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ABSTRACT
The ever increasing variability in process parameters, giving rise
to circuit delay variations, presents an important challenge to the
prediction and verification of circuit timing. On one hand, corner
case analysis is rapidly becoming a daunting task, as exploring an
exponentially increasing number of corners is practically infeasi-
ble. On the other hand, recently proposed approaches to statis-
tical static timing analysis (SSTA) do not fit well in the timing
verification methodology as they rely on the existence of correla-
tion models that are not readily and realistically available from
the process, at least not at an early stage of the design. In this
paper, we present an early statistical timing analysis technique
that can operate during pre-placement, when within-die correla-
tions are still unknown. Starting from a simple delay model that
requires minimal input from the user, we will predict bounds on
the distribution of the maximum circuit delay. Such bounds are
valid for any circuit placement, and consequently any arbitrary
within-die correlation. We will use these bounds to introduce the
concept of margin uncertainty and predict a margin range that
can help designers at an early stage of the design flow.

1. INTRODUCTION
Process variations have an impact on circuit delay variations,

and consequently can cause timing yield loss. Traditionally, pro-
cess variations have been taken care of in various ways. In mi-
croprocessors, it is typical to check circuit timing with nominal
transistor files, and to specify some timing margin that should
be left as slack between the nominal delays and the timing con-
straints, in order to account for process variations. In ASICs, the
practice is to typically design circuits by making sure the chip
passes the timing requirements at all process corners, including
nominal, worst, and best cases of device behavior. If these set-
tings are too pessimistic, then designers are forced to waste time
and effort optimizing a circuit using design conditions that are
too stringent.

There has been considerable discussion in the literature that
the traditional methods of using process corners or using a timing
margin are breaking down. For microprocessors, where nominal
process files are used and a timing margin needs to be left as
slack, there is no easy way to decide what the margin should be,
to account for within-die variations which have become important
recently. And if a given margin is used, there is no indication as
to what the resulting timing yield would be. On the other hand,
for ASICs, and due to the increasing number of varying process
parameters, the number of corners is exponentially increasing,
thus making it very expensive to explore all corners.

Recently, statistical timing analysis techniques have been pro-
posed as an alternative to corner case analysis. This is because
corner analysis can not handle increasingly significant within-die
variations [1]. Moreover, it is generally thought that traditional
approaches are pessimistic and overly conservative. Since these
statistical techniques aim to extend traditional static timing anal-
ysis (STA), they are better known as statistical static timing anal-
ysis (SSTA) techniques.

1.1 Types of SSTA
In the past few years, a wide variety of SSTA techniques have

been proposed. These can be divided into two categories, namely
path-based SSTA and block-based SSTA. Path-based techniques
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work by enumerating all paths and studying their joint distribu-
tion by integrating over the space of parameters [2]. In [3], a
path-based technique which determines bounds on the distribu-
tion of circuit delay is proposed. This approach assumes that gate
delay correlations are known beforehand, and therefore it can only
be applied during post-placement. Other path-based approaches
have been proposed [4] where within-die variations are assumed to
be independent. Even though path-based techniques are known
to be accurate, the exponential number of paths that need to be
taken into account can be a major disadvantage.

Block-based techniques are more appealing. The two basic sum
and max operations are performed on random variables, and prop-
agation is done in a PERT-like fashion (topological order), which
makes block-based approaches linear in the circuit size as long as
the sum and max operations are performed in constant time.

In earlier work [5, 4, 6, 7], within-die variations are assumed to
be totally uncorrelated. This assumption is not true in practice,
however it is usually hard to express the correlations between
within-die parameter variations with a model built from process
data. Different attempts to model correlations have been pro-
posed: In [8], principal component analysis (PCA) has been used
to de-correlate variations on a set of independent random vari-
ables. In [9], a quad-tree partitioning is used to express a region-
wise spatial correlation among within-die variations. In [10], cor-
relation is taken care of using a canonical model, where each
variation is expressed in terms of global sources of variations. All
these methods depend on placement information, and rely on ex-
tensive process data, which is not readily available. Therefore,
these types of post-placement SSTA become final sign-off tools
and can not be used during early circuit design. In [11, 12], an
early SSTA technique is presented. The analysis is based on a
“generic path” concept that is representative of critical paths in
a given technology.

