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A Multigrid-like Technique for Power Grid Analysis
Joseph N. Kozhaya, Sani R. Nassif, and Farid N. Najm

Abstract— Modern sub-micron VLSI designs include huge

power grids that are required to distribute large amounts of

current, at increasingly lower voltages. The resulting volt-

age drop on the grid reduces noise margin and increases gate

delay, resulting in a serious performance impact. Checking

the integrity of the supply voltage using traditional circuit

simulation is not practical, for reasons of time and memory

complexity. We propose a novel multigrid-like technique for

the analysis of power grids. The grid is reduced to a coarser

structure, and the solution is mapped back to the original

grid. Experimental results show that the proposed method

is very efficient as well as suitable for both DC and transient

analysis of power grids.

I. Introduction

In recent years, there has been an increased demand for
high performance and low power VLSI designs. High per-
formance is achieved by technology scaling, increased func-
tionality and competitive designs. On the other hand, a
common technique used to obtain low power designs is to
scale down the supply voltage. This stands to reason since
the chip power P is proportional to the square of the sup-
ply voltage VDD . Thus, the demand for high performance
and low power has led to modern VLSI designs being char-
acterized by reduced feature size, increased functionality
and lower supply voltage.

Increased chip functionality results in the need for huge
power distribution networks, also referred to as power grids
since they typically have a grid structure. Lower supply
voltage, on the other hand, makes the voltage variation
across the power grids very critical since it may lead to
chip failures. Voltage drops on the power grid reduce the
supply voltage at logic gates and transistor cells to less
than the ideal reference. This leads to reduced noise mar-
gins, higher logic gate delays, and overall slower circuits.
Reduced noise margins may lead to false switching at cer-
tain logic gates and latches. Higher logic gate delays, on
the other hand, may slow down the circuit enough so that
timing requirements can not be met. Consequently, once
voltage drops exceed certain designer-specified thresholds,
there is no guarantee that the circuit will operate properly
[1], [2], [3].

Thus, it is clear that in modern VLSI circuits, power
grids are becoming performance limiting factors. Conse-
quently, efficient analysis of power grids [4], [5] is necessary
for both (1) predicting the performance and (2) improving
the performance if necessary. Because of the large dimen-
sions of power grids in modern VLSI circuits, existing anal-
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ysis methods are falling behind. Thus, there is a need for
new efficient, in terms of both execution time and memory,
techniques for the analysis of power grids.

In this paper, we propose an efficient analysis technique
that follows the lines of thought of multigrid methods which
are commonly used for the solution of smooth partial dif-
ferential equations (PDEs). Specifically, our method is in-
spired by the algebraic multigrid method, AMG, which is
one variation of the multigrid approach. Thus, section III
describes the multigrid approach with a specific emphasis
on the algebraic multigrid variation. After discussing the
multigrid technique, we present our proposed multigrid-
like approach for the efficient analysis of power grids in
section IV. The efficiency of our proposed technique is
verified by the experimental results given in section IV-D.
Finally, conclusions are provided in section V.

II. Modeling and Analysis of Power Grids

In this section, we discuss the basic modeling and anal-
ysis techniques of power grids. Specifically, section II-A
discusses how to model typical power grids, sources, and
drains, for efficient and accurate analysis. Section II-B, on
the other hand, presents the basic analysis techniques and
discusses some tricks to speedup the analysis.

A. Modeling of Power Grids

The connections from the power grid to the external sup-
ply voltage, VDD , are called the power sources since the
current is supplied from the supply to the grid through
these connections. The power drains, on the other hand,
are those modules which draw current from the power grid.
For instance, transistors, logic gates, latches, clock buffers,
memory units, register arrays, and I/O buffers are all con-
sidered power drains.

The first step in power grid analysis involves modeling
the grids as well as the power sources and drains [6]. Mod-
eling of the grids, sources, and drains involves a tradeoff
between accuracy and speed. The more complex the model
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is, the more accurate the results of the analysis are but the
more expensive the solution is (in terms of memory and
CPU time).

Typically, power distribution within an integrated circuit
is done from the top-level metal layer, which is connected
to the package, down through inter-layer vias and finally to
the active devices, as illustrated in Figure 1. We follow the
same modeling approach as in [6], where the metal wires
and vias are modeled as a linear, time-invariant and pas-
sive network consisting of resistive, capacitive and -rarely-
inductive elements. For modern integrated circuits such as
microprocessors, such a network can easily include millions
of nodes and tens of millions of elements.

As for the power sources and drains, their models can
be quite complex. The models for the power sources can
be involved enough to include sophisticated package and
board models. On the other hand, the models for the
power drains can account for the complex interaction be-
tween the power grid, the underlying non-linear circuit, and
the time-varying signals propagating across the chip. How-
ever, the huge size of the power grid makes it infeasible to
include any but the simplest models for the power sources
and drains. Hence, power sources are modeled as simple
constant voltage sources and power drains are modeled as
independent time-varying current sources.

Given the above, the complete power grid model is com-
posed of a linear network of RLC elements excited by con-
stant voltage sources and time varying current sources.
Note that none of the network RLC elements are connected
to ground, all the voltage sources (sources) are between
certain grid nodes and ground, and all the current sources
(drains) are between grid nodes and ground. The behavior
of such a system can be expressed following the modified
nodal analysis (MNA) [7] formulation as the following or-
dinary differential equation:

Gx + Cẋ = u(t) (1)

where x is a vector of node voltages, and source and in-
ductor currents; G is the conductance matrix; C includes
the capacitance and inductance terms, and u(t) includes
the contributions from the sources and the drains. In fact,
u(t) has three kinds of rows: i) rows with a positive VDD

value, which correspond to nodes that are connected to
power sources, ii) rows with a negative value of current (or
sum of currents), which correspond to nodes that are con-
nected to a power drain (or more than one), and iii) rows
with 0, which correspond to all other nodes.

