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Abstract—It has been widely recognized that the dynamic-
range information of an application can be exploited to reduce
the datapath bitwidth of either processors or application-specific
integrated circuits and, therefore, the overall circuit area, delay,
and power consumption. While recent proposals of analytical
dynamic-range-estimation methods have shown significant advan-
tages over the traditional profiling-based method in terms of run-
time, it is argued here that the rather simplistic treatment of input
correlation and system nonlinearity may lead to significant error.
In this paper, three mathematical tools, namely Karhunen–Loève
expansion, polynomial chaos expansion, and independent compo-
nent analysis are introduced, which enable not only the orthogonal
decomposition of input random processes, but also the propa-
gation of random processes through both linear and nonlinear
systems with difficult constructs such as multiplications, divisions,
and conditionals. It is shown that when applied to interesting
nonlinear applications such as adaptive filters, polynomial filters,
and rational filters, this method can produce complete accurate
statistics of each internal variable, thereby allowing the synthesis
of bitwidth with the desired tradeoff between circuit performance
and signal-to-noise ratio.

Index Terms—Bitwidth, correlation, dynamic range, indepen-
dent component analysis (ICA), non-Gaussian, nonlinear, polyno-
mial chaos expansion (PCE), Karhunen–Loève expansion (KLE).

I. INTRODUCTION

TODAY’S application-specific integrated circuit (ASIC)
designers start with a design specification handed off by

system designers. Often in the form of C code, the algorithm-
level design specification needs to be converted into register
transfer level (RTL) design, typically in the form of hardware
description languages. A crucial decision to be made during this
process is the datapath bitwidth, including the bitwidths of dif-
ferent registers and functional units. An aggressively designed
datapath often replaces floating-point arithmetic contained in
the design specification by their fixed-point counterparts. In
addition, the redundant bits that do not contribute much to
the accuracy of the application are often eliminated. Such
datapaths with minimal bitwidth always translate to superior
circuit performance in terms of area, speed, and power con-
sumption. To make this possible, the dynamic-range infor-
mation of the application and, in the case of C code, the
dynamic ranges of all declared variables and intermediate
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expressions (all referred to as signals or variables in the fol-
lowing text) have to be obtained.

Unfortunately, the best practice today for dynamic-range
estimation is still profiling (also referred to as simulation),
which works by instrumenting the original application with a
code that can trace the value ranges at runtime. While this
method can be made very accurate, the accuracy is achieved
only by extremely long simulation since the design space to
be explored could be large; worst of all, no confidence on the
accuracy can be obtained. In contrast, analytical methods can
avoid long simulation by analyzing the application at compile
time. While many advances have been made on this front, the
proposed methods have not been able to provide dynamic-
range information as accurate and as complete as profiling.
The accuracy problem can usually be attributed to either no
treatment of signal correlation, as in the cases of bitwidth [1]
or moment propagation methods [2], or inadequate treatment
of signal correlation, as in the case of affine arithmetic method
[3], [4]. The completeness problem can be attributed to the fact
that these methods typically produce only value or error bounds
instead of signal distribution, thereby limiting the scope of their
application.

In this paper, we first propose a new analytical framework
based on Karhunen–Loève expansion (KLE) and demonstrate
its effectiveness in linear systems, which characterize a large
class of useful applications. The KLE method allows us to
decompose the system input, modeled as an arbitrary random
process, into K number of deterministic signals, each multi-
plied by a random variable (RV). Exploiting the linearity of the
system, we can therefore obtain the system response of a ran-
dom input by combining system responses of K deterministic
inputs, each multiplied by the corresponding RV.

While this method can capture spatial and temporal correla-
tions effectively, it relies on the application of superposition,
a property enjoyed only by linear systems. By definition, a
system y = f(x) is nonlinear if it does not satisfy the superpo-
sition property, that is, f(a1x1 + a2x2) �= a1f(x1) + a2f(x2).
In practice, whenever operations such as multiplications, di-
visions, and conditionals are used in the corresponding C
implementation, a system is likely to be nonlinear. Therefore,
the majority of C applications are nonlinear. Even in the domain
of digital signal processing (DSP), where linear filters are most
widely used, nonlinear systems comprise a large important
category of applications. For example, in image processing sys-
tems, it is typical to have applications that use logarithmic non-
linearity to model the human eye. Similarly, neural networks
apply nonlinear operations to linear combinations of inputs to
mimic the nervous system. Other common examples include
median filters, where the output is the median of the input
values in the corresponding neighborhood, polynomial filters,
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where the output is a polynomial function of its inputs, rational
filters, where the output is a ratio of two input polynomials,
and adaptive filters, where the output is a weighed combination
of inputs, and the weights themselves are functions of inputs.
The readers are referred to books such as [5] for a detailed
comprehensive treatment.

In this paper, we also propose a comprehensive solution for
the difficult problem of dynamic-range estimation for nonlinear
systems. The key idea of our solution is the introduction of a
new statistical construct, called polynomial chaos (PC), which
is a family of orthogonal polynomials in terms of Gaussian
RVs. With a rigorous well-defined procedure, these polyno-
mials are constructed with the powerful properties such that
when an input signal is decomposed into a combination of PC,
called PC expansion (PCE), it is easily propagated through a
nonlinear system, and the full statistics of all signals can be
derived accordingly. Intuitively, the accuracy of this method
can be attributed to the fact that KLE can effectively capture
the correlation of signals, and the further use of polynomials
can effectively preserve the correlation even after nonlinear
operations.

We demonstrate the following advantages over previous ap-
proaches. First, it is extremely fast compared to profiling, the
only method with comparable accuracy. While profiling has to
simulate the system for thousands or even millions of random
input realizations, our method only needs a single run of a
program transformed from the original system specification.
Second, our method is constructive in the sense that the dis-
tribution of all signals can be obtained. This is in sharp contrast
to other analytical methods that computes intervals or finite-
order moments, which are only partial information about the
signals. As a result, an optimal bitwidth can be synthesized
by aggressively cutting the tails of the distribution under the
given signal-to-noise ratio (SNR) constraint. In contrast, other
recent analytical approaches, such as that in [3], can offer only
a verification of error bound of a given bitwidth selection,
while shedding no insight on the proper choice of bitwidth.
Third, our method is highly accurate. It can capture not only
the spatial correlation, but also the temporal correlation in the
system input, which is not possible in the previous methods.
As is shown later in this paper, this contributes significantly
to the accuracy of the result. With our method, the accuracy
can be maintained even for nonlinear systems, which is not
the case for previous methods [2]–[4]. Finally, it is the first
time that the complete treatment of nonlinear systems are
given. In contrast, while the propagation of different signal
representations through nonlinear operations are discussed in
[2] and [3], no results on a complete nonlinear system have been
demonstrated.

The remainder of this paper is organized as follows.
Section II gives a brief account of the related literature. We
then describe our treatment of linear systems in Section III and
nonlinear systems in Section IV, with the following structure:
For each case, we first introduce the underlying theoretical
background for the modeling of system signals: KLE for
linear systems (Section III-A) and PCE for nonlinear sys-
tems (Section IV-A). Assuming such models for system inputs
are available, we then show how such models for system

responses (Sections III-B and IV-B) and, in turn, their statis-
tics (Sections III-C and IV-C) can be derived. To make the
picture complete, we also show how models for system inputs
can be obtained from either statistics or sample data supplied
by the user (Sections III-D and IV-E). Detailed experimental
results are shown in Section V before we draw conclusion
in Section VI.

A word about notation would be useful. We will use bold
font, such as x, to denote an RV. Deterministic (i.e., nonran-
dom) variables will be denoted with regular italic font, such as
x. In addition, some Greek symbols, such as ξi, µi, and Ψi,
will be used to denote RVs, but sometimes Greek symbols like
λi will denote deterministic variables. It will be clear from the
context which variables are random and which are not. The
notation E[x] will denote the mean or expected value of the RV
x [6]. Two RVs x and y are said to be orthogonal if E[xy] = 0.
Two zero-mean RVs x and y are said to be orthonormal if they
are orthogonal and each has a variance of one.

II. RELATED WORK

Profiling or simulation-based approach [7]–[10] is used ex-
tensively to estimate the dynamic range of variables in a pro-
gram. As mentioned earlier, this method is computationally
expensive, since huge amounts of sample data need to be
simulated.

The Lp norm method based on a transfer function is pro-
posed in [11] and is applied in [12]. While theoretically well
formulated, this method requires the explicit knowledge of the
system transfer function, which may not be always available,
and which may be difficult to extract from C code. In addition,
it propagates only the maximum value of the data. Thus, the
estimated dynamic range can be very conservative. It is also
important to note that the Lp norm method is not applicable to
nonlinear systems due to their absence of transfer functions.

