
Quantifying Robustness Metrics in Parameterized Static
Timing Analysis ∗

Khaled R. Heloue
ECE Department

University of Toronto
Toronto, Ontario, Canada

khaled@eecg.utoronto.ca

Chandramouli V. Kashyap
Strategic CAD Labs

Intel Corporation
Hillsboro, OR 97123

chandramouli.v.kashyap@intel.com

Farid N. Najm
ECE Department

University of Toronto
Toronto, Ontario, Canada

f.najm@utoronto.ca

ABSTRACT
Process and environmental variations continue to present signif-
icant challenges to designers of high-performance integrated cir-
cuits. In the past few years, while much research has been aimed
at handling parameter variations as part of timing analysis, few
proposals have actually included ways to interpret the results of
this parameterized static timing analysis (PSTA) step. In this
paper, we propose a new post-variational analysis metric that
can be used to quantify the robustness of designs to parameter
variations. In addition to helping designers diagnose if and when
different nodes can fail, this metric can give insights on what to
fix, by identifying nodes with small robustness values and pro-
ceeding to fix those nodes first. Inspired by the rich literature on
design centering, tolerancing, and tuning (DCTT), we use dis-
tance as a measure for robustness. Our analysis thus determines
the minimum distance from the nominal point in the parameter
space to any timing violation, and works under the assumption
that parameters are specified as ranges rather than statistical dis-
tributions. We demonstrate the usefulness of this distance-based
robustness metric on circuit blocks extracted from a commercial
45nm microprocessor.

1. INTRODUCTION
With the continuous scaling of integrated circuits, the control

over process and environmental parameters has become increas-
ingly difficult. As a result, PVT (process/voltage/temperature)
parameters are found to exhibit large deviations from their nom-
inal values, which causes circuit delay variations and possibly
timing failures. Therefore, one needs to account for variability as
part of the timing verification step. For ASICs, corner case anal-
ysis is traditionally used, whereby timing is verified at all process
corners corresponding to extreme settings of PVT parameters.
For microprocessors, the resulting chips are typically “binned”
at different frequencies to account for variations. In the recent
past, this problem has become worse because, not only has the
number of parameters subject to variations increased, leading to
a larger number of corners, but also the within-die (local) varia-
tions have become more significant, and they cannot be handled
using traditional corner analysis.

With the traditional approaches to timing verification becom-
ing too expensive and unable to handle local variations, new al-
ternatives have emerged in recent years. These techniques have
focused on assessing the effects of parameter variations on timing
as part of the timing analysis step. All these techniques consider
circuit delay to be dependent on a number of PVT parameters,
and therefore can be collectively described under the heading of
parameterized static timing analysis (PSTA). Statistical static
timing analysis (SSTA) is one example of PSTA, in which param-
eters are modeled as random variables with known distributions
and correlations [1, 2], and timing yield is estimated from the cor-
responding distribution of circuit delay. In practice, however, the

∗
This work was done while the first author was visiting Intel

Corporation.

statistical distributions and correlations of some PVT parameters
may be unknown or unavailable. Also, some parameters, such as
supply voltage or temperature, are not truly random and are
better modeled as simply unknown or uncertain variables. Thus,
some alternative PSTA techniques have also been proposed, such
as multi-corner static timing analysis (MCSTA). MCSTA models
parameters as uncertain variables within given or known bounds,
and attempts to verify circuit timing at all corners in a single
timing run [3, 4]. Although the circuit delay is captured accu-
rately at the worst case corner, the same cannot be said about
other points in the parameter space. Recently, some PSTA tech-
niques [5, 6] have addressed this limitation by proposing to cap-
ture, in a single timing run, circuit delay exactly at all points in
the PVT space. This can be done by propagating in the timing
graph all the paths that can become dominant (critical) at any
setting of the PVT parameters, and pruning all other redundant
paths. In any case, the end result of all PSTA techniques is to
provide designers with parameterized timing quantities (arrival
times and/or slacks) which are expressed as functions of PVT
parameters.