In all what follows, we ignore the effects of on-chip in-
ductance and assume that the power grid is modeled as an
RC network only. This is motivated by the fact that in
today’s technology, on-chip inductance in the power grid is
too small to significantly affect the analysis results. Thus,
in summary, the power grid is modeled as an RC network,
the power sources are modeled as constant voltage sources,
and the power drains are modeled as time-varying current
sources.

Figure 2 shows a 3 × 3 grid with one voltage source at
node 1 (indicated by an X) and two current sources at
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nodes 5 and 7 (indicated by a dot). This example shows
the model for a two layer power grid with three wires in
each layer, one voltage source at node 1, and two power
drains, one drawing current from node 5 and the other
from node 7. An example of a current source associated
with an inverter power drain is shown in Fig. 3 and ex-
pressed mathematically as follows where t is the time in
nanoseconds and I is the current in milliamps:

I =

{

4106t 0 ≤ t ≤ 0.2510−9

−4106t + 210−3 0.2510−9 ≤ t ≤ 0.510−9

B. Analysis of Power Grids

Due to the large size of typical power grids, general cir-
cuit simulators such as Spice [8] are not adequate for power
grid analysis because of CPU time and memory limitation.
The inefficiency of standard simulators comes about be-
cause (a) they require a lumped element approximation of
the circuit which requires the translation of a regular geo-
metrical structure to an expansive set of equivalent circuit
elements, and (b) they use general purpose solution meth-
ods meant to be robust in the face of stiff systems of equa-
tions. By contrast, power grids are well behaved spatially
(nearly regular) and temporally (damped). This motivates
a special-purpose simulator for power grids which can make
use of these properties.

Solving (1) requires the use of some numerical integra-
tion formula. Typically, Backward Euler (BE) integration
formula is the formula of choice mostly due to its stability
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Fig. 4. Linear system resulting from MNA.

properties [7]. Applying Backward Euler to (1) results in
a set of linear equations:

(G + C/h)x(t + h) = u(t + h) + x(t)C/h (2)

which can be readily simplified to A′x(t + h) = b′ with
A′ = G + C/h and b′ = u(t + h) + x(t)C/h.

The solution of (2) requires the inversion (factorization)
of the matrix A′ = G + C/h which is independent of x,
time-invariant, large and sparse. We note, however, that
if we hold the time step h constant, then only one initial
factorization is required, with a forward/backward solve at
each time step. Since, for large matrices, a factorization
is significantly more expensive than a forward/backward
solve [9], the use of a constant time step results in large
savings. The time step needs to be kept small enough to
insure the accuracy of the solution. For application in the
analysis of power grids of digital circuits, we find that using
100 steps per clock cycle (i.e. h = 0.01∗Tperiod) is sufficient.

To illustrate, we simulate a simple grid of 33 wires in each
of the horizontal and vertical directions, connected to a sin-
gle voltage source at one of the corners, and loaded with
100 time-varying current sources at random locations. The
resulting electrical model has 1089 nodes and a total of 1090
equations. We perform the simulation for 100 time steps.
Both, Spice and our simulator, produce the same results.
However, Spice [8] takes 13.3 sec. of CPU time, whereas
our simulator implementing the method above takes 0.73
sec. for a net speedup of about 18x. Due to the superlinear
dependence of solve time on matrix size, the speedup will
be even more dramatic for the much larger systems nor-
mally encountered when simulating realistic power grids.

To better explain the process of power grid analysis,
modified nodal analysis is applied to the example given
in Figure 2. This results in the linear system shown in
Figure 4.

Let N be the number of nodes of the power grid. Then,
N = 9 in the example grid shown in Figure 2 since the grid
is 3 × 3. Furthermore, there is one voltage source which
means that the A′ matrix is a 10 × 10 matrix where the
first 9 equations are the KCL equations at all 9 nodes and
the last equation is the KVL equation at node 1 where the
voltage source is located. As for the current sources at
nodes 5 and 7, they appear in the right hand side vector
b′. On the other hand, gij defines the conductance between
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Fig. 5. Linear system after reformulation.

the two neighboring nodes i and j. Thus, gij = gji which
results in the A′ matrix being symmetric. Furthermore,
the diagonal entries of the A matrix are defined as follows:

Gi =
∑

j∈Ni

|gij |+ Ci/h (3)

where Ci is the capacitance at node i, h is the time step,
and Ni = {j | gij 6= 0} is the set of neighbors of node i.

In general, the system matrix, A′, of the linear system
A′x = b′ is symmetric but not necessarily positive definite
[9]. However, the problem can be reformulated to result in a
symmetric, positive definite matrix, A. Basically, the MNA
formulation builds the linear system A′x = b′ by asserting
both the KCL and KVL equations at the power source
nodes as well as the KCL equations at all the remaining
grid nodes [7]. Then, the solution, x, of the resulting lin-
ear system gives the voltages at all the grid nodes as well
as the currents supplied by the different voltage sources.
However, if we are only interested in the voltages at all
the grid nodes, then we can ignore the KCL equations cor-
responding to the power source nodes. Furthermore, the
voltage at a power source node is known to be exactly the
supply voltage, VDD . Thus, we can reformulate the prob-
lem by substituting the value of the supply, VDD, for the
voltage of all the power source nodes and ignoring the KCL
equations for the power source nodes.

We illustrate by applying this reformulation to the 3× 3
grid example given above. Node 1 has a voltage source, so
we replace the KCL equation at node 1 (equation 1) with
the KVL equation at node 1 (equation 10). Furthermore,
we substitute the value x1 = VDD in the equations which
depend on x1. The resulting system is shown in Figure 5.