A moment-based method is presented in [2]. This method
models the input as an RV and propagates up to the seventh
order of its moments through the system. The probability den-
sity function (pdf) of all variables can be constructed from the
propagated moments. However, this method assumes that the
input data is temporally independent, and that variables internal
to the system (such as at the input to an arithmetic operator)
are spatially independent. Both these assumptions are not true
in practice, and can have significant impact on accuracy of the
results, as we will demonstrate in Section V-C.

A bitwidth/interval propagation method is adopted in [1].
This method propagates the input bitwidth or interval through
the system to obtain the dynamic range for intermediate vari-
ables. The estimated result from this method is overly pes-
simistic, since it always considers the worst case. If the system
is large, these estimation errors could be accumulated rapidly
to a large amount.

Affine arithmetic, an improvement on the interval propaga-
tion technique, is given in [3] and [4], where the spatial corre-
lation between internal variables induced by the reconvergent
fan-out structure in the system is taken into account. However,
this method does not capture the inherent temporal correlation
of the input signals. For many applications, spatial correlation
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between variables is a direct result of the temporal correlation
of the input signals. Therefore, ignoring the temporal correla-
tion of the input automatically causes loss of true correlation
information internally. In addition, because the information
propagated is limited to affine, or linear form, accuracy has
to be compromised when nonlinear terms are generated after
nonlinear operations. As detailed later in Section V-C, the loss
of accuracy can be significant.

Thus, all existing methods have certain shortcomings, espe-
cially in the way that correlation and nonlinearity are dealt with.
In our paper, we take care of both temporal input correlation
and spatial internal correlation even for nonlinear systems,
and we provide not only ranges of the data, but its statistical
distribution as well.

III. LINEAR SYSTEMS

Consider an application that can be modeled as a linear
system with a single-input data channel. We will focus on this
case in this paper. However, it is straightforward to extend
the proposed method to linear systems with multiple input
channels. In order to model the unknown input data, and since
the size of the input space is typically huge, we will model
the input data stream as a discrete-time random process, i.e.,
a sequence of RVs that are presented at the system input at
discrete time steps. Correspondingly, the system internal state
and output variables all become random processes. Given an
input process model, the dynamic-range-estimation problem
can be formulated as the determination of the statistics of the
random processes corresponding to the system state and output
variables. Typically, the variance may be sufficient to determine
dynamic range. However, we will show that we are able to
estimate the full pdf, if needed.

A. KLE

A random process p(t) defined over [0, t0] with zero mean
and autocorrelation function R(t1, t2), can be expressed using
the following KLE [6]:

p(t) =
∞∑

i=0

√
λifi(t)µi (1)

where fi(t) and λi are referred to as the eigenfunctions and
eigenvalues, respectively, of the autocorrelation function. The
eigenfunctions are also known to be orthonormal, i.e.,

t0∫
0

fi(t)fj(t)dt = δij (2)

where δij is the Kronecker delta function

δij =
{

0, if i �= j
1, if i = j

(3)

and where µi’s are a set of zero-mean orthonormal RVs, which
means

E[µiµj ] = δij . (4)

When the random process p(t) is Gaussian (i.e., its one-
dimensional (marginal) and all joint pdfs are Gaussian), a
model that is often useful in practice, it turns out that µis are
all independent standard normal RVs. They may be referred to
as a Gaussian basis. In cases where p(t) is near normal, µi’s
can still be approximately treated as Gaussian RVs in practice.
In cases of large deviation from the Gaussian distributions, the
Gaussian basis is not appropriate and one can then determine
the nature of the µi basis (their distribution type) using standard
KL techniques. The details are unimportant because one often
does not need to know the exact nature of the µi basis, but
only their moments. For our paper, the second-order moments
would actually seem to be sufficient, but we will show how
higher order moments can be generated as well. The literature
on KL techniques and their practical implementations is quite
extensive. Notice that, irrespective of the distribution of µi, the
orthonormality property (4) guarantees that

E
[
µ2

i

]
= 1 (5)

and this fact will be useful later on to compute the variance,
without having to know exactly the distribution of the µi.

It can be shown that the KLE is optimal in the sense that
the mean square error resulting from replacing the infinite
summation in (1) by a truncated finite summation is minimal.
Finally, one can obtain fi(t) and λi by solving

t0∫
0

R(t1, t2)fi(t1)dt1 = λifi(t2). (6)

The above results are applicable to a continuous-time
process. If we consider the discrete-time random process p[k]
to be defined on the discrete time domain [0, n], then, as was
done in [13], a KLE can be expressed in discrete time as

p[k] =
n∑

i=0

√
λifi[k]µi, k = 0, 1, . . . , n (7)

where λi and fi[k] are the eigenvalues and eigenfunctions
of the autocorrelation matrix of the discrete-time random
process p[k]




R(0, 0) R(0, 1) · · · R(0, n)
R(1, 0) R(1, 1) · · · R(1, n)

· · ·
· · · · · ·
· · ·

R(n, 0) R(n, 1) · · · R(n, n)







fi[0]
fi[1]
·
·
·

fi[n]


 = λi




fi[0]
fi[1]
·
·
·

fi[n]




(8)

where R(k1, k2) = E[p[k1]p[k2]] is the autocorrelation func-
tion. Here too, µi and fi[k] are orthonormal, and the summation
can be truncated, yielding a least squares optimal expansion

p[k] ≈
m∑

i=0

√
λifi[k]µi, k = 0, 1, . . . , n. (9)
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In this case, it can be shown that the relative mean square error
resulting from the truncation is given by

e = 1 −
∑m

i=0 λi∑n
i=0 λi

(10)

where λ0, . . . , λm are the eigenvalues that are kept in the
truncated KLE. We will refer to this error term as the trunca-
tion error of the KLE. In order to minimize error, the largest
eigenvalues are always kept. Here, we assume λi’s are ordered
descendantly by magnitude.

B. Obtaining System Response

Let u[k] be the random process at the system input and x[k]
be the random process at an arbitrary state variable or at a
system output. Then, we can write

x[k] = L (u[k]) (11)

where L(·) denotes the linear system operator that transforms
u[k] to x[k]. Let u[k] have the following KLE:

u[k] =
m∑

i=0

√
λifi[k]µi =

m∑
i=0

ui[k]µi (12)

where ui[k] =
√
λifi[k]. Combining (11) and (12) gives

x[k] = L (u[k]) = L
(

m∑
i=0

ui[k]µi

)
. (13)

By the superposition property of linear systems, it follows that

x[k] = L (u[k]) =
m∑

i=0

L (ui[k])µi =
m∑

i=0

xi[k]µi (14)

where xi[k] = L(ui[k]).
In this way, we can obtain the KLE of the random process

x[k] in terms of the system responses to each of the determin-
istic (nonrandom) functions ui[k] applied as input. In specific
cases where a system transfer function is available, one can
solve for xi[k] directly. However, in the more general case,
and this is the approach that we take, even when the system
is specified with a high-level behavioral description such as
a C program, xi[k] can be obtained by simply simulating the
system (e.g., executing the C program) with ui[k] as input.
The order m of the KLE is typically small, as we will show
in Section V, so that the complete statistics of the system
internals and outputs may be obtained by simulating the system
m times. The initial state of the simulation and the length of
the simulation period are parameters that can be set depending
on the particular situation. For example, in order to study the
dynamic range during a system transient, the simulations can be
performed starting from any desired initial state, and the largest
variance of the resulting responses may be monitored. If the
steady-state dynamic range is of interest, then the simulation
period must be set long enough for the individual simulations
of the components ui[k] to reach steady state. This, to some
extent, depends on the statistics of the input process and on

the system dynamics. Thus, a KLE is not a magic remedy that
eliminates the need for simulation. Instead, KL is a way to dras-
tically reduce the number of required simulations, compared to
profiling-based methods, as we will demonstrate in Section V.

C. Obtaining System Statistics

Once the required m simulations are complete, we can
assemble the complete KLE for any system variable or output
response x[k] as

x[k] =
m∑

i=0

xi[k]µi. (15)

It is important to note that this is a complete statistical de-
scription of the process x[k]. One can use this expansion to
compute any desired probability associated with x[k], such as
the probability that it would exceed a certain threshold value,
or simply compute the overall distribution of x[k] from the
known distributions of the µi RVs. Oftentimes, the moments
of the distribution are very useful, and they are perhaps easiest
to compute from this expansion. The first-order moment is the
mean or expected value of the process, which is known to be
zero because the input is zero mean. The second-order moment,
which is required to compute the variance, is given by

E
[
x[k]2

]
= E


( m∑

i=0

xi[k]µi

)2

 =

m∑
i=0

xi[k]2 (16)

which is true because µi have zero mean and unity variance
[due to (5)].

