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Abstract— The ongoing trends in technology scaling imply a
reduction in the transistor threshold voltage (Vth). With smaller
feature lengths and smaller parameters, variability becomes in-
creasingly important, for ignoring it may lead to chip failure and
assuming worst-case renders almost any design non-achievable.
This work presents a methodology for the analysis and ver-
ification of the power grid of integrated circuits considering
variations in leakage currents. These variations are large due to
the exponential relation between leakage current and transistor
threshold voltage and appear as random background noise on
the nodes of the grid. We propose a lognormal distribution to
model the grid voltage drops, derive bounds on the voltage drop
variances, and develop a numerical Monte Carlo method to
estimate the variance of each node voltage on the grid. This
model is used toward the solution of a statistical formulation of
the power grid verification problem.

Index Terms— Power grid, leakage current, process variations,
Monte Carlo sampling, statistical analysis.

I. INTRODUCTION

Managing leakage is among the most eminent challenges to
be hurdled by the integrated circuits industry, with the advent
of deep-submicron technologies in the nanometer regime.
Several effects contribute to chip leakage currents; weak
channel inversion leading to subthreshold leakage, band-to-
band tunneling, and gate oxide tunneling are among the many
factors which induce leakage at various levels [1]. Being the
dominant leakage component in modern, high-performance
designs operating at high temperatures [2], [3], subthreshold
leakage plays a particularly critical role, especially given its
high sensitivity to threshold voltage Vth variations and the
scaling trends of Vth.

High subthreshold leakage comes as a price tag on better
performance and reduced active power, as a result of the need
to scale the MOSFET threshold voltage, (Vth), to accompany
the reduction in supply voltages (Vdd) and oxide thickness.
This is because the decrease of Vth translates as an exponential
increase in subthreshold leakage current, Isub, as can be seen
from the following expression of Isub, based on the BSIM3
device model [4]:

Isub = I0 exp
(

Vgs − Vth

nVT

)(
1 − exp

(
−Vds

VT

))
, (1)
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where VT is the thermal voltage, and n and I0 is are con-
stant factors related to device characteristics. Isub reportedly
increases at a rate as high as about 5X per generation [5],
or ten-fold for a 0.1V decrease of threshold voltage [6], with
total subthreshold leakage current in dense high-performance
chips forecast to be about half the total chip current [7].

In today’s 1.2 V, 0.13 µm technologies, V th is about
0.3 V (25% of Vdd). Compare these figures with older 1µm
technologies, using a supply voltage of 5V and having a
threshold voltage of about 0.8 V (16% of Vdd) [8]. Clearly,
the scaling trends of threshold voltage do not keep up with
those of supply voltage.

The disparity in scaling the supply and threshold voltages
is specially consequential to pursuing aggressive designs, in-
ducing tighter design margins, thus placing process variations
under great scrutiny. In particular, since the gap between V dd

and Vth has narrowed, variations in the level of supply voltage
become very significant when it comes to meeting timing
closure. The network that delivers supply voltage to circuit
devices is referred to as the power grid. The consequences of
power grid voltage level variations in the estimation of a circuit
timing vulnerability are being currently researched [9], [10],
and it has been reported in an industrial survey that 50% of
chips would fail to meet their timing requirements if no power
grid verification were done prior to tapeout [11]. However,
modern power grid verification tools fail to account for the
impact of the statistical variations of leakage on the power grid
voltage levels. Our present work addresses this issue, and we
focus on subthreshold leakage, referred to thereafter simply as
“leakage”. Preliminary versions of this work appeared in [12],
[13].

If leakage were uniform or predictable across the chip, then
the contribution of leakage to the supply voltage drop can
be simply accounted for by adding a deterministic leakage-
induced component to the total voltage drop on the power grid.
However, this is not the case and process variations in Vth

and the transistor channel length cause exponentially larger
variations in leakage currents, as a direct consequence of the
exponential dependence of leakage currents on V th or channel
length [4], [14]. In 0.1 µm technology, it is possible to get
30 mV standard deviation in Vth [15]. Considering a supply
voltage of, say, around 1 V, this means that a ±3σ interval
for Vth would span 18% of the supply! For whole chips,
leakage variations have been measuredat almost 20X, leading
to a slowdown of the chip operating frequency by a factor
of 1.4 [16], [17]. These variations are also known to have
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a significant within-die, local component [18], [19], so that
transistors in close proximity on the layout can have significant
variations in their leakage currents. This is also referred to as
mismatch and its effect on delay has been studied [20].

Recent publications have focused on the characterization
of leakage currents subject to process variations. In [14], an
approach was proposed to estimate the leakage current consid-
ering within-die variations. In [21], the sensitivity of leakage
currents was studied with respect to physical parameters,
including channel length, oxide thickness, and channel doping.
This last approach was extended in [4] resulting in a technique
for computing the probability distribution function of leakage
currents, including die-to-die and intra-die variations. Iterative
methods were suggested in [22] to estimate chip leakage
considering variations in the supply voltage and temperature
distribution across the chip, and a probabilistic approach was
introduced in [23] to estimate statistical parameters of the chip
leakage current.

We will assume statistical variability of leakage currents,
i.e., that the statistics of leakage currents are available, with
the knowledge that both Monte Carlo and analytical techniques
can be used to obtain this information [4]. While worst-case
analysis is necessary when considering power grid voltage
drop due to global, correlated die-to-die variations [18] in
leakage currents, intra-die (or within-die) variations require
statistical analysis in order to avoid overly pessimistic con-
clusions. There are no good tools today to estimate this
statistical voltage drop on the power grid due to leakage
current variations.

The paper is organized as follows: section II presents the
equations that provide a model for the power grid and presents
a breakdown of currents loading the grid in order, isolating
the components that represent leakage current variability. Sec-
tion III further discusses leakage current variations, where it is
argued that corner-case analysis should be used to account for
die-to-die variations, but that statistical analysis is necessary
when dealing with within-die variations. Focusing on within-
die variations, we first propose an analytical probability distri-
bution model for the voltage drop at every node in section IV,
and we derive a relation between the second-order statistics
of leakage currents and grid voltage drops. Observing that
the main computational difficulty lies in variance calculations,
we propose a numerical Monte Carlo technique to estimate
the variances and covariances in section V. In section VI, we
suggest a statistical verification for power grids that is aware
of leakage variability, and the lognormal voltage drop model
is used to derive verification conditions. Section VII derives
direct and iterative criteria to check these conditions, where
the Monte Carlo technique proves very useful again. Results
are shown in section VIII and we conclude in section IX.

II. SYSTEM MODELS

A. Power Grid Equations

We consider an RC model of the power grid [24]. Let t be
the total number of nodes on the grid. C4 sites make up for
nodes with a voltage source of value Vdd to ground attached
to them. Let p be the number of such sites, then t = N +

p, where N is the number of nodes with no voltage source
attached. These nodes are of interest since the voltage level
of the p C4 sites is known. Let ck (k = 1, . . . , N ) be the
capacitance from every node to ground and C the diagonal
matrix of all such capacitances. Let ik(t) be the value of the
current source to ground attached to node k (note that if no
current source is attached to some node, then ik(t) = 0, ∀t).
Let i(t) be the vector whose kth component is ik(t). Let G be
the conductance matrix [25] of the power grid, obtained from
the resistive branches. Let uk(t) be the voltage at node k and
u(t) be the vector of all such node voltages. Modified nodal
analysis [25] applied to the power grid leads to the following
system equation:

Gu(t) + Cu̇(t) = −i(t) + GVdd, (2)

where every component of the vector Vdd equals Vdd. Let
vk(t) = Vdd − uk(t) be the voltage dropat node k, and V (t)
the vector of voltage drops, then 2 can be written as:

Gv(t) + Cv̇(t) = i(t). (3)

This is a revisedequation for the node voltage drops, where
the voltage sources have been set to zero and the direction
of the currents reversed. In the following, we will be mainly
concerned with the above revised system. When the circuit
is in standby state, we solve (3) in DC state, discarding the
capacitance matrix C and eliminating the time dependence
from the voltage drops and currents, to yield:

GV = I. (4)

In the sequel, we use the static power grid model to derive
the distribution of the node voltage drops on the power grid
and their variances/covariances, due to within-die leakage
current variations. The transient model is used to calculate
the vector of voltage drop means (see section IV).

B. Breakdown of Current Components

Since the power grid has the property of being a linear
system as shown in (2), the grid response, i.e., its voltage
drops due to circuit currents, can be obtained simply by
adding up the grid response to individual current components.
In particular, both active and leakage current effects ought
to be considered when determining the grid response, which
can be done by superposition of individual responses to both
switching and leakage currents (static and dynamic).