Observe that the right hand side is also changed to result
in a new vector, b, where two extra terms g21VDD and
g41VDD are added at indices 2 and 4 respectively. It is
clear that the resulting matrix A is still symmetric. It can
also be shown to be positive definite. For that, note first
that ∀ i,

∑

j 6=i

|gij | =
∑

j∈Ni

|gij | since gij = 0 for j /∈ Ni.

This, together with (3) results in the following:

|Gi| =
∑

j∈Ni

|gij |+ Ci/h =
∑

j 6=i

|gij |+ Ci/h ≥
∑

j 6=i

|gij | ∀ i

(4)
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Equation (4) holds for every node i or equivalently for every
row of the system matrix A. This shows that the modified
matrix A is diagonally dominant and it was already pointed
out that A is also symmetric. Consequently, A is a sym-
metric and positive definite matrix [9]. As a matter of fact,
A can be shown to be an M-matrix [10] since it satisfies
the following:
1. aii > 0 ∀ i
2. aij ≤ 0 ∀ i 6= j

3. aii ≥
∑

j 6=i

|aij | ∀ i

4. aii >
∑

j 6=i

|aij | for at least one i

where aij is the entry of the A matrix at row i and column
j. Thus, in the rest of the paper, we will use the fact that
the A matrix is a non-singularM-matrix.

III. Multigrid Method

In a well designed power grid, the grid resistance is much
smaller than the equivalent sink resistance since the power
grid is required to deliver as constant a voltage as possi-
ble to all sinks. This causes local power disturbances, as
would be caused by a large localized sink, to be spread
across an area much larger than that of the sink causing
the disturbance. This spreading leads to voltage distribu-
tions which are spatially smooth, and motivates solution
methods which can make use of this smoothness to speed
up the solution process.

Furthermore, we note that the analysis of power grids
results in a system of linear equations structurally iden-
tical to that of a finite element discretization of a two-
dimensional parabolic partial differential equation (PDE).
This motivates us to consider the power grid problem as
a discretization of a continuous PDE where the solution is
needed at a spatially fixed set of points. Consequently, ef-
ficient methods for solving PDEs are worth considering as
potential competitive solvers for the power grid problem.

Recently, the multigrid method (MG) has become the
standard for solving smooth PDEs [11], [12], [13]. Multi-
grid involves two complementary steps: i) relaxation and
ii) coarse grid correction. Relaxation involves running a
few iterations of an iterative solver in order to smooth the
error components; that is, reduce the high frequency error
components. Coarse grid correction, on the other hand,
involves mapping the problem to a coarser grid, solving
the problem at the coarser grid, and then mapping the
solution back to the original grid. These two complemen-
tary steps work together to provide an efficient technique
for solving PDEs. Thus, in this paper, we argue the suit-
ability/efficiency of the multigrid technique for power grid
analysis.

Initial interest in multigrid resulted from a detailed anal-
ysis of iterative methods and the reasons for their slow
convergence. Historically, multigrid methods faced slow
acceptance during their early stages until their practical
efficiency was demonstrated by Brandt in 1973 [12], [14].
Then in 1975/1976 Hackbusch developed the fundamental
principles of multigrid without the knowledge of the ex-

isting literature. In his work, Hackbusch discussed a lot of
theoretical and practical issues. He also presented a general
convergence theory of multigrid methods [13].

While classical iterative methods suffer from slow con-
vergence as the grid dimension increases (equivalently grid
spacing decreases), multigrid performance doesn’t deteri-
orate. As a matter of fact, multigrid has been shown to
have optimal performance in that a system of N equations
can be solved with O(N) complexity. Not only is the multi-
grid technique of optimal complexity but also the constant
involved is small enough to provide an advantage of multi-
grid over other methods [13]. We should point out here
that the multigrid method falls under the category of it-
erative solvers like Jacobi and Gauss-Seidel as opposed to
direct solvers like Gaussian elimination.

We have already mentioned that the analysis of classical
iterative methods has led to interest in multigrid. So we
will start with a brief analysis of classical iterative methods.
Given a linear system Ax = b and an initial guess x̂0, an
iterative scheme involves the following:

x̂k+1 = x̂k + M−1(b−Ax̂k) (5)

where k is the iteration index and x̂k is an approximation
of the exact solution x obtained at iteration k. As for
M , it should be an easy-to-invert matrix defined such that
M−1 ≈ A−1.

Let e = x − x̂ be the error defined as the difference
between the exact solution x and the approximate solution,
x̂. It can be shown that the error can be expressed as
a linear combination of low frequency and high frequency
Fourier modes [11]. Furthermore, the analysis of classical
iterative methods leads to the following observation [11],
[15]:

Classical iterative methods efficiently reduce the

high frequency error components but are inefficient

in reducing the low frequency error components.

In order to avoid the limitations of classical methods,
multigrid methods consist of two complementary compo-
nents [11], [13]:

1. Relaxation (smoothing) which reduces the high fre-
quency error components.
2. Coarse grid correction which reduces the low frequency
error components.

Relaxation involves running a few iterations of a classi-
cal iterative solver. This follows from the observation that
classical iterative methods act as good smoothers as illus-
trated in Figure 6 [15]. Coarse grid correction, on the
other hand, involves mapping the problem to the coarser
grid, solving the mapped problem, and mapping the solu-
tion back to the fine grid. The key tools needed for com-
munication between the two grids (fine and coarse) are the
intergrid transfer operators which are referred to as the
restriction and prolongation operators. One intuitive mo-
tivation for coarse grid correction is that the solution at a
coarse grid typically provides a good initial guess for the
iterative solver at the fine grid and thus results in rapid
convergence. Another motivation for this approach is that
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the low frequency error components at the fine grid Ωh ap-
pear more oscillatory at the coarse grid Ω2h as shown in
Figure 7 [11]. Then, relaxation at the coarser grid reduces
those components.

