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A B S T R A C T   

Electromigration continues to be a major concern for integrated circuit design. The susceptibility to electro-
migration is assessed by tracking the stress in metal lines under the influence of applied currents, which can be 
computationally expensive for large chips. Over the last few years, an efficient approach for tracking stress in 
large interconnect networks has been developed, and well-received, in part because it provides a model for stress 
dynamics in the form of a standard linear time-invariant dynamic system. In the context of this model, we will 
show that the dynamic behavior of the stresses and fluxes in metal lines is exactly identical to the dynamic 
behavior of voltages and currents in certain RC circuits that can be easily constructed for the metal lines. Thus, 
electromigration assessment for any metal interconnect structure can be done by simply simulating the corre-
sponding equivalent RC circuit. This opens the door for benefiting from well-known techniques for fast circuit 
simulation, as well as methods for macro-modelling and analysis of RC circuits, in order to improve the per-
formance and capacity of practical methods for electromigration assessment in large circuits.   

1. Introduction 

In a metal line carrying significant current density, the free electrons 
push and move the metal atoms in the direction of the electron wind, i. 
e., towards the anode end of the line; hence the name electromigration 
(EM) for this effect. The resulting atomic flow increases compressive 
stress at the anode and tensile stress at the cathode, which creates a 
stress gradient that presents an opposing driving force that retards EM 
[1]. If the levels of stress become high enough, a void may be created 
due to high tensile stress near the cathode, or a hillock (extrusion of 
metal through cracks in the dielectric) may form due to high compres-
sive stress near the anode, which can either way result in circuit failure. 
With the confinement of metal lines in today’s metal technology, voids 
are much more likely than hillocks and so one is often more concerned 
with the buildup of tensile stress. We will follow the common conven-
tion that tensile stress is positive and compressive stress is negative. A 
void is created once the stress exceeds a certain level of stress, called the 
critical stress, denoted σcrit, which is an effective parameter that depends 
on a number of factors. Stress is measured in units of pascal (Pa), and a 
typical value of the critical stress today [2] is about 500 MPa. 

We focus on the on-chip power distribution network (PDN) because 
it is generally more susceptible to EM due to the fact that it carries 
mostly uni-directional currents. The PDN consists of the power grid and 
the ground grid. Modern grids span multiple layers (often all the layers) 

of metallization and they consist of meshes of power and ground lines. 
Without loss of generality, we will focus on the power grid. Under the 
influence of EM, metal atoms can travel between different connected 
branches on the same layer. However, in the modern dual-damascene 
semiconductor process, they cannot travel through a via to other 
metal layers above and below, because of the metal liner under every via 
which acts as a barrier to atomic movement but allows electron move-
ment. As a result, EM-induced metal transport within a layer remains 
within that layer, so that the overall analysis problem is decomposed 
into sub-problems on different layers. Within any given layer, one will 
typically find a large number of such physically disconnected portions of 
the power grid. The vast majority of these structures turn out to be trees, 
i.e., they have no cycles. So, it is typical in the field to simply use the 
term interconnect tree to refer to these metal islands. 

For any given interconnect tree under the influence of EM, the time 
duration before any voids have nucleated (i.e., formed) is called the 
nucleation phase. In this phase, the resistance of a line remains the same 
as that of a fresh (undamaged) line. Once a void has nucleated, the void 
growth phase begins and the void starts to grow. The growth rate is 
initially fast and can in some cases, depending on layout geometry, 
quickly cause an open circuit leading to early failures. In other cases, the 
line may continue to conduct current after void nucleation, and the void 
continues to grow in the direction of the electron flow until it saturates 
at some steady-state size. Correspondingly, the line resistance also 
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increases towards some steady-state value. In order to track the evolu-
tion of the line (and tree) towards voiding and beyond, one needs to 
simulate and track the values of stress in the lines over time. 

We will see in this paper that the relationship between stress and 
atomic flux in metal lines is identical to that between voltage and current 
in electrical circuits. Indeed we will see that, for any interconnect tree, we 
can construct an RC circuit whose voltage evolution over time is identical 
to the stress evolution in the tree. The two systems of equations are 
exactly identical, so that the RC circuit is an equivalent circuit. This is not 
simply an interesting curiosity; it can be very useful to draw on the 
extensive research and knowledge in the art of simulation of electronic 
circuits in order to improve the capabilities for EM assessment. For one 
thing, this would allow easy simulation of stress in interconnect trees 
using standard simulators like SPICE, thus benefiting from the many 
techniques that circuit simulators use to speed up the analysis. Also, as we 
will see, the stress analysis of a metal line can be replaced by the voltage 
analysis of an RC-chain, which is a very well-studied circuit structure, 
with many theoretical and numerical techniques for analysis and 
modelling, including reduced-order modelling and macromodelling. 

2. Background 

We will give a detailed review of the one-dimensional (1D) EM model 
developed by M. A. Korhonen [3], which we will refer to as the Korhonen 
model. Consider a metal line carrying current density j, with uniform 
height h and width w, confined in a rigid dielectric material with line 
length along the x axis, as shown in Fig. 1. By necessity, a 1D model as-
sumes that there is uniformity across the other two dimensions, i.e., 
across the metal line cross-section in this case. Specifically, we assume 
that stress, electric current density, material density, as well as atomic 
transport rates are all uniform across the wire cross-section. This 
assumption is central to the Korhonen model, but it is only valid for 
interior sections of uniform metal lines, which excludes certain layout 
features of interconnect trees. Specifically, three layout features of the 
metal interconnect merit attention [4]: (i) the case where one or more 
lines on the same metal layer are all connected to a via that provides 
electrical conductivity to another layer, above or below; (ii) the case 
where three or more lines on the same layer are connected at the same 
physical location, without necessarily a via to another layer; and (iii) the 
case where one metal line connects to another line of different width. 
Because voids are commonly found at vias, the first case is of special 
importance and merits special case treatment. The other two cases also 
require special case treatment because of the abrupt changes in electrical 
current and, therefore, in atomic flux that are exhibited in these struc-
tures. We refer to the layout features of these three special cases as a 
layout junctions, and we categorize them according to the number of lines 
involved, so-called the degree of the junction. Following the terminology 
of [4], as shown in Fig. 2, a degree-1 junction (i.e., a junction of degree 1) 
is called a diffusion barrier, a degree-2 junction is called a dotted-I junction, 
a degree-3 junction is a T-junction and a degree-4 junction a plus-junction. 