While a large body of research has focused on the analysis
step, very few proposals have presented clear answers for how to
interpret and utilize the results of PSTA in design. The crux of
the matter, and this is what motivated PSTA in the first place, is
that the goal is to produce a safe design, in the sense that it must
be robust to variations. In order to do that, an essential require-
ment is to be able to measure the safety or robustness of a given
design, i.e., its susceptibility to failure due to variations. But how
does one formally define robustness? How does one quantify the
susceptibility to failure and determine how far a nominally safe
design is from the “cliff”? Finally, what does one need to do in
order to improve the robustness of a given design? One way to
quantify robustness, which is used in SSTA, is to use the notion
of yield to assess the safety of timing quantities. Indeed, yield
is a good measure of robustness - it provides designers with the
probability of meeting/violating the timing constraints. However,
yield analysis via SSTA requires that all parameters be modeled
as random variables with known distributions and correlations.
As we noted earlier, the distributions and correlations of PVT
parameters may not always be available or fully specified. Hence,
for those PSTA techniques where parameters are either i) mod-
eled as uncertain (non-random) variables in specified ranges, or
ii) where distributions are unknown or unavailable, we need to
define some other metric which can be used to assess the robust-
ness of timing quantities resulting from these methods.

In this paper, we hope to answer some of the above open ques-
tions as we present a new metric that can be used to quantify the
robustness of a design to variations in the case where parameters
are given as ranges rather than fully specified distributions. Our
method processes the complex parameterized timing quantities
resulting from PSTA so to extract useful information about the
susceptibility to failure. We will define robustness as the min-
imum distance, from the nominal point in the PVT parameter
space, to any other point where a timing violation occurs. Such
distance-based metrics have been used in a different context in the

realm of design centering, tolerancing, and tuning (DCTT) [7, 8].
In DCTT, optimal nominal values for some designable param-
eters are selected so that the distance from the nominal point
(center point of the design) to the boundary of the acceptabil-
ity region is maximized in the hope of maximizing the process
yield. While traditional DCTT is performed in the space of de-
sign parameters, our distance metric is measured in the PVT
space. However, being expensive and relying on statistical sim-
ulations to determine the acceptability region of the designable
parameters, design centering has only been traditionally applied
to small, typically analog, circuits, not to large digital integrated
circuits. In this work, we extend the use of such distance metrics
to the timing verification of large logic circuits. With this new
distance-based robustness metric at their disposal, designers can
not only diagnose if and when different nodes can fail, but also get
insight on what to fix. This is possible by ranking different nodes
according to their robustness, thus identifying the least robust
nodes and proceeding to fix those nodes first. We also show that
our robustness analysis can handle parameterized timing quanti-
ties resulting from either exact [5, 6] or bounded/approximate [3,
4] PSTA techniques.

The rest of this paper proceeds as follows. Section 2 covers
some basic terminology and describes how parameterized tim-
ing quantities are represented in PSTA. In Section 3, we cover
robustness analysis in detail, first by comparing the notions of
robustness and sensitivity, and then by defining robustness using
normed distances in higher dimensions. We show some results in
Section 4 and conclude in Section 5.

2. PRELIMINARIES
We will review the terminology used in static timing analysis

(STA) and describe how STA is extended to handle PVT varia-
tions as part of parameterized static timing analysis (PSTA).

2.1 Nominal Static Timing Analysis
In static timing analysis, the circuit under study is represented

as a timing graph by creating a graph node for every electrical
net in the circuit (primary input, output, or internal node) and
a graph edge for every timing arc (logic gate input/output pair).
The weight of every edge corresponds to the delay value from
that input pin to the output pin. The arrival time at the output
of a gate is computed first by adding the input arrival times to
their corresponding timing arc delays (edge weights), and then
taking the max over the result of those additions. This procedure
is repeated while topologically traversing the timing graph and
computing the arrival times at every node.

Fig. 1 shows the timing graphs for two simple logic gates, an in-
verter and a 3-input OR gate. The edge weight, dio, corresponds
to the arc delay from input i to the output. Since the inverter
has one input, the arrival time (AT) at its output is simply:

ATo = AT1 + d1o (1)

For the OR gate, its output arrival time is the maximum of the
sum of its three input arrival times and their corresponding arc
delays:

ATo =
3

max
i=1

(ATi + dio) (2)