Process-induced variations on the leakage component of
the total current are relevant in the context of this work. It
is standard practice to break down these process variations
into die-to-dieand within-die components [26], [27]. For the
variations on a given parameter, the die-to-die component
takes the same value for all instances of that parameter within
a single chip, but differentiates among distinct chips. The
within-die component causes variations within a given chip,
depending on location.

We therefore model the total current as follows:

I = Iactive + Isub,nom + Isub,dd + Isub,wd, (5)
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where Iactive refers to the active current, Isub,nom is the
nominalvalue of leakage current at the design point, I sub,dd

is the die-to-die component of leakage variations, and I sub,wd

is the within-die component of these variations. By linearity
of the power grid, we can sum up the contributions of the four
current components in (5) to get the total voltage drop on the
power grid, as follows:

V = VIactive + VIsub,nom + VIsub,dd + VIsub,wd. (6)

Voltage drops on the power grid induced by active currents
are calculated on either a transient basis or on a DC basis,
using average or peaks of active currents, or combinations
thereof. Typically, this is what power grid verification tools
perform today. Clearly, active currents and nominal leakage
constitute deterministiccases. This leaves inter- and intra-die
variations to be incorporated in the analysis and verification
of the power grid.

III. DEALING WITH LEAKAGE VARIABILITY

A. Die-to-Die Variations

We recall the following monotonicityproperty of the power
grid [28]:

Proposition. (monotonicity) If v(t) is the voltage drop due
to i(t) and v∗(t) is the voltage drop due toi∗(t), then the
power grid has the following property:

if i∗(t) ≥ i(t), ∀t ≥ 0, then v∗(t) ≥ v(t), ∀t ≥ 0 (7)

which we will express by saying that the grid is monotone.

Note that the monotonicity property applies to both DC
and transient power grid analyses. A similar result was earlier
proven [29] for the special case of an RC tree driven by a
single voltage source. The monotonicity property allows one
to handle die-to-die variations easily.

Since die-to-die variations are correlated across the chip,
corner-case leakage currents on a given chip (due for example
to largest variations in transistor threshold voltage) are not
unlikely and are accounted for through case file analysis, since,
by virtue of the monotonicity property of the grid, these corner
leakage currents correspond to corner voltage drops on the
grid. Therefore, it becomes very easy to calculate VIsub,dd for
all power grid nodes, by setting the components of the die-
to-die leakage variations at the top of their range (e.g., at the
mean+3σ point) and solving the grid once (using (3) or (4)),
then setting them at the bottom of their range (e.g., at the
mean − 3σ point) and solving the grid again. Cases other
than the ±3σ corners (e.g., the median or 50 th percentile of
leakage) can be used to reflect more aggressive verifications.

B. Intra-Die Variations

Handling within-die variations is inherently more difficult
than die-to-die variations, primarily because the currents are
not all correlated, so that occurrence of a corner-case is highly
unlikely.

Within-die variations have both systematicand random
components. Systematic variations arise from the observed

wafer-level variation trends reflected on a given die [18],
[30] or the spatial locations of some features on the die
and their context in terms of the neighboring layout patterns.
They account for the local, layout-dependent correlations
due to physical parameter variations across a chip, and the
correlations that arise from “environmental conditions” [23],
such as supply voltage and temperature. Random variations
constitute the residual component of the total variations which,
in essence, cannot be explained systematically [30], and are
modeled as statistically independentrandom variables. Ideally,
one wants to extract systematic variations and treat them
as “deterministic” [31]. This approach, however, necessitates
detailed variation models. and is hard to put to use pre-layout.
It is standard practice today to ignore the systematic within-die
component, at least in the early stages of the design, for several
reasons: 1) systematic trends are layout-dependent, so that
incorporating systematic variation models can occur only post-
layout, 2) within-die correlation generally dies down quickly
across short distances, and 3) detailed variation models are
often not easily available or readily usable by the designers.

These considerations extend to the special case of within-
die leakage current variability. Specifically, within-die leakage
variations are induced by within-die variations in physical
device parameters such as threshold voltage and channel
length [14], and are also affected by supply voltage and
temperature [22]. This work focuses on within-die leakage
variations induced by threshold voltage tolerances within-chip.
We will proceed under the assumption that leakage currents
in different areas of a chip are statistically independent, which
effectively amounts to considering all within-die V th variations
on a random basis. To emphasize this, we make explicit the
following:

Assumption 1. At any time point, we model all within-die
leakage current variations as statistically independent.

Since corner-case analysis would yield overly pessimistic
predictions of the effect of intra-die variations because of
their locality, statistical analysisneeds to be effectively put
to use. Analytical methods can be found in the literature to
derive expressions for the statistics of witin-die leakage current
variations (see [4], [14]), namely, their means and variances.
Given such distributional information, our problem is to esti-
mate the means and variances (and possibly covariances) of
the corresponding grid voltages drops, VIsub,wd. The rest of
this paper develops the statistical analysis and verification of
the grid in response to intra-die leakage variations.

IV. STATISTICS OF NODE VOLTAGE DROPS

A. Distributional Model for Node Voltage Drops

It is helpful to distinguish between two types of leakage in
integrated circuits. A circuit certainly draws leakage current
when it is in standby or sleep mode, what may be referred to
as the standby leakage. The circuit also draws leakage current
when it is active. Indeed, a logic gate draws leakage current
any time that its supply is “on.” Even inside a switching
window, part of the current drawn from the supply may
be attributed to leakage. The leakage drawn by the circuit
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during its active (non-standby) states, may be referred to as
the dynamic leakage. The grid response to standby leakage
may be obtained by a DC analysis of the grid, using only a
resistive model, whereas response to dynamic leakage requires
a transient analysis, using an RC or RLC model of the grid.

In order to characterize the distribution of voltages at the
nodes of the power grid, we have found it necessary to
introduce the following “pseudo-static” assumption:

Assumption 2. In order to obtain the distribution of the
power grid voltage drops in response to within-die variations
in leakage currents, we assume that the grid may be solved
as a DC system at every/any time point.

This is purely a simplifying assumption which helps arrive
at a precise characterization for the voltage drop distributions.
Notice that this assumption is automatically true for the case
of standby leakage. Thus, our analysis is exact for standby
leakage. For dynamic leakage, since the leakage current of
a logic gate is constant when it is not switching, then this
assumption may be acceptable in practice, especially since
we will include in the analysis somedynamics of the system
through the computation of the mean response (see section IV-
B below).

With this assumption and using (4), we have:

VIsub,wd = G−1Isub,wd, (8)

where we consider Isub,wd to be the random vectorrepre-
senting within-die leakage variations, and VIsub,wd the corre-
sponding grid response vector, with reference to (5) and (6).
In the following, and for simplicity, we drop the subscripts
indicating within-die leakage variations.

From (8), it is clear that the voltage drop at an arbitrary
node i, Vi, can be expressed as:

Vi = qi1I1 + · · · + qiN IN , (9)

where qij is the (i, j)th entry of G−1. As (9) shows, the
voltage drop at any node is a linear combination of the leakage
currents loading the grid.

Since intra-die leakage variations arise from intra-die varia-
tions in transistor threshold voltage, modeled as Gaussian [14],
then intra-die leakage variations are lognormal [4], by virtue
of the exponential relation between transistor leakage and its
threshold voltage shown in (1).

If the Ij are lognormal, then the qijIj are also lognormal.
Hence, under Assumption 1, grid node voltages, given in (9),
are each a summation of independent lognormal RVs. Sums of
independent lognormal variables have been extensively studied
and characterized in the literature pertaining to communica-
tions, and it was found that such sums can be accurately cap-
tured by another lognormal RV [32]. Therefore, we model the
distribution of a node voltage drop as lognormal. We provide
empirical data to corroborate this argument in section VIII-B.

Since Vi is lognormal, then Wi = ln (Vi) is Gaussian. The
probability distribution function (pdf) of V i, fVi(.), at v > 0,
is given by [33]:

fVi(v) = exp
(
− [ln (v) − µWi ]

2

2σ2
Wi

)
/
(√

2πσWiv
)
, (10)

where µWi and σWi are respectively the mean and standard
deviation of Wi. The cumulative distribution function (cdf) of
Vi, FVi(.), at v > 0, is given by [33]:

FVi(v) = Φ
(

ln (v) − µWi

σWi

)
, (11)

where Φ(.) is the cdf of the standard normal distribution
(Gaussian with 0 mean and unit variance). From (10) and (11),
it is clear that the distribution of Vi has two parameters: the
mean and standard deviation of the associated Gaussian RV
Wi.