Because of the metal liner and the capping layer around every metal 
line, mass is conserved inside an interconnect tree, so that any change of 
material density in a metal line results in a change of the stress (pres-
sure) in that line. Specifically, with C(x, t) as the atomic concentration in 

the line and σ(x, t) as the stress, at distance x from one end of the line at 
time t, a relative change in concentration corresponds to an incremental 
change of stress, i.e., 

dC
C

= −
dσ
B
, (1)  

as shown by Korhonen [3] based on the early work of Eshelby [5], where 
B is the effective bulk modulus [6], which depends on metal line geometry 
and microstructure. It has a typical value [2] of about 30 GPa in modern 
technology. Let C0 be the concentration under zero stress, so that C0 = 1/ 
Ω, where Ω is the atomic volume for the metal in the line, which is 
≈1.66E-29 m3 for Copper. Integrating Eq. (1) from (0,C0) to (σ,C) gives 
C = C0e− σ/B. But, because typically σ/B ≤ σcrit/B = 0.0166 is very small, 
we can use the approximation e− σ/B ≈ 1 − σ/B to write 

C ≈ C0(1 − σ/B). (2) 

The Korhonen model is a combination of two equations, an atomic 
flux equation that keeps track of atomic mass transport, and a continuity 
equation that enforces mass conservation, as we will review and sketch in 
the following simplified description. 

2.1. Atomic flux equation 

The first equation is based on the consideration that migration of 
metal atoms is primarily the result of (i) atomic drift due to the 
bombardment by the electron wind arising from the electric field in the 
metal line, E = ρj, where ρ is the metal resistivity and j is the current 
density, and (ii) atomic diffusion due to the stress gradient ∂σ/∂x, 
resulting in an opposing flux. We will use ϕ(x, t) to denote the atomic flux 
in the line, whose units are number of atoms per second per unit cross- 
sectional area. The distance variable x, the electric current in the line (of 
density j) and the atomic flux ϕ are all assumed to have the same 
reference direction. So, both current and flux are positive when they are in the 
positive x direction. Considering the two opposing fluxes, one arrives at1 

ϕ =
DC
kbT

(

Ω
∂σ
∂x

− q*ρj
)

, (3)  

where D is the coefficient of atomic diffusion, also simply called the 
diffusivity. Its value depends on the material properties and on temper-
ature as D = D0 exp (− Ea/kbT), where D0 ≈ 5.20 × 10− 5 m2/s in modern 
technology and Ea is the activation energy for atomic diffusion, typically 
taken as Ea ≈ 1 eV, so that D ≈ 1.31 × 10− 17m2/s is typical today. Other 
terms include T as the metal line temperature in Kelvin; kb = 1.380 649 
× 10− 23 J/K is Boltzmann’s constant; q* = ∣e∣Z is the effective charge, 
where ∣e∣ = 1.602176 634 × 10− 19 C is the absolute value of the electron 
charge, and Z is the effective valence, which is a scalar whose value 

Fig. 1. Schematic for a confined metal line.  

Fig. 2. Typical interconnect tree with various junction types.  

1 Eq. (2) in [3] for atomic flux is in terms of the divergence of the chemical 
potential function, but it’s also provided in terms of stress, and because 
divergence in 1D is simply the derivative, one gets the expression shown here as 
Eq. (3). 
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justifies the measured driving forces exhibited in metal lines under the 
applied electric fields [7]. In modern chip technology, it’s typical [2] to 
use Z ≈ 10 so that q* ≈ 1.60 × 10− 18 C. Finally, ρ = 3.0 × 10− 8 ohm.m 
(Copper) at 400 K, with a temperature dependence of Δρ/ρ = 0.0039(T 
− 400) around that value [2]. These various values are summarized in 
Table 1. Appealing to Eq. (2) and further considering that σ/B ≪ 1, so 
that C ≈ C0 = 1/Ω, one arrives at the expression for flux as used by 
Korhonen, 

ϕ =
D

kbT

(
∂σ
∂x

−
q*ρ
Ω

j
)

. (4)  

2.2. Continuity equation 

The second part of the Korhonen model is a continuity equation that 
describes the stress evolution over time in response to the material 
transport. It expresses a simple balance: the more material that flows out 
of a region, the less material there is inside it over time. This may be 
tracked using the mathematical concept of divergence of a vector field. 
Divergence measures the net rate of reduction of a certain quantity (in this 
case, the number of atoms) within an infinitesimal region around a point, 
per unit volume. Divergence has both a differential form and an integral 
form. In 3D space, with orthonormal unit vectors ux, uy and uz, the flux Φ is 
a vector quantity with three components, so that Φ = ϕxux + ϕyuy + ϕzuz, 
and the differential form of the divergence of Φ is the scalar 

∇⋅Φ =
∂ϕx

∂x
+

∂ϕy

∂y
+

∂ϕz

∂z
. (5) 

The integral form of the divergence operator ∇ in 3D relates to an 
arbitrary closed surface that is the boundary of a spatial region R that 
includes a point of interest, so that the surface is denoted ∂R , in which 
case the divergence of Φ at that point is the limit of a surface integral, as 

∇⋅Φ = lim
|R |→0

1
|R |

∯ ∂R
Φ⋅n ds, (6)  

where ‘⋅’ denotes the vector dot-product, n is the outward unit normal 
vector at the surface element ds and |R | is the volume of the region. For 
our EM problem, for a certain net atomic flux leaving the region, we get 
a corresponding rate of reduction in the material in that region, which 
can be expressed in terms of the atomic concentration in that region as 

∂C
∂t

+∇⋅Φ = 0. (7) 

Based on Eq. (2), we have ∂C/∂t = − (C0/B)(∂σ/∂t), so that 

∂σ
∂t

= BΩ∇⋅Φ. (8) 

In general, the divergence can be computed using either the differ-
ential or integral form. In the 1D case, the differential form is conve-
nient, so that 

∇⋅Φ =
∂ϕ
∂x

(9)  

where ϕ is the scalar component of Φ in the 1D x-direction of interest, 
leading to the continuity equation in the form used by Korhonen, 

∂σ
∂t

= BΩ
∂ϕ
∂x

. (10)  

2.3. The full model 

Putting together the two Eqs. (4) and (10) results in Korhonen’s 
equation 

∂σ
∂t

=
BΩ
kbT

∂
∂x

{

D
(

∂σ
∂x

−
q*ρ
Ω

j
)}

, (11)  

which, assuming the diffusivity is constant along the length of the line, 
as is typically assumed in the field, takes the more commonly used form 

∂σ
∂t

=
BΩD
kbT

∂
∂x

(
∂σ
∂x

−
q*ρ
Ω

j
)

. (12) 

According to [8], “The Korhonen model has been successfully used to 
explain a wide range of experimental behavior,” and they cite [9–12] for 
this. Throughout this paper, we will assume that the applied currents, 
and therefore the currents in all branches, are constant over time. For a 
uniform line under constant current, the model takes the simpler form 

∂σ
∂t

=
BΩD
kbT

∂2σ
∂x2 (13)  

which is basically the heat equation. 

2.4. Extended Korhonen model (EKM) 

The Korhonen model is a 1D model that applies at interior points of 
metal lines, but not at junctions. Before one can extend that model to 
multi-line interconnect trees, a model is needed for junctions that can be 
combined with the 1D model of the metal lines. This has been done in 
the so-called extended Korhonen model (EKM) [4]. The method assumes 
that a junction is a zero-volume point, and enforces mass conservation at 
that point so that the incoming and outgoing mass transport rates bal-
ance out. Then, and even though it’s not strictly applicable, Korhonen’s 
equation is applied at the junction anyway, with the hope that the error 
would be small because the equation is applicable nearby, in the lines. 
The method performs well in practice in spite of this approximation. The 
scheme also requires tracking the stress at “ghost points” around the 
junctions, which disturbs the structure of the system matrix in ways that 
are not desirable for numerical work. 

