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ABSTRACT
In general, parameterized timing analysis must be able to han-
dle nonlinear delay models and must account for delay variability
due to both random process parameters (with arbitrary distribu-
tions) and uncertain non-random parameters (which may depend
on the operating environment). Existing statistical static timing
analysis (SSTA) techniques suffer from at least one of the follow-
ing limitations: 1) restricting their modeling capabilities to linear
models, or 2) limiting random variations to Gaussian distribu-
tions, or 3) from their inability to handle uncertain non-random
parameters. In this work, we propose a general mathematical
framework for resolving the max operation in parameterized tim-
ing analysis that can overcome all the above limitations. The
framework is general, in the sense that it can be applied to a gen-
eral class of nonlinear delay models. In addition, it can handle
both statistical process parameters, with arbitrary distributions,
as well as uncertain non-random parameters. The max operator is
efficiently resolved using carefully chosen linear combinations that
preserve the inherent nonlinearity of the delay model used. Our
general technique is tested for two applications, namely multi-
corner timing analysis and nonlinear non-Gaussian SSTA, where
we show that its complexity is linear in both the number of pro-
cess parameters and the size of the circuit. Our results show that,
on average, all timing characteristics of circuit delay are predicted
with less than 2% error for multi-corner analysis, and less than
1% error for SSTA.

1. INTRODUCTION
Process and environmental variations greatly impact circuit de-

lay, and can cause parametric yield loss if not accounted for. With
the traditional approaches to timing verification becoming too
expensive and unable to handle local variations, new alternatives
have emerged in recent years, most of which fall under the heading
of parameterized timing analysis. Essentially, timing quantities
are “parameterized” as a function of the underlying process and
environmental parameters, allowing one to assess the effect of
these parameters on circuit delay, which can be useful in deter-
mining the robustness of the design and its sensitivity to varia-
tions. It is worth mentioning that process variations1, which are
manufacturing variations or mismatches between transistors’ pa-
rameters, are statistical variations and can be modeled as random
variables (RVs), whereas environmental variations, which are op-
erating context variations, are non-random and must be treated
as uncertain parameters. It is understood that both types of
variations must be taken care of in the context of parameterized
timing analysis.

One of the major trends in parameterized timing analysis is
block-based statistical static timing analysis (SSTA) [1, 7, 2, 8,
9, 4, 6, 3], where parameters are modeled as RVs. In the past
few years, several SSTA techniques have been proposed. In [1,
7], linear-time techniques were proposed using linear (first-order)
delay models and Gaussian distributions for process parameters,
which allows the use of tightness probability to resolve the max

operation efficiently. It is expected, however, that nonlinearities
will increase with technology scaling. On one hand, as the mag-
nitude of process variations is increasing, first-order delay mod-
els are no longer accurate. Also, there is evidence that delay is
highly nonlinear in low-voltage modes. On the other hand, pro-
cess variations are not necessarily Gaussian. For example gate
length has an asymmetric non-Gaussian distribution due to vari-
ation in depth of focus (DOF). To address these concerns, several
attempts were made to generalize SSTA in order to handle non-

1Here, we are referring to non-systematic process variations

linear delay models and/or random variables with non-Gaussian
distributions. In [8, 9], despite the use of quadratic models, Gaus-
sian distributions were forced on process parameters. In [6], non-
Gaussian process parameters were addressed, but first-order lin-
ear models were used. Recently, both non-Gaussian parameters
and nonlinear models were addressed simultaneously, with vary-
ing degrees of success. In [4], a sampling (Monte Carlo) based
regression is used to handle the max operation, which increases
the overall runtime; [2] uses expensive multi-dimensional integra-
tion to handle the nonlinear non-Gaussian terms, which hinders
the complexity of the approach; [3] proposes an efficient nonlinear
non-Gaussian SSTA technique with linear complexity. This tech-
nique uses Fourier series and moment matching to approximate
the max operation efficiently. The drawback of this approach is
that it requires subdividing the region of variation of every vari-
ation source, then for every sub-region, the Fourier transform of
every possible distribution used is pre-computed. Although this is
done as a pre-processing step, it can introduce undesired compli-
cations, especially if these distributions are unknown. In addition,
by using moment matching and being distribution dependent, all
these SSTA techniques fail to handle uncertain non-random pa-
rameters, which is a requirement in general parameterized timing.

