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Abstract— In this paper, we propose a mod-

eling technique that captures the dependence of

the power dissipation of a (combinational or se-

quential) logic circuit on its input/output signal

switching statistics. The resulting power macro-
model consists of a quadratic or cubic equation

in four variables, that can be used to estimate

the power consumed in the circuit for any given

input/output signal statistics. Given a low-level

(typically gate-level) description of the circuit, we

describe a characterization process that uses a re-

cursive least squares (RLS) algorithm by which

such an equation-based model can be automati-

cally built. This approach has been implemented

and models have been built and tested for many

combinational and sequential benchmark circuits.

1. INTRODUCTION

With the advent of portable and high-density
micro-electronic devices, the power dissipation of very
large scale integrated (VLSI) circuits has become a
critical concern. Modern microprocessors are hot, and
their power consumption can exceed 30 or 50 Watts.
Due to limited battery life, reliability issues, and pack-
aging/cooling costs, power consumption has become
a more critical design concern than speed and area in
some applications. In order to avoid problems asso-
ciated with excessive power consumption, there is a
need for CAD tools to help in estimating the power
dissipation of VLSI designs.

A number of CAD techniques have been proposed
for gate-level power estimation. However, by the time
the design has been specified down to the gate level,
it may be too late or too expensive to go back and
fix high power problems. Hence, in order to avoid
costly redesign steps, power estimation tools are re-
quired that can estimate the power consumption at
a high level of abstraction, such as when the circuit
is represented only by Boolean equations, say using
a register-transfer-level (RTL) description. This will
provide the designer with more flexibility to explore
design trade-offs early in the design process, reducing

the design cost and time.
In response to this need, a number of high-level

power estimation techniques have been recently pro-
posed. Two styles of techniques have been proposed,
which we refer to as top-down and bottom-up. In the
top-down techniques, a combinational circuit is spec-
ified only as a Boolean function, with no information
on the circuit structure, number of gates/nodes, etc..
Top-down methods are useful when one is designing a
logic block that was not previously designed, so that
its internal details are unknown.

In contrast, bottom-up methods [1—8] are use-
ful when one is reusing a previously designed logic
block, so that all the internal structural details of
the circuit are known. In this case, one develops a
power macromodel for this block which can be used
during high-level power estimation (of the overall sys-
tem in which this block is used), in order to estimate
the power dissipation of this block without perform-
ing a more expensive gate-level power estimation on
it. Naturally, this is useful only in case one plans to
reuse previously designed blocks.

The method in [1] uses the power factor approx-
imation technique, which treats all the circuit input
bits as digital “white noise” and due to this assump-
tion can give errors of up to 80% in comparison to
gate-level tools. Although [2] gives more accurate
result, it has the disadvantage that it treats differ-
ent modules differently, requiring specialized analyt-
ical expressions for the power to be provided by the
user. Thus, depending upon the functionality of the
module, a different type of macromodel (analytical
equation) may have to be used.

The method in [3] characterizes the power dis-
sipation of circuits based on input transitions rather
than input statistics. In [4], the authors present a
technique to estimate switching activity and power
consumption at the RTL for data path and control
circuits, in the presence of glitching activity. In [5],
the authors present a macromodel for estimating the
cycle-by-cycle power at the RTL. They show good
accuracy in estimating average and cycle-by-cycle
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power. The macromodels are dependent on a train-
ing vector set, so that the accuracy is compromised if
the training set is not similar to the vector set to be
applied.

In [6], the authors present a macromodel for esti-
mating the average power based on power sensitivity.
In [7], the authors present a macromodeling approach
in which the model is a linear function of every in-
put and output switching activity. Moreover, they
present an adaptive algorithm based on least-mean-
square (LMS) to characterize the model on-line. They
characterize the model only at a specific value of prob-
ability and activity and hence may not get good accu-
racy if the statistics of the test vector set are different
from those of the characterization vector set.

