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Due to continued technology scaling, electromigration has become a serious reliability concern in modern integrated

circuits. This is further aggravated by the pervasive use of inaccurate models for electromigration based on traditional

empirical black-box models. We will review the modern approach to electromigration verification, with emphasis on

recent physical models, then summarize our work on a finite-difference based approach for power grid electromigration

checking using these models. The method simulates the electromigration damage across the power grid, much like

simulating for voltage or current. The lifetimes found using this physics-based approach are on average about twice, or

more, those based on the traditional empirical approaches. Because this approach is computationally efficient, one is

able to handle large grids with millions of branches. We then present detailed analysis of the steady state stress and its

relation to voltages and currents in the grid, along with a number of design considerations that follow from this analysis.

I. INTRODUCTION

In a metal line carrying significant current density, the free

electrons push and move the metal atoms in the direction of

the electron wind, i.e., towards the anode end of the line;

hence the name electromigration (EM) for this effect. The re-

sulting atomic flow increases compressive stress at the anode

and tensile stress at the cathode, which creates a stress gradi-

ent that presents an opposing driving force that retards EM1. If

the levels of stress become high enough, a void may be created

due to high tensile stress near the cathode, or a hillock (extru-

sion of metal through cracks in the dielectric) may form due to

high compressive stress near the anode, which can either way

result in circuit failure. With the confinement of metal lines

in today’s metal technology, voids are much more likely than

hillocks and so one is often more concerned with the buildup

of tensile stress. We will follow the common convention that

tensile stress is positive and compressive stress is negative. A

void is created once the stress exceeds a certain level of stress,

called the critical stress2, denoted σcrit, which is an effective

parameter that depends on a number of factors.

Integrated circuits (ICs, or simply chips) contain a variety

of metal lines (interconnect) which fall under two major cate-

gories: 1) signal lines, including lines that provide intra- and

inter-cell connectivity, signal buses, control signals, clock sig-

nals, etc. and 2) power supply and ground lines, which are

supposed to deliver a well-regulated supply voltage to the

whole chip. The term power grid refers to either the power

supply network or the ground network. These networks carry

mostly unidirectional currents, in contrast to other lines like

signal lines. As a result, signal lines typically have longer EM

lifetimes and so the focus of research is often on the power and

ground networks3. Thus, this work is focused on EM failures

in the power grid.

a)Electronic mail: f.najm@utoronto.ca
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Modern power grids are fabricated using a dual-damascene

process, in which the metal line and via are formed simulta-

neously using Copper (Cu). Since Cu diffuses easily in most

dielectric materials, including SiO2 and carbon-doped silica,

thin refractory metal layers consisting of Ta/TaN or their com-

bination are deposited on the sidewalls and bottom of the Cu

trenches and vias, as interface barriers or metal liners to pre-

vent Cu diffusion. Then, after CMP (chemical-mechanical

polishing), Cu lines are capped with a dielectric diffusion bar-

rier that is usually made of Si3N4 or SiCxNiy. In the dual-

damascene structure, Cu-filled vias are used to connect mul-

tiple layers of metallization which, together with the use of

sidewall metal liners, helps to minimize the electrical resis-

tance of the Cu interconnects.

The power grid is a large and extensive metal structure, oc-

cupying parts of all metal layers. In the bottom two layers,

the grid is connected to the underlying transistor circuitry. At

the top layer, it connects through the C4 bumps to the external

power supply and ground. In any given layer, the grid typ-

ically consists of many parallel stripes of metal that connect

through vias to the stripes in the layers right above and right

below; these stripes are alternating (power, ground) within

each layer. As a result of the dual-damascene process, Cu

atoms cannot flow from one metal layer to another, but they

can easily flow within the same connected section of metal in

their own layer. Effectively, Cu atoms are captive within their

own metal islands on each level. Due to the structure of par-

allel stripes, these metal islands are mostly acyclic and so are

referred to as interconnect trees4 in the field.

In the remainder of this section, we will review a modern

one-dimensional physical model for EM, called Korhonen’s

model, that is the basis for our work. Section II will summa-

rize our work on an extension of this model for handling full

chip power grids. Section III presents a theoretical analysis

that captures the mass conservation constraint for whole in-

terconnect trees. This analysis is then applied in Section IV,

which develops efficient methods for computing the steady

state stress in the full grid, deriving various design insights in

the process. Finally, a brief conclusion is given in Section V.
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A. Korhonen’s model

Highly accurate analysis of EM in complex on-die metal

structures requires the use of expensive and time-consuming

three-dimensional (3D) numerical solvers, and so is not suit-

able for large chip power grids in practice. Fortunately, in the

early 90’s three separate research groups, under Nix2, Kirch-

heim5,6 and Korhonen7,8 contributed to the development of a

one-dimensional (1D) model that provides a reasonable trade-

off between accuracy and complexity, which has come to be

called Korhonen’s model. The model, which we will review

briefly, describes the evolution of the hydrostatic stress σ over

time. Additional details about the following analysis may be

found in2,5,7,9.

Atomic migration along a metal line that is subjected to

electric current is caused mostly by a momentum exchange

between the conducting electrons and lattice atoms. Because

mass is conserved inside an interconnect tree due to the pres-

ence of diffusion barriers and the encapsulation of all lines

and vias in modern metal systems, the migration of atoms re-

sults in a redistribution of mass along the line. Mass depletion

occurs in the cathode region of the line and mass accumula-

tion at the opposite anode region. This would normally result

in volumetric deformation of the line, were it not for the rigid

confinement by diffusion barriers and the surrounding dielec-

tric, as mentioned earlier. The interaction between the inelas-

tic volumetric strain and the rigid confinement generates an

elastic stress that is distributed along the line, with the tensile

stress at the cathode and compressive stress at the anode. We

can express the relationship between the hydrostatic stress σ
and the volumetric strain θ as

σ =−Bθ , (1)

where B is the effective bulk modulus10, which depends on

the shape of the line cross-section, the elastic constants of the

surrounding dielectric and barriers, and the Silicon substrate,

as well as on the bulk modulus of the metal.

The mass transport along the line, which leads to stress

generation, depends on the applicable diffusion mechanism.