Another type of parameterized timing analysis is linear-time
multi-corner static timing analysis (STA), which was introduced
in [5]. The idea is to propagate hyperplanes, i.e., affine linear
functions of the process and environmental parameters, in the
timing graph. The max operation is resolved by raising the hy-
perplanes in a way to always follow the maximum corner delay.
In this way, the circuit maximum corner delay is estimated ac-
curately. Although the approach can handle both random and
uncertain parameters, it has several drawbacks: while trying to
be always accurate at the maximum corner delay, the approach
loses accuracy at the other corners. Consequently, the sensitivity
to process variations is lost and this approach can not be used for
optimization because the spread of the circuit delay is not accu-
rately estimated. In addition, the analysis is restricted to linear
delay models.

In this work, we propose an efficient and general parameterized
timing analysis technique that can handle nonlinear delay mod-
els and account for delay variability due to both random process
parameters with arbitrary (and possibly unknown) distributions
and uncertain non-random parameters (that typically may de-
pend on the operating environment). Our technique is based on
a novel and efficient method to resolve the nonlinear max oper-
ator by either bounding or approximating it by a linear model,
while preserving the inherent nonlinearity of the delay model it-
self. We have tested our technique within two timing verification
frameworks, namely multi-corner timing analysis and nonlinear
non-Gaussian SSTA, and have shown that, at least when using
quadratic delay models, the complexity of the approach is linear
in both the number of process and environmental parameters and
the circuit size. Our results show that the spread of the maxi-
mum circuit delay is accurately captured, whereby, on average,
the maximum and minimum corner delays are predicted with less
than 2% error for multi-corner analysis. As for nonlinear non-
Gaussian SSTA, all timing characteristics are predicted with less
than 1% average error.

2. GENERAL PARAMETERIZED TIMING
In general, the delay of gates and interconnects is a nonlin-

ear function that can be approximated using a delay model that
depends on the underlying process and environmental variations.
As stated earlier, linear (first-order) and quadratic (second-order)
delay models have been previously used in the literature. Never-
theless, for the time being, we will work under the assumption of



an arbitrary delay model; we will show later that our approach
can be used with a general class of nonlinear delay models. We
can write the delay D of gates or interconnects as follows:

D = fD(X1, · · · , Xp) (1)

where fD(·) is an arbitrary delay model, and Xi’s represent pro-
cess and environmental variations. Recall that not all variations
can be modeled as random variables. While some parameters are
indeed random such as channel length or threshold voltage, others
are not statistical but rather uncertain parameters, such as tem-
perature or supply voltage. These parameters typically depend
on the operating environment. We will show that our analysis is
indifferent to whether parameters are random or uncertain and
thus the approach can be applied for both types of variations.

The benefit of parameterized timing analysis is in elevating the
explicit delay dependence on process and environmental varia-
tions, i.e., the delay model, from the stage level to the circuit
level, allowing one to assess the effect of these parameters on the
total circuit delay. In block-based timing analysis, this is done by
propagating timing quantities in the timing graph in topological
order, using a sequence of basic operations, such as add opera-
tions on arrival times and arc delays, and max operations on the
timing quantities resulting from those additions in order to get
the output arrival time. If these basic operations do not distort
the delay model at hand, then circuit delay can be represented in
the same delay model. Unfortunately, it is known that the max is
nonlinear. The novelty of this work is in resolving the nonlinear
max operator using a linear model, while preserving the inherent
nonlinearity of the delay model.

In the following section, we propose two methods to efficiently
resolve the max : first by using upper and lower bounds, and
second by using an approximation that minimizes the square of
the error. Our methods operate irrespective of the delay model
used provided it falls in a general class of nonlinear functions;
they also handle random parameters with arbitrary distributions,
as well as uncertain parameters. In the rest of the paper, we
will refer to random and uncertain parameters simply as pro-
cess/environmental parameters.

3. MATHEMATICAL FRAMEWORK
Let F be a general class of (possibly) nonlinear functions that

obey the following three properties,

1. F is closed under linear (and/or affine) operations

2. ∀f(·) ∈ F , f(·) is bounded

3. ∀f(·) ∈ F , f(·) can be maximized and minimized efficiently

and assume that all timing quantities are represented using delay
models that are in F . For example, timing quantity A is modeled
as follows:

A = fA (X1, · · · , Xp) = fA(X) ∈ F (2)

where X = [X1, · · · , Xp] represent process/environmental param-
eters.