Most of the approaches discussed above are lim-
ited to only combinational circuits. In this paper, we
propose a power macromodeling approach for both
combinational and sequential circuits that (1) takes
into account the effect of the circuit input switching
activity and does not treat the circuit inputs as white
noise, (2) takes into account input correlation, both
spatial and temporal and (3) is based on a single fixed
macromodel template which does not depend on the
type of circuit being analyzed. Our model is equation-
based. Specifically, we construct a quadratic or cubic
equation in the following four variables: average input
signal probability (Pin), average input switching activ-
ity (Din), average input spatial correlation coefficient
(SCin), and average output zero delay switching ac-
tivity (Dout). For a logic node, the switching activity,
also called the transition density, is defined as the av-
erage number of logic transitions per unit time. The
zero delay switching activity refers to the case when
the circuit gates are considered to have zero delay,
so that only truly required logic transitions (and no
hazards or glitches) are observed. From a high-level
view, it is reasonable to assume that fast functional
simulation will be applied to measure signal switch-
ing statistics, so that only the zero delay output ac-
tivity (and not the real delay output activity) will be
computed. The main advantage of our approach is
that all types of circuits are treated in the same way,
i.e., we do not use different model equation types for
different modules. As a result, the method is very
easy to use, and requires no user intervention. Indeed,
we will present an automatic characterization proce-
dure, based on the method of Recursive Least Squares
(RLS), by which the macromodel can be built for a
given circuit.

This paper is organized as follows. In section II,
we will give some background regarding our original 4-
dimensional (4D) table-based macromodel and extend

it to sequential circuits. In section III, we discuss the
new analytical-equation-based formulation of the 4D
model and describe the characterization procedure in
section IV. In section V, we give empirical results that
show the effectiveness of the model, and we summarize
and conclude in section VI.

II. EXTENSION OF 4D TABULAR

MACROMODEL TO SEQUENTIAL CIRCUITS

We have previously [8] presented a 4-dimensional
(4D) look-up-table (LUT) based macromodel for com-
binational circuits, which is given by:

Pavg = f(Pin, Din, SCin, Dout) (1)

Note that while deriving the above model we have
assumed no glitching activity at the primary inputs.
The variables Pin, Din and SCin satisfy the following
constraints [8]:

Din
2
≤ Pin ≤ 1− Din

2
(2)

nP 2
in − Pin

(n− 1)
≤ SCin ≤ Pin (3)

where n is the number of primary inputs. Notice
that (2) and (3) give only the lower and upper bounds
on Pin and SCin. The variables Pin and SCin can
take any value between these bounds but, otherwise,
no specific dependence exists between them. Further-
more, while Dout is affected by the values of Pin, Din
and SCin, it is not completely determined by them be-
cause its value depends on the logic of the circuit. The
detailed justification of the 4D model can be found
in [8].

The results for ISCAS-85 circuits, for correlated
input vector streams, are summarized in Table I under
the column marked “4D(LUT)”. The average error in
all cases is less than 10%.

The macromodel (1) was restricted to combina-
tional circuits. Upon first consideration, it would
seem that primary inputs information is not sufficient
to model the power of sequential circuits, and that
some information on the state bits would have to be
required. However, when the objective is to estimate
the average power, the fact that the state over a long
time period becomes independent of the initial state
leads to significant simplification of the problem. In-
deed, it was shown in [9], that if the sequence of in-
puts to a sequential machine is of order k, then a lag-k
Markov chain correctly models the input sequence as
well as the k-step conditional probabilities of the pri-
mary primary inputs and internal states.

As a result, if the input signal temporal correla-
tions die down with time, which is a reasonable as-
sumption in practice, then under steady state the



state bits distribution is completely determined by
the primary inputs distribution, and the statistics of
the primary inputs should be sufficient to model the
power of a sequential circuits. Indeed, we have exper-
imentally found out that the same 4D macromodel
also works for sequential circuits, as will be shown in
the experimental results section below.

However, in some cases one or two key vectors
may be crucial to setting the circuit “state” or “mode
of operation” forever after. These cases will require
special case treatment and our modeling approach
may need to be modified or extended in such cases.

III. EQUATION-BASED MACROMODEL

The table-based macromodel requires a lot of
memory for storing the table and also requires a lot
of time (see column under “Time LUT” in Table II.)
to build the whole table. We have developed an alter-
nate approach by which we can fit a general non-linear
equation to the function f(·) in (1) without user inter-
vention and with much less time than it takes to fill
the table. This general equation is fixed and is used
as the starting point for all circuits - no user inter-
vention is required in the choice of equation. We will
refer to this equation as the template. This works be-
cause, even though the function f(·) is non-linear, it
turns out that in practice it is “not too non-linear” to
defy fitting, and a general polynomial template turns
out to be sufficient.