For Cu interconnects, the vacancy mechanism of diffusion is

generally accepted as the underlying mechanism for atomic

diffusion: atoms propagate along the line by jumping into

vacant nearby lattice sites, i.e. the sites occupied by vacan-

cies. Thus, the mass transport depends on vacancy concentra-

tion, which is extremely small at typical chip operating tem-

peratures, and can be described by vacancy diffusion. Fur-

thermore, the nonuniform distribution of stress along the line

leads to an additional driving force that drives vacancy mi-

gration, which is due to the inhomogeneous elastic energy

associated with the hydrostatic stress. Assuming that mass

transport along the line is determined by grain boundary dif-

fusion alone, with the vacancy diffusion coefficient DGB
v , the

effective vacancy transport corresponding to the entire cross-

section of the line is characterized by the effective diffusion

coefficient Dv =DGB
v δ/d. Here, δ is the grain boundary thick-

ness and d the average grain size. Thus, as a 1D approxima-

tion, the total vacancy flux due to electric current and stress is

given by

Jv =
CvDv

kbT

(

q∗ρ j−Ω
∂σ

∂x

)

, (2)

where Cv is the vacancy concentration corresponding to the

entire cross-section of the line, Dv is the coefficient of va-

cancy diffusion, ρ is the metal resistivity, j is the current den-

sity (whose positive reference direction is in the direction of

positive x), Ω is the atomic volume, q∗ = qZ is the effective

charge, where q is the absolute value of the electron charge

and Z is the effective valence, which is an effective charge

value that can justify the measured driving forces exhibited

in metal lines11 under the applied electric field, including the

electrostatic and the electron-wind contributions. The spatial

and temporal nonuniformity of the vacancy flux is responsible

for its divergence, which results in a time-dependent variation

in the vacancy concentration along the line. The correspond-

ing atomic flux, denoted Ja =−Jv, is

Ja =
CDa

kbT

(

Ω
∂σ

∂x
− q∗ρ j

)

, (3)

where C is the atomic concentration and Da is the coefficient

of atomic diffusion, both corresponding to the entire cross-

section of the line. As before, if DGB
a is the grain boundary

atomic diffusivity, then Da = DGB
a δ/d. It should be noted that

a similar relationship exists between the local grain boundary

concentration of vacancies cv and their concentration normal-

ized to the entire cross section of the line, Cv = cvδ/d.

A thermodynamic analysis shows that the vacancy concen-

tration, in the presence of given stress σ , evolves towards the

equilibrium vacancy concentration

cEq = Ω−1 exp

(

−
Ev − f Ωσ

kbT

)

= cv0 exp

(

f Ωσ

kbT

)

, (4)

where Ev is the energy of vacancy formation and f is the

ratio of the lattice volume occupied by a vacancy to that

occupied by an atom, while cv0 is the equilibrium vacancy

concentration in the stress-free state (σ = 0), i.e., cv0 =
Ω−1 exp(−Ev/kbT ). A vacancy is generated in a lattice site

when a lattice atom moves to another site that constitutes a

lower energy state, which in the case of a confined line can be

an interface, a grain boundary, or a dislocation edge. In this

process, a vacancy is formed in pair with a displaced atom,

which is added, or plated, to a free or a confined surface, such

as a grain boundary, depending on the line structure. There are

associated localized atomic relaxations around the vacancy

and the plated atom that induce stress, leading to a new stress

state. For a damascene line, the displaced atom is plated on

the edge of the interface or at a grain boundary that requires

the minimum energy. This yields a total volumetric strain

θ ≈−

(

δ

d

)[

(1− f )Ω(cEq − cv0)−ΩcPL

]

, (5)

where cPL is the concentration of plated atoms. The ratio δ/d

is used to get the volumetric strain of the line unit volume
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when excessive or deficient vacancies and plated atoms are

generated at the grain boundaries.

Hence, the evolution of the vacancy concentration in a vol-

ume dV of the line segment with coordinates x and x+dx with

a line thickness h and a width w, subjected to an electric cur-

rent is described by the following continuity equation (mass

balance)

∂cv(x, t)

∂ t
=−∇Jv +R(x, t), (6)

where R(x, t) is the rate of generation/annihilation of vacancy-

plated atom pairs. It has been shown2,7 that there is a simple

relation between R(x, t) and the rate of hydrostatic stress evo-

lution, given by

R ≈
1

BΩ

(

d

δ

)

∂σ

∂ t
. (7)

Assuming that EM-induced transport occurs through the grain

boundaries and interfaces, which results in fast evolution of

the vacancy concentration towards its equilibrium level, the

continuity equation (6) after replacing the vacancy flux with

the atomic flux, takes the form

∂σ

∂ t
=

∂

∂x

[

δ

d
DGB

a

BΩ

kbT

(

∂σ

∂x
−

q∗ρ

Ω
j

)]

= BΩ
∂Ja

∂x
. (8)

where Ja is the atomic flux (3) with C ≈ 1/Ω. Then, follow-

ing Korhonen7, we denote D = DaBΩ/kbT as the diffusivity,

so that equation (8) takes the form of the well-known 1D Ko-

rhonen equation describing the stress evolution in a metal line

embedded in a rigid confinement under a current density j, as

∂σ

∂ t
=

∂

∂x

[

D

(

∂σ

∂x
−

q∗ρ

Ω
j

)]

. (9)

The most important feature of this result is that the rate of

stress evolution is now characterized by the quasi-diffusion

coefficient D = DaBΩ/kbT , which is much smaller than the

vacancy grain boundary diffusivity.

The major achievement of the effort leading to this

Nix/Korhonen/Kirchheim model is the explanation of why the

stress accumulation happens very slowly in comparison with

vacancy diffusion, and why the resulting vacancy concentra-

tion at the cathode end of the line is not very large. The ex-

planation is simple: a major portion of the vacancies moving

towards the cathode are consumed by annihilation with the

plated atoms in order to reach a stress-vacancy concentration

equilibrium. Thus, the evolution of the plated atom concen-

tration is a major cause of the stress evolution.

Because the diffusivity Da depends on the micro-structure

of the specific instance of a metal line, it is subject to manufac-

turing variations and is known to be lognormally distributed12.

This leads to a statistical distribution for the time-to-failure

(TTF). Note that Da also has a dependence on stress, but this

dependence is weak7 and is often ignored13–16.