Multigrid techniques work as follows [11]. Starting at
the fine grid, a few relaxation steps (iterations) are applied
to reduce the high frequency modes of the error. Then the
low frequency (smooth) modes of the error are well approx-
imated by coarse grid correction. This leads to the efficient
V-cycle multigrid method sketched by the following algo-
rithm [11]. In the following, R2h

h and Ph
2h correspond to the

restriction and prolongation operators respectively. V h, on
the other hand, identifies the call to the V −cycle and h de-
fines the level at which the V −cycle is called. As for ν1 and
ν2, these are constants that define the number of iterations
to be performed. These constants are chosen empirically
and typically have values of 2 or 3.

x̂h ← V h(x̂h, bh)
1. Relax ν1 times on Ahxh = bh with a given initial guess
x̂h.
2.If Ωh = coarsest grid, then go to 4.
Else b2h ← R2h

h (bh −Ahx̂h)
x̂2h ← 0
x̂2h ← V 2h(x̂2h, b2h)

3. Correct x̂h ← x̂h + Ph
2hx̂2h

4. Relax ν2 times on Ahxh = bh with initial guess x̂h.

We conclude this section by noting that each of the com-
ponents of multigrid has its own advantages and disadvan-
tages. However, the multigrid method derives its power by
combining all these methods exploiting their advantages
while avoiding their disadvantages.

A. Algebraic Multigrid

The standard multigrid methods, SMG, are focused on
solving a continuous problem with a known underlying ge-
ometry. The process involves discretizing the operator on
a sequence of increasingly refined grids and defining proper
transfer operators between the grids. The coarsest grid is

chosen so that the cost of solving the residual problem at
that grid is negligible. On the other hand, the finest grid
is chosen to provide a desired degree of accuracy. Typi-
cally, SMG methods involve uniform coarsening and linear
interpolation to define the coarse grid and the grid transfer
operators.

Note that for certain classes of problems, it may be hard
or even impossible to apply the standard multigrid tech-
nique. One such interesting class of problems that relates
directly to the power grid problem, is the class of origi-
nally discrete problems. For an originally discrete problem
with unknown geometry, discretization at different resolu-
tion grids is impossible. Even if the geometry of the prob-
lem is known, discretization may still be hard especially if
the geometry is irregular. This is because uniform coarsen-
ing and linear interpolation can’t be applied to a discrete
problem defined on an irregular grid. As a matter of fact,
it is hard to define what uniform coarsening of an irregu-
lar grid means. For such problems, the algebraic multigrid,
AMG, provides an alternative to standard multigrid, SMG,
which attempts to solve a general system of equations using
the multigrid principles. Of course, for algebraic multigrid
to be a competitive alternative, it has to maintain the effi-
ciency advantage of the standard multigrid methods.

Both, SMG and AMG, involve relaxation and coarse grid
correction. Furthermore, the efficiency of either method re-
lies mostly on the choice of the multigrid components: the
relaxation operator and the inter-grid transfer operators.
In SMG methods, uniform coarsening and linear interpola-
tion define the coarse grid and the grid transfer operators.
Thus, the efficiency of SMG methods is decided by the
choice of the relaxation operator which is chosen to reduce
those error components not well approximated by coarse
grid correction [16]. AMG methods, on the other hand,
work the opposite way. That is, the choice of the relaxation
operator is first fixed and then, the coarsening procedure
and interpolation technique are chosen to reduce those er-
ror components not well reduced by smoothing. Thus, the
efficiency of AMG methods is decided by the choice of the
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coarsening procedure and the interpolation method [16].
Consequently, most of the following analysis will target

coarse grid correction. Specifically, the coarse grid correc-
tion operator at level m, Cm, is defined as follows [11],
[16]:

Cm = Im −Pm
m+1(A

m+1)−1Rm+1
m Am (6)

where Im is the identity matrix at level m, Am is the system
matrix at level m, Am+1 is the system matrix at level m+1
(the coarser grid), and Rm+1

m and Pm
m+1 are the inter-grid

transfer operators. Rm+1
m is the restriction operator used

to map the problem to the coarser grid: bm+1 = Rm+1
m bm.

Pm
m+1 is the prolongation operator used to map the solu-

tion back to the fine grid: xm = Pm
m+1x

m+1. In AMG,
the intergrid transfer operators, as well as the coarse grid
system matrix, Am+1, are completely defined once the in-
terpolation (prolongation) operator, Pm

m+1 is defined [11],
[16]:

Rm+1
m = (Pm

m+1)
T and Am+1 = Rm+1

m AmPm
m+1 (7)

Analysis of AMG and the properties of the intergrid
transfer operators lead to the following important result
which indicates that the space of solution vectors at level
m, Rnm , can be decomposed into two subspaces, the range
space of Pm

m+1 and the null space of Rm+1
m Am as follows

[11]:

Rnm = R(Pm
m+1)⊕N(Rm+1

m Am) (8)

It follows then that the error em ∈ Rnm can always be
decomposed into two components em = sm+tm where sm ∈
R(Pm

m+1) and tm ∈ N(Rm+1
m Am). The effect of coarse grid

correction on each of the error components is given by the
following [11]:

Cmsm = 0 (9)

Cmtm = tm (10)

(9) clearly indicates that coarse grid correction perfectly
approximates and thus completely nullifies those error com-
ponents in the range space of interpolation. (10), on the
other hand, shows that coarse grid correction has no effect
on those error components in the null space of Rm+1

m Am.

The above analysis together with the definition of al-
gebraic smoothness provide a mechanism for choosing the
interpolation operator. So we define algebraic smoothness
next. An error is defined to be algebraicly smooth if it
is characterized by the fact that the residual, r = Ae, is
small compared to the error, r � e [16]. Furthermore, it
is expected that on average |ri| � aii|ei| [16]. This obser-
vation proves useful in providing a good approximation of
the error in terms of its neighboring error values:

0 = aiiei − ri +
∑

j∈Ni

aijej ≈ aiiei +
∑

j∈Ni

aijej (11)

where Ni = {j 6= i : aij 6= 0} denotes the neighborhood
of i. Geometrically, Ni denotes the grid nodes which are
directly connected to node i.