µWi and σWi are related to the mean µVi and standard
deviation σVi of Vi as follows [33]:

µWi = ln (µV i) − 1
2

ln
(

1 +
σ2

Vi

µ2
Vi

)
, (12)

σWi =
(

ln
[
1 +

σ2
Vi

µ2
Vi

])1/2

. (13)

From (12) and (13), we clearly see that computing the mean
and variance of the voltage drop V i completely specifies the
distribution of Vi.

B. Distribution Parameters

Mean calculation is actually trivial. Since the system (3) is
linear, then due to linearity of the mean (E[·]) operator [33],
one can write:

GE [v(t)] + C
d

dt
E [v(t)] = E [i(t)] . (14)

Thus, if we solve the system (3) once, using simply the
means of leakage current variations as inputs, the solution
gives the voltage means at all the nodes, obtained from the
dynamic model of the grid. Note that mean calculation may
be performed on a transient basis, and introduces dynamic
properties of the power grid into our formulation.

We proceed to derive the covariance matrix of the node
voltage drops induced by the random vector of within-die
leakage current variations. Recall that the off-diagonal entries
of covariance matrix of a random vector represent pairwise
covariances, while the diagonal entries are the variances of the
corresponding random variables [34]. Under static conditions
(Assumption 2), we can write from (14):

GE [V] = E [I] . (15)

We now combine (4) and (15) to yield:

G (V − E [V]) = I − E [I] (16)

Multiplying each side by its transpose and applying the
expected value operator to each side, leads to:

GE
[
(V − E [V]) (V − E [V])T

]
GT =

E
[
(I − E [I]) (I − E [I])T

]
. (17)

We recognize the expectations on the left– and right–hand
side of (17) as being simply covariance matrices of node
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voltage drops ΣV and within-die leakage current variations,
ΣI, respectively. Thus, the above result can be rewritten as:

GΣVGT = ΣI. (18)

Since G is symmetric, G = GT . Therefore, (18) becomes:

ΣV = G−1ΣIG−1. (19)

Under the assumption of statistical independence of within-die
leakage current variations (Assumption 1), implying that Σ I is
diagonal, it can be seen from (19) that:

[ΣV]ij =
[
G−1

]
i1

[
G−1

]
j1

[ΣI]11 + · · · +[
G−1

]
iN

[
G−1

]
jN

[ΣI]NN

= qi1qj1σ
2
I1 + · · · + qiNqjNσ2

IN
, (20)

where [.]ij is the (i, j)th entry of a matrix, qij is as defined
in (9), and σ2

Ii
is the variance of the ith leakage current, that

is, the (i, i)th entry of ΣI. Specifically, the variance of Vi, σ2
Vi

,
is the (i, i)th entry of ΣV:

σ2
Vi

= [ΣV]ii = q2
i1σ

2
I1 + · · · + q2

iNσ2
IN

. (21)

Let Var(.) be the operator which takes a random vector and
returns the vector of variances of each component of that
random vector, respectively. Define a matrix G−1(2) such that:

[G−1(2)]ij = q2
ij . (22)

Now (21) can be written in matrix form as:

Var(V) = G−1(2)Var(I). (23)

From the above discussion, we have established that calcu-
lating the voltage drop means can be easily done. However, we
observe from (19) through (23) that computing the covariance
matrix of the voltage drops or even only their variances
requires full knowledge of the cumbersome G−1, the inverse
of the grid conductance matrix. The next section discusses
estimating these second-order statistics efficiently.

V. VARIANCE/COVARIANCE ESTIMATION

A. A Current-Sampling Approach

One way of estimating the (output) variance/covariance of
voltage given the (input) variance of current is to proceed
by brute-force random sampling on the currents. Generate
a randomly-chosen vector of current values, according to
the lognormal distributions of the currents, and solve the
system (4) for a corresponding sample of the voltages. Do
this repeatedly and collect statistics on the voltages. Stop
the sampling when the desired statistics have been esti-
mated with sufficient accuracy. We have implemented this
technique and found that it is viable in some cases, but
that it suffers serious disadvantages regarding the accuracy
of the variance/covariance estimates: as compared with the
column-sampling approach, to be presented below, up to 10
times as many variance/covariance estimates may not reach
convergence within the same execution time. Further, even
in the suggested simple brute-force scheme, and since the
sample variance can be related to a χ2 distribution, one will be
required to evaluate certain percentiles of the χ2 distribution

for every sample, in order to check whether an estimator
of the variance/covariance has converged, This can get very
expensive because it requires numerical integration of the
χ2 pdf - using a table is not a practical option because
the number of samples can be huge. As such, this current
sampling approach will not be discussed further; in contrast,
we present a numerical Monte Carlo technique, based on a
column-sampling method, which effectively transforms the
variance/covariance estimation problem to a mean estimation
problem, so that simple Monte Carlo methods, based on the
central limit theorem, can be applied.

B. A Numerical Monte Carlo Approach

We propose a numerical Monte Carlo technique to estimate
variances/covariances of node voltage drops [12], [35]. Ob-

serve that (20) is a weighted summation. Let S =
N∑

i=1

σ2
Ii

,

pi = σ2
Ii

/S, and σij = [ΣV]ij . Then (20) can be rewritten as:

σij = S
N∑

l=1

pl(qilqjl). (24)

Since
∑N

k=l pl = 1 and pl ≥ 0, l = 1 · · ·N , then we can
view the pl weights as being probability valuesassociated with
the qilqjl values, so that the summation in (24) becomes the
mean (weighted average) of all the qilqjl values in the ith

and jth rows. If we define an RV rij as being a discrete RV
that takes the values rijl = qilqjl with probabilities pl, l =
1, 2, . . . , N , then we can write (24) as:

σij = SE[rij]. (25)

Let the mean of rij be µij = E[rij] and its variance be vij .
We can now use methods of mean estimationfrom statistics,
basically Monte Carlo random sampling [36], in order to
estimate the population meanµij using the mean of a much
smaller sample (say, of size n � N ) from the population, i.e.,
using the sample mean.

Using a weighted random number generator, we generate
according to the probabilities pl a sequence of indices of
columns of G−1 to be included in the sample. From these,
we form the following sample mean for any pair of rows i
and j:

r̄ij =
1
n

∑
l∈L

rijl, (26)

where L is the set of indices included in the random sample.
We also compute the sample standard deviationof r ij, sij ≥

0 given by:

s2
ij =

1
n − 1

∑
l∈L

(rijl − r̄ij)
2 =

n

(∑
l∈L

r2
ijl

)
−
(∑

l∈L
rijl

)2

n(n − 1)
.

(27)
Note that s2

ij is an estimator of vij . Now r̄ij itself, being a
sample mean, can be considered as an RV, with mean µ ij

(since the sample mean is an unbiased estimator of the mean
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of a random variable [33]) and variance s 2
ij/n (for large n).

Then, we have that
σ̂ij = Sr̄ij (28)

is an unbiased estimator of σij (i.e., E[σ̂ij ] = SE[r̄ij ] =
σij ), with variance S2s2

ij/n. Furthermore, by the central limit
theorem[33], r̄ij will be approximately normally distributed,
so that the RV (σij − σ̂ij)

√
n/(Ssij) is normal with 0 mean

and unit variance [36], for large n.
Fig. 1 illustrates the process when estimating the covariance

between nodes 1 and 3. In the figure, columns 9, 5, 7, and
2 of G−1 are sampled. Notice that sampling G−1

i , the ith

column of G−1, involves solving GG−1
i = Ii, where Ii

is the ith column of the identity matrix, and that in fact,
full knowledge of G−1 is circumvented. With reference to
Fig. 1, the initial three column samples lead to values for
r139, r135, and r137, with corresponding sample mean r̄13 and
sample standard deviation s13. The sample mean and standard
deviation are updated when column 2 is sampled. This process
continues until convergence of r̄13, at which point Sr̄13 is
taken as an estimator of the covariance between the voltage at
nodes 1 and 3. As will be discussed below, the convergence of
the sample mean is directly related to how small the sample
standard deviation becomes, and to the number n of samples
taken. Observe that G−1 is a symmetric matrix, so that when
columns i and j of G−1 are sampled, the covariance between
Vi and Vj and the variances of Vi and Vj can be computed
exactly, as per (20). With reference to Fig. 1, since columns 9,
5, 7, and 2 have been sampled, the variances of, and pairwise
covariances between V9, V5, V7, and V2 can be computed, thus
eliminating the need to bring estimates for these quantities to
converge via the sampling process.