The first property essentially states that linear operations (such
as addition or subtraction) will result in functions that belong
to F ; in other words, F “survives” linear operations, that is, if
A = fA(X) ∈ F and B = fB(X) ∈ F , then C = aA + bB + c,
where [a, b, c] ∈ R, will be such that C = fC(X) ∈ F . Note
that all polynomial models satisfy this property. The second and
third properties imply that the delay model, and consequently
any timing quantity expressed using the model, is bounded by a
minimum and a maximum value over the space of parameters, i.e,
Amin ≤ A ≤ Amax, where:

Amin = min
X

fA(X) and Amax = max
X

fA(X) (3)

Note that the second property is trivial if we recall that all phys-
ical process and environmental parameters are bounded, which
implies that delays are also bounded. The third property is only
forced to guarantee that our approach, which requires maximizing
and minimizing the delay model in order to operate, is compu-
tationally efficient. For instance, if maximizing/minimizing the

Dmin Dmax

Max(D,0)
Upper bound

Y

D

Figure 1: Upper bound on Y

delay model is linear (in the process/environmental parameters),
then the overall complexity of our approach is linear in the cir-
cuit size and process/environmental parameters. By property 1,
it is clear that the add operation, being linear, will maintain their
membership in F as delay models are propagated during timing
analysis. However, the max operation, being non-linear in gen-
eral, is the crux of the problem, and we now focus on it.

3.1 Max Operation
Let A and B be two timing quantities expressed using delay

models in F . Let C = max(A, B) be the maximum of A and
B. Since the maximum operator is, in general, nonlinear, then C
is not necessarily expressible using a delay model in F . We are
interested however in finding (1) two bounds on C, Cl and Cu,
and (2) an approximation Ca, which can all be expressed using
functions in F , and such that:

Cl ≤ C ≤ Cu (4)

Ca ≈ C (5)

where Cl = fCl
(X) ∈ F , Cu = fCu

(X) ∈ F , Ca = fCa
(X) ∈ F .

Notice that:

C = max(A, B) = B + max([A − B], 0) (6)

= B + max(D, 0) = B + Y (7)

where D = A − B and Y = max(D, 0).
Recall from property 1 that F survives linear operations (in-

cluding subtraction), which means that D = fD(X) ∈ F . By
properties 2 and 3, D is bounded and varies between [Dmin, Dmax]
where Dmin ≤ Dmax. Depending on the signs of these extreme
values of D, we can identify two cases in which the max operator
is either linear or nonlinear. If Dmin ≥ 0 then D ≥ 0 ∀X, and
Y = D. In this case, C = A since A completely dominates B.
The converse happens when Dmax ≤ 0; in this case, C = B, since
B completely dominates A. The more interesting case is when
the max is nonlinear, which can be identified when Dmax ≥ 0
and Dmin ≤ 0. In this case, which we will refer to by saying that
A and B are co-dominant, Y = max(D, 0) can not be expressed
using a delay model from F . We will now show how we can bound
and approximate Y using functions that belong to F .

3.2 Bounding the Max

3.2.1 Upper bound
Fig. 1 shows a broken solid line representing a plot of Y =

max(D, 0) between Dmin and Dmax, the extreme values of D. We
are interested in finding a linear function of D that is guaranteed
to upper bound Y (recall, since D ∈ F , then any linear function
of D is also a member of F). The dashed line represents an affine
function of D which upper bounds Y and is exact at Dmax and
Dmin. Note that the bound is closer to the exact max around
Dmin and Dmax where either A or B dominates. The equation
for Yu, the upper bound on Y , can be expressed as follows:

Yu =
Dmax

Dmax − Dmin

(D − Dmin) (8)
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Figure 2: Lower bound Yl = D
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Figure 3: Lower bound Yl = 0
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Figure 4: Lower bound on Y

By replacing Y with Yu in (7), we get an upper bound Cu on C:

Cu = B + Yu = B +
Dmax

Dmax − Dmin

([A − B] − Dmin)

=

(

Dmax

Dmax − Dmin

)

A −

(

Dmin

Dmax − Dmin

)

B −
Dmax · Dmin

Dmax − Dmin

(9)

Note that Cu = fCu
(X) ∈ F since it is a linear combination of

A and B (property 1). To gain a more intuitive understanding of
the above relationship, let us define the following terms:

• S = Dmax − Dmin to be the “spread” of D

• SA = Dmax to be the “strength” of A, i.e. the region where
A dominates B (D ≥ 0)

• SB = −Dmin = |Dmin| to be the “strength” of B, i.e. the
region where B dominates A (D ≤ 0)

• α = SA

S
is the fraction of space where A dominates B

• (1 − α) = 1 − SA

S
= SB

S
is the fraction of space where B

dominates A

Then, using the above notations, we can rewrite Cu as follows:

Cu = αA + (1 − α)B + α(1 − α) · S (10)

where A and B are both weighted by their “extent of dominance”,
so to speak, and the last term accounts for the region where both
A and B are dominant, hence the product of α and (1 − α).