For efficiency reasons, one would like to use the
lowest order polynomial template that works. One
option is the linear function:

P̂avg = c0 + c1Pin + c2Din + c3SCin + c4Dout (4)

where the coefficients ci are unknown and are to be
determined during the characterization using regres-
sion analysis. To estimate the regression variables ci,
we generated 1000 blocks of correlated vector streams
for different values of Pin, Din, and SCin, covering
a wide range of input statistics. For each block of
vectors, Monte Carlo simulation [10] was used to esti-
mate the average power and to compute the value of
Dout. Using this set of data and the standard linear
least squares method, the regression variables ci were
estimated.

To test the accuracy of the fit, we again gener-
ated 1000 blocks of correlated input vectors for differ-
ent values of Pin, Din, and SCin. Using Monte Carlo
simulation [10], the average power (Pavg) and Dout
were estimated. For the given Pin, Din, SCin, and
Dout values, the average power P̂avg was then found
using (4) and the relative error between Pavg and P̂avg
was computed and is shown in Table I, under the col-
umn marked “L”. It is evident from the table that a

linear function is not good enough for estimating the
average power for most of the circuits.

To improve the accuracy, another option is the
quadratic function:

P̂avg = c0 + c1Pin + c2Din + c3SCin + c4Dout

+ c5PinDin + c6PinSCin + c7PinDout

+ c8DinSCin + c9DinDout + c10SCinDout

+ c11P
2
in + c12D

2
in + c13SC

2
in + c14D

2
out

(5)

Using the same approach as above, the regression
variables were estimated and the accuracy of the re-
sults was tested and is shown in Table I, under the
column marked “Q”. It is evident from the table that
the quadratic function is better for estimating the av-
erage power for most of the circuits except c499 and
c1355 for which the average error was very high, above
15%.

We also investigated the general cubic form. Due
to space limitations, we are not showing the cubic
equation here as it consists of 35 coefficients. Table I
shows the average error and maximum error for the
case of a cubic, under the column marked “C”. It is
clear that the improvement in the error is not much
for most of the circuits, except for c499 and c1355 for
which the quadratic function did not do well. This ob-
servation was found to hold in general, that for many
circuits the quadratic model is enough, but the cu-
bic model can still be superior in some cases. As a
result, we use a hybrid approach by which we start
with the quadratic model by default and increase the
order of the model to a cubic only if the measured er-
ror during characterization is too big. It was observed
that the cubic function was the highest order function
required by all the ISCAS-85 circuits. Similar exper-
iments were performed on sequential circuits, except
that the power was estimated using [11]. It was ob-
served that the quadratic function is sufficient for all
the sequential circuits that we tested.

IV. CHARACTERIZATION

In the standard non-iterative linear least squares
method the number of data points used for fitting the
regression coefficients has to be predefined. For some
circuits fewer data points may be sufficient, while for
other circuits more data points may be needed. It
is difficult to tell before-hand how many data points
will be needed for each circuit. One possibility is to
use a fixed number of data points irrespective of the
circuits, but in this case we may be doing more work
than required (i.e., more gate-level power estimation
runs) which leads to larger run time. Therefore, we



have developed an automatic characterization process
using the recursive least squares (RLS) [12] algorithm.

RLS is used in adaptive filtering for on-line estimation
of filter parameters. The following summary of the

Table 1. Average and maximum error when total power was estimated using different models.