We can use tables of the standard normal to establish
how large n should be in order for the sample standard
deviation of r̄ij to be small enough for it to be a viable
estimator of µij , with a certain confidence, and up to a
predefined tolerance [36]. For example, if it is desired to have
( 1 − α ) × 100% confidence (where α is a small positive
number, 0 < α < 1) that the following is true:

|r̄ij − µij | < ε, (29)

then it is known from sampling theory [36] that n should be
larger than n0 where:

n0 =
(zα/2sij

ε

)2

, (30)

where zα/2 is such that the area to the right of it under the pdf
of the standard normal curve is equal to α/2, i.e., Φ(zα/2) =
1 − α/2. Thus, for instance, for 95% confidence, α = 0.05
and zα/2 = 1.960; for 99% confidence, α = 0.01 and zα/2 =
2.576. In practice, one samples until n is larger than 30 or 50
or so, then starts to use (30) to monitor convergence. Observe
that tables are not needed to compute zα/2, a task that can
be easily done by software (e.g., using the erf() function) and
that zα/2 needs to be evaluated only once.

The process described above can be used to estimate any
entry in the covariance matrix ΣV of the node voltage drops. In
particular, the diagonal entries of ΣV represent the variances
of these voltage drops and can be estimated by setting i = j,

-1
Gcolumn 2 of 

   New sample:

multiply

xxxx

At convergence, 13 13= S rσ

132 1313Update r     and  s3212q     q    =   r

32

12

q

q

           (9, 5, 7)
Previously sampled columns:

35

15

q

q

39

19

q

q q

32

17

q

Fig. 1. Estimating the covariance between nodes 1 and 3 on the power grid.

for i = 1, . . . , N in the above calculations. In the following,
we are mainly concerned with the described Monte Carlo
method applied for variance calculations.

C. Error Bound for Variance Estimation

Our intent here is to approximate the variance of every node
voltage by choosing a meaningful error bound ε for use in (30),
with i = j, to check for the convergence of the estimated
variance value. Using the same notation as in the previous
section, we have from (28) that:

σ2
Vi

= σii ≈ Sr̄ii. (31)

Let δ be a small positive number, 0 < δ < 1. It makes sense
to achieve a user-defined error bound on σVi defined relative
to the supply voltage, Vdd, as follows:∣∣∣σVi −

√
Sr̄ii

∣∣∣ ≤ δVdd. (32)

In other words, we want to find ε (to be used in (30)) as a
function of δ in order for the following to be true:

|r̄ii − µii| < ε =⇒
∣∣∣√Sr̄ii −

√
Sµii

∣∣∣ < δVdd. (33)

To simplify the notation, let x = µii and x0 = r̄ii. Also,
let y =

√
µii =

√
x and y0 =

√
r̄ii =

√
x0, and let γ =

δVdd/
√

S. Notice that γ > 0. We want to find ε in terms of δ
so that:

|x − x0| < ε =⇒ |y − y0| < γ. (34)

There are two cases to consider, according to whether y0 is
small or not, as shown in Fig. 2. When y0 is small, small
enough so that y0 − γ < 0, then (since y > 0 in all cases) in
order to guarantee that |y − y0| < γ, it is sufficient to impose
an upper bound on y in the simple form y − y0 < γ. This
is achieved by imposing an upper bound on x in the simple
form x−x0 < ε1, where ε1 is the corresponding upper bound
on (x − x0), as shown in Fig. 2(a).

Let ∆x = x − x0 and ∆y = y − y0. Since y2 = x, then
∆(y2) = ∆x, and since ∆(y2) = (y0 +∆y)2−y2

0 = (∆y)2 +
2y0∆y, then ∆x = ((∆y)2 + 2y0∆y). For ∆y = γ, ε1 =
∆x = (γ2 + 2y0γ) > 0. In order to guarantee (34), in this
case, we need to set ε = ε1 = (2y0γ + γ2).
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0
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y

Fig. 2. Choice of error bound ε in the two cases when (a) y0 is small and
(b) y0 is not so small.

When y0 is not so small, i.e., when y0−γ > 0, then we need
to consider both upper bounds and lower bounds, as shown in
Fig. 2(b). If ε2 is the lower bound on (x − x0), as shown in
the figure, then we may compute ε2 by setting ∆y = −γ,
which leads to ∆x = (γ2 − 2y0γ) < 0, and we set ε2 =
−∆x = (2y0γ − γ2) > 0. Since ε2 < ε1, as is obvious from
the expressions found for each, then, in order to guarantee (34)
in this case, we need to set ε = ε2 = (2y0γ− γ2). Notice that
the condition y0 > γ translates to r̄ii > δ2V 2

dd/S.
In summary, then:

ε =
{

δVdd

S

(
2
√

Sr̄ii + δVdd

)
, if r̄ii < δ2V 2

dd/S,
δVdd

S

(
2
√

Sr̄ii − δVdd

)
, if r̄ii > δ2V 2

dd/S.
(35)

Notice also that, in either case, ε > δ2V 2
dd/S. Plugging (35)

into (30) leads to:

n0 =
(

zα/2siiS/δVdd

δVdd ± 2
√

Sr̄ii

)2

, (36)

where the + or − sign depends on whether r̄ ii is smaller
or larger than δ2V 2

dd/S, respectively. To summarize, if it is
desired to estimate σVi to within ±δVdd, with (1−α)×100%
confidence, then n must be larger than the threshold given
by (36). This provides a useful trade-off between accuracy
and speed, as more samples would be required for smaller δ.

By transforming the variance estimation problem into a
mean estimation problem, we were effectively able to apply
Monte Carlo methods to estimate the variance of each node
voltage drop. Our sampling procedure, where the likelihood
of a column to be sampled is driven by the current load
at the corresponding node, intuitively amounts to giving a
greater chance for a node with high-current variance and the
corresponding column of G−1 to be sampled, which amounts
to treating at as likely to have a greater impact on voltage
drop variances on the grid than nodes with lower current
variances. The error bound (δVdd) and confidence level (1−α)
impose a statistical bound on the error. The Monte Carlo
technique along with the stopping criteria derived above thus
enable the estimation of the variances of grid voltage drops,
while circumventing the problem of knowing the full inverse
of the grid conductance matrix. Since information on the
mean voltage drop is readily available (section IV-B), we have
all parameters necessary to complete the description of the
probability distribution of the node voltage drops in response
to within-die leakage variations, given in (10) through (13).

VI. POWER GRID VERIFICATION

A. Verification Methodology

Within-die variability of power grid node voltage drops
appears as a process-induced background level of noise on the
grid. In this section, we propose to verify the grid in presence
of this noise [13]. The idea is to verify whether the “bulk of
the distribution” at any/every every node falls below a user-
specified “safety threshold voltage level”. The user specifies
what exactly is meant by the bulk of the distribution, by
specifying a percentage of the probability distribution function
to be below the threshold so that a node may be deemed “safe”.
The safety threshold voltage and the confidence level can
be chosen to reflect aggressive designs or more conservative
choices. For instance, when designers are able to make a
statement such as: “Node i is safe if, with confidence 1− βi,
the voltage drop at i is less than VTi volts”, the approach
described in this paper enables the verification of such a
statement for all nodes, specifying parametrically the levels
of “high confidence”, 1 − βi, and “safety threshold voltage”,
VTi. This leads to a statistical definition of safety, that we state
as follows:

Definition 1. Nodei is said to be safe ifP {Vi < VTi } >
1 − βi. Conversely, nodei is said to be unsafe if
P {Vi < VTi } < 1 − βi.

In the above, P{} denotes a probability, V i the voltage
drop at node i (due to within-die leakage variations), VTi the
safety threshold voltage at node i, and β i a small positive
number between 0 and 1. The term 1 − β i specifies the bulk
of the voltage drop that is to be below the threshold VTi to
assert that a node is safe, and we would refer to it as the
safety parameter. The choice of the safety parameter and the
safety threshold voltage at a given node takes into account
how critical a high voltage drop at that node is, and we made
explicit their dependence on the node. Given safety parameters
and threshold voltages at all nodes, our objective is to verify
each nodein the grid, i.e., tell which nodes/regions are safe
with respect to the background noise, and which present a
hazard.

Let V1−βi be the 1 − βi percentile of the voltage drop at
node i, i.e., V1−βi is such that FVi(V1−βi) = 1 − βi, where
FVi(.) is the cdf of the distribution of the voltage drop at node
i, defined in (11). Clearly, Definition 1can be restated in terms
of V1−βi as follows:

Definition 2. Node i is said to be safe ifV1−βi < VTi and
unsafe ifV1−βi > VTi .