If the system input is Gaussian, then all the internal and
output responses are also Gaussian, so that the mean and
variance are sufficient to capture the complete distribution. In
the general case, higher order (say l-order) moments may be
required and they may be obtained by similar, although slightly
more involved, expansions that turn out to require terms such
as E[µl1

j1
µl2

j2
· · ·µlq

jq
], where l1 + l2 + · · · + lq = l. These terms

may be obtained by using the KL transformation (9) in the
reverse direction to compute samples of the RVs µi from the
input data samples, and using these samples to compute terms
like E[µl1

j1
µl2

j2
· · ·µlq

jq
] by simple (Monte Carlo) averaging. The

process is fairly straightforward but is omitted for brevity.
Once the moments of the response x[k] are obtained, one can
further estimate its pdf by any of the pdf expansion meth-
ods such as Gram–Charlier, Hermite, or Edgeworth expansion
[14], [15], or by pdf fitting methods such as generalized lambda
distribution [16]. These pdf estimation methods have been
extensively applied in many research areas.

D. Input KLE-Model Extraction

The proposed method needs the KLE model for the primary
input in the first place. The model can be extracted either from
the input statistics or sample data supplied by the user.

The input statistics can be correlation functions, such as the
R(k1, k2) matrix in (8), and other moments of the input. If the
input random process is Gaussian or nearly Gaussian, its mean
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and correlation function are sufficient to compute the statistics
of the system variables and outputs. In the general case, other
moments may also be needed depending on the order of the
required system variable statistics.

If input statistics are not available and sample data traces
are provided instead, we first extract the mean and correlation
matrix from the sample data. Extracting the mean is done
by simple averaging. The correlation matrix is obtained by
averaging the cross terms as follows:

1
m




p1[0] p2[0] · · · pN [0]
p1[1] p2[1] · · · pN [1]
· · ·
· · · · · ·
· · ·

p1[n] p2[n] · · · pN [n]







p1[0] p1[1] · · · p1[n]
p2[0] p2[1] · · · p2[n]
· · ·
· · · · · ·
· · ·

pN [0] pN [1] · · · pN [n]



(17)

where [pi[0] pi[1] · · · pi[n]] is a sample trace input, and N is
the total number of sample traces.

If the mean is not zero, then the input process is decomposed
into a deterministic term whose value is equal to the mean, and
another zero-mean random process resulting from subtracting
the mean from the original process. The corresponding mean of
every system response can be computed by one execution of the
system behavior using the input mean function as excitation.
Since the mean can be easily subtracted out up front, and the
response to the mean function easily added later on, it is
sufficient to focus the discussion on the zero-mean case.

Once the correlation matrix is available, we can extract
the KLE model by solving the eigensystem problem for this
matrix. Solution techniques of such systems are standard. After
the eigenvalues and eigenfunctions are found, the KLE of the
input random process is available. It can easily be truncated
according to the truncation error specified by the user using
(10). High-order moments (higher than second order) of the
RVs µj can also be computed from the moments of the input
random process if they are needed (as mentioned in the previous
section).

IV. NONLINEAR SYSTEMS

The behavior of nonlinear DSP applications can be captured
at a high level of abstraction with a data-flow graph (DFG).
Each node of the DFG represents a primitive operation, typi-
cally a multiplication or addition of real numbers, or a decision
operation. Note that with a decision operation, the if–then–else
branch that is typically captured in a control-flow graph (CFG)
is implicitly captured in the DFG. The construction procedure
for such a DFG is standard and has been reported in both the
compiler [17] and CAD [18] communities.

As in the case of linear systems, we view the primary inputs
of the DFG as random. The “source of randomness” in the
system primary input is either a genuine uncertainty about what
inputs to expect or a representation of a large population of
possible inputs by means of their aggregate statistics. Since the
principle of superposition can no longer be exploited here, we
propose to use the PCE in place of KLE to model the system
signals. The analysis can then be formulated as propagating

the PCE coefficients through the DFG from the system primary
inputs.

A. PCE

We first provide a brief review of the theory of PC and
describe the PCE of an RV, based mainly on [19].

Let ξ1, ξ2, . . . , ξn be a sequence of zero-mean orthonormal
Gaussian RVs. In other words, each ξi is Gaussian with mean
zero and variance one (i.e., each has the standard normal
distribution), and they are orthogonal, so that

E[ξiξj ] =
{

1, if i = j
0, otherwise.

(18)

It can be shown that ξi’s are also independent. Let
Γp(ξ1, ξ2, . . . , ξn) be a polynomial whose degree is p, defined
on the orthonormal Gaussian RVs ξ1, ξ2, . . . , ξn. If we consider
different permutations and replacements of the arguments of
Γp(·), which has at most p distinct arguments, we represent the
resulting set of polynomials by{

Γp(ξi1 , ξi2 , . . . , ξip
)
}

(19)

where ik ∈ {1, 2, . . . , n} for all k ∈ {1, 2, . . . , p}. This set of
polynomials is referred to as PC of order p. To be exact,
PC is not just any set of polynomials; rather, it is a set with
an important orthogonality property, defined by means of the
following construction.

The zeroth-order PC {Γ0(·)} is a constant, and is chosen to
be one by construction

Γ0() = 1. (20)

The first-order PC is chosen so that every polynomial in Γ1(ξi)
is orthogonal to every polynomial in {Γ0(·)}, where two dis-
tinct polynomials Γq(ξi1 , . . . , ξiq

) and Γr(ξj1 , . . . , ξjr
) are said

to be orthogonal if

E
[
Γq(ξi1 , . . . , ξiq

)Γr(ξj1 , . . . , ξjr
)
]

= 0, if q �= r. (21)

Applying this orthogonality requirement leads to the following
choice for the first-order PC:

Γ1(ξi) = ξi. (22)

The second-order PC is chosen so that it is orthogonal to both
Γ0 and Γ1, leading to

Γ2(ξi1 , ξi2) = ξi1ξi2 − δi1i2 (23)

where δi1i2 is the Kronecker delta as defined earlier.
Similar procedures give all higher order PCs, so that each is

orthogonal to all lower order PCs. What is not obvious from
the brief and informal presentation above is that even within
a single {Γp}, it can be shown that the polynomials are all
orthogonal. The concept of PC is useful in that it provides
a basis for decomposition of a general RV, called a PCE, as
follows.

If x is a square integrable RV, that is, E[|x|2] is finite, then
it can be shown that one can express it as a decomposition or



WU et al.: DYNAMIC-RANGE ESTIMATION 1623

TABLE I
PC POLYNOMIALS Ψ0, . . . , Ψ14 FOR n = 2 AND p = 0, 1, 2, 3, 4,

WITH E[Ψ2
i ] IN EACH CASE

expansion in terms of an underlying basis of PC. The number n
of underlying RVs ξ1, . . . , ξn is referred to as the dimension
of the expansion, and, as above, the highest degree in the
polynomials p is called the order. The exact PCE generally uses
infinite dimension (n) and order (p). However, in practice, one
can truncate the infinite series expansion based on a finite n and
p, by neglecting high order terms and minor dimensions. Thus,
the two-dimensional (n = 2) PCE with order two (p = 2) is

x = a0Γ0 + a1Γ1(ξ1) + a2Γ1(ξ2) + a11Γ2(ξ1, ξ1)

+ a12Γ2(ξ1, ξ2) + a22Γ2(ξ2, ξ2) (24)

where aij’s are constant coefficients. Γ2(ξ2, ξ1) is dropped here
since it is identical to Γ2(ξ1, ξ2). In order to simplify the nota-
tion, the polynomials are sorted in a specific way and they are
denoted Ψ0,Ψ1,Ψ2, . . . ,Ψm; this is nothing more than a differ-
ent numbering scheme. Given an order (p) and a dimension (n),
one can quickly determine [19] exactly which polynomial each
Ψi corresponds to under this numbering scheme. For example,
Table I shows an example of the numbered polynomials for the
two-dimensional case. With this simplified notation, each RV
can be expressed as

x =
m∑

i=0

xiΨi. (25)

In general, m grows very quickly for larger n and p, but a PCE
is typically useful even for small order and dimension, so that m
remains tractable in practice. It can be proved that the number
of n dimension PCs up to pth order m + 1 is

m + 1 =
p∑

i=0

(n + i− 1)!
i!(n− 1)!

=
(n + p)!

n!p!
(26)

where (n + i− 1)!/i!(n− 1)! is the number of i-order PCs.
The key property of these polynomials that turns out to be

very useful in practice is the following orthogonality property

E[ΨiΨj ] =
{

E
[
Ψ2

i

]
, if i = j

0, otherwise
. (27)

The values of E[Ψ2
i ] can be computed easily based on the fact,

which is easily proven, that if ξ is a zero-mean unity-variance
Gaussian, then for any integer k ≥ 0

E[ξ2k+1] = 0 and E[ξ2k] =
(2k)!
2kk!

. (28)

From above, it becomes possible to apply PCE to complex
nonlinear systems of differential equations, such as in compu-
tational fluid dynamics [20], where random parameter pertur-
bations have typically been expressed using PCE. As a result,
an analysis of a system under random stimulus is replaced
by repeated deterministic analyses of the system, from which
coefficients of the PCE are solved for separately. Once the PCE
coefficients are known, the distribution, the moments, or any
statistics of the system response can be solved for.