3.2.2 Lower bound
Similarly, we would like to find a lower bound on Y in order to

find a lower bound C = max(A, B). Looking back at Fig. 1, it is
easy to see that any function in the form Yl = aD, where 0 ≤ a ≤
1, is a valid lower bound on Y = max(D, 0) and can be expressed
using a function in F (property 1). In practice, we have found
that limiting the choice of Yl to one of three functions depending
on the values of Dmin and Dmax is sufficient. Figures 2-4 depict
these three cases. In addition to showing Y in solid line and upper
bound Yu in dashed line, these figures show the lower bound Yl

to be one of the following:

Yl =











D if |Dmax| � |Dmin|

0 if |Dmax| � |Dmin|
(

Dmax

Dmax−Dmin

)

D otherwise

(11)

where the slope of Yl in the third case is equal to that of the
upper bound Yu. Note that � means “much larger than”, and it
was set to be at least 4 times larger in our simulations.

Replacing each case of the above in (7) gives us Cl, the lower
bound on C:

Cl =











A if |Dmax| � |Dmin|

B if |Dmax| � |Dmin|

αA + (1 − α)B otherwise

(12)

where α is as defined in (10). Therefore, Cl = fCl
(X) ∈ F since

it is a linear combination of A and B (property 1).

3.3 Least Squares Max Approximation
In the previous sections, we have shown how we can determine

upper and lower bounds on C = max(A, B) using a carefully
chosen linear combination of A and B. We are now interested
in finding an expression Ca that approximates C = max(A, B)
and can be expressed using a function that belongs to F . To do
that, it suffices to approximate Y = max(D, 0) in (7) by a linear
approximation Ya in the form Ya = aD + b. We will choose a
and b in such a way to minimize the sum of the squares of the
error inside the interval [Dmin, Dmax]; we call this approximation
the least squares max approximation. It is understood that this
approximation is applied only when the max is nonlinear, i.e., in
the case of co-dominance.

Let E be the total error incurred by the above approximation.
Then we can express E as follows:

E =

∫ Dmax

Dmin

(aD + b − max(0, D))2 dD (13)

We now determine the parameters a and b that minimize E.
To do that, we first determine the partial derivatives of E, ∂E

∂a

and ∂E
∂b

, with respect to a and b, then we set the derivatives to
zero and solve for a in b. This gives us the following two equations
in a and b:

2
(

D3

max − D3

min

)

a + 3
(

D2

max − D2

min

)

b = 2D3

max (14)
(

D2

max − D2

min

)

a + 2 (Dmax − Dmin) b = D2

max (15)

Finally, a and b can be easily obtained by solving the system of
equations (14) and (15), which result in:

a =
D2

max(Dmax − 3Dmin)

(Dmax − Dmin)3
and b =

2D2
maxD2

min

(Dmax − Dmin)3
(16)

Ca can be easily obtained by replacing Y with Ya = aD + b
in (7). It is easy to see that Ca = fCa

(X) ∈ F since it is a linear
combination of A and B which are in F (property 1). Fig. 5
shows the true max, Y = max(D, 0) in solid line, and the least
squares max approximation, Ya = aD + b, in dashed line.

3.4 Summary
In this section, we have presented a mathematical framework

that resolves the nonlinear max operator in two ways; either by
using bounds, or by using an approximation that minimizes the
error with the true max. This framework is simple and general,
in the sense that it can be applied to a general class of nonlin-
ear delay models, and it uses simple linear operations, allowing
to keep and propagate the same delay model to later stages. In
addition, the analysis is indifferent (1) to whether the variation
sources are modeled as random variables or uncertain variables,
or (2) to the types of distributions used, when the variations are
random. In spite of its apparent simplicity, we will now demon-
strate that this approach is extremely effective and competitive in
dealing with two difficult application areas: multi-corner timing
analysis as well as nonlinear non-Gaussian SSTA. Crucially, this
approach can also deal with the “mixed” case, which is typical
of practical situations, where some variables are random while
others are simply uncertain.
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Figure 5: Least squares Max approximation