Thus, V1−βi becomes a figure of meritof the verification
procedure. It can be viewed as a parametric measure of the
voltage drop on the grid nodes taking into account process
variations on the leakage currents: if the safety parameter is
50%, this percentile is the median voltage drop, 90%, 95%
represent more conservative measures, and 100% represents
an upper bound on the voltage drop. The verification problem
reduces to determining whether the 1 − βi percentiles of
voltage drops are greater or less than a given safety threshold
for any node i.
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Let zβi be such that Φ(zβi) = 1− βi. From (11), we have:

ln (V1−βi) − µWi

σWi

= zβi , (37)

where Wi = ln (Vi) is a Gaussian RV with mean µWi and
standard deviation σWi , as defined in section IV-A. From (37),
and using (12) and (13), we can derive an expression for V 1−βi

in terms of the mean and variance of Vi:

V1−βi = exp (zβiσWi + µWi)

= µVi

exp
[
zβi

(
ln
[
1 + σ2

Vi
/µ2

Vi

])1/2
]

(
1 + σ2

Vi
/µ2

Vi

)1/2
(38)

The above equation relates V1−βi to µVi and σ2
Vi

. We argued
in section IV-A that the mean can be easily computed. This
leaves the variance of voltage drop as the only parameter on
which V1−βi depends, and we write V1−βi(σ2

Vi
) to emphasize

this dependence.
The following outlines our verification methodology. We

first rewrite the safety/unsafety definition (Definition 2) in
terms of voltage variances and derive critical variance values
for verifying the node safety status (section VI-B). Then we
derive quick direct checks to see where the actual variance falls
with respect to those critical values (section VII-A). For nodes
where direct checks do not provide conclusive information, we
make use of the numerical Monte Carlo technique described
in section V-B to estimate the variance of the voltage at these
nodes (section VII-B), and hence the 1− β percentile voltage
drops, and determine the node safety status.

B. Critical Variances

Writing V1−βi(σ2
Vi

) as a function of σ2
Vi

, and using (38),
one can easily show the following:

1) V1−βi(0) = µVi .
2) V1−βi(.) admits one local maximum such that:

max
σ2

Vi

V1−βi(σ
2
Vi

) = V1−βi

(
µ2

Vi

[
exp(z2

βi
) − 1

])
= µVi exp(z2

βi
/2). (39)

3) lim
σ2

Vi
→∞

V1−βi(σ
2
Vi

) = 0.

Fig. 3 shows a typical plot of V1−βi(σ2
Vi

).
In order to translate the safety/unsafety criteria on V1−βi to

conditions on the variances, nodes will be divided into three
groups according to the values of VTi, µVi , and zβi .

Group 1. Includes all nodesi such that:

VTi > µVi exp(z2
βi

/2).

These nodes will all satisfyV1−βi < VTi, for all possible
values of the variance of their voltage drop(0 < σ2

Vi
< ∞),

and therefore are safe irrespective of their variances.

The reason nodes satisfying the Group 1criterion are always
safe can be seen graphically by drawing a horizontal line at
VTi > µV i exp(z2

βi
/2). Such a line is always above the curve

representing V1−βi , as can be noted from Fig. 3. Therefore,
V1−βi < VTi and these nodes are safe.

0

µ

(e
z2

β- 1)
σ 2

2

1

µ e
z2

β

2µ

V        (      1 - β σ 2 )

Fig. 3. A typical plot of V1−βi
versus σ2

Vi
.

Group 2. Includes all nodesi such that:

µVi < VTi < µVi exp(z2
βi

/2).

A node in this group is safe if and only if the variance of its
voltage drop,σ2

Vi
, is such that:σ2

Vi
< σ2

1,i or σ2
Vi

> σ2
2,i,

where

σ2
1,i = µ2

Vi
exp

[
2z2

βi
− 2 ln

VTi

µVi

− 2zβi

(
z2

βi
− 2 ln

VTi

µVi

)1/2
]

−µ2
Vi

(40)

and

σ2
2,i = µ2

Vi
exp

[
2z2

βi
− 2 ln

VTi

µVi

+ 2zβi

(
z2

βi
− 2 ln

VTi

µVi

)1/2
]

−µ2
Vi

(41)

Conversely, a node in this Group is unsafe iffσ2
1,i < σ2

Vi
<

σ2
2,i (see Fig. 4(a)).

Group 3. Includes all nodesi such that:VTi < µVi . A node
in this group is safe iffσ2

Vi
> σ2

3,i and unsafe iffσ2
Vi

< σ2
3,i,

where

σ2
3,i = µ2

Vi
exp

[
2z2

βi
− 2 ln

VTi

µVi

+ 2zβi

(
z2

βi
− 2 ln

VTi

µVi

)1/2
]

−µ2
Vi

(42)

(see Fig. 4(b)).

With this, determining whether a node i is safe or unsafe
reduces to knowing where the variance of the voltage at that
node is located with respect to σ2

1,i and σ2
2,i for Group 2

nodes and with respect to σ2
3,i for Group 3 nodes. We refer

to σ2
1,i and σ2

2,i as critical variancesfor a node i in Group 2
and to σ2

3,i as the critical variance for a node i in Group 3.
Group 1 nodes are deemed safe, irrespective of the variance
of their voltages. Observe that the group of each node as
well as critical variances are known automatically, and require
no a-priori knowledge of the variance of the node voltage
drop, since zβi is directly obtained knowing βi, VTi is a user-
defined parameter, and the means of the voltage drops are
easily calculated using (14).
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Fig. 4. Illustration of safety/unsafety conditions on the variances for Group 2
and Group 3nodes.

VII. CHECKING VOLTAGE VARIANCES AGAINST

CRITICAL VALUES

A. Direct Criteria

In this section, we make use of bounds that may directly
reveal whether V1−βi is greater or less than the safety threshold
VTi, without having to compute the variances. From the
previous section, if a node is in Group 1, then this node is safe
for all possible values of the variance. The following provides
similarly useful checks.

For convenience, we reproduce (21):

σ2
Vi

= [ΣV]ii =
N∑

j=1

q2
ijσ

2
Ij

, (43)

where qij was defined to be the (i, j)th entry of G−1. Since
σIj ≥ 0 and qij ≥ 0, ∀i, j, then (43) yields:

σ2
Vi

=
N∑

j=1

(qijσIj )
2 ≤


∑

j

qijσIj




2

. (44)

Let Std(.) be the operator which takes a random vector
and returns the corresponding vector of standard deviations.
The above leads to the following upper bound on deviations
of node voltage drops:

Std(V) ≤ G−1Std(I), (45)

where the vector inequality is defined component-wise. Given
an LU-factorization of G, and the variances of the within-
die variability components of leakage currents, the cost of
computing the upper bound given in (45) is only one for-
ward/backward solve.

Now using the notation of section V-B, we can write
from (24):

σ2
Vi

= σii = S

N∑
j=1

pjq
2
ij , (46)

where S =
∑

j σ2
Ij

and pj = σ2
Ij

/S. Since 0 ≤ pj ≤ 1, then
pj ≥ p2

j , ∀j. Then we can write from (46):

σ2
Vi

= S


 N∑

j=1

pjq
2
ij


 ≥ 1

S


 N∑

j=1

qijσ
2
Ij




2

. (47)

This leads to a lower bound on Std(V), as follows:

Std(V) ≥ 1√
S

G−1Var(I), (48)

where Var(.) is the variance vector operator, defined in
section IV-B. Given an LU-factorization of G, the cost of
computing this lower bound given in (48) is only one for-
ward/backward solve.

Putting (45) and (48) together yields the following interval
on Std(V):

1√
S

G−1Var(I) ≤ Std(V) ≤ G−1Std(I). (49)

The above inequality provides an upper and a lower bound
on the standard deviations, and hence the variances, of the
voltage drop at each node on the power grid, at the cost of 2
forward/backward solves.

To put these results to work, let u2
i and l2i be respectively

the upper and lower bounds on the variance of the voltage
drop at node i. If node i is in Group 2, with corresponding
critical variances σ2

1,i and σ2
2,i, then this node can be deemed

safe if (u2
i < σ2

1,i or l2i > σ2
2,i) and unsafe if (l2i > σ2

1,i

and u2
i < σ2

2,i). Similarly, if node i is in Group 3 with a
corresponding critical variance σ2

3,i, then it can be deemed
safe if l2i > σ2

3,i and unsafe if u2
i < σ2

3,i.

B. Verification through column sampling

For nodes in Group 2or Group 3where the variance bounds
given in (49) do not provide conclusive information regarding
their safety status, we can estimate their voltage drop variances
so as to determine the location of these variances with respect
to critical values. For variance estimation, we make use of the
numerical Monte Carlo method described in section V-B.

Observe that the variance estimates obtained by the Monte
Carlo technique inherently carry a certain error, bounded by
a given confidence level (as in section V). Some error will
then be propagated to the estimates of the 1−β percentiles of
voltage drops, as per (38), so that a certain confidence level
will be required when asserting whether V1−βi is greater or
less than VTi. Accordingly, we extend Definition2 to consider
that a node is safe if P {V1−βi < VTi} ≥ 1−α and unsafe
if P {V1−βi > VTi } ≥ 1 − α, where α is a small number
between 0 and 1. In this perspective, for the nodes successfully
checked in section VII-A, α = 0.