B. Obtaining System Response

In the following, we will show how the output PCE can be
derived from the input PCE, for various types of operations that
one typically encounters in DFGs.

1) Scaling: This case is trivial. If y = ax, where a is a con-
stant, and if a PCE is available for x, so that x =

∑m
i=0 xiΨi,

then the PCE for y is y =
∑m

i=0 yiΨi, where

yi = axi. (29)

2) Summation: Here too, the linearity of the summation
operation makes this case very easy. If z = x + y, and if a PCE
expansion is considered for all three variables

x =
m∑

i=0

xiΨi, y =
m∑

i=0

yiΨi, z =
m∑

i=0

ziΨi (30)

then it is clear that

zi = xi + yi. (31)

3) Multiplication: The multiplication case is nontrivial, and
it brings out the power of the PCE expansion. Suppose z = xy
and that a PCE expansion is considered for all three variables,
so that

∑
k

zkΨk =

(∑
i

xiΨi

)∑
j

yjΨj




=
∑
i,j

xiyjΨiΨj . (32)

In order to solve for zk, we multiply both sides of the above
equation by Ψk and take the expected value of both sides. Based
on the orthogonality property (27), this leads to

zk =
1

E [Ψ2
k]

∑
i,j

xiyjE[ΨiΨjΨk]. (33)

The three-way expectations on the right-hand side are actually
trivial to compute for a given dimension and order of PCE,
because of the independence of the ξi variables and due to (28).
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As an example, in the case when the dimension is 1 (n = 1)
and the order is 2 (p = 2), in which case the expansion consists
of Ψ0, Ψ1, and Ψ2 only, this type of analysis leads to

z0 =x0y0 + x1y1 + 2x2y2

z1 =x0y1 + x1y0 + 2x1y2 + 2x2y1

z2 =x0y2 + x2y0 + x1y1 + 4x2y2. (34)

Notice that there is no assumption of independence between
x and y. Indeed, the PC expansion offers a way by which
correlations among different RVs can be captured via the coef-
ficients of the various polynomials, so that correlation is taken
into account quite naturally. For larger values of n and p, the
expressions for zi become more involved but they remain of
this nature, meaning they consist of cross products of the xi

and yj terms. If we go to large problems such as n = 4 and
p = 3, these expressions can grow to include about 35 terms.

4) Division: Division being the inverse of multiplication,
it is easy to see that equations such as (34) can be used in
the reverse direction, to give values of xi, given values of zi

and yi for example. In the reverse direction, these equations
constitute linear systems of simultaneous equations Ax = b
whose solution techniques (i.e., finding the inverse matrix of A)
are standard. For example, in the case when n = 1 and p = 2,
shown above, the resulting matrix equation is


 y0 y1 2y2

y1 y0 + 2y2 2y1

y2 y1 y0 + 4y2




x0

x1

x2


 =


 z0

z1

z2


 . (35)

For higher dimension and order, the equations remain linear,
but the size of the matrix and the values of the matrix entries
would change.

5) Multiplexing: We consider the case where the value of a
variable depends on a “switch” or multiplexing decision based
on another variable. Specifically, if a, b, c, and x are RVs, and
if (c0, c1) is a partition of the domain of c, then we consider

x =
{

a, if c ∈ c0
b, if c ∈ c1

. (36)

As before, we consider that each variable has a PCE, so that

∑
i

xiΨi =
{∑

i aiΨi, if c ∈ c0∑
i biΨi, if c ∈ c1

. (37)

If we define a new set of RVs xi by

xi =
{

ai, if c ∈ c0
bi, if c ∈ c1

(38)

then we can write

∑
i

xiΨi =
∑

i

xiΨi. (39)

If we multiply both sides by Ψk and take the expected value
of both sides, and applying the orthogonality property, this
leads to

xk =
1

E [Ψ2
k]

∑
i

E[xiΨiΨk]. (40)

We can further simplify the result by using conditional expec-
tations

E [xiΨiΨk] = aiE [ΨiΨk|c ∈ c0]P{c ∈ c0}
+ biE [ΨiΨk|c ∈ c1]P{c ∈ c1}. (41)

P{c ∈ ci} denotes the probability of random event c ∈ ci,
while E [ΨiΨk|c ∈ ci] denotes the conditional expectation un-
der condition c ∈ ci. The conditional Expectations can be eas-
ily and quickly estimated by Monte Carlo techniques. Random
samples of ξ1, . . . , ξn are generated and classified as to whether
they produce a sample of c in c0 or c1. The probabilities of the
two outcomes are thus computed, and within each classifica-
tion, the mean value of ΨiΨk is computed in the usual Monte
Carlo fashion. Since the underlying variables are Gaussian,
convergence is easily achieved.

6) Time Shift: The preceding operations were operations on
RVs, without regard to the time dimension. In general, a be-
havioral description consists of a sequencing of the operations
in time, so that the RVs considered are really signal values
at specific time points on a discrete time scale: x[1],x[2], . . ..
The preceding analysis for scaling, summation, multiplication,
division, and multiplexing were all relevant to a specific time
point. In addition, it is trivial to handle a time-shift operation: if

y[j] = x[j − k] (42)

then the resulting PCE coefficients are simply time shifted
themselves

yi[j] = xi[j − k]. (43)

C. Obtaining System Statistics

Once the PC expansion for an RV is available, one can
use that PCE to compute statistics of various kinds for the
variable. Moments of arbitrary order (mean, variance, etc.) can
be easily generated [19]. Analytical approximations to the full
distribution of that RV can then be obtained from the moments,
using techniques such as the Edgeworth expansion [15] and
others. This is the same as what we mentioned earlier for the
KLE method.

For determining dynamic range and choosing the right
bitwidth, it is important to have the cumulative distribution
function (cdf), at least the tail of the cdf, in order to estimate the
error incurred if bitwidth is reduced. Given that we have in hand
a PCE for an RV, we have found it is very easy and practical
to estimate the cdf by Monte Carlo techniques. Given a PCE
expansion for an RV, we generate samples of the orthonormal
basis ξ1, . . . , ξn from which we obtain samples of the value of
the RV itself, which we use to build an empirical approximation
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to the cdf F (x). It typically takes less than a second of CPU
time to compute the cdf in this way.

D. Applicability

We have shown how a PCE can be propagated through
typical operations found in a system and how system statistics
can be obtained from the output PCE. While we have effectively
defined the PCE “transfer functions” for these operations, what
remains is the question as to how general can the scheme
be applied. For given input PCEs, we could ask the follow-
ing questions: First, do response PCEs exist for any system?
Second, do PCEs exists for all operations we use to compose
systems of interest? Third, can response PCEs be found for
systems specified as network of basic operators, with structures
including feedback?

It has been well established [19] that PCE representation can
always be found and can be arbitrarily accurate for an RV that
is square integrable (or its second moment exists). Note that
this condition applies to most practical systems; in other words,
their response PCEs exist. In particular, if a system/operation
produces a bounded output, then the output is automatically
square integrable.

We now consider a system composed of a network of elemen-
tary operations. Assuming that the PCE propagation formulas
of all operations are known, assuming that the input PCEs for
each time point are given, and assuming that the initial PCEs
of state variables are given either as deterministic values or as
random PCEs, we can find the system transient response, in the
form of one PCE per time point, by applying the PCE propaga-
tion formulas of all operations in topological order at each time
point. In the case where the network is cyclic due to the feed-
back structures, the cycles are first broken at delay elements,
after which the topological application can be followed. This
procedure is exact provided that the PCE order and dimension
are infinite.

In practice, PCE truncations have to be used to keep the
order and dimension finite, which inevitably introduce errors
or noise. For feedback systems, it is possible that the error may
become unbounded as it propagates through the system. It is
well known that the “butterfly effect” exists in chaotic systems
found in nature. However, well-designed engineering systems
of interest are also stable and robust; in other words, the system
itself tolerates small errors both in the system input and the
system model, and we can approach the exact response as close
as we want by reducing these errors to certain ranges. As we
observe in experiments, errors in general can be dealt with by
increasing PCE order and dimension. It is also important to
note that feedback structures introduce correlation, for which
the PCE method is particularly capable of capturing.

Since the same hardware resource will be used for system
outputs at different time points, the response PCEs for all time
points need to be combined for the purpose of dynamic-range
estimation. It is also important to note that most practical sys-
tems are stationary; in other words, their statistics will converge
after a finite number of iterations, in which case we can stop the
PCE propagation process. It is up to the user whether only the
steady state is important, in which case the converged PCE can

Fig. 1. Nonlinear DFG.

TABLE II
PCE COEFFICIENTS OF RECURSIVE NONLINEAR FILTER

Fig. 2. Output moments of recursive nonlinear filter.

be used, or the transients are important as well, in which case
all the PCEs up to the steady state need to be combined. This
can be achieved by using a method similar to the treatment of a
multiplexor operation.