While arrival times are computed during forward propagation
in the timing graph, required times (RT), which are defined as the
latest acceptable arrival times that would not violate the timing
constraints, must be computed based on the information down-
stream, and thus require a backward propagation from the pri-
mary outputs. For a node to pass timing, its arrival time must
not exceed its required time. The concept of slack, which is the
difference between the required time and the arrival time at a
node, is generally used as a measure of how close a node is to
violating its timing constraint. In general, we require the slack S
to be positive:

S = RT − AT ≥ 0 (3)

In nominal static timing analysis, all the above timing quanti-
ties (AT , RT , S) are computed under the assumption that process

1 O

(a) Inverter

1
2

3
O

(b) 3-input OR

AToAT1
d1o

AT1

AT2

AT3

ATo

d1o

d3o

d2o

Figure 1: Timing graphs for (a) Inverter, and (b)
3-input OR gate

and environmental parameters - and consequently timing arc de-
lays which depend on these parameters - are fixed, typically at
either their nominal or corner values. However, due to the in-
creasing significance of variability, parameterized static timing
analysis (PSTA) techniques have emerged, with the goal of han-
dling parameter variations as part of the timing analysis step.

2.2 Parameterized Static Timing Analysis
A key component of any PSTA technique is the delay model

that captures the dependence of gate/interconnect delays on the
underlying process and environmental parameters. First-order
linear delay models are often used in the literature, and they gen-
erally capture well this dependence. Under such a linear model,
the delay D of a timing arc is expressed as:

D = do +

p∑
i=1

diXi (4)

where do is the nominal delay value and di is the (first-order
measure of) sensitivity to parameter Xi. Note that Xi can rep-
resent the variation of any parameter, such as channel length,
supply voltage, or temperature. Also note that do and the di’s
are determined during library characterization.

Another component of PSTA is the model for the PVT param-
eters. As noted above, while SSTA techniques [1, 2] use random
variables with known probability distributions (e.g. Gaussian) to
model the parameters, other PSTA techniques [3, 5, 4, 6] model
them as uncertain variables that are specified in given ranges.
We will adopt this more general model, based on uncertain pa-
rameters, because the distributions and correlations of some PVT
parameters may be unknown or unavailable in practice. For sim-
plicity, and without loss of generality, we will assume that the
variation range of every uncertain parameter Xi is normalized to
[−1, 1]. Following standard terminology, the linear model in (4)
will be referred to as a delay hyperplane.

Because path delay is the sum of gate and interconnect delay
hyperplanes on that path, it is also modeled as a hyperplane.
However, arrival times are not simply hyperplanes because, when
different paths converge at a node, a (nonlinear) max operation
must be performed to determine the arrival time at that node. For
example, consider Fig. 2, where A1, A2, and A3 represent path
delay hyperplanes. For purpose of illustration, a single parame-
ter Xi is considered, so that the hyperplanes are simply straight
line segments. The dashed piecewise linear function (in general
piecewise planar) resulting from the max operation corresponds
to the exact representation of the arrival time as:

AT = max(A1, A2, A3) (5)

where the Aj ’s have the form in (4). A similar piecewise planar
function representing the min operation arises when one is dealing
with parameterized slacks [5].

While some PSTA techniques [5, 6] capture exactly the piece-
wise planar surfaces representing the nonlinear max and min op-
erations, other techniques [3, 4] approximate and/or bound those

Xi

A1
A3

A2

Figure 2: Parameterized Arrival Time

operations using a single hyperplane. In general, both exact and
approximate PSTA techniques result in timing quantities (arrival
times/slacks) being parameterized as functions of the PVT pa-
rameters, as follows:

AT (X) =

{
ao +

∑p
i=1 aiXi, approx. PSTA

maxn
j=1(aoj +

∑p
i=1 aijXi), exact PSTA

(6)

S(X) =

{
so +

∑p
i=1 siXi, approx. PSTA

minn
j=1(soj +

∑p
i=1 sijXi), exact PSTA

(7)

where n is the number of hyperplanes that define the piecewise
planar surfaces of the max and min operations, and −1 ≤ Xi ≤ 1
for all i.