Furthermore, since the A matrix is anM-matrix, it can
be shown that the error satisfies the following inequal-
ity [16]:

∑

j 6=i

|aij |

aii

(ei − ej)
2

e2
i

� 2 (12)

(12) states that the smooth error varies slowly in the

direction of strong connections. That is, if
|aij |
aii

is relatively

large, then (ei−ej) has to be small to satisfy (12) and thus,
variation in the error values between nodes i and j is small.

(11) and (12) provide a mechanism for defining a good
interpolation operator. In this context, good refers to an in-
terpolation operator such that the error approximately lies
in its range space. Furthermore, most AMG grid reduction
algorithms are guided by (11) and/or (12) [16].

IV. Proposed Multigrid-like Power Grid

Analysis Method

In this section, we present the details of a novel approach
for power grid analysis. The technique follows the gen-
eral lines of thought of the multigrid theory. However, it
uniquely targets the specifics of the power grid problem to
result in an efficient analysis method.

Power grid analysis involves three steps:
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1. Modeling the power grids, the power sources, and the
power drains.
2. Formulating the linear system Ax = b using modified
nodal analysis (MNA).
3. Solving the linear system Ax = b to obtain the voltages
at all nodes of the power grid.

The necessity of efficient modeling of power grids,
sources, and drains for efficient analysis has already been
discussed. Furthermore, the formulation of the linear sys-
tem Ax = b by applying modified nodal analysis (MNA)
has been illustrated earlier. Thus, it remains to discuss
how to efficiently solve the resulting linear system Ax = b.

As explained in section III-A, the power grid problem is
an originally discrete problem thus motivating a solution
using the algebraic multigrid technique. However, success-
ful application of algebraic multigrid requires the defini-
tion of a good interpolation operator. This imposes a grid
reduction mechanism that satisfies the following require-
ment [16]:

For each removed node, i, every node j which is

strongly connected to i should be either kept, or

strongly connected to at least one node k, where k
is both kept and strongly connected to i.

Satisfying the above requirement may lead to inefficient
grid reduction. Specifically, the resulting reduced grid may
not be coarse enough; that is, the grid reduction removes
only a small number of nodes. This translates to an ex-
pensive solution, in terms of CPU time and memory, of
the reduced grid. Thus, to avoid the limitation of AMG,
we propose a grid reduction algorithm similar to the re-
duction using standard multigrid. However, since typical
power grids may be irregular, our algorithm is designed to
efficiently handle the irregularities of the power grid and
produce a significantly reduced coarser grid at every iter-
ation. The details of the algorithm are given in section
IV-A.

Once the grid is reduced, our proposed approach defines
the interpolation operator so as to maintain the require-
ments of the algebraic multigrid method. That is, the in-
terpolation operator is defined such that the error compo-
nents which are not well-reduced by smoothing lie in its
range space. Following (11), assume that the interpolation
operator is defined such that:

eh
i = eH

i if i is kept (13)

and

eh
i =

∑

j∈Ni

|aij |

aii

eH
j if i is removed (14)

where h and H denote the fine and coarse grids respectively.
This definition guarantees that the error lies in the range
space of the interpolation operator since eh = P h

HeH . Note

that if
|aij |
aii

is small, then the effect of node j is negligible
and thus, can be ignored. That is, it is enough to inter-
polate the voltage at a removed node i from those nodes
that are strongly connected to i. Based on this, we interpo-
late the voltage at a removed node, m, from the voltages of

those kept nodes which are strongly connected to m. Since
the geometry of the grid is available, the kept nodes which
are strongly connected to m can be easily identified. Typi-
cally, these would be the geometric neighbors of m, and/or
their corresponding neighbors. The exact definition of the
interpolation operator is discussed and illustrated in sec-
tion IV-B.

Thus, the proposed method combines the advantages of
the multigrid techniques, the standard and the algebraic,
while avoiding their limitations. Furthermore, there is
one other significant advantage of the proposed approach
over regular multigrid. As noted earlier, multigrid con-
sists of two major components: relaxation (or smoothing)
and coarse grid correction. Relaxation basically smoothes
the error components and coarse grid correction approx-
imates those smooth error components. In power grids,
however, the error components are typically smooth since
the power grids are designed so as to have smooth voltage
variation over the grid. Consequently, in solving the power
grid problem, it is possible to ignore the relaxation step of
the multigrid and concentrate only on the coarse grid cor-
rection step. That is exactly what is done by our proposed
approach and the results in section IV-D show that this
assumption leads to significant speed-ups while incurring
very small errors.

Assuming smooth voltage variation and ignoring the re-
laxation step, our proposed method falls under the cate-
gory of direct solvers as opposed to the multigrid technique
which is an iterative solver. This promises even more speed-
ups when performing transient analysis. Given an initial
grid Ωh with the associated linear system Ahxh = bh, the
proposed approach can be summarized as follows:
1. Apply the grid reduction algorithm described in section
IV-A to produce a coarser grid Ω2h.
2. Define the interpolation operator, Ph

2h as explained in
section IV-B.
3. If Ω2h is not coarse enough:
(a) Copy Ω2h to Ωh.
(b) Update the interpolation operator, Ph

2h.
(c) Go to step 1.

If, on the other hand, Ω2h is coarse enough:

(a) Map problem to coarse grid: A2h =
(

Ph
2h

)T
AhPh

2h

and b2h =
(

Ph
2h

)T
bh.