Consider a recursive nonlinear filter example shown in Fig. 1,
which contains feedback structures. The D elements in the DFG
denote time shift that causes one time unit delay. Assuming that
the system input u is stationary and can be captured by a one-
dimensional four-order PCE at all time points

u = 0.01Ψ0 + 0.02Ψ1 + 0.01Ψ2 + 0.01Ψ3 + 0.005Ψ4.
(44)

By utilizing the PCE propagation method section, we are
able to compute PCE for the DFG output y. Table II shows
the PCE coefficients of y computed at different iterations. After
16 iterations, the PCE of y converges to steady status. The
convergence process can be clearly shown in Fig. 2, where the
first- and second-order moments are plotted for each iteration.
Fig. 3 compares the cdf of y from the PCE with that produced
by profiling with 30 000 samples. The two cdf plots match
very well.
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Fig. 3. Output cdf of recursive nonlinear filter.

E. Input PCE Model Extraction

In order to propagate the PCE through a DFG, based on the
above operations, one needs a PCE expression for the system
input to begin with. We assume that the system has a single-
input data channel, represented with a stochastic process p[k],
k = 0, 1, . . . , N . The extension to multiple inputs is not hard
to do, but we will focus on the single-input case for clarity. At
each time index k, the value p[k] is an RV. We will show how a
KLE [6] for the stochastic process p[k] can be used to generate
an input PCE expansion.

If µi is a Gaussian process, it can be shown that µi’s
are a set of independent standard Gaussian RVs (7). If p[k]
is not Gaussian, then one can only guarantee that µi is an
orthonormal set (4). Therefore, µi’s are uncorrelated to each
other, not necessarily independent. Uncorrelatedness is weaker
than independence.

For a Gaussian random process, after KLE, it is already in
the correct format of a PCE since the independent standard
Gaussian RVs µi are exactly the first-order PC. No extra work
is needed.

1) Nearly Gaussian Case: For a “nearly Gaussian” random
process, even though RVs µi are only uncorrelated, strictly
speaking, it is possible to approximate them as being indepen-
dent and further expand every µi individually by PCE. The error
caused by this assumption is tolerable since p[k] only slightly
diverges from the Gaussian one.

From basic probability theory, it is known that if x is any
RV, and if F (·) is its cdf, then y = F (x) is another RV whose
cdf can be shown to be the uniform distribution on [0, 1]. As
a corollary, if u is an RV that is uniform on [0, 1], and if F (·)
is a valid cdf, then x = F−1(u) is an RV with the cdf F (·).
Let Φ(·) be the cdf of the standard normal (zero mean, unity
variance, Gaussian) distribution, and let Fi(·) be the cdf of µi

(resulting from KLE). Therefore

ξi = Φ−1 (Fi(µi)) (45)

is a standard normal RV (Gaussian with mean zero and variance
one). We propose to use the resulting ξ1, . . . , ξn as the basis for
a PCE. The advantage in doing this is that we would have an
easy way to compute the required PCE coefficients from the

Fig. 4. Checking the independence assumption.

KLE for each µi. Before we can do that, however, we must first
establish that the ξi’s are orthonormal. Since they are standard
normal RVs, orthonormality would be established if we could
prove that they are pairwise uncorrelated so that E[ξiξj ] =
E[ξi]E[ξj ] = 0. However, uncorrelatedness is not guaranteed
by the above construction of the ξi’s.

One easy way to achieve uncorrelatedness is if it were the
case that the µi’s are independent. That would lead to the
conclusion that the ξi’s are independent, due to the construction
(45), and therefore uncorrelated. However, KLE guarantees that
µi’s are independent only in the case when the process p[k] is
itself Gaussian. Otherwise, KLE only guarantees that the µi’s
are uncorrelated, which is not enough to establish that the ξi’s
are uncorrelated.

If the input random process is not too far from the Gaussian
model, we will assume that µi can be approximated as being
independent. As a sanity check, we have checked the error of
this approximation in the following way. We generated 80 000
random sample traces (realizations) of p[k], using a typical
auto-regression moving average (ARMA) model of time series
[21], which is chosen to be quite close to the Gaussian model.
We then built the KLE (7) for p[k], so that we end up with
80 000 random samples of the vector [µ1µ2 · · ·µn]. This allows
us to check on whether the joint distribution of µi and µj can
be approximated as the product of their individual (marginal)
distributions. If yes, then µi and µj may be assumed inde-
pendent. The distributions were built from the data by simply
approximating the pdf with a histogram (80 000 is a large-
enough data set that this is very well justified). We show the
results of this comparison in Fig. 4, where, for every observed
(µi, µj) pair of values, the vertical axis shows the joint pdf of µi

and µj evaluated at that point, fµi,µj
(µi, µj), and the horizontal

axis shows the product fµi
(µi)fµj

(µj). Ideally, the data should
be right on the diagonal line, but it is not, of course. However,
it is close enough to the diagonal that we consider that this
justifies the independence assumption.

With the ξi available as a basis, we can now proceed to
obtain the PCE for p[k] as follows. For each µi, consider a one-
dimensional PCE expansion, based on ξi, so that

µi =
∑

j

cijΨj . (46)
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One can easily compute the values of the coefficients cij , as
follows. To compute cik, multiply both sides of (46) by Ψk and
take the expectation on both sides, leading to

cik =
E[µiΨk]
E [Ψ2

k]
. (47)

The right-hand side is a function of the statistics of µi and the
ξi derived from it (recall that, in this one-dimensional PCE, Ψk

is a function of only ξi). The denominator, for one thing, is very
easy, and is available from the properties of the PC polynomials
as we saw earlier in connection with (28). The expectation
in the numerator can be computed by a simple Monte Carlo
procedure, as follows. Given a large-enough number of user-
supplied samples of the input process p[k] (or, given some
probabilistic model of the input process, such an ARMA model,
from which one can generate such samples), we can use the
KLE (7) to generate samples of the µi’s, from which the cdf of
each µi can be approximated by its empirical cdf. The empirical
cdf of an RV x, evaluated at some value x0, is given by the
fraction of observed values of x that are less than or equal to x0.
Once these cdfs Fi(·) are available, we can use the construction
(45) to get the corresponding sample values of the ξi’s, from
which Ψk can be computed, and the mean E[µiΨk] computed
by Monte Carlo.

2) Non-Gaussian Case: However, for a random process that
is significantly non-Gaussian, the RVs µi cannot be treated as
independent variables, otherwise, the resultant error is large,
as we will show in Section V. Under this case, we will
conduct a linear transformation on the random vector µ =
[µ0 µ1 · · · µn]T and the resulting transformed RVs will be
mutually independent. The matrix defining this linear trans-
formation can be found by independent component analysis
(ICA). After we transform µi to a set of mutually independent
RVs, the left work is exactly the same as the nearly Gaussian
case. For the significantly non-Gaussian case, performing KLE
is still necessary since KLE can effectively reduce the minor
dimensions of the random process and is also needed by ICA as
a preprocessing operation.

The problem of ICA is formulated as follows. Assume that
we have a random vector µ = [µ1 µ2 · · · µn]T where RVs
µ1, µ2, . . . , µn are not mutually independent. ICA tries to find
an invertible square matrix W, such that by performing the
linear transformation

s = Wµ (48)

the elements (s1, s2, . . . , sn) of the resulting random vector s
are mutually independent or at least as independent as possible.
Without loss of generality, it is typical to constrain the RVs
s1, s2, . . . , sn so that they each have a variance of one.

The main idea of the ICA method is: First, establish a quan-
titative metric of independence for random vector s, and then
find the matrix W that makes this independence metric reach
its maximum or minimum value. Therefore, ICA is essentially
an optimization problem.

It can be shown [22] that maximizing the independence of
RVs s1, s2, . . . , sn, is equivalent to maximizing the sum of
their negentropies:

∑
i J(si). Negentropy J(si) is a measure

of non-Gaussianity of si, which reaches its minimum value 0
if si is Gaussian. Therefore, in practice, we can make the RVs
si independent by choosing a W to maximize their individual
non-Gaussianity.

This fact can be intuitively explained by the central limit
theorem. We want to discover a matrix W such that the
uncorrelated RVs µi, forming the vector µ, can be expressed as

µ = W−1s (49)

where s is a vector of RVs si that are independent (or as
independent as possible). Let y = Aµ, where A is a matrix.
If/when A = W, then yi = si. When A �= W, then yi is some
linear combination of some of the si’s because y = AW−1s.
The more si’s are involved in this linear combination, the
closer yi is to being Gaussian, due to the central limit theorem.
Therefore, the case yi = si (i.e., A = W) corresponds to max-
imizing the non-Gaussianity of yi. Thus, a row of W, denoted
by Wi, may be obtained as the vector Wi that maximizes the
non-Gaussianity of the RV si. This leads to the intuition that
non-Gaussianity can serve as the optimization metric for ICA.