4. MULTI-CORNER STA
In corner case analysis, circuit timing must be checked at var-

ious process/environmental corners, which are typically extreme
values of process/environmental parameters. This approach to
timing verification is exponential in the number of varying pa-
rameters as multiple runs of STA are needed to cover all possi-
ble corners in order to determine the maximum and minimum
corner delays. Instead, in practice, using parameterized timing,
where timing quantities are expressed using a variational delay
model that depends on process and environmental parameters,
one hopes to do this task with only one traversal of the timing
graph; this is what we call linear-time multi-corner STA.

In this section, we demonstrate how our simple framework can
handle this otherwise complex analysis in a simple and elegant
fashion. To our knowledge, and unlike [5], where the approach
is restricted to linear delay models, we are the first to handle,
in linear-time, multi-corner STA with linear and nonlinear delay
models alike. In order for our framework to hold, all we need
to show is that the three properties of section 3 are satisfied.
For illustration, we will demonstrate our approach for linear and
quadratic models.

4.1 Linear and Nonlinear Models
Let F1 and F2 be the sets of linear and quadratic delay models

respectively. Let A be a timing quantity such that:

A =

{

ao +
∑p

i=1
aiXi if A ∈ F1

ao +
∑p

i=1
(aiXi + âiX

2

i ) if A ∈ F2

(17)

where ao is the nominal delay of A, and ai and âi are first-order
and second-order sensitivities to Xi. Note that Xi’s are arbitrary
variation sources (random/uncertain variables) that are bounded,
and without loss of generality, assume that −1 ≤ Xi ≤ 1.

It can be easily shown that property 1 holds, i.e., both F1 and
F2 survive linear operations. In fact, if [A, B] ∈ F1, then C =
aA + bB + c also ∈ F1. The same applies for F2. Property 2 also
holds, since Xi’s are bounded. As for property 3, both the linear
and the quadratic model can be easily maximized and minimized
in O(p) time, where p is the number of process/environmental
parameters; if A ∈ F1, then:

Amin = ao −

p
∑

i=1

|ai| and Amax = ao +

p
∑

i=1

|ai| (18)

whereas, if A ∈ F2, then maximizing and minimizing A over the
space of variations requires maximizing and minimizing the indi-
vidual quadratic terms, g(Xi) = aiXi + âiX

2

i . In the Appendix,
we show how this can be done analytically depending on whether
g(Xi) is monotone in [−1, 1] or not. Therefore maximizing and
minimization A is linear in the number of parameters, since there
are p quadratic terms.

Given that all the required properties are satisfied by F1 and
F2, the methods described in sections 3.2 and 3.3 for resolving
the max operation can be applied to demonstrate multi-corner
STA with linear and nonlinear delay models. The timing graph is
traversed topologically, and our bounding/approximation scheme
is applied to handle the max operation at every stage. This results

Table 1: Our methods compared to Corner Analysis
Circuit Lower bound Upper bound LS Approx

Min Max Min Max Min Max
c432 0.941 0.959 1.067 1.032 1.006 0.999
c499 0.930 0.966 1.026 1.022 0.982 0.996
c880 0.935 0.961 1.103 1.059 1.018 1.012
c1355 0.928 0.946 1.153 1.097 1.041 1.030
c1908 0.945 0.960 1.122 1.077 1.031 1.016
c2670 0.929 0.951 1.037 1.013 0.983 0.982
c3540 0.932 0.951 1.070 1.037 1.001 0.993
c5315 0.936 0.949 1.115 1.057 1.022 0.999
c6288 0.912 0.932 1.183 1.120 1.051 1.031
c7552 0.942 0.953 1.153 1.082 1.042 1.012

Avg Error -6.7% -4.7% 10.3% 5.9% 1.8% 0.7%

in expressing the arrival time at the sink node, i.e., the maximum
circuit delay, using the delay model at hand. Once this expression
is obtained, it can be easily maximized and minimized as shown in
this section to bound/approximate the maximum and minimum
corner delays of the maximum circuit delay.