Fig. 1 presents a general classification of SSTA techniques, and
highlights where they fall in the design flow. In addition, it shows
the advantages and limitations of each SSTA type in terms of
chronology (early/late, pre-/post-placement) and accuracy. So
far, only early process-specific (first type) and late post-placement
design-specific (third type) SSTAs have been tackled in the lit-
erature. On one hand, the problem with the former type is the
concept of generic path which might not capture well a specific
design; on the other hand, the problem with the latter SSTA type
is its reliance on extensive correlation and placement information,
which may not be available. In this paper, we try to combine the
best of the two worlds by presenting the first early pre-placement
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SSTA. As defined in Fig. 1, our technique is early, simple, and
accurate since it operates pre-placement on a specific netlist with-
out requiring any correlation information. This does not mean,
however, that we ignore correlations; on the contrary, we handle
the lack of correlation information using bounds which are valid
for any arbitrary correlation or placement.

1.2 Yield Specific Margins
As was mentioned earlier, the goal of statistical timing analy-

sis is to verify timing under process variations, and not to simply
predict the distribution of circuit delay. The real question is how
much margin should one leave on top of nominal maximum delay
in order to guarantee a desired timing yield. SSTA answers this
question by predicting the distribution of circuit delay. Assume
that a target yield of 99% is desired; using SSTA, the 99th de-
lay percentile is predicted, from which the 99% yield margin is
deduced by simply subtracting the nominal circuit delay. The
following equation shows how to determine the timing margin for
a yield of α:

τα = Dα − Dnom (1)

where Dnom is the nominal maximum circuit delay, Dα is the α-
percentile of delay, and τα is the timing margin specific to yield α.
Once this yield specific margin is determined, timing is verified by
simply “reducing” the nominal circuit delay by this much margin.

In late post-placement SSTA, the design has already been placed
and correlations have been extracted; therefore, a unique margin
is predicted to verify the timing of the design. However, our tech-
nique falls into early pre-placement SSTA where correlations are
still unknown; this uncertainty in the correlations is translated
into a margin uncertainty as our technique will predict a mar-
gin range to cover all possible correlation settings. Fig. 4 gives
a “sneak preview” of the big picture, where a min margin (pre-
dicted from the upper bound on delay distribution), a max mar-
gin (predicted from the lower bound on delay distribution), and a
margin uncertainty (to account for correlations) are presented to
designers at an early stage of the design flow; these margins can
help them take early design decisions without having to wait until
the design is placed. We also show that the margins predicted by
post-placement SSTA for a specific correlation and placement fall
within our margin range.

1.3 Overview
Starting from a simple process parameter model broken down

into die-to-die and within-die components, and assuming a linear
delay model based on sensitivities to process parameters, we will
construct a standard delay model and propagate it in the timing
graph similarly to what has been proposed in the literature [8,
10]. To account for the unknown within-die correlations however,
we assess the effect of correlation on the sum and max of random
variables to produce bounds on the distribution of circuit delay,
and prove that these bounds are valid for arbitrary correlations.
Using these bounds, we present the new concept of margin un-
certainty that can help designers verify timing at an early stage
of the design flow.

We believe that our approach would be a good addition to, and
not a replacement for, the current post-placement SSTA tech-
niques; our margin range can guide designers during early op-
timization, while the final margin predicted by post-placement
SSTA can be used for final sign-off to achieve timing closure.

The rest of the paper is organized as follows: Section 2 presents
the variational model, including process parameter model, gate
delay, and arrival time model. Next, the effect of correlation
on the sum and max of random variables is studied in section 3
where two important results are given. Section 4 gives a detailed
overview of our analysis, which we validate in section 5. Finally,
we propose an extension to our approach and conclude in sec-
tions 6 and 7.

2. MODELING VARIATIONS
In this section, we start by modeling variations at the level of

process parameters. Then, using a first-order linear delay model,

we express timing quantities such as gate delays and arrival times
as a function of the underlying process variations.