Circuit Avg.Error Max.Error

4D(LUT) L Q C 4D(LUT) L Q C

c499 5.96% 36.6% 25.64% 8.3% 46.3% 1407.2% 1319.5% 56.06%

c880 6.7% 19.7% 5.9% 5.2% 50.61% 257.16% 48.74% 45.41%

c1355 6.2% 34.7% 18.08% 12.07% 33.56% 993.9% 107.9% 50.78%

c1908 3.85% 11.6% 4.9% 4.12% 31.17% 68.18% 57.74% 34.31%

c432 5.56% 11.01% 4.19% 3.13% -27.8% 30.45% 36.8% 24.16%

c5315 3.48% 11.4% 3.6% 3.8% 29.03% 89.84% 32.56% 40.42%

c2670 7.8% 20.36% 10.25% 6.25% 37.53% 304.6% 42.25% 39.45%

c3540 7.5% 13.07% 5.86% 3.7% 44.19% 258.6% 50.49% 46.38%

c7552 8.95% 15.5% 8.8% 5.6% -45.79% 85.8% 50.48% 47.96%

c6288 9.6% 31.9% 9.6% 8.3% 43.15% 257.16% 55.74% 54.6%

A. RLS Algorithm
Let y = f(x1, x2, . . . , xp) be a real valued func-

tion of real variables. We will use bold font to denote
vector or matrix quantities. Let the (column) vector x
be the vector of the p variables, so that the transpose
of x is the (row) vector xT = [x1 x2 · · · xp] and we
write y = f(x). We are interested in approximating
f(·) with a closed form analytical expression ŷ = cTu,
where cT = [c0 c1 · · · cm−1] is a vector of constant
coefficients whose values are to be determined and
uT = [u0 u1 · · · um−1], where each ui is some func-
tion of the variables x1, x2, . . . , xp. We would like to
find a vector c so that ŷ is a good approximation to
y. In our case y = Pavg, uT =

[
P kin, D

k
in, · · · , 1

]
and

cT = [cm−1, · · · , c0], where k is the order of the ana-
lytical function and m is the number of coefficients to
be estimated.

To this end, suppose we generate n randomly cho-
sen samples x(1),x(2), . . . ,x(n), from which we also
compute the corresponding y(i), for i = 1, 2, . . . , n.
Consider the error e(i) = y(i) − ŷ(i) and the cumu-
lative error ζ(n) =

∑n
i=1 |e(i)|2. One way of finding

an appropriate c is to find one that minimizes the er-
ror ζ(n). Typically, the solution will depend on n,
and we denote it by ĉ(n). Finding such a ĉ(n) is
the traditional problem of least-squares fitting which
is solved using standard linear regression techniques
and is given by:

ĉ(n) = Φ−1(n)z(n) (6)

where Φ(n) is a m ×m matrix, and z(n) is a m × 1
vector, given by:

Φ(n) =
n∑
i=1

u(i)uT (i) and z(n) =
n∑
i=1

u(i)y(i)

(7)
In order to avoid using a large number of sam-

ples (6) should be solved iteratively, but it requires
inverting Φ(n) every time, a new sample is added.
In the RLS algorithm, this problem is overcome by
using the matrix inversion lemma which leads to an
iterative update mechanism for Φ−1(n) that does not
require any matrix inversions [12], as follows:

1. Initialize Φ−1(0) and ĉ(0)
2. For n = 1, 2, . . ., until converged, do:

a. Compute the m× 1 gain vector k(n) as fol-
lows:

k(n) =
Φ−1(n − 1)u(n)

1 + uT (n)Φ−1(n− 1)u(n)
(8)

b. Update the coefficient vector ĉ(n) = ĉ(n −
1) + k(n)

[
y(n) − ĉT (n− 1)u(n)

]
c. Update the correlation matrix Φ−1(n) =[

I− k(n)uT (n)
]
Φ−1(n− 1)

3. End.



To use the above algorithm, the initial values
Φ(0) and ĉ(0) are required. A common method of
initialization is to use:

Φ(0) =
n0∑
i=1

u(i)uT (i) (9)

ĉ(0) = Φ−1(0)
n0∑
i=1

u(i)y(i) (10)

where n0 data points have been accumulated before
starting the RLS algorithm.
B. Convergence

The RLS algorithm is standard textbook mate-
rial, which we have applied to the power macromod-
eling problem. However, the convergence criterion to
be used to stop the iterative updates depends on the
particular application. In this section, we describe a
novel method of stopping the RLS iterations that is
useful for power macromodeling.

Since all we care about is the accuracy of the
predicted value ŷ and how well it approximates y, we
need not wait for all the components of the coeffi-
cient vector ĉ(n) to converge. Instead, some norm
of ĉ(n) may suffice. Instead of using an arbitrary
norm (which we have found can require a large num-
ber of iterations), a more efficient and more meaning-
ful method of checking convergence, which indirectly
monitors some aggregate measure of convergence of
ĉ(n), is to do the following. Consider the following
relative error terms, for i = 1, 2, . . . , n:

r(n)(i) =
|y(i) − ĉT (n)u(i)|

y(i)
(11)

Notice that r(n)(i) represents the relative error for the
ith sample using the regression coefficients ĉ(n) gen-
erated after the nth iteration. If the x(i) are iid (inde-
pendent and identically distributed) random vectors,
then the u(i) and y(i) are also iid. For a given fixed n,
it also follows that the r(n)(i) are also iid, so that the
mean of each r(n)(i) is independent of i, and depends
only on n, so that we denote it by:

µn = E
[
r(n)(i)