4.2 Results
We have tested our approach by first characterizing a 90nm

CMOS library using HSPICE in order to determine the sensitivi-
ties of gate delay to various process parameters. We have chosen
to vary channel length (Ln and Lp), and threshold voltage (Vtn

and Vtp) of NMOS and PMOS transistors, and have determined
the sensitivities of gate delays to these process parameters. The
variation information was specified in the technology files. Our
technique was then implemented using C/C++ and was tested on
the ISCAS85 benchmark circuits. For each circuit, the maximum
circuit delay is determined at various corners using exhaustive
corner case analysis, and the true maximum and minimum cor-
ner delays are recorded. Our framework is then applied, using (1)
the lower bound technique, (2) the upper bound technique, and
(3) the least squares approximation, to predict the maximum and
minimum corner delay for every circuit. The results are summa-
rized in Table 1, where the values shown are normalized to the
true minimum and maximum corner delays respectively, deter-
mined by corner case analysis. For example, the second column
gives a lower bound on the minimum (over all corners) circuit de-
lay, and the last column gives an approximation of the maximum
(over all corners) circuit delay. The closer the values are to 1 the
more accurate they are. Note that, unlike [5] where the method
is only accurate in predicting the circuit delay at the maximum
corner, we can accurately estimate the maximum circuit delay at
both the minimum and the maximum corners, so that the spread
of the maximum circuit delay is well-captured. In addition, our
approach is not restricted to linear models. The last row of the
table shows the average percent error for every approach; the
maximum and minimum corner delays can be approximated up
to 0.7% and 1.8% respectively.

5. NONLINEAR NON-GAUSSIAN SSTA
We now demonstrate nonlinear non-Gaussian SSTA, using a

general quadratic delay model that depends on process variables
modeled as RVs with arbitrary distributions, as well as uncertain
non-random parameters. As has become typical in the SSTA
literature [1], we assume that one can deal with within-die corre-
lations using some simple scheme by which correlation is resolved
based on the physical location of a cell on the layout surface. As a
result, when it comes to those variations which are random vari-
ables (as opposed to the uncertain non-random parameters), we
assume that we are only dealing with global variations and purely
random variations. Before proceeding with the details, we first
show how the three properties of the delay model are satisfied in
order for our framework to hold.

5.1 Delay Model
Assume that gate delay D is expressed using a quadratic model,



F , as follows:

D = do +

p
∑

i=1

(diXi + d̂iX
2

i ) + drXDr
(19)

where do is the nominal delay, di and d̂i are first-order and second-
order sensitivities to Xi, and dr is the sensitivity to the purely
independent random variation XDr

specific to D.
Because our framework is indifferent to whether parameters

are random or uncertain, there is no restriction on Xi’s, which
can be either RVs or uncertain non-random parameters alike. If
it is random, Xi is modeled as an independent zero mean RV
with an arbitrary distribution, such that −1 ≤ Xi ≤ 1. This can
be any distribution, including common cases such as a truncated
Gaussian (normal) distribution, a uniform distribution, etc. If it
is uncertain, Xi is simply assumed to vary in [−1, 1]. Note that,
in both case, Xi’s are global variation sources that are shared
by all gate delays and timing quantities. As for the purely in-
dependent random variation XDr

, we will assume that it can be
modeled as a standard normal distribution with zero mean and
unit variance. This is because XDr

are typically the result of
various independent random effects that add up and converge to
a normal distribution by the central limit theorem.

5.1.1 Add Operation
The add operation and generally any linear operation can be

easily performed without destroying the above quadratic model.
Assume that [A, B] ∈ F :

A = ao +

p
∑

i=1

(aiXi + âiX
2

i ) + arXAr
(20)

B = bo +

p
∑

i=1

(biXi + b̂iX
2

i ) + brXBr
(21)

then C = aA+bB+c can be expressed using the quadratic model
as follows:

C = (aao + bbo + c) +

p
∑

i=1

[

(aai + bbi)Xi + (aâi + bb̂i)X
2

i

]

+ (aarXAr
+ bbrXBr

)

= co +

p
∑

i=1

(ciXi + ĉiX
2

i ) + crXCr

where cr =
√

(aar)2 + (bbr)2, since XAr
and XBr

are indepen-
dent standard normal RVs, and XCr

is an independent standard
normal RV specific to C. Therefore, F satisfies property 1.

5.1.2 Max Operation
As explained in section 3, the max operation C = max(A, B)

is resolved by first subtracting A and B, i.e., D = A − B and
then bounding/approximating C using linear combinations of A
and B; recall that the coefficients of the linear combinations are
functions of the minimum and maximum values of the difference
D, i.e., Dmin and Dmax.