Establishing the desired confidence level on the relative
position of V1−βi and VTi for node i translates to establishing
that same confidence level on the relative position of the
variance of the ith node voltage and the corresponding critical
variances (σ2

1,i and σ2
2,i if node i is in Group 2 and σ2

3,i if
node i is in Group 3). Therefore, when applying the Monte
Carlo technique for variance estimation, the estimate of the
variance per se matters less than where the variance is with
respect to critical values. For example, suppose node i is in
Group 3, variance estimation is only needed in order to obtain
high confidence on whether σ2

Vi
is less than (greater than) σ2

3,i,
so that the node can be marked as unsafe (safe). Therefore,
while the sampling procedure as described in section V-B is
unchanged, new error bounds, i.e., stopping criteria, must be
derived.

A few cases need to be considered. If node i is in Group 2,
the estimate of the variance of the voltage drop at node i, σ̂ ii

(following the notation of section V-B), may fall to the left of
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σ2
1,i, to the right of σ2

2,i, or between the two, If node i is in
Group 3, σ̂ii may fall to the left or to the right of σ2

3,i. We thus
have variance intervals defined with respect to σ 2

1,i and σ2
2,i,

or σ2
3,i. We recognize that the probability of the true variance

being outside the interval where the variance estimate lies is
not very high, and indeed for α small enough, less than 1−α.
Based on this, in the sampling process, we seek to find the
smallest number of samples n that verifies, with confidence
1 − α, whether the node is safe or unsafe, according to the
interval where the variance estimate lies.

Assume node i is in Group 2. Then as was shown in
section VI-B, V1−βi < VTi is equivalent to σ2

Vi
< σ2

1,i or
σ2

Vi
> σ2

2,i, and V1−βi > VTi is equivalent to σ2
1,i < σ2

Vi
<

σ2
2,i. If σ̂ii < σ2

1,i, 1 − α confidence that the node is safe is
reached when:

P{V1−βi < VTi} ≥ 1 − α,

The above can be written as:

P{σ2
Vi

< σ2
1,i} + P{σ2

Vi
> σ2

2,i} ≥ 1 − α,

leading to:

P
{

σ2
Vi

− σ̂ii√
Var(σ̂ii)

<
σ2

1,i − σ̂ii√
Var(σ̂ii)

}

+P
{

σ2
Vi

− σ̂ii√
Var(σ̂ii)

>
σ2

2,i − σ̂ii√
Var(σ̂ii)

}
≥ 1 − α,

where Var(.) represents the variance of a random variable.
¿From the arguments presented in section V-B, we know
that (σ2

Vi
− σ̂ii)/

√
Var(σ̂ii) is standard normal, and that

Var(σ̂ii) = S2s2
ii/n, where S and sii are as defined in

section V-B and n is the number of samples. Therefore, the
above condition reduces to:

Φ

(
(σ2

2,i − σ̂ii)
√

n

Ssii

)
− Φ

(
(σ2

1,i − σ̂ii)
√

n

Ssii

)
≤ α. (50)

That is, if σ̂ii < σ2
1,i, then a 1 − α confidence level that

node i is safe is attained if and only if (iff) n satisfies (50).
Note that (50) does not give a closed-form solution for n,
but it is easy to check it using the erf(.) function. Observing
that in this case, σ̂ii < σ2

1,i, we can obtain a closed-form
sufficientcondition for n to satisfy in order to verify safety,
by neglecting P{σ2

Vi
> σ2

2,i}, yielding:

n ≥
(

Ssiizα

σ2
1,i − σ̂ii

)2

= n1, (51)

where zα is such that: Φ(zα) = 1 − α.
Identical reasoning applies when σ̂ii > σ2

2,i, and we obtain
that the necessary and sufficient condition on n to verify safety
is:

Φ

(
(σ̂ii − σ2

1,i)
√

n

Ssii

)
− Φ

(
(σ̂ii − σ2

2,i)
√

n

Ssii
,

)
≤ α,

and that a sufficient condition that yields a closed-form for n
is:

n ≥
(

Ssiizα

σ̂ii − σ2
2,i

)2

= n2. (52)

Finally, if σ2
1,i < σ̂ii < σ2

2,i, we need to find the number
of samples that will establish 1 − α confidence that node i is
unsafe, i.e., that σ2

1,i < σ2
Vi

< σ2
2,i. Extension of the above

arguments leads to the following necessary and sufficient
condition:

Φ

(
(σ̂ii − σ2

1,i)
√

n

Ssii

)
+ Φ

(
(σ2

2,i − σ̂ii)
√

n

Ssii

)
≤ 2 − α.

In order to write a closed-form sufficient condition, we
recall that a 1−α confidence interval on σ2

Vi
is given by [36]:

σ̂ii ±
Ssiizα/2√

n
.

So, to obtain a 1−α confidence level that σ2
Vi

is between σ2
1,i

and σ2
2,i, it is sufficient that both extremes of the above interval

lie within [σ2
1,i, σ

2
2,i]. This leads to the following condition:

n ≥
(

Ssiizα/2

min(σ̂ii − σ2
1,i, σ

2
2,i − σ̂ii)

)2

= n3. (53)

Obtaining bounds for nodes in Group 3is easier as we have
only one critical variance. If σ̂ii > σ2

3,i, then we need to check
for safety, i.e.:

P{σ2
Vi

> σ2
3,i} ≥ 1 − α.

This is equivalent to:

Φ

(
(σ̂ii − σ2

3,i)
√

n

Ssii

)
≥ 1 − α,

which reduces to:

n ≥
(

Ssiizα

σ̂ii − σ2
3,i

)2

= n4. (54)

Note that (54) is a necessary and sufficient condition on n
to achieve 1 − α confidence that node i is safe. Similarly, if
σ̂ii < σ2

3,i, we obtain 1 − α confidence that node i is unsafe
iff n satisfies:

n ≥
(

Ssiizα

σ2
3,i − σ̂ii

)2

= n5. (55)

Note that n4 = n5, and that (54) and (55) are closed-form
necessary and sufficient conditions on n, the required number
of samples. The following summarizes convergence of node
i after n samples.
If node i is in Group 2:

If σ̂ii < σ2
1,i:

If n ≥ n1: the node is done -safe.
Else if σ̂ii > σ2

2,i:
If n ≥ n2: the node is done -safe.

Else if σ2
1,i < σ̂ii < σ2

2,i:
If n ≥ n3: the node is done -unsafe.

Else if node i is in Group 3:
If σ̂ii > σ2

3,i:
If n ≥ n4: the node is done -safe.

Else If σ̂ii < σ2
3,i:

If n ≥ n5: the node is done -unsafe.
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C. Residual Nodes

It can be seen from (51) – (55) that the number of samples
required to establish the desired confidence level may be large
if the estimated variance is very close to σ2

1,i, σ2
2,i, or σ2

3,i.
Suppose for example that the variance estimator of a node in
Group 3is very close to σ2

3,i. The variance itself may be either
greater or less than σ2

3,i, but the closer the estimator is to σ2
3,i,

the harder it is to establish a high confidence level on where
the true variance actually lies.

With an estimate σ̂ii of σ2
Vi

, we use (38) to define a natural
estimator of V1−βi given by:

V̂1−βi = V1−βi(σ̂ii) = µVi

exp
[
zβi

(
ln
[
1 + σ̂ii/µ2

Vi

])1/2
]

(
1 + σ̂ii/µ2

Vi

)1/2
.

(56)
Hence, if σ̂ii is close to σ2

1,i, σ2
2,i, or σ2

3,i, then V̂1−βi is
correspondingly close to VTi. In this case, instead of seeking
to establish a high confidence level on whether V1−βi is greater
or less than VTi, we estimate an upper bound (a conservative
value) on V1−βi , with 1−α confidence, that we denote Vub,i.

This can be achieved in the following way. Let δVdd be
a user-defined resolution on the estimation of V1−βi . Let D
denote the subset of nodes which have not converged and R
the subset of D including all nodes i such that |V̂1−βi−VTi| ≤
δV dd. If at any time in the iteration process, R = D, and R
is not empty, then we stop iterating and we call R the set of
residual nodes.

We know from section VII-B that with 1 − α confidence,
the variance of each residual node lies in the interval [v1, v2],
where:

v1 = σ̂ii − (Ssiizα/2)/
√

n

and
v2 = σ̂ii + (Ssiizα/2)/

√
n.