2.1 Parameter Model
For a given circuit element or layout feature i, let Xj(i), be

a zero-mean Gaussian random variable (RV) that denotes the
variation of a certain parameter j of this element from its nominal
(mean) value. Thus, for example, Xj(i) may represent channel
length variations of transistor i. Notice, the Gaussian assumption
is very common in the literature [2, 8, 10, 11, 12]. It is also
standard practice [13] to express parameter variation by breaking
it up into die-to-die and within-die components, as follows:

Xj(i) = Xdd,j + Xwd,j (i) (2)

The die-to-die component Xdd,j is an independent1 zero-mean
Gaussian RV that is global to the die as it takes the same value
for all instances of this element on a given die, irrespective of lo-
cation. The within-die component Xwd,j (i) is a zero-mean Gaus-
sian which can take different values for different instances of that
element on the same die. It is thus a local variation specific to
every instance. Keep in mind that Xwd,j (i) has some correlation
due to systematic effects. We can rewrite (2) in the following
way:

Xj(i) = σdd,j Zdd,j + σwd,j Zwd,j (i) (3)

where σdd,j and σwd,j are the parameter’s die-to-die and within-
die standard deviations respectively which can be obtained from
the process for that specific parameter j. Note that Zdd,j and
Zwd,j (i) are standard normal RVs with zero-mean and unit vari-
ance, and that Zdd,j is global whereas Zwd,j (i) is local with some
correlation for different i’s. For the scope of this work, the within-
die correlation will be considered unknown or unavailable.

2.2 Gate Delay model
In general, there is a nonlinear relationship between gate delay

and transistor parameters. Simple circuit simulations, however,
reveal that this nonlinearity is not strong, especially for small
transistor parameter variations. Therefore, we will simply assume
that gate delay is linearly dependent on the process, and hence is
Gaussian with mean equal to its nominal value. This assumption
is also very common, and is used in all first-order path-based and
block-based techniques [2, 8, 4, 3, 11].

Assume that p process parameters are varying; these can in-
clude channel length, threshold voltage, transistor width, and so
on. For each gate, we can extract sensitivities to the different
varying process parameters using circuit simulation; this can be
done as part of library characterization. We can thus write the
delay of gate i, D(i), in the following way:

D(i) = µi +

p�

j=1

sijXj(i) (4)

where µi is the mean (nominal) delay, sij is the delay sensitivity of
gate i to process parameter j, and Xj(i) is the variation of process
parameter j as defined in (3). Note that, for all the transistors
within one logic gate i, we assume that the variations of process
parameter j are captured with a single RV Xj(i) and that Xj(i)’s
are assumed to be independent for different j’s, i.e., variations of
different process parameters are independent. Replacing Xj(i)
with its value from (3) yields:

D(i) = µi +

p�

j=1

αijZdd,j +

p�

j=1

βijZwd,j (i) (5)

where αij = sij σdd,j and βij = sij σwd,j . We can further group
the within-die variations of different parameters into a single
within-die delay component. This leads to the following expres-
sion:

D(i) = µi +

p�

j=1

αijZdd,j + βwd,iZwd,i (6)

1Throughout this paper, whenever an individual RV is described
as “independent”, this means that it is independent of all other
RVs under consideration.
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where βwd,i = � � p
j=1 β2

ij since Zwd,j (i) are independent for

different j. Note that Zwd,i is a standard normal RV that rep-
resents the within-die variation of delay D(i). Also note that for
different gates i and k, the within-die components of D(i) and
D(k), i.e., Zwd,i and Zwd,k will have some unknown correlation
due to the correlation in process that is also considered unknown.

Generally, it is more accurate to specify a timing arc delay
rather than a gate delay, since a gate can have different timing
arcs, with different delays. Therefore, we will be expressing tim-
ing arc delays later on in the paper using the same delay model
in (6).