3. ROBUSTNESS ANALYSIS
Although parameterized expressions of timing quantities re-

sulting from PSTA are very useful, they do not directly provide
a metric of robustness of these timing quantities to variations.
Some further processing of these expressions is required, to ex-
tract this information. We are interested in transforming complex
expressions of PVT parameters, such as (6) and (7), into a mea-
surable or quantifiable robustness metric. In this section, we first
define such a metric as a measure of how close a node is to vi-
olating its timing constraint. We also compare robustness and
sensitivity and highlight the subtle difference between the two
notions. Finally, we present our mathematical formulation for
robustness analysis and describe our algorithm.

3.1 From Sensitivity to Robustness
Suppose that one is comparing two design realizations of the

same circuit, for which PSTA has provided the two different
parameterized slacks at some node, S1(X) and S2(X). Alter-
natively, suppose that S1(X) and S2(X) are the parameterized
slacks at two nodes of the same design. Either way, we are inter-
ested in comparing the robustness of S1(X) and S2(X). If, at the
nominal point X = 0, it turns out that S1(0) ≥ S2(0) ≥ 0, then
one might be inclined to assume that S1 is more robust than S2

because it is larger, and thus variations would seem to affect it
less adversely. However, this is not always true, as it may turn
out that S1 is more sensitive to variations than S2, and conse-
quently more prone to failure. Hence, sensitivity is an important
measure that is closely tied to robustness.

As an example, Fig. 3 shows a comparison of two parameter-
ized slacks, S1(X) and S2(X), where we have assumed a single
parameter X, varying in [0, Xmax]. Fig. 3a shows a case where
the slack with the larger nominal value turns out to be less robust.
In fact, although S1(0) ≥ S2(0), S1(X) fails “before” S2(X), be-
cause the value of X for which S1(X) becomes zero, d1, is smaller
than d2, the value of X for which S2(X) becomes zero. In this
case, the more sensitive slack turns out to be the one that is less
robust. On the other hand, Fig. 3b shows a case where the oppo-
site happens: even though S1(X) is more sensitive than S2(X),

X

Slack

S1

S2

d1 d20 Xmax
X

Slack

S1

S2

d20 Xmax

(a) More sensitive, less robust (b) More sensitive, more robust

Figure 3: Sensitivity and Robustness

it is actually more robust. This is because S1(X) does not fail in
[0, Xmax], while S2(X) fails for X = d2. Therefore, while robust-
ness is related to the susceptibility of a node to violating timing,
sensitivity is related to the magnitude of timing deviation, per
unit parameter variation, irrespective of whether or not timing
is actually violated. Thus, a node having the larger sensitivity
yet not failing anywhere in the parameter space is “more robust”
than a node having smaller sensitivity, yet failing somewhere in
the parameter space.

In order to fully capture the notion of design robustness, we
need to somehow make use of both the nominal values and the
sensitivities, in relation to the threshold where timing failure oc-
curs.

3.2 Quantifying Robustness
For the simplified scenario shown in Fig 3, one can define ro-

bustness as simply the value of X for which timing is violated.
This would be a good metric to use because it is quantitative; it
would allow one to conclude, for example, that S2 is more robust
than S1 whenever d2 > d1. However, in the general case where
several parameters are varying, and where parameterized timing
quantities are piecewise planar surfaces, each with a different set
of sensitivities, things can get more complicated. For one thing,
finding a setting for the parameter vector X where timing is vi-
olated is not as simple as finding the x-intercept in Fig. 3, and
requires a search in a higher-dimensional space. Furthermore,
there could be be many such settings, making it hard to judge
which one to use as a measure of robustness.

3.2.1 Distance-based Metric
We propose that a distance-based metric is a good choice for

robustness analysis. Specifically, we define the robustness metric
as the minimum distance from the nominal point in the PVT
parameter space to any point where a timing violation occurs.
Distance can easily abstract the large dimensionality of the prob-
lem by presenting a simple quantifiable measure that can be com-
puted with little effort. By measuring distance from the nominal
point, we are implicitly assuming that the nominal design is fea-
sible, i.e., it meets the timing constraints. Thus, the minimum
distance to any timing violation reflects the smallest (magnitude)
deviation from the nominal point that would “break” the design.

In fact, such distance-based metrics have been used in the past
as part of design centering for yield maximization [7, 9, 8]. The
goal of design centering is to determine the optimal nominal set-
tings of the design parameters, which are constrained to satisfy
performance specifications in the presence of tolerances. These
nominal values (which define the center point of the design) are
optimized such that the distance from the design center to the
boundary of the acceptability region is maximized, in the hope of
maximizing yield. Distance is therefore used in design centering
as a measure of safety, since the more “distant” the center is from
the boundary, the higher is the expected yield. In our case, where
we work with PVT parameters, rather than design parameters,
we do not try to recenter our design so that distance is maximized.