We have already shown how to perform linear operations using
the quadratic model. Hence, in order to apply the results of
section 3, it remains to show how the quadratic model is bounded
and can be efficiently maximized and minimized over the space
of variations (properties 2 and 3). Assume that we have already
performed the subtraction D = A − B, and D is given by:

D = do +

p
∑

i=1

(diXi + d̂iX
2

i ) + drXDr
(22)

Since Xi’s and XDr
are all independent, then the maximum Dmax

and minimum Dmin of D are achieved when all variations are
maximized and minimized separately. In other words, we need to
maximize and minimize the quadratic terms and the independent
random term.

The quadratic terms g(Xi) = diXi + d̂iX
2

i can be analytically
maximized and minimized as shown in the Appendix. As for
the purely independent random variation XDr

, recall that it is
modeled as an RV with standard normal distribution, which sug-
gests that XDr

can take values in −∞ to +∞. This, however,
is not realistic, and it is usually the case that standard normal
distributions are truncated between [−k, k], where k represents
multiple standard deviations. As an example, setting k = 3 will
cover 99.73% of the standard normal distribution. As a result,
the maximum and minimum values contributed by the indepen-
dent random component are kdrand −kdr respectively. Hence,
by combining the above two contributions, Dmin and Dmax can
be easily determined. Having shown that the three properties of
section 3 are satisfied by F , we use the approaches in sections 3.2
and 3.3 to resolve the max operation.

5.2 Complexity Analysis
We have shown that both add and max operations are resolved

using simple linear operations involving the delay model; in addi-
tion, the coefficients of the linear combination needed for the max

operation involve a subtraction and a maximization/minimization
performed on the model. If p is the total number of variation
sources, then performing an addition or a subtraction is O(p);
also, performing a maximization/minimization of the model is
O(p). This means that both add and max operations are linear in
the number of variation sources. Therefore, the overall complex-
ity of a block-based SSTA technique using the above operations
is O(pn), where n is the circuit size.

5.3 Results
We have implemented our nonlinear non-Gaussian block-based

SSTA technique using C/C++ and have tested it on the ISCAS85
benchmark suite. Similarly to [3], and as a proof of concept, we
have generated the variation information randomly. We have cho-
sen the coefficients of the quadratic delay model in such a way that
every variation source causes 10% to 20% deviation in the nominal
delay. In addition to the purely random variation which follows a
truncated Gaussian distribution, 4 global variation sources Xi’s
were used, each following either a truncated Gaussian, a uniform,
or a triangular distribution as shown in Fig. 6. The accuracy of
our technique is compared to Monte Carlo analysis with 10, 000
runs. All delays reported are normalized to the nominal circuit
delay. Fig. 7 shows a plot of the cumulative distribution func-
tions (CDF) for benchmark c1355 for the case of variations with
a uniform distribution, generated using our SSTA technique and
compared to Monte Carlo simulation. Note that the bounds are
valid and accurate, and the least squares (LS) approximation is
very close to the true distribution. Table 2 compares the follow-
ing timing metrics: the 95 and the 99 delay percentiles, and the
ratio of standard deviation to the mean σ/µ, generated using the
least squares approximation (LS-SSTA) to Monte Carlo analysis,
for Gaussian, uniform, and triangular distributions. The results
show that our approach is consistently accurate for all metrics
and different distributions, with an average error less than 1%.

5.4 Summary
We have shown how our simple framework can be applied in

the context of SSTA. The resulting approach is, to our knowl-
edge, the first simple and accurate linear-time technique that is
general enough to handle nonlinear delay models, random vari-
ations with arbitrary distributions, and uncertain non-random
parameters. In the mixed case, where one is dealing with both
random variables and uncertain variables, the overall (random)
circuit delay and the interesting statistical metrics (like mean,
variance, percentiles) are effectively functions of the uncertain
variables. If this functional dependence is complex, then the de-
sirable worst-case values (of the interesting statistical metrics)
must be found by a process of search or optimization. This type
of follow-up analysis is beyond the scope of this paper, and is
the topic of our continued work under this project. For now, the
above results were obtained at a specific setting (the nominal) of
the uncertain variables. This does not diminish the value of the
results, because one strength of our existing approach is that it



Table 2: Least Squares SSTA vs Monte Carlo analysis for Gaussian, Uniform, and Triangular distributions
Gaussian Distributions Uniform Distributions Triangular Distributions