The negentropies J(si) are difficult to estimate from samples
of si. Fortunately, we can use an alternative metric to approxi-
mate it and it does not matter whether this metric is an accurate
approximation or not. For the purpose of optimization objec-
tive, it only needs to have the same trend as negentropy when
non-Gaussianity of RVs si changes and reaches its maximum
value at the same point as negentropy. For example, negentropy
can be approximated by the absolute value of kurtosis

|kurt(si)| =
∣∣∣E [s4

i

]
− 3E

[
s2
i

]2∣∣∣ . (50)

Other approximations of negentropy can also be used as objec-
tive functions [22].

As we mentioned above, we can determine the ICA matrix
W by finding its row vectors Wi one by one, and Wi is solved
by maximizing the non-Gaussianity of si. The optimum solu-
tion for Wi can be obtained by regular optimization algorithms,
such as gradient methods. In order to reduce the computation,
the original raw random vector will be first processed by KLE
to make its elements (i.e., µi) zero mean, unity variance, and
uncorrelated RVs. During the optimization process, all Wi’s
are also constrained to be orthogonal to each other to prevent
two Wi’s from converging to the same vector.

V. RESULTS

We implemented the proposed methods by a software tool
structured in Fig. 5. The input of the tool is the behavioral
description of an application in the form of C code, and some
information of the input data, which could either be its statis-
tical model or sample data. The tool can build the appropriate
models (either PCE or KLE) of all system variables, from which
their pdfs and other statistics can be derived, and the minimum
bitwidth under SNR constraints can be determined. In order
to extract the input model automatically, different paths are
followed depending on the linearity of the application and the
Gaussianity of the input data.
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Fig. 5. Block diagram of PCE/KLE method.

Fig. 6. C program before conversion.

The behavioral description of the application under analysis,
written in C, is transformed into another C program using
compiler techniques. All program variables, including the in-
termediate variables, in the original program, are mapped to its
corresponding analytical models in the transformed program.
Likewise, all operators encountered in the original C program
are translated into a code that propagates the analytical models,
according to the technique described in Sections III-B and IV-B.
The transformed program is then compiled and executed to
propagate the extracted KLE/PCE model.

Figs. 6 and 7 show an example for program transforma-
tion. Fig. 6 is the original C program, while Fig. 7 is the
program that performs the corresponding PCE computation.
The deterministic variables (such as i in Fig. 6), which are
not random, are left untouched. The RVs (such as the floating-

Fig. 7. C program after conversion.

point variables in Fig. 6), which are computed from the random
input or related to the random input, are transformed into arrays
of corresponding PCE coefficients of size N_PCE, a constant
determined by the order and dimension of the chosen PCE.
According to the PCE propagation formulas in Section IV-B,
we implement a family of routines to perform PCE coef-
ficient manipulations corresponding to all operations on the
variables in the original programs. For example, in Fig. 7,
pce_assign_cnst() corresponds to assigning a constant
to an RV, while pce_assign() assigns an RV to the other;
pce_mult() computes the PCE coefficients for the product
of two RVs; pce_scale() does the similar operation for the
product of a deterministic value and an RV; and pce_add()
computes the PCE coefficients for the sum of two RVs.

We construct a set of experiments first to quantify the effec-
tiveness of the proposed methods in terms of their speed and
accuracy, then to demonstrate the advantages of our approach
over prior work by performing a “what-if” analysis to show
the impact of ignoring correlation and nonlinearity, and finally
to illustrate the application of our analysis result for making a
tradeoff between bitwidth selection and SNR. All our experi-
ments are conducted on an Ultra 80 Sun workstation.

A. Results for Linear Systems

The KLE-based method proposed in Section III is used to
estimate the dynamic ranges of a set of linear benchmarks.
The set of benchmarks includes FIR31, FIR63, CXFIR, IIR,
IIR8, and FFT128. The first two, FIR31 and FIR63, are 31-
order and 63-order finite impulse response (FIR) digital fil-
ters, respectively. CXFIR is a complex FIR filter, whose input
and output are all complex numbers. IIR is a second-order
infinite-impulse response (IIR) digital filter. IIR8 is an eight-
order IIR digital filter. FFT128 performs a 128-point fast
Fourier transform.

Sample sets of five input random processes are generated to
conduct the experiments for linear systems. These were applied
to the benchmarks as input signals. These processes fit the
ARMA model of time series [21], which is extensively used
in engineering and can cover quite a broad range of signals
and data such as speech, image, and communication. Every
sample set consists of 10 000 traces of 100 time points each,
for a total of 1 million data points in each sample set. The
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TABLE III
KLE EXTRACTION RESULT

TABLE IV
VARIANCE FROM PROFILING VERSUS VARIANCE FROM KLE,

WITH SAMPLE DATA SET RP1 AS INPUT

“randomness” of these sample sets were chosen to be different
so as to provide extensive testing, as shown in Table III.
Thus, rp1 is the most noisy sample set, while rp5 shows the
most temporally correlated behavior. The “randomness” of data
samples decreases from rp1 to rp5.

1) Speed and Accuracy of KLE Extraction: We first demon-
strate the accuracy and speed with which we extract a KLE
model of random processes from the sample data set. Table III
shows these results. It can be observed from column 4 that all
extractions can be accomplished within 1.5 s while retaining a
truncation error of about 3%. Overall, the time complexity of
our KLE extraction algorithm is linear in sample size.

It is interesting to observe from column 3 that the more cor-
related the sample set is, the fewer terms are needed to capture
its behavior for a specific truncation error. This is because the
energy of more correlated sample sets are concentrated on only
a few random terms in the KLE. On the other hand, for sample
data sets that show more random behavior in the time domain,
their energy is spread over more terms. While the impact of the
truncation on the estimation error is small and can be ignored,
it can significantly reduce the computational work required.

2) Speed and Accuracy of Obtaining System Response: In
this section, we demonstrate the accuracy and speed of the
KLE method by comparing it against the traditional profiling-
based method. The accuracy results are listed in Table IV. Note
that these results are produced where all KLEs are truncated
to retain more than 97% of its energy (a truncation error
setting of less than 3%). The second and third columns list the
variances of the system outputs obtained from the KLE- and
profiling-based methods, respectively. Variance is equivalent to
second moments when mean is zero. The last column shows
the difference in percentage between variances from KLE and
profiling. The results from KLE is consistently close to the
results from profiling. Even the largest difference is within
0.5%. It is important to note that this difference is only an
artifact of truncation during input KLE. If all terms in the KLE
are kept, then the difference is essentially zero. In Table IV,
the data in parenthesis are obtained from profiling when sample

Fig. 8. Histogram from KLE versus histogram from profiling.

TABLE V
COMPUTATION TIME, PROFILING VERSUS KLE

size is 1000; we can see that the large sample size is necessary
to accurately estimate the distributions.

Fig. 8 further shows the histogram of an output variable in
benchmark FIR31 when rp1 is applied as input. The bar graph
and curve correspond to the histogram from profiling and the
estimated pdf from the KLE-based method, respectively. The
total sample number for profiling is 10 000. It can be seen that
the histogram and estimated pdf match very well. These results
clearly verify that the KLE-based method is accurate and reli-
able. It is important to note that while we use the profiling result
to verify the KLE method, it does not necessarily imply that
profiling is more accurate than the KLE-based method. In fact,
profiling can never reach the real theoretical values, because the
simulated sample data can never be infinite. However, provided
that the accurate statistics of input random processes are given,
the exact statistics of state variables can always be obtained by
KLE. For example, given the mean and correlation function of
a Gaussian random process as input, then the exact models and
statistics for state variables can be calculated.

Finally, Table V shows the computation time of our KLE-
based method versus a profiling-based method. The KLE-based
technique achieves about 100 times speedup.

B. Results for Nonlinear Systems

Eight benchmarks are selected from practical applications to
conduct the experiments for nonlinear systems. Three bench-
marks are polynomial filters. Among them, volterra is a second-
order volterra filter, which derives its name from the Volterra
expansion of general nonlinear functions [5]; teager implements
a one-dimensional Teager’s algorithm [5] and is commonly
used for contrast enhancing in image and speech recognition;
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Fig. 9. Normal scores plot for rp6, rp7, and rp8.

bilinear is a nonlinear filter whose output is linear with respect
to every single system variable. Two benchmarks are adaptive
filters, where adaptive1 is a regular LMS adaptive filter that
adjusts its parameters in proportion to the computed error signal
[5], and adaptive2 adjusts its parameter only according to the
sign of the error signal. It is interesting to note that the latter
includes conditionals. Another benchmark is a rational filter,
which use both multiplication and division. Benchmark adpcm
implements the 2-bit Adaptive Differential Pulse Code Mod-
ulation (ADPCM) algorithm, which includes a quantizer and
several adaptive filters. Benchmark sensor is a high-reliability
industry application that extracts up to seven high-frequency
components and combine them to measure capacitance. Note
that adpcm includes many nonlinear operations, and contain
multiple conditionals. Also, note that sensor uses saturating
addition, which inherently includes conditionals.