Nevertheless, the artificial step of applying Korhonen’s equation right 
at the junction is a shortcoming of this approach. Furthermore, while 
junctions are often small in size, they are sometimes designed to have 
considerable volume so as to act as reservoirs of atoms that can fill nearby 
micro-voids, if they form. EKM cannot handle such layout features, so this 
is another shortcoming of the method. In this paper, we will propose a 
new junction model that eliminates both these shortcomings, which will 
also turn out to be useful for development of an equivalent circuit. 

In EKM, the junction model is used to stitch up and combine the 
various instances of Korhonen’s equation applied to every line into a set 
of dynamic (ODE) equations for the whole metal structure under 
consideration. A preliminary step is to create reference directions for all 
the branches, which are generated by a breadth-first search graph 
traversal algorithm. These directions can be arbitrary, but must remain 
fixed throughout the analysis. 

In general, voids can nucleate in many different places in intercon-
nect trees, very often at junctions, but also internal to metal lines. The 
data seem to suggest [8] that internal voids appear mostly because of 
pre-existing micro-voids internal to the line as a result of the fabrication 
process. The EKM framework [4] assumes that there are no pre-existing 
voids, and no internal voids ever, so that all voids are assumed to 

Table 1 
A number of physical constants in SI units.  

Name Symbol Value Units 

Boltzmann’s constant kb 1.380649E− 23 J/K 
Elementary charge ∣e∣ 1.602176634E− 19 C 
Effective valence Z 10.00 −

Effective charge q* 1.60E− 18 C 
Atomic volume Ω 1.66E− 29 m3 

Temperature T 400.00 K 
Resistivity (Copper) ρ 3.00E− 08 @400 K ohm.m 
Activation energy Ea 1.00 eV 
Diffusivity factor D0 5.20E− 05 m2/s 
Atomic diffusivity D 1.31E− 17 @400 K m2/s 
Effective bulk modulus B 3.00E10 Pa  
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nucleate at junctions. Furthermore, the treatment of voids in EKM de-
pends on whether the void is at a degree-1 junction, which we will also 
call a terminal junction or terminal node of the tree, or at a junction with 
degree of more than 1 (non-terminal junctions). If the void forms at a 
non-terminal junction, such as in Fig. 3, the tree is broken up into 
multiple sub-trees [13], as in Fig. 4, by (i) tearing out that node from the 
tree graph, which creates multiple disconnected sub-trees, (ii) creating 
new copies of the original node for each of these sub-trees and rein-
stating in each of them the edge that was originally connected to that 
node, and (iii) applying a boundary condition at each of these duplicate 
nodes that represents the presence of a void there. As a result, we end up 
with a situation where multiple voids have been created at these (new) 
terminal junctions in the separate sub-trees. Therefore, for void analysis 
in the context of EKM, voids (once they have formed and the tree has 
been partitioned) will exist only at terminal junctions of interconnect 
trees. This also means that a void belongs to only a single metal line in a 
given sub-tree. It also means that no single line can have more than one 
void at a time. We adopt this tree partitioning approach of the EKM 
framework for treatment of voids in this paper. We will also expand on 
that approach, as described below. 

2.5. Void analysis 

The treatment of voids in EKM has one shortcoming which we will 
briefly describe then replace with better void models from the literature, 
as we will review below. 

2.5.1. Void model 
Voids are complex features of EM-induced damage. They are best 

described by a detailed 3D analysis [14–16]. In addition, there are various 
approaches for more efficient simplified models, including [17–20]. 

Voids can be partial or full (blocking the full cross-section of the 
line), they can increase in size until they reach a saturated size, or they 
can reverse course and decrease in size (healing) if the current changes 
direction, and they can move along the length of a metal line [8,21]. A 

simplified model that is suitable for 1D analysis was given in [18] (pg. 
53), by making use of a phase field model [22], and this was the basis for 
the EKM work [4]. However, the implementation of the void model in 
[4] was based on the assumption that the void growth phase is very short 
relative to the nucleation phase, and so only the saturated void volume 
was part of the implementation, with no tracking of the void growth 
over time. More recently, it has become clear that void growth rates 
nowadays are such that the time to reach void saturation is not negli-
gible [2], and so the 1D void model as implemented in the EKM 
framework should be improved so as to incorporate void growth 
tracking. We will see how this is done, leading to an equivalent circuit 
model that can track void growth. 

According to the 1D void model in [18], the stress profile along the 
length of the line near the void is as shown in Fig. 5 for a void at the near 
end of the line (x ≈ 0), and in Fig. 6 for a void at the far end (x ≈ l). Right 
after the void is formed, with the stress having reached σcrit at that point 
in order for the void to nucleate, the stress right at the void surface must 
clearly be zero, as there is no confinement there at all. But the stress 
inside the metal very close to the void surface cannot change instanta-
neously and so must still be at σcrit initially (right after the void has 
formed) and will then decrease over time as the void grows and relieves 
the tensile stress. The distance between these two points is called the 
effective thickness of the void interface [18] and is shown in the two figures 
as the distance between the two dashed vertical lines, denoted by δs, and 
described [18] as being “infinitely small in comparison with all other 
involved lengths.” One can think of this as the thickness of a very thin 
“skin layer” – it was set at δs = 1 nm in [18], and we will use that value as 
well. The inner boundary of this skin layer is denoted by the xs(t) posi-

tion in the figures, and the stress at that point is denoted σs(t)=
Δ σ(xs, t). 

The length of the void, denoted lvd(t) is indicated in the figures as the 
distance to the mid-point of the skin layer, but that is debatable as this is 
not a precise distance in the actual 3D void. For simplicity, in our work, 
it is estimated as lvd(t) ≈ xs(t), for a void at the near end, and lvd(t) ≈ l −
xs(t) at the far end. The model assumes that the stress is linear 
throughout the skin layer, so that the stress gradient in the skin layer is 
given by 

dσ
dx

= ±
σs

δs
, (14)  

where the ‘+’ is for a void at the near end and the ‘− ’ at the far end. This 
gradient increases the magnitude of the atomic flux flowing out of the 
void into the bulk of the metal (which is the reason for void growth), and 
that flux can now be written, based on Eq. (4), as 

ϕ(xs) =
D

kbT

(

±
σs

δs
−

q*ρ
Ω

j
)

. (15)  

2.5.2. Void length 
The rate of change of the void size is proportional to the rate at which 

material is transported off the void surface and into the bulk of the 

Fig. 3. A tree with a void at a dotted-I junction.  

Fig. 4. A tree with a void is broken up into two sub-trees.  