X1

X2

X

(a) L2-norm

1 X1

X2

X
1 X1

X2

X
1

(b) L -norm (c) L1-norm

Figure 4: Unit balls in different norms

Instead, we only use distance as a measure of how robust a timing
quantity (or a design) is in the face of PVT variations. In fact,
in our problem, the nominal PVT point is fixed, as well as the
ranges of variation, whereas in design centering, the space under
study is that of the design parameters, whose nominal values, as
well as tolerances (ranges) are to be determined.

3.3 Mathematical Formulation
In this section, we present the mathematical formulation of our

robustness analysis by means of normed distances to the bound-
ary of the region where timing is met.

3.3.1 The Feasible Space
In general, given a parameterized timing quantity T (X), we

define its robustness, r, as the minimum distance (using some
vector norm) from the nominal PVT point, X = 0, to any point
in the PVT space where T (X) violates timing. Recall that we
have assumed in Section 2.2 that PSTA has already been used to
analyze the design, and that parameterized slacks S(X) and/or
arrival times AT (X) are available. Each timing quantity is either
a hyperplane or a collection of n hyperplanes defining a piecewise
planar surface, as shown in (6) and (7). In the analysis that
follows, we assume that one is dealing with parameterized slacks
S(X), however, the same analysis can be easily applied to the
case of parameterized arrival times. Recall that S(X) is defined
in (7) as the minimum of n hyperplanes:

S(X) = min (S1(X), . . . , Sn(X)) (8)

where n ≥ 1 (for approximate PSTA, n = 1), and where:

Sj(X) = soj +

p∑
i=1

sijXi, j = 1, . . . , n (9)

We also assume that this set of n hyperplanes has already been
reduced using pruning techniques, such as in [5, 6], so that every
hyperplane Sj(X) can become the minimum, i.e., S(X) = Sj(X),
for some X.

With the above expressions for slack, the space where timing is
satisfied, C, is defined by S(X) ≥ 0, which can be expressed as a
convex polytope (intersection of linear constraints) by replacing
S(X) by its expression in (8), as the minimum of n hyperplanes:

C =

{
X
∣∣∣ Sj(X) = soj +

p∑
i=1

sijXi ≥ 0, j = 1, . . . , n

}
(10)

Also, we assume that the ranges of Xi’s are normalized to [−1, 1],
so that the parameter space, D, is defined as the following p-cube:

D =
{

X
∣∣∣ −1 ≤ Xi ≤ 1, i = 1, . . . , p

}
(11)

Therefore, the intersection of C with D corresponds to all X in
D for which timing is met, i.e., S(X) ≥ 0. We refer to this
C ∩ D as the feasible region. As mentioned earlier, we assume
that the nominal design is feasible (meets timing), so that the
nominal point X = 0 is inside the feasible region. If one starts

at the nominal point and moves outward, then two cases may
arise. Either the boundary of C is encountered and crossed first
at which point timing is violated (i.e., Sj(X) < 0 for one or more
j), or the boundary of D is encountered and crossed first, at which
point the range is exceeded (i.e., |Xj | > 1 for one or more j). For
robustness analysis, we are interested in the minimum distance
from the nominal point to any point within the range D at which
timing is violated. Therefore, we are interested in the minimum
distance to the boundary of C, obviously provided that S(X) fails
somewhere inside D.

3.3.2 Normed distance to a hyperplane
We want the minimum distance to the boundary of the con-

vex polytope C defined by the set of n linear constraints in (10),
Sj(X) ≥ 0, ∀j. The boundary corresponds to n hyperplanes, hj ,
j = 1, . . . , n, where:

hj : Sj(X) = 0 (12)

:

p∑
i=1

sijXi = −soj (13)

: aT
j X = bj (14)

where aj is the vector aT
j � [s1j s2j · · · spj] and bj � −soj .

