Inter-
national Conference on Computer-Aided Design (ICCAD-
11), San Jose, CA, Nov. 7-10 2011.

[4] H. Qian, S. R. Nassif, and S. S. Sapatnekar, “Power grid
analysis using random walks,” IEEE Trans. on Computer-
Aided Design (TCAD), vol. 24, no. 8, August 2005.

[5] J. N. Kozhaya, S. R. Nassif, and F. N. Najm, “A multigrid-
like technique for power grid analysis,” IEEE Trans. on
Computer-Aided Design (TCAD), vol. 21, no. 10, Oct. 2002.

[6] M. Zhao, R. V. Panda, S. S. Sapatnekar, and D. Blaauw,
“Hierarchical analysis of power distribution networks,” IEEE
Trans. on Computer-Aided Design (TCAD), vol. 21, no. 2,
Feb. 2002.

[7] X. Xiong and J. Wang, “Parallel forward and back substitu-
tion for efficient power grid simulation,” in ACM/IEEE In-
ternational Conference on Computer-Aided Design (ICCAD-
12), San Jose, CA, Nov. 5-8 2012.

[8] H. Zhuang, S.-H. Weng, J.-H. Lin, and C.-K. Cheng, “MA-
TEX: A distributed framework for transient simulation of
power distribution networks,” in ACM/IEEE Design Automa-
tion Conference (DAC-14), San Francisco, CA, June 1-5
2014.

[9] M. Fawaz and F. N. Najm, “Fast simulation-based verifica-
tion of RC power grids,” in IEEE Canadian Conference on
Electrical and Computer Engineering, Vancouver, Canada,
May 15-18 2016.

[10] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed.
Cambridge University Press, 2012.

[11] J. D. Lambert, Numerical Methods for Ordinary Differential
Systems: The Initial Value Problem. Chichester, U.K.:
Wiley, 1991.

[12] I. A. Ferzli, F. N. Najm, and L. Kruse, “A geomet-
ric approach for early power grid verification using cur-
rent uncertainties,” in ACM/IEEE International Conference
on Computer-Aided Design (ICCAD-07), San Jose, CA,
Novermber 5-8 2007.

[13] Y. Saad, Iterative methods for sparse linear systems, 2nd ed.
SIAM, 2003.

[14] M. Fawaz and F. N. Najm, “Accurate verification of RC
power grids,” in IEEE Design, Automation and Test in
Europe (DATE-16), Dresden, Germany, March 14-18 2016.

[15] G. Söderlind, “The Logarithmic norm. History and modern
theory,” BIT Numerical Mathematics, vol. 46, no. 3, 2003.

[16] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam,
“Algorithm 887: CHOLMOD, supernodal sparse Cholesky
factorization and update/downdate,” ACM Trans. on Mathe-
matical Software, vol. 35, no. 3, pp. 22:1–22:14, 2008.

[17] T. A. Davis. Suitesparse 4.4.6. [Online]. Available:
http://faculty.cse.tamu.edu/davis/suitesparse.html

452