II. EXTENDED KORHONEN’S MODEL (EKM)

In17–19, we proposed a new EM checking approach for

power grids that augments Korhonen’s model7 by enforcing

boundary laws at all the junctions in order to be able to track

material transport and the evolution of stress in interconnect

trees. In contrast with previous work, the system equations

are generated automatically and for arbitrary tree geometries.

The method also extends Korhonen’s model to full grid anal-

ysis by accounting for redundancy of the grid structure and

using a voltage-drop based failure criterion, while being fast

enough to be practically useful. We refer to this as the ex-

tended Korhonen’s model (EKM). The system of equations

is solved numerically, not analytically, and so essentially per-

forms a simulation of the metal structure to find the stress evo-

lution over time. We use a finite-difference based approach in

which metal lines are discretized and the stress found only at

the discrete points. In order to account for the redundancy of

the many available current paths in modern power grids, we

consider a grid to have failed only once a voltage-drop viola-

tion has been observed, rather than simply when the first void

is formed.

The overall flow of the method is as follows. A random

sample of the diffusivities (one per line) is used to create a

specific instance of the grid. All trees are solved to track the

stress over time, until a void is formed, then we check to see

if this leads to a voltage drop violation. If not, and depending

on where the void is exactly, the tree with the void may be

broken up into multiple disconnected trees, and the solver for

the time evolution of all stresses is restarted for all trees. This

is repeated until a void is found that causes a voltage drop

violation, and this gives the TTF for this instance of the grid.

Another random sample is taken, a new fresh (undamaged)

instance of the grid is created, and the process is repeated until

the average of all the TTFs has converged to the mean time-

to-failure (MTF) of the grid.

There are three technical capabilities inherent in this flow:

1) solving for the stress in an interconnect tree by a novel

method of stress simulation, 2) assessing the impact of a new

void on the grid voltage drop using full grid analysis, and

3) computing the MTF for the whole grid by an iterative pro-

cess of statistical sampling. Each of these capabilities will be

briefly described below, after some preliminaries.

A. Preliminaries

The time evolution of the EM-induced degradation in an in-

terconnect tree consists of two phases, a void nucleation phase

and a void growth phase. For a fresh undamaged tree, the ini-

tial time period during which the stress is evolving over time

but no voids have yet developed, is called the void nucleation

phase. During this phase, with the absence of voids, there

is no impact on the line resistance, and so no impact on the

tree’s electrical behaviour. A void will form (nucleate) some-

where in the tree if/when the stress at that point exceeds the

critical stress. When this happens, we have entered the void

growth phase. Depending on the physical location where the

void has nucleated, a failure may happen immediately upon

voiding because it may have the effect of disconnecting a via

and creating an open-circuit20 (such failures are called early

failures). But this is not always the case. In many cases, the
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location of the void will be such that lines continue to conduct

current even after a void has formed. As such a void grows in

size, the resistance of the line increases and eventually reaches

a steady-state value. Then, we are again in a void nucleation

phase, on the way to the creation (possibly) of another void

somewhere else. In this way, the analysis alternates between

nucleation and growth phases, for the whole power grid.

Focus on junctions. It is typical in recent work in this

area7,13,21 to assume that line diffusivities Da are fixed all

along a metal branch. We too will adopt this approach, so that

while different lines can have different diffusivities, all points

in a given line have the same diffusivity. A consequence of

this is that the highest value of the divergence of atomic flux

is always at one of the line’s endpoints, which we refer to as

junctions. Thus, in our work, voids nucleate only at junctions.

Furthermore, with Da being independent of x, and j being in-

dependent of x anyway inside a uniform line, then (9) takes

the simple form of the heat equation,

∂σ

∂ t
= D

∂ 2σ

∂x2
. (10)

Effective current model. Because EM takes a long time to

manifest as a circuit failure, the short-term transients that one

observes in typical chip operation don’t play a significant role

in EM failures. Therefore, it is common in the field to adopt an

effective current model22 for EM work. The effective current

is a fixed (DC) value that is expected to give the same lifetime

as the original current waveform. Thus, in our work we as-

sume that the circuit loading currents are fixed over time, so

that the current in every nucleation phase is a constant. The ef-

fective currents in the branches in any given nucleation phase

can therefore be found by doing a simple DC analysis of the

power grid.

Piecewise-constant voltage. We have assumed23 that the

void growth phase is short relative to the nucleation phase, so

we ignore its duration and simply keep track of the duration of

the nucleation phases. Therefore, both the branch currents and

the voltage drops in the grid change abruptly once a void has

formed, so that we are dealing with piecewise-constant (PWC)

branch resistances, PWC branch currents and PWC voltage

drops. With this, the grid electrical behaviour is captured by

the system G(t)v(t) = is, where G(t) is a time-varying con-

ductance matrix whose elements are PWC over time, v(t) is

the PWC node voltage drop vector and is is the vector of ef-

fective DC sources that load the grid.

Reference directions. In our work, every metal line is given

a reference direction, which is needed in order to consistently

track the signs of all currents and atomic fluxes. Reference

directions can be chosen arbitrarily, but remain fixed through-

out the analysis. We create them using a simple breadth-first-

search24 graph algorithm. We adopt the convention that, for

every branch k, both current density jk and atomic flux Jak are

positive if they flow in the reference direction for that branch,

which is also the positive direction for x in the branch. Fi-

nally, we assume that an initial stress value is given for every

branch, typically based on up-front analysis of the residual

thermal stress25.

B. Capability 1: Stress simulation

Korhonen’s model (9) provides a partial differential equa-

tion (PDE) that applies to every metal branch (line) of an inter-

connect tree, at every point x within the line. Our numerical

solution approach starts with a discretization of every metal

branch in every interconnect tree, using the standard finite-

difference technique for solving PDEs26, which effectively

turns the collection of PDEs for every interconnect tree into

a system of ODEs (ordinary differential equations), which are

then solved using well-established numerical methods.

We use the central difference approximation26 to esti-

mate the derivative, based on a spatial discretization of the

PDE (10) in every metal line, as

dσ

dt
(xi, t)≈

D

∆2
[σ(xi+1, t)− 2σ(xi, t)+σ(xi−1, t)] , (11)

where ∆ is the distance between consecutive discretized points

in the line. This may be viewed as a line model, which we

then augment with a junction model, which is the key part that

allows us to “stitch” together all the line models into a full

model for the tree, as follows.