]
(12)

where E[·] is the expected value (or mean) operator.
If we now define:

rn =
1
n

n∑
i=1

r(n)(i) (13)

then it follows, under very general conditions of er-
godicity, that:

lim
n→∞

|rn − µn| = 0 (14)

so that, at some point, the known (measured) sam-
ple mean rn converges to the unknown true mean µn.
Standard methods of mean estimation in statistics
(Monte Carlo Mean Estimation [10]) can be used to
check if this convergence has been achieved to within
some (user-specified) accuracy, with a certain amount
of (user-specified) confidence. Once this has been
achieved, we start to use rn as an estimate of µn,
which we consider to be a measure of the error of the
model. We consider the model to be “good enough”
when µn is small enough.

In our implementation, we start with the
quadratic model and apply RLS while monitoring the
convergence of rn to µn. Once that has been achieved,
then if µn is below some user-specified error threshold
E , we stop the algorithm. Otherwise, we continue to
iterate while monitoring µn and declare convergence
if it goes below E . If we reach a point where µn has
leveled off at some value larger than E , we switch over
to the cubic model and re-evaluate the error and con-
tinue to iterate if needed. The process is terminated
once either µn < E or if it levels off again at some
value larger than E . (If convergence is not achieved
with the cubic model, we revert to the table-based
approach and construct the LUT for the circuit as
described in [8]. This, however, did not happen for
any of the circuits that we tested.) The experimental
results to be given in the next section are based on a
setting of E = 10%.

V. RESULTS

All the results below are based on an error thresh-
old setting of E = 10% (for convergence of (14)),
an error tolerance of ε = 5% and a confidence of
(1 − α) = 95% (for the Monte Carlo mean estima-
tion). The execution times are on a SUN Ultra Sparc
1 with 64MB of RAM. For generating the input vec-
tors used during characterization we use a heuristic
technique which is explained in [8]. We will describe
the generation of input vectors used for testing the
macromodels, in order to explain different extreme
ways in which the model was tested.

A. Input Vector Generation, for Testing the Model

In order to test our macromodels in extreme
ways, we performed 2500 experiments for each cir-
cuit. The experiment differ in the scheme that was
used to generate the input vectors, as follows:

1. In 100 experiments, we applied correlated input
vectors resulting from the output of an n-bit



counter. This test case checks the accuracy of
the model in the presence of signal correlation at
the primary inputs. The 100 experiments differ
in the choice of initial state for the counter.

2. In 700 experiments, for given values of Din and
Pin, half of the input nodes were given high
switching activity (di) and signal probability (pi)
and the other half low switching activity and sig-
nal probability. By “low”, we mean that di was
varied between 0 and 0.3 (keeping pi between its
feasibility bounds). By “high”, we mean that di
was varied between 0.7 and 1.0 (keeping pi be-
tween its feasibility bounds). The vectors were
then randomly generated for the chosen input
signal probability (pi) and switching activity (di)
values. The values of Din and Pin used were dif-
ferent in each experiment. This case tests the
sensitivity of power to specific values of the statis-
tics at the primary inputs.

3. In another 700 experiments, for given values of
Pin and Din, pi and di at every primary input
were randomly assigned. The input vectors were
then generated randomly for the given pi and di
values. The values of Din and Pin used were dif-
ferent in each experiment. Here, we test how the
model behaves when the inputs have any arbi-
trary assignment of pi and di.

4. Finally, in 1000 experiments, we randomly chose
a number of primary inputs to be kept constant
at 0 or 1. At the remaining inputs, pi and di were
randomly assigned and the vectors were gener-
ated randomly. This test case checks the model
for biased input vectors.
It can be seen that the test vectors generated by

the above procedure stress the model heavily. Also,
the vectors are different in character from our charac-
terization vectors [8]. In each experiment, the number
of total vectors generated was not fixed a priori - it
was determined by the Monte Carlo power estimation
techniques that we used, as described below.

B. Results for Combinational and Sequential Circuits

In this section, we report the results of our
equation-based power macromodeling approach on
the ISCAS-85, MCNC and ISCAS-89 circuits. The
ISCAS-85 and MCNC circuits are combinational, and
the ISCAS-89 circuits are sequential. We have imple-
mented this approach and built the power macromod-
els for a number of combinational and sequential cir-
cuits. First, we will discuss the accuracy for the case
of combinational circuits, and then for sequential cir-
cuits.