Sample sets of input random processes with different char-
acteristics, speech (for adpcm), and sensor excitation data (for
sensor) were used as inputs. Similarly as in the previous section,
every sample set consists of 10 000 traces of the process. Such
a large number of traces are necessary in order to avoid artifacts
caused by finite sample size. This is especially important if we
want to capture the tails of the distribution.

1) Speed and Accuracy of PCE Extraction: We construct
three random processes, one (rp6) is close to Gaussian, while
the other two (rp7 and rp8) are significantly non-Gaussian.
Fig. 9 shows normal scores plots for rp6, rp7, and rp8, respec-
tively. The normal scores plot is a commonly used statistical
technique to verify whether a set of data samples come from an
underlying Gaussian distribution. If Gaussian, the data should
form a straight line. Minor deviations of the data from the linear
fit is allowable, especially at the tails of the distribution, but
strong deviations are a clear sign of a non-Gaussian distribution.
From these three normal scores plots, it is clear that rp6 is close
to Gaussian, while rp7 and rp8 significantly deviate from the
Gaussian.

We use both KLE with ICA and KLE without ICA to
extract PCEs from these random processes. Then, three cdfs are
generated for every random process: two from the PCE models
obtained by ICA and KLE and another one directly from the
original sample data.

Fig. 10. Distribution functions for rp6.

Fig. 11. Autocorrelation functions for rp6.

From Fig. 10, we can observe that if the random process
is close to Gaussian, the PCE models with ICA and without
ICA find similar distributions and both of them fit the original
sample distribution very well. Alternatively, Fig. 11 shows the
respective autocorrelation functions; it can be seen that they
match each other very well. Therefore, we can conclude that
for nearly Gaussian cases, not performing ICA is acceptable.

However, for significantly non-Gaussian cases, the distrib-
utions obtained with and without ICA are different, as shown
in Fig. 12. Only those obtained with ICA fit the original cdfs
well. Fig. 13 shows that even if the cdf without ICA deviates
from the sample cdf, its corresponding autocorrelation function
is still consistent with the sample autocorrelation function. This
is because the autocorrelation function belongs to the second-
order moments, and from the perspective of the second-order
moments there is no difference between independence and
uncorrelatedness. That is, PCEs extracted with ICA and without
ICA reach the same results when they are used to estimated
the second-order statistics of the sample (such as Fig. 13).
However, for statistics higher than second order, PCE without
ICA incurs a larger error. Although not shown in the paper, we
observe the same for sample rp8. We can therefore conclude
that for the general case of systems with non-Gaussian input,
ICA is necessary.
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Fig. 12. Distribution functions for rp7.

Fig. 13. Autocorrelation functions for rp7.

TABLE VI
PCE EXTRACTION TIME WITH ICA

Table VI shows the time spent on performing input PCE
extraction with ICA, for PCEs with different dimensions and
orders. It can be seen that the computational cost of ICA is
only a few seconds. It should also be noted that the PCE
extraction time is a one-time cost—once a random process has
been characterized, it can be reused for many times.

2) Speed and Accuracy of Obtaining System Response: We
now demonstrate the accuracy of the ICA-based method for
dynamic-range estimation. We obtain our result by applying
rp7 to the benchmarks. Tables VII–IX show the first- (mean),
second-, and third-order moments of benchmark output vari-
ables obtained by PCE with ICA, without ICA, and profiling,
respectively. Tables VII–IX also show the relative differences of
PCE results compared with profiling results. We can clearly see
that the statistics obtained with ICA match the profiling results
very well. However, the moments obtained without ICA are

TABLE VII
FIRST-ORDER MOMENTS (MEAN) ICA VERSUS PROFILING

TABLE VIII
SECOND-ORDER MOMENTS ICA VERSUS PROFILING

TABLE IX
THIRD-ORDER MOMENTS ICA VERSUS PROFILING

generally quite different from the profiling since the input ran-
dom process is significantly non-Gaussian. The higher the order
of moments, the larger the errors. To visualize the result, Fig. 14
shows the distribution functions for the rational benchmark. It is
clear that the distribution function obtained without ICA causes
large errors under this case.
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Fig. 14. Variable cdf of benchmark rational.

TABLE X
COMPUTATION TIME PCE VERSUS PROFILING

Table X shows the total computation time of the proposed
method. Compared with profiling, our method is orders of
magnitude faster. Additionally, it should also be noted that
in order to compute distributions of all signals, the storage
requirement of the profiling method could be a thousand times
larger than the PCE method. According to previous studies
[7], [9], [10], the efficiency improvement (power or redundant
bit) achieved by the accurate dynamic range is from 11% to
50%. The accuracy of the presented method is comparable to
profiling. Therefore, our method enjoys the same improvement
as profiling, but with much faster speed.

3) Impact of PCE Order and Dimension: In general, larger
dimension and order imply better accuracy, but a more expen-
sive analysis. The exact choice of n and p depends on the
characteristics of both the input and the system.

To demonstrate the impact of dimension and order on the
accuracy of our analysis, we apply two different types of
ARMA processes to a third-order volterra filter for different
dimension/order combinations. The output cdfs under different
dimensions and orders for the first process, which is highly
correlated, are shown in Fig. 15. It can be observed that a larger
dimension number does not improve the accuracy much. This
can be explained by the fact that for a highly correlated process,
the energy of the input random process is concentrated only on
a few dimensions, therefore, a small n dimension suffices. On
the other hand, cutting the order does degrade the result, since
significant non-Gaussian components are generated when the
random process passes through the nonlinear volterra filter. The
non-Gaussian components correspond to higher order PCs.

The output cdfs under different dimensions and orders for
the second process, which is much less correlated, are shown

Fig. 15. Dimension/order impact for highly correlated input.

Fig. 16. Dimension/order impact for less correlated input.

in Fig. 16. It can be observed that reducing the dimension
does affect the accuracy since signal energy is distributed more
evenly.

In general, the necessary dimensions and orders are deter-
mined by both the system input and characteristics of the sys-
tem. For the input signal, the dimension of PCE is determined
by the correlatedness of the input signal. The more correlated
the input, the fewer the necessary dimensions. The necessary
order of PCE is essentially determined by the non-Gaussianity
of the input. The more non-Gaussian the input, the higher
the necessary order. For the system, the dimension of PCE is
determined by the length of remembered history (memory).
The longer the remembered history, the higher the necessary
dimension. The order of PCE is determined by the nonlinearity
of the system. The more nonlinear the system, the higher the
necessary PCE order.

C. Impact of Correlations and Nonlinearity

Previous methods introduce simplified assumptions. In this
section, we illustrate the impact of these simplifications on
dynamic-range estimation by two examples, including both
linear and nonlinear systems. The advantage of our proposed
methods will be shown by comparing its results against those
from previous methods.
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TABLE XI
VARIANCES FROM KLE VERSUS CASES WHERE TEMPORAL

CORRELATION IS SIMPLIFIED TO BE EITHER 1 (FULL) OR

0 (NONE), WITH SAMPLE DATA SET RP1 AS INPUT

1) Linear Systems With Different Correlation Assumption:
We first show that the temporal correlation in the input process
can significantly impact the accuracy of the result. This ex-
periment is important because all prior analytical methods did
not consider temporal correlation. In fact, prior studies either
assumed that the input is a series of independent and identically
distributed RVs (correlation coefficient ρ = 0), or a sequence
of the same RV (ρ = 1). This effectively leads to two extreme
assumptions on temporal correlation, both unfounded: The
former assumes that the input is completely uncorrelated, while
the latter assumes that the input is completely correlated.

In order to show that these oversimplified assumptions may
cause large estimation errors, we have repeated our experiments
and artificially introduced a ρ = 0 (independence) assumption
in one case and a ρ = 1 (correlated) assumption in another. The
results are shown in Table XI. All of the three kinds of inputs
in this table have exactly the same distribution at any specific
time point; the only difference between them is the temporal
correlation. In Table XI, the second column shows the variance
from the KLE-based method. They are the same as those in
Table IV and verified by simulation. The variances listed in
the third column are the results under the fully correlated
assumption, while the variances in the fourth column are the
results under the independent assumption. We can see that the
results from different temporal correlation are quite different.
For FFT128, the variance estimated from the fully correlated
assumption is about 30 times larger than the result from the
KLE-based method, while the variance from the independent
assumption is about 4.4 times less than the KLE-based method.

Fig. 17 shows the pdf curves obtained by the KLE-based
method and from the fully correlated case and the independent
case, corresponding to the test case FIR31 in the second row
of Table XI. The accuracy of the pdf from the KLE-based
method has been verified by the histogram match in Fig. 8. The
independence assumption gives a narrow distribution, while the
extremely correlated assumption gives a flat distribution, both
of which are quite wrong, as can be seen from the figure. The
figure also shows what happens in the case when both temporal
and spatial correlations are ignored, and the results are even
worse in that case, as would be expected.