2.3 Arrival Time model
Similarly, signal arrival times at the inputs and outputs of gates

are modeled as normally distributed random variables using the
same model for gate delays. Let A be a signal arrival time; then
we can express A as follows:

A = ao +

p�

j=1

ajZdd,j + ap+1Zwd,A (7)

where ao is the mean of A, aj ’s are the sensitivities to the (global)
die-to-die components of the various process parameters, and
ap+1 is the sensitivity to the (local) within-die component spe-
cific to A, i.e., Zwd,A. Note that similarly to gate delays, the
within-die components of different arrival times will have some
unknown correlations that particularly depend on placement and
circuit topology.

Notice that unlike gate delay D(i) in (6), where µi, αij , and
βwd,i are inputs determined by the user through characterization,
arrival time’s parameters ao, aj ’s, and ap+1 will be determined
by our algorithm through propagation in the timing graph. From
here onwards, we will refer to our delay model as the standard
delay model; this model has a constant part equal to the mean
delay, a die-to-die part based on a linear expansion over the global
die-to-die components of process parameters, and a within-die
part that is local to the particular timing quantity in hand, which
has some unknown correlation among different timing quantities.

3. EFFECT OF CORRELATION
As mentioned earlier, our approach does not require correla-

tion information and is therefore valid before circuit placement.
Having said this, we will look into ways to assess the effect of
unknown correlation on the two timing operations that are used
during propagation, i.e., the sum and max operations.

3.1 Effect on the Sum of Two RVs
Let X and Y be two normally distributed random variables

with means µX and µY respectively, standard deviations σX and
σY respectively, and correlation coefficient ρ. Let Z = X + Y .
Then Z is also normally distributed, with mean µ and variance
σ2 given by:

µ = µX + µY (8)

σ2 = σ2
X + σ2

Y + 2σXY (9)

= σ2
X + σ2

Y + 2ρσXσY (10)

where σXY = ρσXσY is the covariance of X and Y .
This shows that the variance σ2 of the sum of two random

variables is an increasing function of their correlation coefficient
ρ. In other words, if ρ is unknown, we are sure that the variance
of the sum lies between a minimum achieved when ρ = ρmin = 0
(X and Y are uncorrelated), and a maximum achieved when ρ =
ρmax = 1 (X and Y are totally correlated). Let σ2

min and σ2
max

be these minimum and maximum variances, respectively. Then:

σ2
min = σ2

X + σ2
Y (11)

σ2
max = (σX + σY )2 (12)

Since Z is a normally distributed RV, then we can write its
distribution using the cumulative distribution function (cdf) of

the standard normal, Φ(·):

P{Z ≤ x} = Φ � x − µ

σ � (13)

Note that Φ(·) is non-decreasing, therefore for x − µ ≥ 0, we can
write the following bounds on the CDF of Z:

Φ � x − µ

σmax � ≤ Φ � x − µ

σ � ≤ Φ � x − µ

σmin � (14)

An important result can be drawn from the above equation:

Result 1. the cdf of the sum of two normal RVs with un-
known correlation ρ (ranging from 0 to 1) can be bound by two
extremes: setting ρ = 0 will lead to a minimum variance and
thus an upper bound, while setting ρ = 1 will lead to a maximum
variance and thus a lower bound on the distribution.

Note that the bounds are valid only beyond the mean of the
sum, i.e., x ≥ µ, which is translated to be above the 50% line for
normal distributions; this is obviously the more interesting yield
range. This will be validated by our results.

3.2 Effect on the Max of Two RVs
Similarly, let X and Y be two jointly normally distributed RVs,

with unknown correlation coefficient ρ. Let Z = max(X, Y ). We
are interested in assessing the effect of ρ on the distribution of
Z. For this purpose, let Fρ(·) be the joint distribution of X and
Y , for a particular ρ. We can write the cdf of the max Z in the
following way:

P {Z ≤ a} = P {max(X, Y ) ≤ a} (15)

= P {X ≤ a , Y ≤ a} (16)

= Fρ(a) (17)

Therefore, the cdf of Z is equal to Fρ(a), and is thus correla-
tion dependent. Using Slepian’s theorem [14], we know that the
joint distribution of two normal RVs X and Y , and consequently
the distribution of their max Z, is an increasing function of their
correlation coefficient ρ. Therefore we can draw our second im-
portant result:

Result 2. The distribution of the max of two jointly nor-
mal RVs with unknown correlation ρ (ranging from 0 to 1) can
be bound by two extremes; a lower bound on the distribution is
achieved by setting ρ = 0, and an upper bound on the distribution
is achieved by setting ρ = 1.