(b) Solve problem at coarse grid, A2hx2h = b2h.
(c) Map solution back to fine grid: xh = Ph

2hx2h and exit.
Note that the criterion for the reduced grid to be coarse

enough is user-specified. The criterion for a coarse-enough
grid involves a tradeoff between accuracy and speed. The
coarser the grid is, the faster the solution is but the less ac-
curate. Typically, a coarse-enough grid is a grid where the
size of the problem is small enough to be solved efficiently.
In our implementation, four levels of grid reduction (chosen
empirically) prove sufficient to result in a reduced system
which can be solved efficiently.

In the rest of this section, we will be mostly concerned
with the coarse grid correction process which is completely
defined once the coarsening strategy is chosen and the in-
terpolation operator defined. In section IV-A we define
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Fig. 8. Multiple resolution power grids.

StatusF lag Indication
N No flag (default)
K Kept
H Visited Horizontally
V Visited Vertically
R Removed

TABLE I

Meaning of status flags.
and discuss the grid reduction algorithm. Then in section
IV-B, we illustrate how the interpolation operator is de-
fined. Finally, in section IV-C, the advantages of using the
proposed multigrid-like technique for transient analysis are
discussed.

A. Grid Reduction

A natural method for efficient grid reduction, inspired by
SMG, is to skip every other wire, resulting in a situation as
in Fig. 8. However, typical power grids may be irregular,
i.e. different edges may have different lengths and differ-
ent separation distances. Thus, the reduction algorithm
should present a systematic mechanism for reducing any
general grid. Furthermore, the algorithm should maintain
the structure of the original grid so that it can be recur-
sively applied until a coarse enough grid is obtained.

The major objective of our reduction algorithm is to re-
move as many nodes as possible while maintaining the abil-
ity to estimate voltages at the removed nodes by interpola-
tion. The algorithm takes as input a fine grid Ωh and a list
of nodes to be kept and produces as output a reduced grid
Ω2h with a smaller number of nodes. The list of kept nodes
should consist of specific nodes of interest to the user, but
our technique automatically generates a default list con-
taining the corner nodes and nodes where voltage sources
are located.

The algorithm makes use of certain status flags, which
are explained in Table I, to decide whether a node is kept or
removed. Furthermore, these flags indicate how to interpo-
late the voltage at a removed node from its kept neighbors.
The grid reduction algorithm makes repeated use of a so-
called node update operation, which is defined as follows:
Starting from that node, go along a horizontal (vertical)
direction and flag all visited nodes with H (V). Flag ex-
tremities as kept. A node which is visited both horizontally
and vertically (flagged with both H and V), is flagged as
kept. The algorithm consists of three passes described as
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Fig. 9. Reduction of an irregular grid.

follows:

1. First Pass: Update every kept node.
2. Second Pass: For each H (V) node, flag it as removed
(R). Flag its neighbors along the same row (column) as
kept and update those neighbors. If a node is not flagged
(N), flag it as removed (R), flag its diagonal neighbors as
kept, and update those nodes.
3. Third Pass (defines interpolation): Voltage of a kept
node is the same as that computed at the coarser grid.
Voltage of an H (V) node which is then flagged as R is in-
terpolated from its row (column) neighbors’ voltages. Volt-
age of an N node which is then flagged as R is interpolated
from its diagonal neighbors which are kept.

The diagonal neighbors of a node X are defined as those
nodes reached by going 2 steps from X first horizontally
and then vertically or first vertically and then horizontally.
For example, if node Y is the upper neighbor of node X ,
then the left and right neighbors of Y are diagonal neigh-
bors of X .

The algorithm is illustrated by the irregular grid Ωh

shown in Figure 9 which will be reduced to result in the
grid Ω2h. In our implementation of the grid reduction al-
gorithm, grid nodes are ordered from top to bottom, left
to right. However, note that this is not a limitation of the
algorithm which is robust enough to handle any ordering
of the nodes.

Initially, all nodes have the default status of N except
for the nodes which should be kept. In this example, these
would be all the corner nodes of the grid (dashed nodes in
Fig. 9). A tag consisting of two fields is associated with
every node of the grid. The left field indicates the status
of the node after the first pass and the right field indicates
the status of the node after the second pass.

As shown in Fig. 9, after the first pass, an edge (row
or column) consisting of at least one kept node, has its
extremities flagged as kept. The remaining nodes on that
edge are flagged with H or V based on whether the edge
is horizontal or vertical. Note that some nodes still have a
status flag of N which indicates that these nodes have not
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Fig. 10. Basic Multigrid operator.

been visited during the first pass. Then after the second
pass, nodes with a K flag are kept while those with an R
flag are removed thus resulting in the coarser grid Ω2h.

Finally, we point out that if the original grid is regu-
lar, then the algorithm is optimal. That is, it results in
maximal reduction in the number of nodes as illustrated in
Figure 10. In that case, every grid reduction results in a
linear system with approximately 4x fewer unknowns and
consequently 8x smaller CPU time for solution by direct
sparse matrix methods.

B. Interpolation

AMG interpolation is guided by (11) and (12). Thus,
the interpolation operator should be chosen to relate the
voltage of a removed node, i, to the voltages of those kept
nodes which are strongly connected to i. Typically, AMG
considers a connection between two nodes, i and j, to be
strong when |aij |/ maxl6=i |ail| ≥ θ, where 0 ≤ θ ≤ 1 (θ is
typically chosen to be 0.25 in practice [16]). With such a
choice of the interpolation operator, the coarse grid correc-
tion would efficiently reduce the error.