These results clearly demonstrate the advantages of the KLE
approach and the need to maintain correlation information.
Truncating one of the “wrong” pdfs in Fig. 8 would either
give significant noise, or be very conservative. To illustrate
this, we show the dynamic ranges under different range prob-
abilities in Table XII. It can be observed that the extremely
correlated assumption leads to a dynamic range five times wider

Fig. 17. The pdf under various assumptions related to correlation, compared
to the pdf from KLE.

TABLE XII
DYNAMIC RANGE FROM KLE VERSUS CASES

WHERE TEMPORAL CORRELATION IS SIMPLIFIED

TO BE EITHER 1 (FULL) OR 0 (NONE)

Fig. 18. DFG example.

than necessary—a pessimistic result—while the independent
assumption leads to a dynamic range two times narrower than
required—an overly optimistic result.

2) Nonlinearity and Correlation in DFG: In this section, we
extend the discussion in the previous section to the nonlinear
case and include the treatment to nonlinearity. To quantify the
advantages of the PCE method and offer insight on why it
can perform better, we apply different analysis methods on a
common example, extracted from the teager benchmark, and
compare the statistics obtained against the exact solution.

As shown in Fig. 18, the DFG computes the equation g =
e− f = ab− cd. Given an input random process x, we apply
x(n), its value at time point n to a and b, x(n− 1) to c, and
x(n + 1) to d.

To show the impact of correlation and simplify the demon-
stration, we assume that the input process is highly correlated
and x(n), x(n− 1), x(n + 1) can be characterized by 10ε, ε,
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and ε, respectively, where ε is an RV uniformly distributed over
[−1, 1]. It is easy to see that the temporal correlation of the input
is translated into the spatial correlation on the DFG, as a, b, c,
and d can all be characterized by the same RV ε.

We now consider the exact statistics at the output. Since g =
e− f = ab− cd = (10ε)2 − ε2, we have e = 99ε2. Therefore,
the exact statistics are

E[g] =E[99ε2] = 33

E[g2] =E
[
(99ε2)2

]
=

992

5
= 1960.2.

We now consider the moment propagation approach pro-
posed in [19]. Since it always assumes that the inputs of an
operator are independent, we have

E[g] =E[a]E[b] − E[c]E[d]

=E[10ε]E[10ε] − E[ε]E[ε] = 0

E[g2] =E
[
(e− f)2

]
= E[e2 + f2 − 2ef ]

=E[e2] + E[f2] − 2E[e]E[f ]

=E[10ε]2 + E[ε]2 = 3333.6667.

It is apparent that both the mean and variance predicted by the
moment propagation approach deviate significantly from the
exact result.

We now consider the affine arithmetic approach proposed in
[4], which is able to capture spatial correlation by representing
each signal as a linear combination of uniformly distributed
RVs. In the case of our example, a, b, c, and d are already in
the affine form. This representation handles linear operations
such as additions precisely; however, the captured correlation
may be lost after the nonlinear operations. For example, when
multiplications are applied, products of RVs may result, and
to keep the result in affine form, a constant bound for each
input has to be found, and an extra RV has to be introduced.
For example, considering e = ab, according to [4], we have

e = 10ε× 10ε

=B(10ε)B(10ε)ε1

= 100ε1

where ε1 is a new RV independent of ε. Following the same
procedure, we can derive g = 100ε1 − ε2, where ε1 and ε2 are
independent RVs. It is evident that the original correlations are
lost after the nonlinear operations. As a result, we obtain the
statistics as follows:

E[g] =E[100ε1 − ε2] = 0

E[g2] = 1002E
[
ε2
1

]
+ E

[
ε2
2

]
= 3333.6667.

Another argument that affine arithmetic might not be adequate
for nonlinear systems is the fact that a uniform distribution
will become nonuniform after nonlinear operations, and it is
theoretically impossible to represent the new distribution using
a linear combination of uniform distributions.

Fig. 19. The cdf obtained by PCE and simulation for example in Fig. 18.

The power of the PCE method lies in the fact that signals
are represented as the combination of polynomials, therefore
correlations can naturally survive nonlinearity. For the given
example, we generate sample data for the uniform RV ε, from
which a one-dimensional five-order PCE is extracted as

ε = 0.002757Ψ0 + 0.565888Ψ1 − 0.001018Ψ2

− 0.048217Ψ3 + 0.000139Ψ4 + 0.003308Ψ5.

The PCE for a, b, c, and d can be obtained accordingly. Using
the propagation method described in Section IV-B, we can
finally obtain

g = 33.2147Ψ0 + 0.1182Ψ1 + 18.3929Ψ2

− 0.0590Ψ3 − 2.7226Ψ4 + 0.0154Ψ5

E[g] = 33.2147

E[g2] = 1957.8.

Compared with the exact result, the predicted statistics only
have 0.65% and 0.12% error, respectively. Fig. 19 shows that
the complete distribution obtained by the PCE method can
match closely with the result of simulation.

D. Tradeoff Between Bitwidth and SNR

As an application of our paper, we will show how the distri-
bution and statistics obtained by the KLE-based method can be
used to make a tradeoff between bitwidth and the SNR. Due to
lack of space, and since this is only for demonstration purposes,
this will be very brief, will focus on the overflow error only,
and will be done only for the case of benchmark FFT128. This
can be extended to cover round-off error as well, and can be
applied to all the other benchmarks. In order to fully determine
the bitwidth of variables, in general, we need to determine
the fraction bitwidth by round-off noise requirement or signal
source precision (such as A/D resolution). This may require
error or noise propagation. Because we focus on dynamic-range
estimation in this paper, in our experiment, we assume the
variable fraction bitwidth has been determined (for example,
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TABLE XIII
BITWIDTH AND SNR

determined by A/D resolution). The SNR here is computed
from the noise caused by overflow instead of round-off noise.

For a candidate bitwidth, one can easily compute the corre-
sponding dynamic range, the range probability, (the probability
for the value to fall within the range), and the SNR using [23]

SNR = 10 log10

(
σ2

s

σ2
n

)
(51)

where σ2
s and σ2

n are the variances of signal and noise, re-
spectively. Assuming the data is zero-mean Gaussian and is to
be truncated to a dynamic range of ±zσs, where z > 0, and
ignoring discretization (round-off) error and focusing only on
overflow error, it can be easily shown that the SNR is given by

SNR = −10 log10

[
2(1 + z2)Φ(−z) − 2zφ(z)

]
(52)

where Φ(·) and φ(·) are the cdf and the pdf of the standard
normal distribution, respectively. With this, one can generate
results such as those in Table XIII, which show the tradeoff
between bitwidth and SNR. Notice that, for a bitwidth b, and
allowing for one sign bit, the dynamic range is ±(2b−1δ − 1),
where δ is the discretization step size, i.e., the value of the least
significant bit. For the data in Table XIII, δ = 0.001. Based on
the computed variances from KLE for any/all signals, one can
generate and use such tables to manage the tradeoff between
bitwidth and SNR.

VI. CONCLUSION

In this paper, a new method for dynamic-range estimation is
presented, which models the variables and intermediate results
in the program by random processes. When input sample data
are supplied, either a KLE or a PCE model, each of which
can be considered as a combination of orthogonal RVs, or
orthogonal polynomials in terms of RVs, can be obtained and
propagated through the system. Full statistical information
about the variables can in turn be obtained.

The PCE method has its own limitations. To expand an RV
or a random process by PCE, they must be square integrable,
that is, its second-order moment exists. Fortunately, for all
practical systems, the variables are always square integrable.
For a finite sample data set, its second-order moments (square
sample mean) always exist. Most of the analytical RV models
are also square integrable. However, in some corner cases, there
are nonsquare-integrable RVs, which cannot be expanded by
PCE. For example, RV 22ξ

, where ξ is a standard Gaussian
RV, does not have the second-order moment, and thus it is not
expandable by PCE.

Compared with currently available methods, this approach
has the following advantages. Firstly, more detailed information
about the dynamic range or values of the variables is obtained.
It includes the probability distributions. Designers can associate
every choice of bitwidth or dynamic range with a value of the
SNR, and thus make judicious tradeoffs between reliability and
cost or power. Secondly, the proposed method fully considers
both the spatial and temporal correlations, and is able to ac-
curately handle the nonlinear structures. Thirdly, our method
can construct random-process models from real sample data or
empirical statistics, instead of using oversimplified models or
assumptions. Our method can therefore compete with profiling
for accuracy and flexibility. Finally, our method is computation-
ally efficient. If one only considers the propagation of random
processes, it can be several orders of magnitude faster than
profiling very easily. For designers who wish to thoroughly
explore the design space, they only need to extract the random-
process model once. When they modify their designs and redo
the dynamic-range estimation, their computation cost can be
limited to the propagation of the previously obtained input
models.
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