4. TIMING ANALYSIS OPERATIONS
In this section, we present our statistical timing analysis tech-

nique and explain how it operates on a given circuit. To do that,
we will first define its operation on a single gate, and then show
how to repeatedly apply it in a block-based fashion on the whole
timing graph.

Fig. 2 shows a gate with two inputs A and B and output C.
The arrival times at inputs A and B are assumed to be known
from previous stages, and are given in the standard delay form.
Also assume that D1 and D2 are gate delay arcs for inputs A and
B respectively, and are also given in the standard delay form.
The arrival time at C will be equal to:

C = max [(A + D1) , (B + D2)] (18)

Thus, in order to determine the arrival time at the output of any
gate, we need to perform two basic timing operations: a sum
operation performed on a gate delay arc and an input arrival time,
and a max operation performed on the two timing quantities
resulting from the additions.

Since the correlation between the within-die variations of dif-
ferent timing quantities is unknown, we will use the results from
section 3 to derive bounds on the distribution of C. Applying
our approach on every gate, and propagating these bounds in the
timing graph will lead to bounds on the maximum circuit delay.
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4.1 Sum Operation
We will first show how to handle the sum operation given the

lack of within-die correlation information. Assume that we have
the gate in Fig. 2. Let X = A + D1, and recall that both A and
D1 are expressed in the standard delay model:

A = ao +

p�

j=1

ajZdd,j + ap+1Zwd,A (19)

D1 = do +

p�

j=1

djZdd,j + dp+1Zwd,D1
(20)

We are interested in writing X using the standard model for vari-
ation in order to be able to propagate it to later stages in the
timing graph. Simple addition leads to,

X = (ao + do) +

p�

j=1

(aj + dj)Zdd,j + [ap+1Zwd,A + dp+1Zwd,D1
]

(21)
The above equation is not in standard delay form since the ex-

pression in brackets is not yet resolved as required. To do that,
let W = ap+1Zwd,A + dp+1Zwd,D1

, and recall that the correla-
tion between Zwd,A and Zwd,D1

is unknown. Using the result of
section 3.1, we want to bound the distribution of W and conse-
quently the distribution of X. Let Zwd,Xlb

be a standard normal
RV. Then the variance of (ap+1+dp+1)Zwd,Xlb

is (ap+1+dp+1)2

and, therefore, the distribution of (ap+1+dp+1)Zwd,Xlb
bounds

the distribution of W from below via σ2
max as in (12) and (14).

Similarly, let Zwd,Xub
be a standard normal RV. Then the vari-

ance of � a2
p+1+d2

p+1Zwd,Xub
is (a2

p+1+d2
p+1) and, therefore, the

distribution of � a2
p+1+d2

p+1Zwd,Xub
bounds the distribution of

W from above via σ2
min as in (11) and (14). Now that we have

derived bounds on W , we use them to bound the distribution of
X. This is done by replacing the term in brackets, i.e., W , in (21)
by the two bounds. This gives us the two bounds on X:

Xlb = (ao + do) +

p�

j=1

(aj + dj)Zdd,j + (ap+1 + dp+1)Zwd,Xlb

(22)

Xub = (ao + do) +

p�

j=1

(aj + dj)Zdd,j + � a2
p+1 + d2

p+1Zwd,Xub

(23)

where Xlb and Xub are two RVs whose distributions bound the
distribution of X from below (lower-bound) and from above (upper-
bound) respectively. Note that the within-die component of Xlb

corresponds to the case where Zwd,A and Zwd,D1
are assumed to

be totally correlated (ρ = 1), which led to a maximum standard
deviation of (ap+1+dp+1) as explained in section 3.1. Similarly,
the within-die component of Xub corresponds to the case where
Zwd,A and Zwd,D1

are assumed to be uncorrelated (ρ = 0), which

led to a minimum standard deviation of � a2
p+1

+d2
p+1

.