LS-SSTA Monte Carlo LS-SSTA Monte Carlo LS-SSTA Monte Carlo
Circuit 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ 95% 99% σ/µ

-tile -tile % -tile -tile % -tile -tile % -tile -tile % -tile -tile % -tile -tile %
c432 1.20 1.30 10.7 1.20 1.30 10.6 1.37 1.45 18.4 1.37 1.45 18.4 1.26 1.36 13.2 1.26 1.36 13.3
c499 1.22 1.31 9.35 1.19 1.28 9.18 1.38 1.48 15.6 1.36 1.46 15.9 1.27 1.37 11.4 1.25 1.34 11.4
c880 1.20 1.28 8.98 1.19 1.27 9.07 1.35 1.46 15.1 1.34 1.44 15.1 1.25 1.34 11.0 1.23 1.32 11.0
c1355 1.17 1.24 7.86 1.16 1.23 7.76 1.30 1.39 13.4 1.30 1.38 13.6 1.21 1.29 9.67 1.21 1.28 9.78
c1908 1.19 1.28 9.95 1.19 1.27 9.75 1.35 1.46 16.8 1.35 1.46 16.7 1.24 1.34 12.2 1.25 1.34 12.1
c2670 1.22 1.32 11.7 1.21 1.32 11.5 1.39 1.49 19.8 1.40 1.48 19.8 1.28 1.39 14.3 1.28 1.39 14.2
c3540 1.22 1.32 9.52 1.20 1.29 9.64 1.37 1.45 16.2 1.36 1.43 16.4 1.28 1.37 11.7 1.25 1.35 11.7
c5315 1.22 1.33 11.6 1.22 1.32 11.6 1.39 1.48 19.8 1.40 1.48 19.9 1.28 1.39 14.3 1.27 1.38 14.1
c6288 1.21 1.30 9.56 1.19 1.28 9.50 1.37 1.46 16.3 1.36 1.45 16.5 1.26 1.35 11.8 1.25 1.35 12.0
c7552 1.22 1.33 11.7 1.22 1.33 11.7 1.40 1.48 19.8 1.39 1.48 19.7 1.28 1.38 14.3 1.27 1.38 14.2

AvgErr% -0.80 -0.80 -0.51 - - - -0.37 -0.54 0.55 - - - -0.68 -0.59 0.04 - - -
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Figure 6: Truncated Gaussian, uniform, & triangu-

lar distributions
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distributions

provides an explicit dependence of the total circuit delay on the
uncertain parameters, so that one does not simply have to repeat
the overall SSTA for different settings.

6. CONCLUSION
In this work, we have proposed a general parameterized tim-

ing analysis technique that can handle nonlinear delay models
and account for delay variability due to both random process pa-
rameters with arbitrary distributions and uncertain non-random
parameters which depend on the operating environment. Central
to this technique is a novel and efficient method to resolve the
max operator by bounding it and approximating it using linear
models, while preserving the inherent nonlinearity of the delay
model itself. We have tested our technique within two timing
verification frameworks, namely multi-corner timing analysis and
nonlinear non-Gaussian SSTA, and have shown that the complex-

ity of the approach is linear in both the number of process and
environmental parameters and the size of the circuit. Our results
show that, on average, all timing characteristics of circuit delay
are predicted with less than 2% error for multi-corner analysis,
and less than 1% error for SSTA.
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APPENDIX
For completeness, we show the (simple) process by which one can
maximize or minimize a quadratic function of the form, g(x) =
ax + bx2, where −1 ≤ x ≤ 1, and [a, b] ∈ R. Recall that the min-
imum/maximum is at xv = −a/(2b). If xv falls outside [−1, 1]
then g(x) is monotone in [−1, 1], so that its maximum and mini-
mum occur at the domain boundaries:

max
x

g(x) = max(g(−1), g(1)) = |a| + b

min
x

g(x) = min(g(−1), g(1)) = −|a| + b

On the other hand, if xv falls in [−1, 1], then g(x) is not monotone
in [−1, 1], i.e., the maximum and minimum can be either at the
vertex or at the boundaries of the domain:

max
x

g(x) = max(g(−1), g(1), g(xv)) = max(|a| + b , −a2/4b)

min
x

g(x) = min(g(−1), g(1), g(xv)) = min(−|a| + b , −a2/4b)

These operations can all be done efficiently in constant time.