Let dn(Xo, hj) be the distance, in an arbitrary vector norm
‖X‖, from a point Xo to the hyperplane hj . This so-called
normed distance can be expressed in terms of the norm’s unit
ball, Bn = {X | ‖X‖ ≤ 1}, as follows [10]:

dn(Xo, hj) = min{|λ| ∣∣ (Xo + λBn) ∩ hj �= ∅} (15)

Therefore, in order to determine the normed distance from Xo

to hj , one needs to dilate the unit ball by λ around Xo until it
touches the hyperplane. Fig. 4 shows different unit balls B2, B∞,
and B1 (in 2-D) for the L2-, L∞-, and L1-norms, respectively,
where:

L2-norm = ‖X‖2 =

√√√√ p∑
i=1

X2
i (16)

L∞-norm = ‖X‖∞ =
p

max
i=1

|Xi| (17)

L1-norm = ‖X‖1 =

p∑
i=1

|Xi| (18)

The normed distance in (15) can also be expressed in terms of
the dual norm ‖X‖�, as follows [9, 10]:

dn(Xo, hj) =
|aT

j Xo − bj |
‖aj‖� (19)

where the dual norm is ‖u‖� = sup{uT v
∣∣ ‖v‖ ≤ 1}. For the

Lp-norm ‖X‖p, defined by:

‖X‖p =

(∑
i

|Xi|p
) 1

p

, (20)

the dual norm is the Lq-norm ‖X‖q , such that:

1

p
+

1

q
= 1 (21)

Note that the L2-norm is self dual, and that the L1 and L∞
norms are duals of one another.

Therefore, using the very simple normed distance expression
in (19), we can efficiently determine the distance (in any Lp-
norm) from the nominal PVT point X = 0 to every hyperplane hj

defining the boundary of C, and record the smallest such distance
as the robustness metric, r, of S(X).

X1

X2

X +1

+1

-1

-1

r2
X1

X2

+1

+1

-1

-1

(a) L2 -normed distance (b) L -normed distance

X
r

Figure 5: Robustness Analysis

3.3.3 Algorithm and Illustration
A description of the algorithm, Find Robustness, is shown in

Algorithm 1. It takes as input a parameterized slack, S(X), and
returns its robustness, r, as defined above. The algorithm starts
by checking two corner cases. First, the nominal slack is checked,
at the nominal point X = 0 (line 1). If S(0) ≤ 0, then the nominal
slack violates timing. In that case, X = 0 is not feasible, and we
simply set r = 0. Nodes with r = 0 are the least robust because
they violate timing even before considering parameter variations.
The second corner case to check is whether the minimum value
(over X) of S(X) is positive (line 3). Since S(X) is the minimum
of Sj(X)’s and −1 ≤ Xi ≤ 1, this can be easily checked as follows:

min
X

{S(X)} =
n

min
j=1

{
soj −

p∑
i=1

|sij |
}

(22)

If the above expression is positive, it simply means that S(X)
does not fail anywhere in the parameter space and, in that case,
we set r = ∞. Nodes with r = ∞ are the most robust since they
are not prone to timing violations anywhere in D.

Algorithm 1 r ← Find Robustness(S(X))

Input: S(X) = min(S1(X), . . . , Sn(X))
where Sj(X) = soj +

∑p
i=1 sijXi

Output: r ∈ R

1: if (S(0) ≤ 0) then
2: return r = 0
3: else if (min

X
{S(X)} > 0) then

4: return r = ∞
5: else
6: r = ∞
7: for (j = 1, . . . , n) do
8: Sj(X) = 0 → hj : sT

j X = −soj

9: rj = dn(0, hj) =
|soj |
‖sj‖�

10: if (rj < r) then
11: r = rj

12: return r

If both these corner conditions are not met, then S(X) will fail
somewhere in the parameter space D. In that case (line 5), we
first set r = ∞ (or some upper bound value). Then, we compute
the normed distance, rj , from the nominal point X = 0 to the
(boundary) hyperplane hj defined by Sj(X) = 0. To do that,
we use the formula in (19) for some choice of Lp-norm and its
corresponding dual Lq-norm. Typically, L2-normed distances are
mostly prevalent in the literature on design centering, with some
use of L∞-norm (and its corresponding L1 dual norm). This is
done for all boundary hyperplanes hj ’s, and the smallest value of
rj is recorded as the robustness of S(X) (lines 10-11).