Fig. 5. The stress profile around a void at the near end of the line (x=0).  
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metal. This leads to [18] (pg. 56), 

dxs

dt
= Ωϕ(xs). (16) 

Thus, for a void at the near end of line, we get 

dlvd

dt
=

DΩ
kbT

(
σ(0)

δs
−

q*ρ
Ω

j
)

, (17)  

while for a void at the far end of the line, 

dlvd

dt
=

DΩ
kbT

(
σ(l)
δs

+
q*ρ
Ω

j
)

. (18) 

For terminal voids, and because the void length is very small relative 
to the line length (typically under 2%), the common approach in the 
field is to numerically solve for the stress in the line while (i) assuming 
the length of the metal in the line remains fixed at its original length, and 
(ii) assuming σ(xs) ≈ σ(l) or σ(xs) ≈ σ(0), depending on the location of 
the void, and this constitutes the boundary condition at that junction, 
which is needed for the solution. 

2.5.3. Resistance change 
Once a void has formed, the metal line resistance is impacted and the 

new resistance value depends on the void length, so that it is time- 
dependent and grows towards a saturated value. The easiest way to 
think of this is to consider the voided line to be the series connection of 
two wires. The first, corresponding to the un-voided length of wire l −
lvd(t), has a resistance that depends only on the Copper (ignoring the 
liner, whose resistivity is much higher), so it is given by ρ(l − lvd)/wh, 
where ρ, w and h are as defined earlier. The second is due to the void, 
where electric current flows only through the liner, so that the resistance 
is ρlinlvd/hlin(w + 2h), where ρlin is the resistivity of the liner material, hlin 
is the thickness of the liner and (w + 2h) is the sum of line dimensions 
around the cross-section of the wire, as in Fig. 3 of [18]. As a result, the 
resistance of the voided line is 

R(t) = R0 +

(
ρlin

hlin(w + 2h)
−

ρ
wh

)

lvd(t), (19)  

where R0 = ρl/wh is the resistance of the original (un-voided) line. 
Typical values for the metal parameters are given in [18] as h = 120nm, 
hlin = 10nm and ρlin = 2.5μΩ⋅m, while ρ = 0.03.μΩ⋅m. For a 1μm wide 
line, the term inside the large parentheses on the right is about 200Ω/ 
μm, while the resistance per unit length for the un-voided section of the 
line is about 0.25Ω/μm. 

3. New junction model 

We will introduce a new junction model that overcomes the short-
comings of the model used in EKM as described in Section 2.4. Recall the 
divergence theorem, also known as the Gauss-Ostrogradsky theorem, which 

states that the surface integral of the flux through a closed surface is 
equal to the volume integral of the divergence of that flux over the re-
gion inside that surface. We normalize this by the volume, to state the 
theorem in this form 

1
|R |

∫∫∫

R

∇⋅Φ dv =
1

|R |
∯ ∂R

Φ⋅n ds. (20) 

So, the average flux divergence over a given finite volume can be found 
by tallying up the net outgoing flux through the surface bounding it, 
normalized by the volume. Based on this, let R be the 3D spatial region 
of some junction, and V be the volume of that region, then using Eq. (8) 
with σR (x, y, z; t) as the stress in the 3D region, we can write 

1
V

∫∫∫

R

∂σR

∂t
dv =

BΩ
V

∯ ∂R
Φ⋅n ds, (21)  

so that the average value of σ̇R throughout the junction volume is 
proportional to the surface integral of the fluxes flowing across the 
junction boundary. It is reasonable to choose this average value of σ̇R 

over the junction volume to be the value of σ̇(t) for this junction in the 
context of a 1D model, to be used along with the Korhonen model. 
Indeed, 1D models are often constructed based on average quantities. 
Therefore, our new junction model will be based on the requirement, 

σ̇
(

t
)

=
BΩ
V

∯ ∂R
Φ⋅n ds. (22) 

Because the flux across the boundary is only non-zero where a branch 
connects to the junction, and assuming that the fluxes in the lines are 
perpendicular to the boundary where they cross the junction region 
boundary, which is a reasonable simplification, then Eq. (22) provides 
(

V

BΩ

)

σ̇(t) =
∑

k∈B out

akϕk(0) −
∑

k∈B in

akϕk(lk), (23)  

where ak and lk are the cross-sectional area and the length of branch k, 
respectively, while B out (B in) is the set of branches incident on this 
junction whose reference direction is away from (towards) the junction. 
Note that if we set V = 0, this equation reduces to that used in EKM [4]. 
In many cases, the junction volume is negligible compared to the volume 
of metal in the lines, so that this setting becomes reasonable. However, 
we have hereby given a more rigorous justification for this more general 
1D junction model that allows for junctions that have significant volume 
and does not artificially apply Korhonen’s equation at junctions. 

4. Distributed equivalent circuit 

This section contains the bulk of our contribution. We will develop 
and describe a number of equivalent circuits that make use of distributed 
RC transmission lines, whose simulated solution can give us the desired 
stresses for the whole interconnect tree, including junctions as well as 
interior points of metal lines, covering both the void nucleation and void 
growth phases. 

4.1. Equivalent circuit for the nucleation phase 

Consider first an interconnect tree without any voids. We start by 
identifying the connection between the equations for stress in a metal 
line and those for voltage in a distributed RC transmission line. Recall 
that Korhonen’s equation for a uniform metal line with fixed current 
density Eq. (13) is given by 

∂2σ
∂x2 = τl

∂σ
∂t
, (24)  

where τl=
Δ kbT/(BΩD) which, it’s easy to verify using Table 2, has units of 

s/m2. This special case of the heat equation is also called the diffusion 
equation and it happens to also be the governing equation for a distributed 

Fig. 6. The stress profile around a void at the far end of the line (x = l).  
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RC transmission line, i.e., a transmission line with no series inductance 
and no shunt conductance. This can be seen by starting from first prin-
ciples and considering an infinitesimal section of the line, as in [23]. 
Another, indirect approach starts with the general transmission line 
equations2 [24] (pg. 438), 

∂v
∂x

= − ri − l
∂i
∂t

(25)  

∂i
∂x

= − gv − c
∂v
∂t

(26)  

where v(x, t) and i(x, t) are the voltage and current along the line (i is 
positive in the positive x direction), r and l are the series resistance and 
inductance per unit length, and c and g are the shunt capacitance and 
conductance per unit length. Then, we set l and g to zero, corresponding 
to a simple RC line with no inductance and no leakage, to get 

∂v
∂x

= − ri and
∂i
∂x

= − c
∂v
∂t
. (27) 

Differentiating the first equation with respect to x and substituting 
from the second equation provides 

∂2v
∂x2 = rc

∂v
∂t
, (28)  

where rc has units of (ohm/m)(F/m) = s/m2, just like τl in Eq. (24). The 
two Eqs. (24) and (28) are virtually identical, so that it should be 
possible to use a transmission line to model and simulate the stress in a 
metal line, as we will see below. 