The macromodels were constructed by using the
characterization process explained in section 4 and the

vectors generated using the heuristic algorithm [8].
For testing the macromodels, we performed 2500 ex-
periments, varying the vector generation scheme as
explained in section 5.A, and accurate power estima-
tion was performed using Monte Carlo simulation [10],
based on a gate-level simulation with a scalable-delay
gate timing model. The Monte Carlo simulation also
provides accurate estimation of Dout. The power val-
ues predicted by the macromodel were compared to
those from the gate-level Monte Carlo simulation, and
the results are shown in Fig. 1. The fit is good and
shows that it is indeed possible to do high-level power
modeling across the whole range of input switching
statistics.

For a more detailed comparison, three different
error measures were computed for every circuit: the
average absolute value of the relative error, the max-
imum absolute value of the relative error, and the
standard deviation of the absolute value of the rel-
ative error. The results are summarized in Table II
for ISCAS-85 circuits which shows for each circuit,
the number of inputs (#I), outputs (#O), and gates
(#G), the model finally used by RLS (“Q” means
quadratic and “C” means cubic), the time taken by
RLS to build the model, the time taken to build the
LUT, the different error measures, and the number of
RLS iterations (#RLS) required to build the model.
It is clear that the time taken by the RLS method
is 3–5 times less than the LUT approach. Moreover,
the quadratic model suffices for most circuits. Also
the average error for most of the circuits is less than
20%. Even though the maximum error is high, it was
observed that the number of sample points with those
error values was very small, as can be seen from the
small values of standard deviation and from the good
fit in Fig. 1. The results for MCNC circuits are shown
in the Table III. It can be seen that this technique
gives good results for these circuits as well.
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Figure 1. Power comparisons for the ISCAS-85
and MCNC circuits.



Similar experiments were carried out for the
ISCAS-89 sequential circuits, except that the aver-
age power in this case was estimated using [11]. The
comparison with gate level power estimation is shown
in Fig. 2. Here again, the fit is seen to be very good,
even better than in the combinational circuits case.
Table IV reports the detailed results and contains
the same columns as table II, except that the column
marked #FF gives the number of flip-flops in each cir-
cuit. The quadratic model turned out to be sufficient
for all these circuits. The average error is less than
15% for most circuits, and the standard deviation of
the error is very small.
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Figure 2. Power comparisons for the ISCAS-89

Table II. Accuracy of the equation-based macromodel on the ISCAS-85 circuits.

Circuit #I #O #G Model Time Error Std. Dev. #RLS

RLS LUT Avg. Max.

c499 41 32 202 C 16.31min 2.3hr 18.11% 87.20% 15.17% 258

c880 60 26 383 Q 29.10min 6.24hr 10.4% 65.22% 9.78% 162

c1355 41 32 546 C 22.2min 2.09hr 16.54% 92.74% 13.56% 230

c1908 33 25 880 Q 36.14min 4.59hr 8.98% 74.11% 8.76% 120

c432 36 7 160 Q 22.52min 11.79hr 4.8% 34.42% 4.41% 163

c5315 178 123 2307 Q 3.74hr 16.2hr 6.02% 59.41% 5.38% 286

c2670 233 140 1193 C 2.24hr 14.23hr 11.11% 79.5% 11.97% 207

c3540 50 22 1669 Q 5.08hr 21.32hr 7.85% 80.6% 7.38% 228

c7552 207 108 3512 Q 19.75hr 58.4hr 12.03% 81.1% 11.05% 601

c6288 32 32 2406 C 9.23hr 34.4hr 15.4% 88.8% 13.4% 286

Finally, we checked the accuracy of our approach
in a case when one input signal has a much stronger
influence on the power than all the rest. To do this,
we considered an 8 × 8 bit multiplier and added a
control input to it. If the control input is ’1’, mul-
tiplication is performed, otherwise the output is 0.
It is clear that the probability and switching activity
of the control input have minimal effect on Pin and
Din, but the power is highly influenced by its proba-
bility and activity. The power macromodel was con-
structed using the characterization process explained
above. For testing the model, we varied the probabil-
ity and activity of the control input from 0 to 1 and
the vectors for the remaining inputs were generated
using the procedure explained above. The results are
shown in Fig. 4. The average error, maximum er-
ror and standard deviation in estimating power were
found to be 18.09%, 84.88%, and 13.53%, respectively.
Even though the maximum error is high, the number
of sample points with those error values is very small,

as can be seen from the small value of standard devi-
ation. In more general cases, where more complicated
control schemes may be employed, it is possible that
more involved modeling may be useful, perhaps mak-
ing use of our 4-variable macromodel as a building
block.
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Figure 3. Power comparisons for 8× 8 bit
multiplier with control input.