Note that the within-die components of Xub and Xlb, i.e.,
Zwd,Xub

and Zwd,Xlb
have lost any dependence on Zwd,A and

Table 1: Within-die correlation settings for Sum and
Max

Lower Bound Upper Bound
Sum ρ = 1 ρ = 0
Max ρ = 0 ρ = 1

Zwd,D1
. This is not a problem, since our approach does not keep

track of within-die correlation, but always considers it unknown.
Hence, the correlation between Zwd,Xub

(or Zwd,Xlb
) and any

other within-die component of other arrival times will be consid-
ered unknown. This is important, in order to account for any
possible correlation.

At this point, we have handled the sum operation of a gate
delay arc and an arrival time using bounds. For sake of clar-
ity, we will refer to the process of generating a lower bound on
the distribution of the sum, which was described above as LB-
sum. Similarly, we will refer to the process of generating an upper
bound on the distribution of the sum as UB-sum. The next sec-
tion will show how we perform a max operation while keeping the
standard delay model and handling unknown correlations.

4.2 Max Operation
It is well known that the max operator is not linear, which

means that the maximum of two normally distributed RVs is not
necessarily normal. Nevertheless, analytical expressions for the
mean and variance of the maximum of two normally distributed
RVs were determined by Clark in [15]. These expressions were
presented and used in [8, 10], and we will review them next. Let
Z = max(X, Y ), then:

µz = µxT + µy(1 − T ) + θφ � µx − µy

θ � (24)

σ2
z = (µ2

x + σ2
x)T + (µ2

y + σ2
y)(1 − T )

+ (µx + µy)θφ � µx − µy

θ � − µ2
z (25)

where φ(·) is the probability density function (pdf) of the stan-
dard normal, and θ and T are given by:

θ = � σ2
x + σ2

y − 2ρσxσy (26)

T = Φ � µx − µy

θ � (27)

The main idea is that, given the means, variances, and cor-
relation coefficient of two normally distributed RVs X and Y ,
the exact mean and variance of the max Z can be determined.
The max is then approximated by a normal distribution with the
same mean and variance. In this section, we will use a similar
approach and show how we handle the unknown within-die cor-
relation.

Looking back at the gate in Fig. 2, assume that at this point we
have performed the sum operation X = A+D1 and Y = B +D2,
and that we need to max the timing quantities resulting from
these two additions. For this purpose, let C = max(X, Y ); recall
that X and Y are already in the standard delay form:

X = xo +

p�

j=1

xjZdd,j + xp+1 Zwd,X (28)

Y = yo +

p�

j=1

yjZdd,j + yp+1 Zwd,Y (29)

where Zwd,X and Zwd,Y are the within-die components of X and
Y with unknown correlation ρ. We will use the result of sec-
tion 3.2 to derive bounds on the distribution of C = max(X, Y ).
Let Cub and Clb be two RVs defined as follows:

Cub = max(X, Y ) | ρX,Y = ρmax (30)

Clb = max(X, Y ) | ρX,Y = ρmin (31)
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where ρX,Y is the correlation coefficient between X and Y , and
ρmax (ρmin) is the maximum (minimum) possible correlation achieved
by ρX,Y . Using the result from section 3.2, which states that the
distribution of the max of two RVs is an increasing function of
their correlation coefficient, it is easy to see that the distributions
of Cub and Clb, as defined above, will bound the distribution of
C from above and below, respectively.

To determine ρmax and ρmin, we first express ρX,Y in terms of
the sensitivities of X and Y :

ρX,Y =
� p

j=1 xjyj + ρ xp+1yp+1� � p
j=1 x2

j + x2
p+1 � � p

j=1 y2
j + y2

p+1

(32)

Note that ρX,Y is also a function of the unknown within-die
correlation ρ, and it can be shown that ρX,Y is maximum when
ρ = 1 and is minimum when ρ = 0. Therefore we can rewrite (30)
and (31) in the following way:

Cub = max(X, Y ) | ρ = 1 (33)

Clb = max(X, Y ) | ρ = 0 (34)