Knowing the variations of V1−βi(σ2
Vi

) versus σ2
Vi

(see Fig. 3),
it is easy to determine the point vm in [v1, v2] such that
V1−βi(vm) is largest. Knowing the variations of V1−βi(σ2

Vi
)

versus σ2
Vi

, described in section VI-B, and depending on the
values of σ̂ii, v1, and v2, vm can be equal to v1, v2, or
µ2

Vi
[exp(z2

βi
) − 1], as follows:

If v1 < µ2
Vi

[
exp(z2

βi
) − 1

]
< v2:

vm = µ2
Vi

[
exp(z2

βi
) − 1

]
.

If v1 < v2 < µ2
Vi

[
exp(z2

βi
) − 1

]
: vm = v2.

If µ2
Vi

[
exp(z2

βi
) − 1

]
< v1 < v2: vm = v1.

Vub,i can then be written as:

Vub,i = V1−βi(vm). (57)

Fig. 5 illustrates a case for a residual Group 3node.
Residual nodes are simply nodes having their V1−β very

close to the safety threshold voltage that it becomes difficult
to tell whether they are safe or not. They are on the verge
of safety or unsafety, as they were defined. Observe that
Vub,i is always greater than VTi (otherwise node i would
have converged), therefore, Vub,i − VTi can be viewed as the
required increase in the safety threshold on node i to establish
safety on that node.

V

V

v v1m
 = σ 22σ

3,i

V1- β

ub,i

Ti

i
σ

Vi
2interval on

1- confidenceα

v2σ
ii

Fig. 5. Finding an upper bound with 1 − α confidence on V1−βi
for a

residual, Group 3node.

VIII. RESULTS

A. Test Grids

The proposed analysis and verification methods have been
implemented and tested on a number of test-case grids. Not
having access to power grids from industrial designs, and
because we need a large and number of grids under dif-
ferent conditions, we have opted to generatea number of
grids ourselves. In our test grids, technology and topology
parameters are user-specified. The grid generation process is
automatic and employs a pseudo-random number generator,
based on the built-in function random(.)in C. Starting with
a square uniform grid of a given size, we proceed to ran-
domly delete a user-specified percentage of nodes (which we
call the degree of non-uniformity), thus rendering the grid
structurally non-uniform. Typical geometric and physical grid
characteristics (e.g. grid dimensions) and characteristics of
the fabrication process (e.g. sheet resistance of a particular
level of metallization) are given by the user, leading to an
initial value of the conductance of every branch. When a
node is deleted, the conductances of the remaining surrounding
edges (branches) are increased by a random amount around a
user-specified percentage of their initial values. The rationale
behind this is to allow the non-uniform grid to be loaded
with currents comparable to its uniform predecessor while
exhibiting comparable IR-drops. The number of V dd (C4)
sites is supplied by the user and C4s are placed randomly
on the grid. The C4s and current sources are then distributed
at random over the grid nodes. The user also specifies a typical
value of leakage current variance and mean and the assigned
values are generated randomly around these typical values;
Current sources are then distributed at random over the grid.
All results were obtained on a 1 GHz, dual-processor Sun
Fire server with 4.0 GB of main memory. The implementation
was carried out by writing C programs, and LU factorization
and forward/backward solves done through the package UMF-
PACK [37], using Basic Linear Algebra Subprograms (BLAS)
routines from the Sun Performance Library [38].

B. Lognormality of Voltage Drops

Fig. 6 corroborates the fact that voltage drops are well
modeled by a lognormal distribution. We randomly generated
ns = 10, 000 independent load vectors, with each individual
current load following a lognormal distribution, and with
different current loads in any given vector being statistically
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Fig. 6. Checking graphically the goodness-of-fit of the voltage drop data
against a lognormal distribution using the method of normal scores.

independent from one another. We collected voltage drop
data on all grid nodes, in response to each of the randomly
generated load vectors, then computed the natural logarithms
of each node voltage drop, i.e., ln (V i,j), where Vi,j is the
voltage drop of node i and in response to current vector j,
for i = 1, · · · , N , and j = 1, · · · , ns. We then obtained the
sample mean µ̄i and sample standard deviation si of each
ln (Vi), for i = 1, · · · , N . The y-axes in Fig. 6 represent
voltage drop data transformed as (ln (Vi,j) − µ̄i)/si, ∀i, j.
The point being to verify lognormality of all voltage drops,
the task becomes to check these transformed voltage drops,
which are statistically independent, against a standard normal
distribution. This was done graphically, and the data was
fit on normal scores plots [33], shown in Fig. 6. As can
be seen from the figure, voltage drops showed good fits,
except for certain outliers, validating the choice of lognormal
distributions to model the voltage drops on the power grid,
induced by independent, within-die leakage current variations.

C. Variance Estimation

Fig. 7 verifies the accuracy of the proposed column-
sampling method for variance estimation. The correlation
plot in Fig. 7(a), shows the estimated standard deviations
versus exact ones, for a grid of 138,500 nodes, obtained after
convergence of 100% of the grid nodes, reached after 14,589
samples. The estimated standard deviations are obtained via
the column-sampling approach and the exact standard devia-
tions obtained via the deterministic solution of (23). The plot
confirms the accuracy of the results. The error distribution is
shown in Fig. 7(b): only 1 among 138,500 data points (exact
standard deviation = 1.25%Vdd and estimated standard devia-
tion = 1.76%Vdd). carried an error larger than 0.5%Vdd, and
this error is 0.51%Vdd. 70 data points carried errors larger than
than 0.4%Vdd. The average error over all variance estimates
is 0.06%Vdd. For reference, we note that the mean standard
deviation of the voltage drop over all nodes is 0.99%Vdd

and the maximum standard deviation of the voltage drop at
any node is 3.77%Vdd. The mean and maximum standard
deviation are obtained from the exact values, representing the
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Fig. 7. Correlation plots (a) and error distribution (b) of variance estimates.

x-axis of Fig. 7(a). Clearly, the number of samples required
for convergence depends on the error bound δ and the actual
variance values to be estimated. For a given power grid and
with a fixed error bound, it can be observed from (35) that as
the standard deviations to be estimated increase, the number
of required samples increases quadratically.

An important point, underscored in Fig. 8 is that a small
fraction of nodes require a very large number of samples to
reach convergence, as defined in (36): in the figure, and for
a grid of 264,592 nodes, 95% of grid nodes converge after
1,566 samples, 99% converge after 3,304 samples, but it takes
more than 13,000 samples for all nodes to reach convergence.
In effect, for the “difficult” 1% of nodes, the 1−α confidence
interval after 3,304 samples extends beyond the error bound
(δVdd).

Fig. 9 shows the number of samples needed for convergence
of 100% of the grid nodes as the error bound (δ) is varied,
as a percentage of the supply voltage Vdd. The figure shows
a sharp increase in the total number of samples for an error
bound of 1% of Vdd or less. Indeed, if δ is greater than 5%
of Vdd, convergence is attained immediately after 50 samples,
while more than 5,000 samples would be needed to attain
convergence when the error bound is fixed at less than 1% of
Vdd.
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TABLE I

VARIANCE ESTIMATION RESULTS ON GRIDS THAT ALLOW A DETERMINISTIC SOLUTION.

Size # Degree (%) Std. Dev. Avg. Max. %nodes # Runtime: Runtime: Runtime:
(#nodes) C4s of non- Avg./Max. Error Error with error samples LU column deterministic

uniformity (% Vdd) (% Vdd) (% Vdd) > 1%Vdd sampling solution
17,678 150 3 1.13/3.44 0.13 1.51 0.28 1,229 < 1 sec. 45 sec. 9.5 min.
20,767 100 18 2.05/5.36 0.13 1.06 0.005 1,074 <1 sec. 46 sec. 12.8 min.
32,130 120 3 1.68/5.82 0.14 1.19 0.05 2,084 1.8 sec. 4.7 min. 1.1 hr.
45,980 400 5 1.04/3.11 0.14 1.11 0.004 2,699 2.5 sec. 8.9 min. 2.5 hrs.
50,327 100 18 2.02/5.97 0.15 1.88 0.35 1,851 2.2 sec. 6.2 min. 2.6 hrs.
59,850 250 5 0.94/2.30 0.13 0.90 0 1,410 3.3 sec. 7.1 min. 4.6 hrs.
76,484 260 19 2.52/7.86 0.20 2.04 0.35 4,861 3.5 sec. 29 min. 7.4 hrs.
89,302 300 10 1.12/3.14 0.13 1.63 0.01 2,435 5 sec. 20 min. 11 hrs.