In our reduction algorithm, the status flags indicate
which neighbors of a removed node are to be used for inter-
polation, based on the fact that they are kept and strongly
connected to a removed node m. As for the interpolation
weights, these are obtained by considering the values of
conductances between the nodes. Thus, if the voltage at a
removed node m is interpolated from the voltages at nodes
A and B, then the (linear) interpolation function INT () is
defined as:

V (m) = INT (V (A), V (B)) = a0V (A) + a1V (B) (15)

where a0 = gmA

gmA+gmB
and a1 = gmB

gmA+gmB
. Here, gmA it

is the conductance between nodes m and A, and gmB is
the conductance between nodes m and B. Note that our
technique for choosing the interpolation weights is inspired
by the technique used in AMG. To illustrate, consider a
removed node m whose voltage will be interpolated from
the voltages at the kept nodes A and B. AMG uses the
following interpolation scheme [16]:

V (m) =
|amA|

amm

V (A) +
|amB |

amm

V (B) (16)

where amA is the entry of the A matrix relating nodes m
and A, and amB is the entry of the A matrix relating nodes
m and B. As for amm, one AMG approach is to define it

A

D E

B

n r p

m

q

  C

Fig. 11. Interpolation from reduced grid nodes.

as the diagonal entry of the A matrix corresponding to
node m. Another common AMG method defines amm as:
amm = |amA|+|amB |. For the power grid problem, |amA| =
gmA and |amB | = gmB , which shows that our interpolation
technique is motivated by AMG.

However, this is not the full story. Recall that our grid
reduction algorithm differs from AMG grid reduction meth-
ods; it is actually based on SMG reduction - it uses only
geometric information and removes as many nodes as pos-
sible. Hence, it is possible to come across cases where a re-
moved node i has all the nodes that are strongly connected
to it removed as well. To illustrate this, consider Fig. 11,
where a filled node indicates a removed node and a blank
node indicates a node that is kept. In this example, we
assume that every horizontal or vertical link represents a
strong connection but two nodes that are separated by two
or more links are not strongly connected. This situation
is typical of power grids. Thus, r is strongly connected to
m and m is strongly connected to B, but r and B are not
strongly connected. Nodes such as B that are separated
by two strong links from r, but which are themselves not
strongly connected to r, are said to be two-level strongly
connected to r. Our reduction would remove node r, as
well as all the nodes that are strongly connected to it, m,
n, p, and q. However, it can be shown that our algorithm
guarantees that, if a node i is removed, either some nodes
that are strongly connected to i are kept or some nodes that
are two-level strongly connected to i are kept. Therefore, in
our interpolation technique, if all strongly connected neigh-
bors of a node have been removed along with it, we use its
two-level strongly kept neighbors for interpolation. This is
clearly illustrated in Fig. 11 where the voltage at node r is
interpolated from those nodes which are two-level strongly
connected to r; specifically, nodes A, B, C, D, and E.
Note that this approach maintains the advantage of effi-
cient grid reduction as well as meets the requirement of a
good interpolation operator.
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C. Time Domain Analysis

In section II-B we pointed out that the fixed time step BE
integration method offers large efficiency gains because it
requires only one matrix inversion for all time steps. How-
ever, this efficiency comes at the cost of requiring the use of
a direct solver. Since our proposed approach uses a direct
solve, it is clear that it promises significant speed-ups when
transient analysis is performed.

In addition to being advantageous over iterative solvers,
the proposed multigrid-like technique offers significant ad-
vantages over direct solvers as well. Basically, given an
N×N linear system Ax = b, the proposed technique solves
this system by mapping the problem to a reduced NH×NH

linear system AHxH = bH where NH � N , solving the re-
duced system, and mapping the solution back to the origi-
nal system.

Note that most of the cost for solving the original sys-
tem using the proposed technique lies in solving the re-
duced system AHxH = bH . Furthermore, both A and
AH are sparse matrices and thus a factorization of ei-
ther matrix is significantly more expensive than a for-
ward/backward solve [9]. However, since NH � N , then
factorizing A is significantly more expensive than factor-
izing AH . The same observation holds true for perform-
ing a forward/backward solve. Consequently, the proposed
technique promises more speed-ups when transient anal-
ysis is performed since transient analysis involves several
forward/backward solves.

It is clear that direct solvers offer significant speed-ups
over iterative solvers when transient analysis is performed.
However, the major problem with direct solvers is their high
memory demand which proves to be a limiting factor for
many applications [1]. As a matter of fact, if the dimension
of a linear system is very large, it may be impossible to
solve such a system using a direct solver. In such cases, an
iterative solver has to be used and the problem is seriously
aggravated when performing transient analysis because an
iterative solver has to be used at every time step thus losing
the speed-up advantage of direct solvers.

However, our proposed technique offers an efficient solu-
tion to this problem because it uses a direct solver to solve a
reduced system of a much smaller dimension. That is, our
technique avoids the memory limitation of direct solvers
while maintaining their speed-up advantage. It avoids the
memory limitation by solving a reduced system of a much
smaller dimension. On the other hand, it maintains the
speed-up advantage because the reduced system matrix is
factorized only once with several forward/backward solves
performed for transient analysis. Of course, the advantages
of the proposed technique come at a slight cost in the ac-
curacy of the solution since the relaxation step is ignored.
However, the results in the next section show that this error
is small enough to maintain the efficiency and suitability
of the proposed technique.

D. Experimental Results

The proposed multigrid method has been implemented
and integrated into a linear simulator written in C++. All

experimental results reported in this section were obtained
by running the simulations on a 400MHz ULTRA 2 Sun
workstation with 2GB of RAM and running the SunOS 5.7
operating system.

The practicality and efficiency of the proposed technique
are illustrated by applying it for the analysis of the power
grids of two real industrial ASIC designs. We will refer to
these designs as C1 and C2. Both designs, C1 and C2 are
0.18µ CMOS designs and have a supply voltage of 1.8 V.
Given the power grid, the technique requires as input the
currents associated with the different power drains on the
chip.