Now that we have defined Cub and Clb, we express these timing
quantities in the standard delay model to allow further propaga-
tion in the timing graph. To do this, we first use Clark’s ex-
pressions to determine the exact mean and variance of Cub (with
ρ = 1) and Clb (with ρ = 0). Then, we use the approach of [8, 10]
to expand Cub and Clb in the standard delay model. This is done
by preserving the dependence on the global RVs, i.e., Zdd,j , and
then computing the within-die part by matching the total vari-
ance to the exact variance determined from Clark’s expressions.
This approach has become the standard way to approximate the
max operation while preserving the correlation due to the global
die-to-die variables. In the following, we will refer to the process
of generating an upper/lower bound on the distribution of the
max, i.e., Cub/Clb as UB/LB-max.

4.3 Combining Sum and Max
In sections 4.1 and 4.2, we presented ways to find upper and

lower bounds on the distributions of the sum and max of two RVs
that are represented in our standard delay form. Recall that we
are interested in deriving bounds on the distribution of C, the
arrival time at the output of a gate. We know that:

C = max [(A + D1), (B + D2)] (35)

so that C can be determined by a series of two additions, A+D1

and B+D2, and one max involving the results of these additions.
Therefore, in order to determine a lower bound on the distribution
of C, we need to perform the sum and the max in the lower bound
mode, i.e., using LB-sum and LB-max. Similarly, to determine
an upper bound on the distribution of C, we need to perform
our analysis in the upper bound mode, i.e., using UB-sum and
UB-max successively.

Table 1 gives a summary of the different settings of the un-
known within-die correlation ρ that should be used for the sum
and max operations to get a lower/upper bound on the distribu-
tion of delay at the output node of a given gate.

4.4 Block-based Propagation
The rest of our approach is similar to deterministic STA, ex-

cept: the deterministic sum is replaced by the UB and LB sums
as described in section 4.1 and the deterministic max is replaced
by the UB and LB max as described in section 4.2. In this way,
and only in a single pass, we produce an upper and a lower
bound on the distribution of delay at every node in the timing
graph, particularly at the sink node (the circuit primary output).
We are specifically interested in the delay of the sink node since
it is equal to the maximum circuit delay.

Recall that the bounds produced are valid for any within-
die correlation and consequently any circuit placement, since the
analysis was performed under unknown correlation. This allows
designers to be at an advantage, as one is able to predict, at an
early stage of the design flow, the extent of circuit delay variations
without having access to placement information.
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Figure 3: Upper/Lower bounds vs. MC distribu-
tions for circuit c499

5. RESULTS
To test our SSTA technique on realistic circuits, we have im-

plemented it as part of an existing static timing analyzer using
C/C++. A 90nm CMOS library of gates was characterized us-
ing HSPICE in order to determine the sensitivities of gate delay
to various process parameters. We have chosen to vary channel
length (Ln and Lp), and threshold voltage (Vtn and Vtp) of n-
mos and p-mos transistors, and have determined the sensitivities
of gate delays to these process parameters. Also, in all experi-
ments, we have assumed equal within-die and die-to-die process
variation, i.e., the within-die and the die-to-die variance of each
process parameter is equal to 50% of the total parameter variance:

σ2
dd = σ2

wd =
1

2
σ2 (36)

We ran our SSTA analyzer on all of the ISCAS85 benchmark
circuits, and computed bounds on the distribution of the max-
imum circuit delay. In order to validate these bounds, we per-
formed several Monte Carlo (MC) tests under arbitrary within-
die correlations, generated using the grid model [8] for spatial
correlation. We varied the number of grids to increase/decrease
the correlation, and also generated cases of biased correlations
where we increased correlations across some paths (to maximize
variance of delay) or decreased correlations across primary inputs
(to increase the mean of delay).

The results for circuit c499 are shown in figure 3, where the
solid curves represent the upper and lower bounds on the distri-
bution of delay, and the dotted curves represent the distributions
of delay generated through MC analysis under different arbitrary
and biased correlations. It is clear that all MC generated distri-
butions fall between our bounds. Note that for higher percentiles,
the bounds get tighter. Also note that, as stated at the end of
section 3.1, our bounds are only valid above the 50% line. This
is not a problem, since we are mainly interested in high delay
percentiles in order to design for a high yield. The rest of the
ISCAS circuits show similar results but are not shown for lack of
space.