Table III. Accuracy of the equation-based macromodel on the MCNC circuits.

Circuit #I #O #G Model Time Error Std. Dev. #RLS

Avg. Max.

alu2 10 4 368 Q 59.26min 6.23% 51.47% 7.63% 260

vda 17 27 341 Q 39.43min 6.7% 63.18% 7.64% 248

random8 8 1 158 C 12.37min 10.8% 75.21% 14.33% 150

frg2 152 109 451 Q 1.14hr 5.96% 62.33% 5.25% 272

random10 10 1 487 Q 1.39hr 4.23% 28.69% 3.97% 286

apex6 135 85 775 Q 1.72hr 9.66% 76.47% 11.72% 253

vdx3 135 89 792 Q 1.81hr 6.85% 67.17% 7.61% 266

x3 136 89 745 Q 1.48hr 5.4% 60.56% 5.6% 242

alu4 14 6 604 Q 1.26hr 8.5% 45.48% 7.17% 296

i8 133 81 869 Q 2.53hr 7.47% 51.73% 7.90% 310

VI. CONCLUSION

Since gate-level power estimation can be time-
consuming and because power estimation from a high
level of abstraction is desirable so as to reduce de-
sign time and cost, we have proposed an equation-
based power macromodeling approach for combina-
tional and sequential circuits. Our macromodel con-
sists of an analytical function with four variables: av-
erage input signal probability, average input switch-
ing activity, average input spatial correlation coeffi-
cient, and average output (zero-delay) switching ac-
tivity. We also presented a Recursive Least Squares
(RLS) algorithm by which such an analytical expres-
sion can be generated. The proposed model works
for all possible signal switching statistics and no user
intervention is needed for the model characterization.
The only thing that the user has to specify is how
much accuracy is desired. The macromodel has been
built and tested for many combinational and sequen-
tial benchmark circuits.
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Table IV. Accuracy of the equation-based macromodel on the ISCAS-89 circuits.

Circuit #I #O #G #FF Model Time Error Std. Dev. #RLS

Avg. Max.

s349 9 11 161 15 Q 22.36min 13.4% 78.7% 14.7% 201

s344 9 11 160 15 Q 19.87min 10.7% 67.4% 12.2% 120

s400 3 6 164 21 Q 25.8min 7.67% 62.9% 8.03% 151

s713 35 23 393 19 Q 49.88min 9.23% 68.3% 8.21% 129

s832 18 19 287 6 Q 1.85hr 7.04% 72.53% 8.82% 185

s526 3 6 193 21 Q 31.3min 5.24% 42.95% 5.95% 171

s1494 8 19 647 6 Q 1.56hr 6.25% 62.38% 6.88% 189

s1488 8 19 653 6 Q 33.21min 5.47% 62.87% 5.71% 123

s1423 17 5 657 74 Q 1.09hr 12.5% 79.6% 10.38% 160

s386 7 7 159 6 Q 28.43min 4.1% 39.72% 4.1% 235

s382 3 6 158 21 Q 28.64min 3.23% 29.52% 3.7% 160

s420 18 1 218 16 Q 56.96min 1.47% 13.47% 1.23% 164

s641 35 24 379 19 Q 1.33hr 8.84% 63.98% 7.57% 179

s1196 14 14 529 18 Q 1.69hr 5.9% 65.13% 7.5% 2716

s510 19 7 211 6 Q 1.45hr 0.14% 0.58% 0.12% 147

s953 16 23 395 29 Q 5.5hr 0.38% 2.1% 0.32% 227

s298 3 6 119 14 Q 38.46min 5.17% 32.3% 3.4% 288

s1238 14 14 508 18 Q 25.6min 5.95% 62.85% 8.15% 456

s444 3 6 181 21 Q 22.2min 3.1% 28.15% 3.23% 137

s820 18 19 289 5 Q 1.47hr 5.6% 65.66% 5.96% 141

s838 34 1 446 32 Q 2.86hr 1.6% 9.67% 1.02% 179

s5378 35 49 2779 179 Q 5.5hr 3.8% 36.2% 1.65% 89

s9234 36 39 5597 211 Q 14.64hr 7.6% 68.5% 8.4% 127