4.1.1. Line equivalent circuit 
For a uniform metal line, let this be the kth line in the interconnect 

tree, we now define the following per-unit-length parameters, 

rk =
kbT

Dkakψ and ck =
akψ
BΩ

, (29)  

where ψ=Δ 0.01C2/m3 is a scale factor that provides desirable unit con-
version and helps avoid running into numerical errors due to very small 
or very large numbers. It is easy to verify, using Table 2, that rk has units 
of resistance per unit length (ohm/m), ck has units of capacitance per 
unit length (F/m) and 

τk=
Δ rkck =

kbT
BΩDk

= τl, (30)  

which is the same τl in Eq. (24). 

Next, let ξ=Δ 1V/MPa be another scale factor, which we use to define 

v(x, t)=Δ ξσ(x, t) (31)  

as the voltage associated with the stress σ(x, t) at every point in the inter-
connect tree, then multiply both sides of Eq. (24) by ξ and use Eq. (30) to 
get 

∂2v
∂x2 = τk

∂v
∂t
. (32) 

Thus, indeed the governing equation for stress in a uniform metal 
line is identical to the governing equation for voltage in a distributed RC 
transmission line with the parameters rk and ck defined in Eq. (29). 
Formally, with τl = τk from Eq. (30), 

∂2σ
∂x2 = τl

∂σ
∂t

⟺
∂2v
∂x2 = τk

∂v
∂t
. (33) 

Such a transmission line can be either solved analytically or simu-
lated numerically in simulators like HSPICE® that comprehend trans-
mission line models. The resulting voltages can be directly translated to 
stress by dividing by ξ. 

It remains to consider the flux dynamics and whether they can be 
equally well represented in an equivalent circuit. To that end, notice that 
the first equation in Eq. (27) translates to ∂σ/∂x = − rki/ξ from which, 
using Eq. (4), we have 

ϕ(x) = −
1

ξakψ i(x) −
Dk

kbT
q*ρ
Ω

Ik

ak
, (34)  

where Ik=
Δ akjk is the current in the kth branch of the original intercon-

nect tree corresponding to the current density jk. To simplify the nota-
tion, we will define the following current notation for the kth branch, 

ISk =
ξ
rk

q*ρ
Ω

jk =

(
ξψDk

kbT
q*ρ
Ω

)

Ik, (35)  

where ISk has units of current (A) with the same sign as jk, and we can 
write 

ϕ(x) =
− 1

akξψ
(
ik(x)+ ISk

)
. (36) 

Thus, flux can be easily found from current in the transmission line, 
via an affine relationship Eq. (36) that includes the constant ISk. 

The above relations for flux and stress motivate the definition of the 
line equivalent circuit shown in Fig. 7, which includes both the RC 
transmission line, with parameters rk and ck, as well as an ideal current 
source carrying the current IS defined above. At any value of x, the stress 
in the metal line corresponds to the voltage in the transmission line at 
that point, while the flux is the (scaled) sum of the current in the 
transmission line at that x position and the current in the current source. 

4.1.2. Junction equivalent circuit 
Using Eq. (36) for the atomic flux, we can write the intensity of the 

atomic transport (number of atoms going through a cross-section of a 
metal line per second) as 

akϕ(x) = −
1

ξψ
(
ik(x)+ ISk

)
. (37) 

The subscript k will be dropped when there’s no risk of confusion, 
such as for a single isolated line. Combining this with the junction model 
(23), we get 
(

V

BΩ

)

σ̇(t) = −
1

ξψ
∑

k∈B out

(
ik(0) + ISk

)
+

1
ξψ
∑

k∈B in

(
ik(lk) + ISk

)
(38)  

and multiplying both sides by ξψ converts σ̇ to v̇ and gives 
(

V ψ
BΩ

)

v̇(t) = −
∑

k∈B out

(
ik(0) + ISk

)
+
∑

k∈B in

(
ik(lk) + ISk

)
. (39) 

This is the motivation for defining what we will call the junction 

Table 2 
Some derived SI units in terms of base SI units, where the symbol A stands for 
ampere.  

Name Symbol Quantity In SI base units 

Pascal Pa Pressure, stress kg ⋅ m− 1 ⋅ s− 2 

Joule J Energy, work kg ⋅ m2 ⋅ s− 2 

Coulomb C Electric charge s ⋅ A 
Volt V Voltage kg ⋅ m2 ⋅ s− 3 ⋅ A− 1 

Farad F Capacitance kg− 1 ⋅ m− 2 ⋅ s4 ⋅ A2 

Ohm Ω Resistance kg ⋅ m2 ⋅ s− 3 ⋅ A− 2  

2 Sometimes referred to as the telegrapher’s equations or the telegraphist’s 
equations. 
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capacitance 

CJ =
V ψ
BΩ

(40)  

which, it’s easy to verify using Table 2, indeed has units of capacitance 
(F). Thus, the stress-flux model (23) for a junction is equivalent to the 
voltage-current model 

CJv̇(t) =
∑

k∈B in

(
ik(lk) + ISk

)
−
∑

k∈B out

(
ik(0) + ISk

)
(41)  

which we would like to reproduce at the corresponding node in the 
equivalent circuit. Because this is basically the result of the applying 
Kirchhoff’s current law (KCL) at a node with capacitance CJ, then the 
equivalent circuit for a junction is simply a node with capacitance CJ to 
ground, fed by currents from its connected branches in accordance with 
Eq. (41). Note that, as defined, the junction capacitance is proportional 
to the junction volume, so that it represents the capacity of the junction 
to hold a certain number of atoms at a given stress value. As we develop 
the model further, we will see that CJ will often be set to zero, because it 
will be negligible in relation to the total line capacitances tied to that 
node. But, in general, it may be specified in the circuit description file 
whenever it’s available, based on the junction volume extracted from 
the chip layout database. 

4.1.3. Tree equivalent circuit 
We will now combine the equivalent circuits for lines with the 

equivalent circuits for junctions to get an equivalent circuit for the 
whole interconnect tree. To start, for the case of a single isolated metal 
line, terminated by two degree-1 junctions, we will see that the equiv-
alent circuit is as shown in Fig. 8, where the line equivalent circuit has 
been simply connected to the two junction equivalent circuits at its 
terminals. From basic circuit theory, this circuit can be redrawn as in 
Fig. 9 for simplicity, without any impact on the circuit currents and 
voltages. We can easily show that this circuit realizes the combination of 
the line Eq. (32) and the junction Eq. (41). All internal points of the line 
obviously satisfy Eq. (32), so that equivalence is established due to Eq. 
(33). As for the two junctions, apply KCL at the node at x = 0, i.e., at 
junction 1 with capacitance CJ1, to get CJ1v̇(0) = − (i(0)+IS ), while for 
the node at x = l, i.e., at junction 2 with capacitance CJ2, get CJ2v̇(l) =

(i(l)+IS ), both of which satisfy Eq. (41) for the case of a single isolated 
line, so that equivalence is established due to Eq. (23) being equivalent 
to Eq. (41). 

For interconnect trees consisting of multiple lines, multiple instances 
of the above line equivalent circuit can be connected in the same way as 
the actual metal lines are connected in the interconnect tree. Then, any 
junctions whose volumes are deemed significant would be represented 
by additional junction capacitances at the relevant line terminations, 
based on Eq. (40). An example is shown in Fig. 10 for the case of two 
metal lines connected at a dotted-I junction. 