A junction enforces an interdependence among the atomic

fluxes in the branches connected to it, based on mass-

conservation considerations. An exact model for a junction

would require a detailed representation of the stress and flux

in the spatial volume, in which current and flux are not neces-

sarily uniform across the cross-section as they are in a metal

branch. As such, it does not seem to be amenable for use in a

1D model. However, because the volume and mass of a typi-

cal junction is very small in comparison with the volume and

mass of typical metal lines, we have found that the following

approximation works very well. We assume that the mass of

a junction is negligibly small, and so effectively assume that

the junction is compressed into a single point where the 1D

lines are connected to each other. With an infinitesimal point

junction of this sort, it follows that the sum of all incoming

atomic mass through some branches must be equal to the sum

of all outgoing mass through the other branches, i.e.,

∑
k∈Bout

wkJak − ∑
k∈Bin

wkJak = 0, (12)

where wk is the width of branch k (all branches on the same

metal layer have the same height), Jak is the flux in branch

k and Bout (respectively, Bin) is the set of branches con-

nected to the junction whose reference directions are outgo-

ing (respectively, incoming). This equation is a sort of mass-

conservation boundary law that is enforced for every junction.

Using (3), this gives a relationship among the stress deriva-

tives in every connected line, right at the junction. These

derivatives are then approximated using a central difference

approximation that involves “ghost points,” as is often done in

finite-difference numerical methods; the details are available

in the cited papers.

As a result of the line model and junction model, the over-

all system of equations for the tree becomes a linear time-

invariant (LTI) state-space system,

σ̇(t) = Aσ(t)+Bi(t) (13)
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where σ is a vector of the stresses at all discretized points,

including junctions, i is a vector of all the branch currents,

while A and B are coefficient matrices that are automatically

generated for every tree. This system is solved numerically in

order to track the time-evolution of the stress. This is based on

well-known methods for solving large systems of ODEs, such

as one encounters in circuit simulation27. The time derivative

is discretized at successive points in time, which converts the

differential system into an algebraic one, which turns out to

be a linear system in this case; this is then solved at every

point in time to get the stress. In our experience19, this system

turns out to be a stiff system, just like in circuit simulation.

The best numerical formulas for such situations are the back-

ward difference formulas, like the 2nd order Gear (BDF2).

We have tested this approach against analytical solutions, and

compared to published experimental results, with very good

agreement. Furthermore, it has been compared28 to a detailed

3D solver, again with very good agreement.

C. Capability 2: Full grid analysis

During the void nucleation phase, the stress is compared to

a user-specified critical stress threshold σcrit. Once the stress

at any point exceeds σcrit, we stop the simulation of all trees

and enter the void growth phase. An additional void bound-

ary law is applied to express the stress derivative at the void

surface and a simulation is applied to the relevant tree to deter-

mine the final size of that void. The void could end up being

an open circuit, if it’s right under a via for example, or it can

be resistive. The tree is restructured (broken up) accordingly,

and the voltage drop in the whole grid is checked, based on

solving the full grid DC system Gv = is using updated con-

ductance values. If no voltage drop violation is found, all tree

currents are updated to reflect the structural change and a new

nucleation phase is initiated for all trees. We repeat this pro-

cess until, after sufficiently many voids have formed, one ob-

serves a voltage-drop violation, at which time we declare this

to be the TTF, and we terminate the simulation of this specific

grid instance.

D. Capability 3: Statistical sampling

Because the TTF is random, one is often interested in its

mean (the MTF), which we compute using the Monte Carlo

method. We use random sampling (from the distribution of

line diffusivities) to generate, within each Monte Carlo itera-

tion, a fresh (undamaged) instance of the same power grid. We

then simulate each grid instance until it develops a voltage-

drop failure, which gives us its TTF. The iterations continue

until the Monte Carlo estimate of the MTF has converged to

within a given error tolerance. We improve the computational

efficiency by means of a filtering scheme, whereby up-front

analysis is done to identify the set of trees that are deemed to

have minimal impact on the MTF and these are excluded from

the simulation. This has been found to significantly reduce the

runtime with very little error23. We have also found ways to

extrapolate the solution (the curve of stress over time), based

on a few early time points, which further speeds up the esti-

mation of the MTF.

III. TREE-WIDE MASS CONSERVATION

It will be useful to express the fact that mass is conserved

across the whole interconnect tree, in terms of both stress and

flux. The total number of atoms in the interconnect tree is a

reasonable proxy for the total mass in the tree. The atomic

concentration at any point in the tree can be written in terms

of stress, as follows. Combining (1) and (5), and using the

fact that cPL ≫ (cEq − cv0) under typical conditions, we have

σ ≈−(δ/d)BΩcPL. (14)

However, because (δ/d)cPL is the EM-induced change in con-

centration of plated atoms per unit volume of the line, i.e.,

(δ/d)cPL ≈C−C0, where C0 = 1/Ω, we arrive at

C ≈C0 −C0σ/B, (15)

so we can write the total number of atoms in a branch of length

l, width w and height h, at time t, as

φ(t) =C0whl −C0
wh

B

∫ l

0
σ(x, t)dx. (16)

We will now see how this can be expressed as a simple linear

combination for the whole interconnect tree, first in terms of

stress, then in terms of flux.