Different current measures can be used for the analy-
sis depending on the application of interest. For instance,
while peak current is a good representative measure for IR
drop, average current is a better measure for electromi-
gration analysis. On the other hand, a current waveform
is the suitable current measure for transient analysis. A
straight-forward technique for obtaining any current mea-
sure of interest is to simulate the power drains under nom-
inal loads and realistic switching factors. This is how the
current measures we use for our analysis are obtained. In
all our experiments for DC analysis, we use the peak cur-
rent drawn by the power drains as our current measure. As
for transient analysis, the current measure used is the cur-
rent waveform associated with the different power drains.

The irregular power grids of the two designs, C1 and
C2, were simulated. Several grid reductions are applied
and the problem accordingly mapped to the coarser grids
(as explained earlier, the reduction is repeated until the
grid is coarse enough as specified by the user). Specify-
ing four levels of reduction, Table II shows the number of
nodes of the grid at every level. Table II also shows the
CPU times for solving the given linear system using both
a regular direct solver (shown in column 4) as well as the
proposed multigrid-like technique (shown in column 5). It
is clear that the proposed technique is almost 16× to 20×
faster than traditional simulation. Note that the same di-
rect solver is used for solving both the original system as
well as the reduced system which verifies that the speedup
is not due to an advantage of one solver over another.

In order to verify the accuracy of the results provided
by the proposed technique, the exact solution is compared
to the estimated solution returned by the proposed tech-
nique. The histograms of percentage errors in the voltages
of the different nodes of the power grids corresponding to
the two designs, C1 and C2, are shown in Figures 12 and
13 respectively.

For the design C1, the distribution of the node voltage
errors has a mean of −0.0077% and a standard deviation of
0.0333%. As for the design C2, the error distribution has
a mean of −0.0026% and a standard deviation of 0.0167%.
Furthermore, Figures 12 and 13 also show that the errors at
all the power grid nodes of both designs lie in the −1.0% to
1.0% range. In fact, design C1 has errors that range from
−0.93% to 0.66% while design C2 has errors that range
from −0.30% to 1.0%. Thus, it is clear that the proposed
technique provides an accurate solution to the power grid
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Design name Level Number of nodes Exact solve time (sec) MG solve time (sec)
0 318074
1 187630

C1 2 128864 456.79 21.6
3 101209
4 86883
0 671088
1 421460

C2 2 310143 1114.13 69.28
3 258591
4 231982

TABLE II

Grid reduction and CPU times using exact solve as well as multigrid-like technique.
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Fig. 12. Error in nodes voltages for the C1 design.
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Fig. 13. Error in nodes voltages for the C2 design.
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Design name Exact transient solve time MG transient solve time
C1 921.16 seconds 28.32 seconds
C2 14.3 hours 86.36 seconds

TABLE III

Grid reduction and CPU times for transient analysis.
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Fig. 14. Error in the voltage waveform at a power grid node in the
C1 design.

problem at a significant speed-up over regular solvers.

As explained earlier, the proposed multigrid-like tech-
nique is even more advantageous when applied for transient
analysis. This is illustrated by Table III which shows the
time required to run a transient simulation of the power
grids of the two designs using a regular solver and the pro-
posed technique. The power grids are simulated for a dura-
tion of 4ns with 0.4ns time steps. The speedup advantage
is clear in both cases. However, it is more significant in
the case of the C2 design and the reason is that design C2

is simulated using an iterative solver due to memory lim-
itations. Thus, for each time step, the power grid is sim-
ulated using the iterative solver requiring a total of 14.3
hours. The proposed technique, on the other hand, uses
a direct solver to solve the problem at the reduced grid.
Thus, only one initial factorization is needed and only for-
ward/backward solves are needed at the remaining time
steps. The total time required for transient analysis us-
ing the proposed multigrid-like technique is 86.36 seconds,
representing a speed-up of 600× for transient analysis.

Other methods to speed-up power grid analysis have
been proposed [5]. In [5], a hierarchical power grid analy-
sis technique is proposed which gives speed-ups between 2×
and 5× for DC analysis. The authors also propose utiliz-
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Fig. 15. Error in the voltage waveform at a power grid node in the
C2 design.

ing parallelism which increases the speed-ups to the range
10× to 23× [5]. However, their proposed method offers
no speed-ups when transient analysis is applied in serial
mode. Smaller speed-ups between 1.8× and 5.1× can still
be observed when parallel execution is used for transient
analysis. Note that the speed-up comparison is a function
of the linear solvers being used as well as the size of the
problems being solved. However, experimental results show
that our method promises more significant speed-ups at a
minimal cost in accuracy. Furthermore, these speed-ups
are evident for both DC as well as transient analysis.

Finally, it remains to verify the accuracy of the resulting
approximate solution. This is illustrated by Figures 14
and 15 which show the voltage waveform at some node
of the power grids of designs C1 and C2 respectively. It
is clear that the multigrid-like technique accurately tracks
the exact voltage waveform at the given node. Figures 16
and 17 show the estimation error in the voltage drop (as
opposed to voltage), showing a worst-case error of about
16%. Thus, the multigrid-like technique provides relatively
good accuracy for both DC as well as transient analysis of
the power grids with the added advantage of significant
speed-up over regular analysis techniques.
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Fig. 16. Error over time in the voltage drop waveform at a power
grid node in the C1 design.
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Fig. 17. Error over time in the voltage drop waveform at a power
grid node in the C2 design.

V. Conclusion

An efficient PDE-like method for power grid analysis
is presented. It follows the basic lines of thought of the
multigrid technique which is widely used for the solution of
smooth PDE problems. However, the proposed technique
falls under the category of direct solvers and thus, signifi-
cantly differs from the regular multigrid method which falls
under the category of iterative solvers. Experimental re-
sults on real designs show speed-ups of one to two orders
of magnitude over current methods for both DC as well as
transient analysis.
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