Furthermore, the equivalent circuits for multiple trees that form a 
whole power grid can be jointly simulated in order to find the stresses 
everywhere, in all trees. Very little extra work is needed for this exten-
sion, for simulation of the nucleation phase. Things get a bit more 
complicated when the void growth phase simulation is to be extended to 
whole power grids, as we will briefly describe at the end of the next 
section. 

4.2. Equivalent circuit for the void growth phase 

Consider next the case of an interconnect tree in which a void has 
formed, say at the far end of the line, at x = l. Recall that, as in the EKM 
framework, this means that this is a terminal junction of the tree, i.e., a 
junction of degree-1. We will define a few scaling factors and parameters 
that are needed for developing an equivalent circuit for the void end of 

the line. First let η=Δ 1V/nm, which we will use as a conversion factor in 
order to track void length by means of a node voltage in the equivalent 
circuit. Then, define the following conductance Gs and capacitance Cv, 

Gs =
ψDwh
kbTδs

and Cv =
ξψwh

Ωη (42)  

where δs is the void-metal interface thickness defined earlier. It is easy to 
verify, using Tables 1 and 2, that Gs and Cv indeed have units of 
conductance and capacitance, respectively. 

For a void at the far end of the line, consider now the circuit in Fig. 11 
which includes a voltage-controlled current source (VCCS) carrying the 
current Gsv(l). As we will see, the new (relative to Fig. 7) circuit portion 
on the far right will provide (through Gs) enforcement of the void 
boundary condition (14) and will give us the ability (through Cv) to track 
the void length evolution over time, based on Eq. (16), i.e., lvd

′(t) = −

Ωϕ(l). Recall, using Eq. (37) that 

ϕ(l) =
− 1

ξψwh
(i(l)+ IS ). (43) 

Because KCL at the node marked v(l) provides i(l) = Gsv(l), then Eqs. 
(43) and (4) lead to 

Gsv(l)+ IS = − ξψwh
D

kbT

(
∂σ(l)

∂x
−

q*ρ
Ω

j
)

. (44) 

Using the expressions for Gs Eq. (42) and IS Eq. (35), we get 
(

ξψDwh
kbT

)
v(l)
ξδs

+ IS = −

(
ξψDwh

kbT

)
∂σ(l)

∂x
+ IS (45)  

from which, using v(l) = ξσ(l), 

∂σ(l)
∂x

= −
σ(l)
δs

, (46)  

so that the boundary condition (14) is enforced. As for the void length, 
KCL at the capacitor node provides 

Cvv̇v = i(l)+ IS (47)  

where we have again used the fact that i(l) = Gsv(l). Substituting for Cv 

Fig. 7. The equivalent circuit for a metal line.  Fig. 8. The distributed equivalent circuit for the case of a single isolated 
line, redrawn. 

Fig. 9. The distributed equivalent circuit for the case of a single isolated line.  
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and using Eq. (43), we get 

v̇v

η = − Ωϕ(l) = l′vd(t) (48)  

so that we can indeed track the void length by monitoring the voltage vv 
in the equivalent circuit, as 

lvd(t) = vv(t)/η. (49) 

This equivalent circuit can be simplified somewhat using simple 
circuit transformations to get the circuit shown in Fig. 12, and then 
again into the final form in Fig. 13. Finally, in case the void has nucle-
ated at the near end of the line, i.e., at x = 0, then the same analysis 
provides the equivalent circuit diagram in Fig. 14. 

Once these equivalent circuits for individual lines are used in the 
context of a simulation of a multi-line tree or for multiple trees in a 
larger power grid, the impact of void growth on line resistance, via Eq. 
(19), and therefore on branch currents must be taken into account. This 
can be done by customization of the overall circuit simulation, in order 
to recompute the currents (jk and therefore ISk) for every line whenever a 
significant change of resistance has occurred. These details are beyond 
the scope of this paper. 

5. Lumped equivalent circuit 

As mentioned earlier, transmission lines can be solved analytically, 
but that is just as complex as solving the original Korhonen’s equation 
analytically. Transmission lines can also be simulated using existing 
tools like HSPICE®, but this can be expensive, and the detailed high- 
frequency analysis performed by the simulator is not needed for the 
slow EM system. Instead, and as is often done in practice, RC trans-
mission lines can be approximated, with very good accuracy, by a lum-
ped RC line, as shown in Fig. 15. The lumped line is composed of N 
segments, each of which is a π-RC approximation of a short segment of 
the original line. A segment of the line of length δk, corresponding to a 
total resistance of Rk = δkrk and total capacitance of Ck = δkck, is 
approximated by the combination of a single (lumped) series resistor Rk 
and two (lumped) shunt capacitors to ground of value Ck/2 each. In-
ternal nodes of the line end up with a capacitor Ck each, while the two 
line terminal nodes get only Ck/2 each. Thus, if line k has length lk, then 
δk = lk/N and the line is characterized by the lumped-element values 

Rk =
kbTδk

Dkakψ and Ck =
akδkψ
BΩ

. (50) 

Note again that capacitance is representative of the volume of a 
metal region (in this case the segment volume akδk) and represents the 
capacity of that region to contain metal atoms. The HSPICE® user guide 
[25] (pg. 203) recommends as default a number of N = 20 segments for 
lumped element RC approximations of transmission lines. Beyond this, it 
says, one gets negligible improvement for the increased simulation time. 
It is interesting that this guidance is independent of the line length. We 
have found N = 20 to work very well in practice, as also observed in [13] 
where an even smaller N of 16 was used. With this, the equivalent circuit 
for a single isolated metal branch in the nucleation phase becomes as 
shown in Fig. 16. Similarly, the corresponding circuits for lines with 
voids are shown in Figs. 17 and 18. These lumped equivalent circuits can 
then be interconnected in the same way as the original metal branches, 
possibly combined with junction capacitors (at non-voided junctions), in 
order to represent the whole interconnect tree. 

6. Validation 

We will give a number of simulation results that demonstrate the 
validity of this approach, covering both the void nucleation phase and 
the void growth phase. 

6.1. Nucleation phase 

We will describe the implementation of the above approach and give 
comparisons to exact solutions from [3,17]. We have developed a 
generic SPICE sub-circuit, an example of which is shown in Fig. 21. The 
figure shows a sub-circuit type consisting of 20 π-RC segments, called 
PIRC20, which makes use of another sub-circuit for a single π-RC link, 
called pirc_seg and included at the bottom of Fig. 21. The PIRC20 sub- 
circuit captures the contributions of a single metal line to the equivalent 
circuit of an interconnect tree, based on the equivalent circuit shown in 
Fig. 16. This sub-circuit can be used to construct the equivalent circuit 
for any given interconnect tree, by connecting multiple instances of the 
PIRC20 sub-circuit in the same way as the metal branches are connected. 
Additional capacitors to ground may then be added for any junctions 
whose volumes are deemed to be significant. An example is shown in the 
SPICE circuit description given in Fig. 19, for the 4-line interconnect 
tree with a plus-junction shown in Fig. 20. Circuit simulation can then be 

Fig. 10. The distributed equivalent circuit for the case of two lines in a dotted-I arrangement.  