A. Stress analysis

For an interconnect tree with m branches, and ignoring any

additional mass in the junctions’ 3D structures, consistent

with the EKM framework, the total number of atoms in the

tree can be expressed as

Φ(t) =
m

∑
k=1

φk(t) =C0h
m

∑
k=1

wklk −
C0h

B

m

∑
k=1

wklkσ k(t), (17)

where σ k(t) is the average stress in branch k at time t, defined

as

σ k(t) =
1

lk

∫ lk

0
σk(x, t)dx. (18)

Let ak = wklk be the layout area of branch k and γ = ∑m
k=1 ak

be the total layout area of the metal lines in the interconnect

tree. We now define what will be a very useful metric for the

average distributed stress across the tree, as

Et(σ)
△
=

m

∑
k=1

ak

γ

1

lk

∫ lk

0
σk(x, t)dx =

m

∑
k=1

ak

γ
σ k(t), (19)

which is a weighted average based on the relative areas of

the branches, as fractions of the total area. Note that the ‘σ ’
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6

when we write Et(σ) in this equation is merely a symbol that

stands for the set of all stress values in the tree, rather than a

stress variable for any specific point. With this slight abuse of

notation, we can write

Φ(t) =C0hγ −
C0hγ

B
Et(σ). (20)

Due to mass conservation, both Φ(t) and therefore Et(σ), are

fixed and time-invariant over all time, even as the stresses

change over time. So, we will drop the time dependence and

simply use E (σ) to represent the time-invariant tree-wide av-

erage stress (19), so that

Et(σ) = E (σ) = constant, ∀t. (21)

The value of E (σ) can be computed from the (assumed given)

initial stresses at time zero. As a result of high temperature

process steps in manufacturing, it is reasonable to consider

that the stress in the final packaged chip is uniform within ev-

ery interconnect tree, but possibly different in different trees.

For a given tree, we will denote this initial uniform stress

value as σ0, assumed given, and we therefore have

E (σ) =
m

∑
k=1

ak

γ
σ k(0) = σ0, (22)

so that the mass-conservation requirement for the whole tree,

at any time t, can be expressed as

m

∑
k=1

ak

γ
σ k(t) = E (σ) = σ0, ∀t. (23)

B. Flux analysis

Recall from (8) that

∂σ

∂ t
= BΩ

∂Ja

∂x
. (24)

Let Jak(x, t) be the atomic flux in branch k at any given point

x ∈ [0, lk], at time t, and take the integral of both sides of (24)

over [0, lk], to get

Jak(lk, t)− Jak(0, t) =
1

BΩ

∫ lk

0

∂

∂ t
σ(x, t)dx. (25)

The Leibniz integration rule provides

∂

∂ t

∫ lk

0
σ(x, t)dx =

∫ lk

0

∂

∂ t
σ(x, t)dx, (26)

so that

Jak(lk, t)− Jak(0, t) =
lk

BΩ

∂

∂ t
σ k(t). (27)

Therefore, we can write

m

∑
k=1

wk [Jak(lk, t)− Jak(0, t)] =
1

BΩ

m

∑
k=1

ak

∂

∂ t
σ k(t). (28)

However, by simply taking the time-derivative of (23) we get

∑m
k=1 ak∂σ k(t)/∂ t = 0,∀t, so that

m

∑
k=1

wk [Jak(lk, t)− Jak(0, t)] = 0, ∀t. (29)

This constitutes a time-invariant condition for the incident

fluxes at the junctions in the whole interconnect tree, which is

an expression of the mass conservation requirement in terms

of flux. Indeed, this is an extension to the whole tree of the

conservation of mass condition at every junction (12).

IV. GRID DESIGN AND THE STEADY STATE STRESS

Assuming the initial stress σ0 is less than σcrit and that DC

currents are applied to the grid, then every junction with rising

stress will show a stress evolution that eventually saturates at

a value that we will call its steady state stress, if it doesn’t

fail before that time. Under these conditions, an intercon-

nect tree would achieve its highest stress levels in the steady

state. Thus, a tree is immortal if and only if all its steady state

stresses are below σcrit. This is a key motivation for study-

ing the steady state stress in the grid. Of course, it would be

overly pessimistic to actually require every junction to have a

safe (i.e., less than σcrit) steady state stress. A design of that

sort would be hard to fit within the available chip area and

would likely have poor performance anyway. Instead, we are

interested in what the steady state stress has to “tell us” about

the dynamic stress in the grid and about the tree layout. Trees

with the highest steady state stress are probably also going to

have the highest stresses under dynamic stress analysis (e.g.,

with EKM). The distribution of the steady state stress across

the tree may indicate certain tree layout optimizations that

can be performed in order to avoid obvious hot-spots, before

more detailed dynamic analysis is performed. In other words,

coarse-grain optimizations may be indicated from analysis of

the steady state stress. Indeed, and as we will see in the fol-

lowing, we can glean many design hints and considerations

from looking at the steady state stress.

For a straight metal line carrying constant current I, with

uniform height h and width w, and assuming a steady state

has been reached (i.e., stress is no longer changing over time)

with no voids created, this steady state is characterized by a

balance between the atomic flux due to the current in the line

and the opposing flux due to the stress gradient1,29, as

Ω
dσ

dx
=

q∗ρ

wh
I, (30)

where we have followed our convention that tensile stress is

positive and that x (the distance variable along the line) has

the same reference direction as the current I and the flux Ja.

Note from (30) that the stress becomes linear in x in the steady

state due to the constant current, and that we have not made

any assumptions about the line terminations at its endpoints,

such as whether they are blocking boundaries to atomic flow,

or not. Because dv =−(ρ dx/wh)I, where v(x) is the voltage
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7

at the point x, then dv/dx =−(ρ/wh)I and (30) becomes

dσ

dx
=−

q∗

Ω

dv

dx
(31)

from which, as in29, σ(x)− σ(0) = −(q∗/Ω)(v(x)− v(0)).
In general, in fact, we have ∆σ = −(q∗/Ω)∆v between any

two points within the line, including notably between its two

endpoints i and j, so that

σi −σ j =−
q∗

Ω
(vi − v j) . (32)

It’s clear from this that the steady state stress at any interior

point of a metal line is always less than the stress at its cathode

and greater than that at its anode. Thus, in a multi-branch

metal structure like an interconnect tree, we mostly care about

the steady state stresses at the junctions.

It is also clear from (32) that all stress differences across

branches are easily computable once the voltage differences

are known. Voltage/current analysis is normally required be-

fore any EM risk assessment can be made, so that one can

assume that the voltages are already known, and it should be

possible to easily compute the steady state stresses. For an

interconnect tree with n junctions and m branches, consider a

corresponding graph with n vertices and m edges, where ev-

ery edge in the graph is assigned a direction consistent with

the reference direction of the corresponding branch. Let M be

the n×m matrix defined as follows. The (i, j)-entry of M is 0

if vertex i is not an endpoint of edge j, and otherwise it is +1

(or −1) if the edge direction is from node i (or towards it). As

a result, every column k of M contains a single +1 and a sin-

gle −1, corresponding to the two endpoints of edge k, and is

otherwise zero. This matrix is called the incidence matrix of

the graph30, and we can use it to write the full set of m branch

equations based on (32) as the matrix equation

MT σ =−
q∗

Ω
MT v, (33)

where σ = {σi}
n
i=1 is a vector of all the n junction steady state

stresses and v = {vi}
n
i=1 is a vector of all the n junction volt-

ages. Note that, if the vector σ∗ is a solution to (33), then any

other σ = σ∗ + θ1 is also a solution, for any scalar θ ∈ R,

where 1 is a vector of all 1s, due to the fact that MT
1 = 0.