Fig. 5 is a simple 2-D example depicting graphically how ro-
bustness analysis works, when both the L2 and L∞ norms are

Rcrit

Figure 6: Cumulative robustness distribution of
failed slacks

used. Note that the parameter space is defined by the square
region where the two parameters are restricted to vary in −1 ≤
X1, X2 ≤ 1, and the feasible space where timing is met is defined
by the grey triangle-like region that contains the nominal PVT
point X = 0. The striped region outside the boundary of the fea-
sible space is the region where timing is violated. Fig. 5a shows
the robustness, r2, computed in L2-norm. This is equivalent to
inflating an L2-normed unit ball (disk) around X = 0 as shown,
until it touches one of the hyperplanes at the boundary. Simi-
larly, a L∞-normed unit ball (square) is inflated around X = 0
in Fig. 5b to obtain the robustness, r∞, in L∞-norm.

4. RESULTS
In this section, we present the simulation results that were

obtained on a 45nm commercial microprocessor design. Two pa-
rameterized static timing analysis flows were implemented in C++
on top of an STA timing engine. The first is an exact PSTA flow
that parameterizes timing quantities in the form of piecewise pla-
nar surfaces (collection of hyperplanes) defined by the max or min
operations described in (6) and (7). The exact PSTA implementa-
tion is based on the pruning techniques of [5, 6]. The second flow
is an implementation of the approximate PSTA technique of [4],
which parameterizes every timing quantity as a single hyperplane.
For both flows, we have considered global variations in four dif-
ferent parameter types, namely supply voltage (Vdd), Miller Cou-
pling Factor (MCF), and channel length for both NMOS and
PMOS devices (Ln and Lp). In addition, Ln and Lp are each
divided into two types, based on whether the device is nominal
or low power, and further into three types based on layout de-
pendent information. Parameter variations are assumed to be
independent, so a total 14 different PVT parameters were consid-
ered in the analysis (12 for L, MCF , and Vdd). In our robustness
analysis, the L2-norm was used to compute all normed distances
from the nominal point to the boundary hyperplanes, as is typical
in design centering.

We ran both exact and approximate PSTA on different mi-
croprocessor blocks and have determined parameterized arrival
times at every node and parameterized slacks at the inputs of all
registers in the blocks. Our robustness analysis was then applied
on the parameterized slacks to quantify their robustness, as de-
scribed in Section 3. Recall that we have normalized the variation
range of every parameter to [−1, 1], and have considered 14 pa-
rameters. Therefore, if a slack fails somewhere in the parameter
space, then its robustness r must fall between rmin = 0 and rmax

(based on L2-norm), where:

rmax =

√√√√ 14∑
i=1

(±1)2 ≈ 3.74 (23)

agaddercp

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Robustness

N
om

in
al

 S
la

ck
N
o
m
in
a
l
S
la
c
k
 (
n
o
rm

a
li
z
e
d
)

Figure 7: Nominal Slack vs Robustness

Fig. 6 shows a plot of the cumulative robustness distribution of
all failed slacks for one microprocessor block, ckt1. It provides a
ranking of all failed slacks according to where in the range [0, 3.74]
their robustness falls. Looking at the plot, it makes sense to start
by fixing the slacks that have the smallest values of robustness,
since those are the ones that are most prone to failure. In general,
it is useful to have a robustness threshold, Rcrit, such that all
slacks with robustness less than Rcrit would be considered critical
and thus fixed. Note that Rcrit does not have to be large since
one is interested in detecting the slacks that are failing for a small
deviation around the nominal point, at least for microprocessors.

Fig. 7 shows a plot of nominal slack vs robustness for different
nodes. Slack values were normalized, and 16 nodes with very
similar nominal slacks were picked (as shown). We have also
assumed, for purpose of illustration, that if a slack goes below
90% of its nominal value (due to variations), then this would be
considered a timing failure. In other words, we’re simply using
90% of nominal slack instead of 0 as the threshold for failed slack.
Based on this slack threshold, we have computed the robustness
of the different slacks, and plotted nominal slack vs robustness.
As shown on the plot, robustness values fall in [0.05, 0.6], which
is a large spread given that the nominal slacks are almost the
same. In fact, if one had no access to robustness information, all
the 16 slacks would seem to be equally robust looking only at
their nominal slack. However, after factoring in our quantifiable
robustness metric, one can easily determine which nodes are the
most susceptible to variations. In a sense, the circled slacks are
closer to the cliff than the ones with larger robustness.