Fig. 11. Equivalent circuit (version 1) for a line with a void at x = l.  

Fig. 12. Equivalent circuit (version 2) for a line with a void at x = l.  

Fig. 13. Equivalent circuit (version 3) for a line with a void at x = l.  

Fig. 14. Equivalent circuit for a line with a void at x = 0.  
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applied to the circuit to find all voltages, therefore all stresses. 
The exact solution can be found analytically in certain special cases. 

For the simple case of a single isolated line, the exact solution is avail-
able from both [3,17], as 

σ(x, t) = σ0 −
q*ρjl

Ω

(
1
2
−

x
l
− 4

∑∞

n=0

1
s2

n
rx,t(n)

)

, (51) 

Fig. 15. Lumped RC approximation of a distributed transmission line.  

Fig. 16. Contribution of a metal branch to the tree equivalent circuit, in the nucleation phase.  

Fig. 17. Lumped equivalent circuit for a line with a void at x = l.  

Fig. 18. Lumped equivalent circuit for a line with a void at x = 0.  

Fig. 19. SPICE equivalent circuit for a 4-line interconnect tree.  
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Fig. 21. A SPICE sub-circuit for a metal line using 20 π-RC segments.  

Fig. 22. Stress evolution at the cathode for a single isolated 250 μm long 
metal line. 

Fig. 23. Stress evolution at the cathode for a single isolated 10 μm long 
metal line. 

Fig. 24. SPICE v.s. the exact solution for the dotted-I arrangement, with 
equal widths. 

Fig. 20. Layout for a 4-line configuration at a plus-junction.  
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Fig. 25. SPICE v.s. the EKM solution for the dotted-I arrangement, with w2 
= 2w1. 

Fig. 26. SPICE v.s. the EKM solution for the dotted-I arrangement, with w1 
= 2w2. 

Fig. 27. SPICE v.s. the EKM solution for the dotted-I arrangement, with w2 =

2w1 and L2 = 2L1. 

Fig. 28. A 3-line T-junction test case.  

Fig. 29. SPICE v.s. the EKM solution for a 3-line arrangement around a T- 
junction, using PIRC20. 

Fig. 30. SPICE v.s. the EKM solution for a 4-line arrangement around a plus- 
junction, using PIRC20. 
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where sn = (2n + 1)π, 

rx,t(n) = cos
(

sn
x
l

)
exp
(

− s2
n
κt
l2

)

(52)  

and κ = DBΩ/(kbT), which has units of m2/s, while l is the line length as 
usual. This specific form of the solution follows the expression3 used in 
[17]. For the case of a Copper line of width 1 μm, height 1 μm and length 
250 μm, discretized into 20 segments as in PIRC20, at T = 400 K and 
carrying a current density of 1 × 109 A/m2, the circuit parameters turn 
out to be (in round numbers), 

Rk = 528kΩ, Ck = 251mF and IS = 69μA, (53)  

based on the physical parameters in Table 1. Setting the junction vol-
umes to zero, the comparison of the exact solution at the cathode 
junction to that from the SPICE solution using PIRC20 is shown in 
Fig. 22, and the agreement is excellent. This test was repeated for line 
lengths of 150 μm, 80 μm, 40 μm and 10 μm, and the agreement is 
excellent in every case, as in the 10 μm case shown in Fig. 23. 
Throughout the following, all test runs will be based on zero junction 
volumes. 

We also tested the case of an interconnect tree composed of two 
identical lines in a dotted-I arrangement, against our implementation of 
the exact solution based on the analysis4 in [17]. Each line is L = 250 μm 
long and 1 μm wide, with both reference directions to the right, carrying 
j1 = 1 × 109 A/m2 in line 1 and j2 = 3 × 109 A/m2 in line 2, at 400 K. The 
comparison at the three junctions is shown in Fig. 24, showing excellent 

Fig. 31. A SPICE sub-circuit for a metal line with a void at x = 0 using 20 
π-RC segments. 

Fig. 32. A SPICE sub-circuit for a metal line with a void at x = l using 20 
π-RC segments. 

3 The sign difference (after the σ0 term) relative to Eq. (3) in [17] is because 
they’ve assumed that the reference direction for the current is opposite to that 
of the x distance variable, as can be seen by comparing their Eq. (1) to our Eq. 
(12). 

4 Here too, a reversal of the signs of the G1 and G2 terms in Eq. (6) of [17] is 
applied, for a proper comparison. 
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accuracy. We also tested the case of unequal widths, keeping w1 at 1 μm 
while setting w2 = 2w1 and keeping everything else the same. In this 
case, in the absence of an exact solution, we compared to the EKM 
implementation [4] and the results are again excellent as shown in 

Fig. 33. SPICE description for a single-line circuit with a void at x = 0.  

Fig. 34. Stress evolution in a line with a void at x = 0, starting with zero stress 
everywhere. Results from SPICE using PIRC20V0 are compared to the exact 
solution at multiple points along the [0,L] line span. 

Fig. 35. An expanded view of the rectangular area at the top left of the graph 
in Fig. 34. 

Fig. 36. Stress profile along the length of the line during the void growth 
phase, for a void at x = 0. 

Fig. 37. Fast stress decay at the void at x = 0, using SPICE with PIRC20V0.  

Fig. 38. Sensitivity to the void surface thickness, for a 250 μm long, 1 μm wide 
line, with j = 1 × 109A/m2. 
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Fig. 39. Void growth for a 250um line.  

Fig. 40. Void growth for a 100um line.  

Fig. 41. Resistance increase for a 250um line with a void.  

Fig. 42. Resistance increase for a 100um line with a void.  

Fig. 43. Contribution of a branch to the tree equivalent circuit using the 
PACTN4 reduced order model. 

Fig. 44. A SPICE reduced sub-circuit for a metal line using 20 π-RC segments.  
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Fig. 25. The opposite case comparison, with w1 = 2w2 = 1 μm is shown in 
Fig. 26. And, as yet another variation on this circuit, we show the 
comparison for the case when w2 = 2w1 = 2 μm with L2 = 2L1 = 250 μm 
in Fig. 27. 

Another interesting case is the 3-line T-junction arrangement, given 
in the SPICE description in Fig. 28, for which the comparison to EKM is 
shown in Fig. 29. Finally, for the plus-junction described in the netlist in 
Fig. 19 and shown in the layout diagram in Fig. 20, the comparison to 
EKM is shown in Fig. 30. 