100,796 200 8 1.56/4.07 0.15 1.33 0.18 2,390 5.8 sec. 23 min. 15.1 hrs.
142,956 400 1 1.04/3.61 0.14 1.22 0.003 2,743 10 sec. 43 min. 35.8 hrs.
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Table I shows characteristics and results for a number of
power grids whose sizes were chosen small enough to allow
one to compute the voltage variances by solving (23) deter-
ministically, and compare results with the proposed Monte
Carlo approach. The statistical estimation was conducted at
95% confidence (α = 0.05) and with a 1% error bound
(δ = 0.01). The fourth column of the table shows the mean
and maximum voltage drop standard deviation, taken over all
the grid nodes. The values and spread of the voltage standard
deviation continue the trend observed in Fig. 7. The column-
sampling process was stopped when 99% of grid nodes
reached convergence, as specified in (36). Since each column

sample contributes to the estimation of every node voltage
drop, each sample serves to update the variance estimate at
all nodes, so that by the time the last column sample is taken,
the confidence interval on the standard deviation estimate
of the majority of nodes is smaller than the error bound
(δVdd). This explains the relatively small average errors in the
node voltage standard deviation estimates, shown in the fourth
column, which are found to be in the order of 0.1%-0.2%
of Vdd. By the same token, we expect the number of nodes
where the error in the standard deviation estimate is actually
greater than δVdd to be small relative to the grid size. Indeed,
the sixth column shows the percentage of nodes (including
non-converging ones) where the error in the voltage standard
deviation estimate is in fact greater than the error bound of
1% of Vdd. In most cases, this percentage is effectively smaller
than 1%, the percentage of nodes which did not converge. The
fifth column reports the maximum error on any node: in each
case, this error is quite comparable to the error bound, mostly
in the range of 1%-2% of Vdd, and exceeding 2% of Vdd only
in 1 in 10 cases. The last two columns of Table I compare the
runtime of the column-sampling method with the deterministic
solution of (23). The speedup ranges from about 12.7X, for
the 17,678-node grid, to about 50X for the 142,956-node grid,
and is, on average, about 26X.

Results on larger grids are shown in Table II. These grids are
too large for the deterministic solution of node voltage vari-
ances to be carried out, therefore only the proposed column-
sampling approach was applied to them, and only runtime and
memory usage data are shown. It is clear that this technique
can be applied to relatively large grids, with a tight (δ =1%,
in this case) error bound.

D. Verification of Power Grids

Tables III and IV show the overall performance of the
proposed verification approach on grids of various sizes. The
grids in the first table are small enough so that we were
also able to solve (23) deterministically to obtain the exact
value of the variance at each node, and consequently, the
exact value of the 1 − β percentile of the voltage drop.
The tables show runtimes for LU factorization, application
of the direct checks (see section VII-A), and verification
through column sampling (see section VII-B). Table III further
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TABLE II

VARIANCE ESTIMATION RESULTS ON LARGER GRIDS THAT DO NOT ALLOW A DETERMINISTIC SOLUTION.

Size Number Degree (%) of Number of Runtime: Runtime: Memory
(#nodes) of C4s non-uniformity samples LU sampling usage
164,510 550 23 3,610 8 sec. 53 min. 125 MB
203,251 580 6 3,937 14 sec. 1.4 hrs. 186 MB
251,856 590 10 5,527 17 sec. 2.5 hrs. 212 MB
369,024 568 4 6,663 33 sec. 5.0 hrs. 375 MB

indicates the time required for carrying out grid verification by
a deterministic solution of (23), allowing us to compute exact
values for grid voltage variances and therefore, to determine
the safety status of each node with 100% confidence, i.e.,
without resorting to statistical variance estimation through
column sampling. With this, we can measure the error of our
verification approach when column sampling is put to use: the
last column of Table III reports the resulting errors, defined
as the ratio of the number of nodes which were deemed safe
and are actually unsafe and vice versa, to the total number of
nodes, excluding residual nodes.

Observe the difference in number of samples required for
variance estimation (Tables I and II) and grid verification
(Tables III and IV), which directly translates in significantly
smaller runtimes for grid verification. This difference is due
to the fact that Group 1 nodes and upper and lower variance
bounds rule out the need for column sampling to estimate
voltage variances for a fraction of nodes. Also, the sampling
process for grid verification does not seek an estimate of
the node voltage variance per se, but rather to establish a
given confidence level on whether this variance is greater
or less than a critical value. This implies a difference in
the stopping criteria used for column sampling between the
variance estimation and grid verification problems, such that
sampling for grid verification may stop when establishing
the desired confidence level on the location of the variance
estimate with respect to critical variances, without having an
accurate estimate of the variance itself.

We observed in our experiments that some grids were fully
verifiable by the direct criteria, described in section VII-A, in
which case the run time is dramatically reduced. The first grid
in Table III and the second grid in Table IV are examples of
such grids. The errors, shown in Table III, were very much in
accordance with the specified bounds, and in the case of grids
there were verifiable using only direct criteria, the error is 0.

Fig. 10 shows distribution of the distance between the upper
bounds on V1−βi and the safety threshold voltages VTi , for the
grid of 1.3 million nodes, featured in the last row of Table IV.
The safety parameter (1 − β) was set at (90%) for all nodes
and the confidence level for convergence (1−α) at 95%. The
resolution was fixed at 1% of Vdd (δ = 0.01). Fig. 10 shows
that there were 14,362 residual nodes, corresponding to 1.1%
of the grid size. The number of such nodes is primarily related
to the user-specified resolution and how it compares with the
actual variances of the node voltages. All experiments feature
a resolution of 1% of Vdd, and the number of residual nodes
was consistently small, compared to the grid size (see also
Tables III and IV). It was stated in section VII-C that the
distance between Vub,i and VTi is an absolute measure of
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Fig. 10. Distribution of upper bounds on the 1 − β percentiles.

how much the requirement on the safety threshold voltage at
a residual node should be relaxed (i.e., how much VTi should
increase) in order to deem a node safe. Fig. 10 illustrates
that this distance is small (the average being 0.96% of Vdd),
implying that V1−βi and VTi are indeed close (that closeness
being controlled by the resolution).

IX. CONCLUSION

Technology scaling trends exacerbate the importance of
proper leakage management and reinforce the need for robust
power distribution across the chip. This work addressed the
vulnerability of chip power distribution to process-induced
leakage current variations. Leakage variations appear as ran-
dom drops of the power grid voltage levels and may be thought
of as a background level of noise on the grid. We suggested a
lognormal statistical model for the voltage drops on the grid in
presence of this noise and a numerical Monte Carlo technique
to overcome the computational complexity associated with the
grid size in order to determine the statistical parameters of
this leakage-induced noise. With this ability, we were able to
formulate a verification methodology in order to localize areas
of the grid that are particularly susceptible to voltage violations
due to leakage variations. Results showed the efficiency and
applicability of the proposed approach.
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TABLE III

VERIFICATION RESULTS ON SMALL GRIDS, WHERE CHECKING THE ACCURACY OF THE PROPOSED APPROACH IS POSSIBLE.

Size Safety Confidence Safety % nodes % nodes Runtime: Runtime: Runtime: Runtime: %
(#nodes) parameter level threshold safe residual LU direct column deterministic error

(1 − β) (1 − α) (% of Vdd) checks sampling solution
20,814 99% 95% 10% 100 0 1.1 sec. 0.00 sec 0 19 min. 0
40,804 92% 95% 10% 77.8 2.5 2.4 sec. < 1 sec. 6.2 sec. 1.9 hr. 1.3
51,711 99% 99% 10% 99.86 0.1 2.8 sec. < 1 sec. 7.8 sec. 3.2 hrs. 0.00
71,084 99% 99% 10% 95.8 0.3 3.7 sec. < 1 sec. 10.7 sec. 7 hrs. 0.00
79,925 95% 95% 10% 81.8 0.6 4.8 sec. < 1 sec. 14.9 sec. 9.3 hrs. 0.11

104,125 95% 95% 10% 91.9 0.6 5.4 sec. 1.2 sec. 18.9 sec. 13 hrs. 1.2

TABLE IV

PERFORMANCE OF THE PROPOSED VERIFICATION APPROACH ON LARGE GRIDS.

Size Safety Confidence Safety % nodes % nodes Time Time # samples Time Memory
(#nodes) parameter level threshold safe residual (LU) (direct) (iterative) (iterative) usage

(1 − β) (1 − α) (% of Vdd)
307,655 95% 92% 15% 65.4 5.4 25 sec. 5 sec. 433 15.2 min. 311 MB
415,410 95% 90% 10% 100 0 32 sec. 7 sec. 0 0 360 MB
691,850 95% 95% 10% 92.8 0.01 1.3 min. 16 sec. 2,484 4.1 hrs. 760 MB
811,912 95% 95% 15% 83.9 1.0 1.6 min. 18 sec. 2,440 5.7 hrs. 800 MB

1,008,899 99% 99% 10% 97.5 1.9 2.8 min. 23 sec. 131 21.7 min 1.3 GB
1,308,275 90% 95% 10% 95.3 1.1 4.7 min. 36 sec. 64 14 min. 1.8 GB
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