The system of linear equations (33) is not sufficient to find the

steady state stresses, because it provides only the stress dif-

ferences. More information is needed to have a solvable sys-

tem which, as we will see, can be obtained from the tree-wide

mass conservation requirement.

This problem has been considered previously and the defi-

ciency recognized by others, starting with29 where, in addi-

tion to the stress system based on (32), they formulate another

system of equations for the atomic concentrations Ci at the

junctions. In their approach, they identify a linearized rela-

tionship between the ratio of the concentrations at the branch

endpoints and the voltage difference across the branch. For

the same reasons given above, they too need additional infor-

mation in order to solve the concentration system. For this,

they make use of the conservation of mass constraint, applied

to the whole interconnect tree. They only point to this as a vi-

able approach but don’t actually show the algorithmic details

or demonstrate numerical results.

In other work, the authors in31,32 and more recently33,34,

have introduced additional equations for the displacements at

the line endpoints. Displacement is a measure of the deforma-

tion of the atomic lattice under stress. In their case, the ad-

ditional information used to augment the stress system based

on (32) is a full set of displacement equations, one for ev-

ery junction, based again on conservation of mass consider-

ations. The work was fully implemented and tested. In the

latter work34, they simplify the system back to the same size

as the original stress system, by doing further work on the dis-

placement equations, although it turns out that they assume

zero initial stress everywhere.

We will show how the stresses can be found without the

intermediate steps of using concentrations or displacements,

and we will provide a solution in the general case, without the

assumption of zero initial stress. The method will build on,

improve and extend the work in29 and33,34. We will employ

a mass conservation requirement for the whole tree, and the

method will have linear time complexity, so that it is optimal

in terms of computational cost.

A. Finding the steady state stress

The mass conservation requirement (23) holds at all times,

including of course at steady state. In the steady state, we will

drop the time dependence and simply use σ k to denote the

steady state average stress in branch k, instead of σ k(t). Be-

cause the steady state stress is linear in x inside every branch,

the average stress σ k is the simple average of the two stresses

at the endpoints of branch k, which we will denote as the two

junctions k0 and k1, i.e.,

σ k =
σk0

+σk1

2
, (34)

so that,

E (σ) =
m

∑
k=1

ak

2γ
(σk0

+σk1
). (35)

We can rearrange this summation to enumerate first by junc-

tion instead of by branch, and then by the branches connected

to each junction, so that

E (σ) =
n

∑
j=1

∑
k∈B j

ak

2γ
σ j, (36)

where B j is the set of branches connected to junction j. With

the value of E (σ) = σ0 available, this constitutes what we

will call the steady state mass conservation constraint, as an

additional linear relation among all the junction steady state

stresses. To simplify this somewhat, let

α j = ∑
k∈B j

ak

2γ
(37)
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and notice that

n

∑
j=1

∑
k∈B j

ak = 2
m

∑
k=1

ak = 2γ, (38)

so that ∑n
j=1 α j = 1 or αT

1= 1, where α = {α j}
n
j=1 is a vec-

tor of all the α j coefficients. With this, we can express the

mass conservation constraint as simply

E (σ) =
n

∑
j=1

α jσ j = σ0 or αTσ = σ0. (39)

With the values of α j and E (σ) = σ0 in hand, we can now

combine (39) with (33) to get a complete system of equations

that allows us to find the values of all the steady state stresses,

as will be given below. This will provide a simple closed-

form expression for the stress at every node, as was found in33,

except that in this case we will allow for non-zero initial stress,

and we will not need to use a displacement-based analysis.

The result will have a computational cost of O(n+m).
Note that σ = −(q∗/Ω)v+ θ1 is a general solution to the

stress system (33), where θ ∈ R is an arbitrary scalar, as

may be seen by pre-multiplying this σ with MT : MT σ =
−(q∗/Ω)MT v+MT

1θ =−(q∗/Ω)MT v, due to MT
1= 0. We

then enforce mass conservation to find a unique value of θ , by

plugging σ =−(q∗/Ω)v+θ1 into (39), to get

−
q∗

Ω
αT v+θαT

1= E (σ) = σ0, (40)

so that

θ = σ0 +
q∗

Ω
αT v = E (σ)+

q∗

Ω
αT v. (41)

With θ in hand, the steady state stress at any junction can be

computed using σ =−(q∗/Ω)v+θ1, i.e.,

σ j =−
q∗

Ω
v j +θ . (42)

This result is identical to that in33,34, except that their θ did

not include the σ0 initial condition.

B. Stress-voltage relationships

The intimate relationship seen above between the steady

state stress and voltage merits some more investigation. We

start by defining a similar metric for voltage as was defined

earlier for stress,

Et(v)
△
=

m

∑
k=1

ak

γ

1

lk

∫ lk

0
vk(x, t)dx. (43)

Because the voltage is linear in x inside every branch, and is

invariant over time, the average voltage in any branch k can be

written, using the earlier notation of k0 and k1 for the terminals

of edge k, as

vk
△
=

1

lk

∫ lk

0
vk(x)dx =

vk0
+ vk1

2
, (44)

and, dropping the time dependence,

E (v) =
m

∑
k=1

ak

γ
vk =

m

∑
k=1

ak

2γ
(vk0

+ vk1
)

=
n

∑
j=1

∑
k∈B j

ak

2γ
v j =

n

∑
j=1

α jv j = αT v. (45)

Therefore, we can write (41) as

θ = E (σ)+
q∗

Ω
E (v) (46)

and, from (42),

σ j −E (σ) =−
q∗

Ω
(v j −E (v)), (47)

or, in vector form,

σ −1E (σ) =−
q∗

Ω
(v−1E (v)). (48)

So, for any junction, the deviation of its steady state stress

from the tree-wide average stress E (σ) = σ0, is proportional

to the deviation of its voltage from the tree-wide average

voltage E (v). As an example, suppose the critical stress is

σcrit = 600 MPa. The proportionality constant (−q∗/Ω) is

about −48.26 MPa/mV, so it takes a deviation in voltage of

about−12.43 mV to produce a deviation of 600 MPa in stress.