6.2. Void growth phase 

We will describe the implementation of the above approach and give 
comparisons to exact solutions from [26]. We have developed a generic 
SPICE sub-circuit, an example of which is shown in Fig. 31 for a void at x 
= 0 and Fig. 32 for a void at x = l. The figures show two sub-circuit types 
consisting of 20 π-RC segments each, called PIRC20V0 and PIRC20VN, 
which make use of another sub-circuit for a single π-RC link, called 
pirc_seg and included in the figures. These sub-circuits capture the 
contributions of a single (voided) metal line to the equivalent circuit of 
an interconnect tree, based on the equivalent circuits shown in Figs. 17 
and 18. One can construct the equivalent circuit for any given inter-
connect tree by connecting multiple instances of these PIRC20V0 and 
PIRC20VN sub-circuits, along with the PIRC20 sub-circuits shown 

earlier for any un-voided line, in the same way as the metal branches are 
connected. Additional capacitors to ground may then be added for any 
junctions whose volumes are deemed to be significant. Circuit simula-
tion can then be applied to the circuit to find all voltages, therefore all 
stresses and void lengths. 

We will explore the transient stress response in the line as well as the 
void growth evolution over time. When possible, we will compare to 
exact solutions, which can be found analytically in certain special cases 
[26]. For the simple case of a single isolated line, and assuming that a 
void has just nucleated at x = 0 at time zero, the condition σ(0, t) = 0, ∀t 
is enforced as a boundary condition in [26]. They also assume that the 
initial stress throughout the line is negligible, i.e., σ(x,0) = 0, ∀ x, an 
assumption that is presumably made in order to be able to get an 
analytical solution. With this setup, the exact solution is given by5 

σ(x, t) = q*ρjl
Ω

(
x
l
+ 2

∑∞

n=1

( − 1)n

c2
n

sx,t(n)

)

, (54)  

where cn = (2n − 1)π/2, 

sx,t(n) = sin
(cnx

l

)
exp
(

− c2
n
κt
l2

)

(55)  

with κ = DBΩ/(kbT) as before, while l is the line length. For our test case, 
we specified a Copper line of width 1 μm and length 250 μm, discretized 
into 20 segments as in PIRC20V0, at T = 400 K and carrying a current 
density of − 2 × 109 A/m2, as shown in the SPICE circuit description in 
Fig. 33. Notice that there are additional physical constants (DELTA for δs 
and ETA for η) that have to be specified up-front. Also, a detailed. IC 
statement is needed to set up the correct initial profile of stress in the line 
at the time of voiding, which in this case was set to zero so as to allow a 
fair comparison with [26]. Having set the junction volume (at x = l) to 
zero, we compared the time evolution of σ(x, t) for the SPICE solution v.s. 
the exact solution, at every node of the RC chain, i.e., at x = 0, δk, 2δk, …, 
lk, where δk = lk/20. The comparison is shown in Fig. 34, where the 
rectangular area in the top-left corner is expanded and shown in Fig. 35. 
The SPICE solution is shown as the solid red curves while the exact so-
lution is the dashed black curves, and the agreement is clearly excellent. 
Throughout the following, all test runs will be based on zero junction 
volumes. 

Using our approach, we can handle more realistic cases, such as 
when the initial stress in the line is non-zero, and where a non-zero 
residual thermal stress can be included. For example, for the same 
250μm line, we first simulated the line before voiding, saved the state at 
the time of voiding and then applied that state as the initial stress profile 
during the subsequent simulation of the voided line. The result is shown 
in Fig. 36, where we have shown the profile of the stress along the length 
of the line at different points in time. Notice that the stress at x = 0 drops 
very quickly from σ(0,0) = 500 MPa to a constant σ(0, t) = 0 over a 
period of seconds, while the rest of the line (at 5% of the line length 
away from the void, and beyond) takes months or years to reach its 
steady state. This fast transient behavior of the stress at x = 0 is shown in 
Fig. 37 and testifies to the very high initial flux at the void surface due to 
the high initial stress gradient σcrit/δs there. Fig. 38 shows the void 
growth for a single line with δs set to 10 nm, 1 nm and 0.1 nm. It is clear 
that the solution is not sensitive to the choice of δs in this range, as one 
would like to see in fact. We have found that this property of this model 
[18] remains valid over the wide range of 1pm ≤ δs ≤ 1μm. 

Looking next at the void length over time, we will compare to the 
exact solution provided in [26], as 

Fig. 45. Stress evolution at the cathode for a reduced single isolated metal line.  

Fig. 46. SPICE v.s. the exact solution for the reduced dotted-I arrangement, 
with equal widths. 

5 The sign difference (before the first term) relative to Eq. (8) in [26] is 
because they’ve assumed that the reference direction for the current is opposite 
to that of the x distance variable, as can be seen by comparing their Eq. (1) to 
our Eq. (12). 
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lvd

lvd,sat
= 1+ 4

∑∞

n=1

( − 1)n

c3
n

exp
(

− c2
n
κt
l2

)

, (56)  

where lvd,sat = q*ρ∣j∣l2/(2BΩ) from [26]. The comparison to SPICE using 
PIRC20V0 for the same 250μm line with j = − 2E9A/m2 is shown in 
Fig. 39. Another comparison is also shown for a 100μm line carrying j =
5E9A/m2, with the void at the far end of the line, so we use PIRC20VN, 
and the results are in Fig. 40. The agreement is excellent in both cases. 
Finally, the resistance increase over time for these two lines is shown in 
Figs. 41 and 42, based on Eq. (19). 

6.3. Reduced line 

Given the PIRC-20 lumped model, we can apply the PACT [27] 
model-order reduction approach, as described in [28] to get the generic 
scalable compact model shown in Fig. 43, which we use to replace 
PIRC20, resulting in what we call the PACTN4 sub-circuit, given in 
Fig. 44. For the same 250 μm line considered in Fig. 22, the comparison 
to the PACTN4 reduced line is shown in Fig. 45. Comparisons are also 
given for the dotted-I arrangement, with equal widths, in Fig. 46, 
showing some degradation at the fast transients, but otherwise quite 
acceptable. The major advantage of using the PACT transformation is to 
reduce the number of nodes in the system, thus allowing one to handle 
very large interconnect trees. If the interconnect tree has n junctions and 
m branches (recall that in a tree, m = n − 1) then using PIRC20 would 
generate an equivalent circuit with (20n − 19) nodes while, for PACTN4 
the resulting circuit has only (2n − 1) nodes, which is a ≈10× reduction. 
In other words, this reduction allows the analysis of 10× larger inter-
connect trees. This clearly shows the benefit of using the equivalent 
circuits approach! It would have been very difficult to imagine, looking 
only at the stress equations, that this kind of reduction of the problem 
size is at all possible. 

7. Conclusion 

We have demonstrated a deep connection between the EM-induced 
stress-flux dynamics in metal lines and the voltage-current dynamics 
in RC circuits. Effectively, the atomic transport in an interconnect 
network behaves in the same way as the electronic current in the metal 
lines; they obey the same circuit laws. We have done this for both the 
void nucleation phase and the void growth phase, and provided sample 
SPICE sub-circuits that can be used to generate a large RC network for 
any given metal interconnect network. Simulation results demonstrate 
excellent agreement between the two “worlds” of stress and voltage. 
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