We also checked if the results of robustness analysis are con-
sistent when applied to i) exact PSTA vs ii) approximate PSTA.
First, exact PSTA is invoked on another microprocessor block,
ckt2, to obtain parameterized arrival times at every node and
parameterized slacks at the inputs of all registers in the block.
There were ≈ 1500 parameterized slacks, with n (number of hy-
perplanes defining every slack) ranging from 1 to 346 hyperplanes.
Robustness analysis is then applied on the parameterized slacks
with slack threshold set to 0, and (exact) robustness is recorded.
Then, approximate PSTA is invoked, and parameterized slacks
were obtained, each consisting of only a single hyperplane. Ro-
bustness analysis is then applied and (approximate) robustness
is recorded. Out of the 1500 parameterized slacks, only 41 slacks
failed somewhere in the parameter space, and thus have robust-
ness values in [0, 3.74]. Fig. 8 shows a plot of approximate ro-
bustness (based on approximate PSTA) versus exact robustness
(based on exact PSTA). In general, for the results of both robust-
ness analyses to be consistent, the ranking of slacks in terms of
their robustness should be preserved. In other words, the points
should follow some straight line (not necessarily y = x, although
y = x would be an ideal case). This is what we see in this plot;
the points are highly correlated (we have found the correlation
coefficient to be ρ = 0.93) and they fall close to y = x.

agaddercp

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

Robustness (exact)

R
ob

us
tn

es
s

(a
pp

ro
x)

Correlation = 0.93

Figure 8: Ranking nodes according to their robust-
ness - Exact PSTA vs Approximate PSTA

5. CONCLUSION
In this paper, we presented a new robustness metric that can

be used to quantify the vulnerability of designs to parameter vari-
ations. Our robustness metric provides a way to easily interpret
the results of parameterized static timing analysis by i) determin-
ing if and when nodes can fail, ii) ranking those nodes according
to their robustness, and iii) fixing the ones that are least robust.
Using distance as the metric for robustness, we find the smallest
normed distance from the nominal point in the parameter space
to any timing violation, which can be computed efficiently using
closed form expressions.

6. REFERENCES
[1] H. Chang and S.S. Sapatnekar. Statistical Timing Anal-

ysis Considering Spatial Correlations using a Single Pert-
Like Traversal. In IEEE/ACM International Conference on
Computer-aided Design, pages 621–625, 2003.

[2] C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker,
and S. Narayan. First-Order Incremental Block-Based Sta-
tistical Timing Analysis. In DAC, pages 331–336, 2004.

[3] S. Onaissi and F.N. Najm. A linear-time approach for static
timing analysis covering all process corners. In ICCAD,
pages 217–224, 2006.

[4] K.R. Heloue and F.N. Najm. Parameterized timing analysis
with general delay models and arbitrary variation sources.
In Design Automation Conference, pages 403–408, 2008.

[5] S.V. Kumar, C.V. Kashyap, and S.S. Sapatnekar. A frame-
work for block-based timing sensitivity analysis. In Design
Automation Conference, pages 688–693, 2008.

[6] K.R. Heloue, S. Onaissi, and F.N. Najm. Efficient block-
based parameterized timing analysis covering all potentially
critical paths. In IEEE/ACM International Conference on
Computer-aided Design, pages 173–180, 2008.

[7] J. Bandler and H. Abdel-Malek. Optimal centering, toler-
ancing, and yield determination via updated approxima-
tions and cuts. Circuits and Systems, IEEE Transactions
on, 25(10):853–871, 1978.

[8] K.K Low and S.W Director. A new methodology for the de-
sign centering of IC fabrication processes. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 10(7):895–903, 1991.

[9] R. Brayton, S. Director, and G. Hachtel. Yield maximization
and worst-case design with arbitrary statistical distributions.
Circuits and Systems, IEEE Transactions on, 27(9):756–
764, 1980.

[10] A. Schöbel. Locating Lines and Hyperplanes: Theory and
Algorithms. Kluwer Academic Pub, 1999.