In other words, if σ0 = 0 and all voltage deviations are within

12.43 mV of E (v), then σ j < σcrit,∀ j, and the tree is immor-

tal.

These results can help us better understand the relationship

between stress and the voltage drop in the grid. For exam-

ple, we can give an answer to the following question: if one

achieves voltage drop safety by design for the power grid, is

that enough to ensure safety from EM? For a chip with a 1V

supply, if the voltage drop is guaranteed to never exceed 0.1V

(10% drop), then the junction voltages in any interconnect tree

may be spread over a 100 mV band that contains E (v) and so,

using the above results, voltage drop safety is not enough to

conclude that the grid is immortal.

We will find it useful to introduce the vector β = {β j}
n
j=1,

where β j = γα j so that

β j = ∑
k∈B j

ak

2
and β = γα, (49)

from which, due to (39) and (45),

γE (σ) = β T σ and γE (v) = β T v. (50)

We can now rewrite (47) as (γσ j − β T σ) = −(q∗/Ω)(γv j −
β T v), and in vector form for the whole tree as

(

γIn −1β T
)

σ =−
q∗

Ω

(

γIn −1β T
)

v, (51)

where In is the n× n identity matrix. Using the n× n matrix

Z =(γIn−1β T ), which depends only on the layout geometry

of the tree, this can be written compactly as

Z σ =−
q∗

Ω
Z v. (52)
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Note that this Z is not the same as MT of (33); this equation

can be used to find the stress values.

Finally, let κ be any real number, then because αT
1 = 1,

we have E (v+κ1) = E (v)+κ , so that

(v+κ1)−1E (v+κ1) = v−1E (v). (53)

Therefore, and using (48), we see that (σ −1σ0) is invari-

ant under a voltage translation (a shift in voltage that is ap-

plied equally to all voltages in the tree). Thus, the junction

stresses in the tree remain the same if a uniform shift is ap-

plied to all the voltages. This suggests that the reliability of

an interconnect tree is not necessarily strongly dependent on

the variations in current demand in the underlying transistor

circuitry. If these current variations create roughly the same

voltage shift across the whole tree (which would probably be

more likely for smaller trees), then the steady state EM relia-

bility in the tree would not be affected. The steady state EM

reliability depends primarily on the spread (in values) of the

junction voltages in the tree, not on their actual values. The

stresses in the tree are more intimately related to its terminal

currents and branch currents than to its nodal voltages. We

will explore this further in the next section.

C. Stress-current relationships

With the tree stress distribution being invariant under a

translation of its voltages, as we saw above, it would be in-

teresting to express the tree stresses in terms of its currents

only, i.e., with no regard to its voltages. This will open up

various interesting questions that can be explored for a tree in

isolation, without reference to the whole power grid.

To start, we will consider the fairly straightforward relation-

ship between the node stresses and the branch currents, which

we represent with the vector i = {ik}
m
k=1. Consider the diago-

nal m×m matrix R whose every (kth) diagonal entry is equal

to the resistance of the corresponding edge k, to be denoted

rk. With this, we simply have MT v = Ri, so that (33) leads to

MT σ =−
q∗

Ω
Ri. (54)

If the branch currents are known, this can be easily solved for

the stresses, after enforcing mass conservation.

Next, we will focus on the tree’s external loading currents.

Consider a tree driven by (only) ideal current sources, carry-

ing what we will refer to as its terminal currents. Because the

current sources are ideal, the tree voltages are therefore inde-

terminate, in the sense that if vector v∗ is a valid assignment of

node voltages in the tree, then v∗+κ1 is also a valid assign-

ment, for any κ ∈ R. We will refer to such a tree as a floating

tree. Let c = {ci}
n
i=1 be the vector of all the terminal currents,

where ci is set to 0 if no current source is actually connected

to node i. We set the positive reference direction for every

current source ci to be away from the node i. If node i is con-

nected by a resistive branch to node j, then we say that these

two nodes are neighbours, and we denote by ri j the resistance

of that branch. If that branch has been designated as edge

k, then ri j is just another symbol for the rk introduced earlier.

Let Ni be the set of all the neighbours of node i, then applying

Kirchhoff’s Current Law (KCL) at node i, gives

∑
j∈Ni

1

ri j

(vi − v j)+ ci = 0. (55)

Notice that there are no resistors to ground in this equation,

as a result of the assumption of ideal current sources and the

floating tree. The set of all such equations for the nodes in

the tree can be assembled as the matrix equation Gv = −c,

where G is the familiar conductance matrix27 of the tree. If

one starts with a blank (all zeros) matrix G, then considers all

the edges in sequence to see how each of them contributes to

G according to (55), one finds that every edge k adds ±1/rk

to only four locations in the matrix, as

gk0k0
:= gk0k0

+
1

rk

gk0k1
:= gk0k1

−
1

rk

(56)

gk1k0
:= gk1k0

−
1

rk

gk1k1
:= gk1k1

+
1

rk

, (57)

where k0 and k1 are the two endpoints (nodes) of edge k. As

a result of the contributions of all the tree edges, the matrix

G is completely defined and has a known structure. We can

express this compactly as

gi j =















∑
k∈Ni

(1/rik), for i = j;

−1/ri j, for i 6= j and j ∈ Ni;

0, otherwise;

(58)

so that G is a symmetric n× n diagonally-dominant matrix

with positive diagonal entries and non-positive off-diagonal

entries. In addition, the entries in every column add up to

zero, and the entries in every row add up to zero, so that in

particular G1 = 0 and the matrix is singular. Using (32), we

can rewrite (55) at every node i in terms of stress, as

−
Ω

q∗
∑

j∈Ni

1

ri j

(σi −σ j)+ ci = 0, (59)

which leads to the matrix equation

Gσ =
q∗

Ω
c. (60)

This is a very interesting relationship between stress and the

terminal currents involving a matrix with well-known and use-

ful structure, which can be very useful for considering various

optimizations of the tree for steady state EM reliability.