As was mentioned in section 1.2, the purpose of SSTA is to
predict a yield specific timing margin, that is, the margin that
should be left on top of the nominal maximum circuit delay in
order to meet a certain target yield. Using the bounds on the cir-
cuit delay distribution, we can predict a min margin (from upper
bound) and a max margin (from lower bound) by subtracting the
nominal circuit delay from the desired delay percentiles predicted
by the bounds as was explained in (1). Fig. 4 represents a plot to
scale of these margins at a 99% target yield for all ISCAS circuits.
It also shows the margin uncertainty caused by the unknown cor-
relations that needed to be accounted for. Note that in order
to guarantee the target yield, one needs to use the max margin
since it is the one predicted from the lower bound on the distri-
bution of delay, which accounts for “worst” possible correlations.
The min margin is also useful to check if the design is feasible;
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Figure 4: 99% yield Margins

Table 2: Margin Comparison as % of nominal max
delay

ISCAS 85 Max Margin “worst case”
Circuit at 99% yield Margin

c432 14.0% 24.0%
c499 13.2% 27.0%
c880 11.7% 24.4%
c1355 13.8% 24.2%
c1908 13.6% 25.4%
c2670 13.1% 26.6%
c3540 14.4% 26.4%
c5315 12.2% 26.1%
c7552 13.0% 25.3%

recall that since it accounts for “best” possible correlation, it is
the smallest possible margin for the current design. If the min
margin turned out to be unacceptable (too large) for designers,
then the whole design needs to be adjusted. One conclusion to
draw here is that, in the absence of any correlation information,
and at a stage where the circuit has not yet been placed, it is a
powerful asset to have an idea about the range of margins needed
to achieve a desired yield. This allows designers to take early
design decisions, and makes room for early optimization.

Table 2 lists, for all ISCAS circuits, the max margin as a per-
centage of nominal maximum circuit delay, at a 99% target yield.
The largest max margin is about 14%. We have also listed, for
sake of comparison, the margin predicted from “worst case” anal-
ysis on every gate. What we mean by “worst case” analysis is to
set the within-die and die-to-die variations of every process pa-
rameter to their maximum (3σ) and perform deterministic STA.
It is clear that the “worst case” margin is more pessimistic which
shows the need for statistical techniques.

6. “INCOMPLETE CORRELATION INFOR-
MATION”

The analysis presented so far assumes unknown within-die cor-
relations, and hence tries to account for this lack of information by
selecting extreme correlation values for each timing operation as
specified in Table 1. Under such a blind setting, i.e., completely
unknown correlations, the extremes are clearly [0, 1]. However, it
is not unusual that designers have some raw information about
within-die correlations, either through access to floorplanning in-
formation, or through pure historical observations; these cases
will be referred to as “cases of incomplete correlation informa-
tion”. We are mainly interested in a lowest (ρmin) and highest
(ρmax) observed correlations, which, if available, can be safely
used in lieu of the current pair of extremes [0, 1], and the rest
of the analysis remains the same. This can be viewed as an ex-
tension to our work, and we are currently investigating what a
reasonable form of “incomplete correlation information” would
be, from which we can draw ρmin and ρmax.

7. CONCLUSION
In this work, we have a presented a pre-placement statisti-

cal timing analysis technique that can operate under unknown
within-die correlations. Starting from a simple delay model based
on sensitivities to process parameters, we construct a standard
delay model for arrival times, and propagate this model in the
timing graph in a block-based fashion. To account for unknown
correlations, we use bounds on each timing operation (sum and
max) by taking the correlation coefficient to its extremes. We
prove that these bounds are valid for any within-die correlation
and thus any placement, which makes our analysis valid during
pre-placement. We believe that our technique is powerful because
it is able to predict the range of margins needed to achieve a tar-
get yield at a very early stage of the design flow, prior to the
access to correlation information.
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