D. Supply and ground network distinctions

As mentioned earlier, the term power grid refers to both

the on-chip power supply distribution network, which is tied

at one or more points to a single external voltage source Vdd ,

and the on-chip ground distribution network, tied at one or
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more points to the external ground. For the supply network,

we’re interested in the voltage drop below Vdd at every node; if

v j ≤Vdd is the actual voltage at node j, then u j =Vdd −v j ≥ 0

is the voltage drop at that node. Proper design requires all

voltage drops to remain below some Vth > 0. For the ground

network, we’re interested in the voltage rise above ground at

every node, i.e., the actual voltages v j ≥ 0 at the nodes, which

must also be maintained below some Vth > 0. Typical values

of Vth may be around 10% of Vdd . At the bottom metal lay-

ers, many grid nodes are attached to circuit blocks that draw

supply current from the supply network and channel these cur-

rents into the ground network. We will represent these circuit

blocks as ideal current sources, i.e., with no shunt resistors,

but we allow the external Vdd voltage source to have non-zero

series source resistance.

Considering first the supply network, we assume it is loaded

by a vector of constant circuit currents c = {ci} that repre-

sents all the underlying circuit block currents (with ci = 0 if

there is no circuit block attached to node i), with a positive

reference direction away from the network and into the circuit

blocks. By superposition, the voltage vector v may be found

in three steps: 1) open-circuit all the current sources and find

the voltage response, which would obviously be v(1) = Vdd1

in this case, 2) short-circuit the voltage source and find the

voltage response, in this case some v(2) ≤ 0, and 3) compute

v = v(1)+v(2). To find v(2), KCL at every node provides, as in

nodal analysis27,

Gv(2)(t) =−c. (61)

This G matrix has almost exactly the same structure as for the

case of a floating tree (58); the only difference is due to the

voltage source resistance connected to ground. The effect of

that is to increase some of the diagonal values of G, relative

to the structure given for the floating tree, so that this G is

known to be non-singular. We are interested in the voltage

drop vector u =Vdd1− v =Vdd1− v(1)− v(2) =−v(2), so that

v(2) =−u and (61) becomes

Gu = c. (62)

As for the ground network, if it is loaded by a vector of con-

stant circuit currents c, whose positive reference direction is

into the ground network, then KCL provides, using a different

G matrix that’s specific for the network under consideration,

Gv = c. (63)

Thus, the governing equations for voltage drop analysis in the

supply network have exactly the same form as for the voltage

rise in the ground network. Turning next to the stress equa-

tions, as we saw earlier, (47) applies to every node j in an

interconnect tree in either the ground or supply network. For

an interconnect tree in the supply network specifically, where

we’re interested in the voltage drop u j, we have from (45)

E (v) =
n

∑
j=1

α j (Vdd − u j) =Vdd −E (u), (64)

so that, for every node j, we have v j − E (v) = (Vdd − u j)−
(Vdd −E (u)) =−(u j −E (u)), so that we can write (47) as

σ j −E (σ) =
q∗

Ω
(u j −E (u)) . (65)

The above relations will be used below to study the immortal-

ity of nodes and trees in the power and ground networks.

1. Immortal grid

For an immortal grid, we need to ensure that σ j ≤ σcrit for

every grid node j. Note that at time zero, before the chip

has been deployed, we would fully expect that all the ini-

tial stresses in the grid are less than σcrit, otherwise the grid

would be “dead on arrival.” Therefore, we assume that the

time-invariant E (σ) = σ0 is always less than σcrit. We now

define a new voltage constant for each tree,

δ0 =
Ω

q∗
(σcrit −σ0)> 0. (66)

For example, if σ0 = 0 and σcrit = 600MPa, then δ0 is about

12.4mV. Considering the actual voltages v j in the grid, with

σ j = E (σ)− (q∗/Ω)(v j − E (v)), the requirement σ j ≤ σcrit

translates to

E (v)− v j ≤ δ0 or v j ≥ E (v)− δ0. (67)

So, all nodes with v j ≥ E (v) are automatically immortal,

while for those nodes with v j below E (v), they must not be

too far below it – they must be within δ0 below it. It’s the

nodes with very low voltages (well below E (v)) that are the

most vulnerable. In order for the whole tree to be immortal,

the whole distribution of v j in the tree must be narrow enough

so that E (v)− v j ≤ δ0 for all its nodes. Fig. 1 shows an il-

lustration of the ranges of voltages that correspond to mortal

nodes and immortal nodes, in both the ground and supply net-

works. It is notable that the most vulnerable nodes are those

with voltages close to zero in the ground network (so in the top

metal layers) and those with voltage drops close to Vth in the

supply network (so in the bottom metal layers). This suggests

that it may be easier to secure the ground network against EM

than to secure the supply network, because it may be easier to

widen metal lines in the top metal layers, compared to those

in the bottom layers.

If a tree has a minimum node voltage of vmin ≥ 0, then the

immortality requirement for that tree becomes

E (v)≤ vmin + δ0. (68)

For some trees in the ground network, vmin may well be very

close to zero, so that E (v) ≤ δ0 is the requirement for these

trees. For trees in the supply network, vmin may well be very

close to Vth, so that their requirement is E (v) ≤ Vth + δ0. We

can also express these supply network results in terms of the

voltage drop u. As a replacement for (67), starting with σ j =
E (σ)+ (q∗/Ω)(u j −E (u)), the relation σ j ≤ σcrit becomes

u j −E (u)≤ δ0 or u j ≤ E (u)+ δ0. (69)
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Then, let umax = (Vdd − vmin) be the highest voltage drop in

the tree, so that (68) becomes

umax ≤ E (u)+ δ0. (70)

V. CONCLUSION

We have reviewed our recent work on a simulation ap-

proach to EM checking, based on a 1D physical model. We

also gave detailed analysis of the steady state stress, including

ways of computing it and design insights and considerations

that result from this analysis, for both the power and ground

on-die networks.
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FIGURE CAPTIONS

Figure 1. Ranges of node voltages for mortal and immortal

nodes.
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