
1

Active Leakage Power Optimization for FPGAs
Jason H. Anderson,Student Member, IEEE, and Farid N. Najm,Fellow, IEEE

Abstract— We consider active leakage power dissipation in
FPGAs and present two “no cost” approaches for active leakage
reduction. It is well-known that the leakage power consumed
by a digital CMOS circuit depends strongly on the state of
its inputs. Our first leakage reduction technique leverages a
fundamental property of basic FPGA logic elements (look-up-
tables) that allows a logic signal in an FPGA design to be
interchanged with its complemented form without any area or
delay penalty. We apply this property to select polarities for logic
signals so that FPGA hardware structures spend the majority
of time in low leakage states. In an experimental study, we
optimize active leakage power in circuits mapped into a state-of-
the-art 90nm commercial FPGA. Results show that the proposed
approach reduces active leakage by 25%, on average. Our second
approach to leakage optimization consists of altering the routing
step of the FPGA CAD flow to encourage more frequent use
of routing resources that have low leakage power consumptions.
Such “leakage-aware routing” allows active leakage to be further
reduced, without compromising design performance. Combined,
the two approaches offer a total active leakage power reduction
of 30%, on average.

Index Terms— Field-programmable gate arrays, FPGAs, leak-
age, power, computer-aided design, optimization.

I. I NTRODUCTION

Trends in technology scaling make leakage power an in-
creasingly dominant component of total power dissipation.
Leakage power has two main forms in modern IC processes:
subthreshold leakage andgate leakage. Subthreshold leakage
power is due to a non-zero current between the source and
drain terminals of an OFF MOS transistor. With each process
generation, supply voltages are reduced and transistor thresh-
old voltages (VTH) must also be reduced to mitigate perfor-
mance degradations. ReducingVTH leads to an exponential
increase in subthreshold leakage. Gate leakage on the other
hand is due to tunneling current through the gate oxide of
an MOS transistor. In modern IC processes, gate oxides are
thinned to improve transistor drive capability, which has led
to a considerable increase in gate leakage. Leakage power is a
growing concern in CMOS design and a recent work suggests
that it may constitute over 40% of total power at the 70nm
technology node [1].

Field-programmable gate arrays (FPGAs) are a popular
choice for digital circuit implementation because of their
growing density and speed, short design cycle and steadily
decreasing cost. Several recent works have studied FPGA
power consumption [2], [3], [4] and have shown that the

This work was supported in part by a Natural Sciences and Engineering Re-
search Council of Canada Postgraduate Scholarship and an Ontario Graduate
Scholarship.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Toronto, Toronto, Ontario, Canada. Jason H. Anderson is
also with Xilinx, Inc., Toronto, Ontario, Canada.

E-mail: janders@eecg.toronto.edu, f.najm@utoronto.ca.

power consumed by the largest FPGA devices is increasing,
with such devices now consuming Watts of power [3]. These
prior works have been mainly concerned with dynamic power
consumption (due to logic transitions on the signals of a
circuit) and suggest leakage power to be a small component
of total power. However, these analyses have been based on
IC technologies having feature sizes of 0.15µm or larger,
making them somewhat out of step with today’s state-of-
the-art FPGAs, which are fabricated in sub-100nm technol-
ogy [5]. The programmability of FPGAs implies that more
transistors are needed to implement a given logic circuit, in
comparison with custom ASIC technologies. Leakage power
is proportional to total transistor count and consequently,
leakage optimization will likely be a key design objective in
future FPGA technologies. Reducing the power consumption
of FPGAs is beneficial as it lowers packaging/cooling costs,
improves reliability and enables FPGA usage in low power
applications, such as mobile electronics.

Unlike ASICs, an FPGA circuit implementation uses only a
fraction of the FPGA’s resources. Leakage power is dissipated
in both theused and theunused part of the FPGA. Prior work
on leakage optimization differentiates betweenactive mode
and sleep (standby) mode leakage power. Standby leakage
power is that consumed in circuit blocks that are temporar-
ily inactive and that have been put into a special “sleep”
state, in which leakage is minimized. The sleep concept is
commonly used for leakage power reduction in the ASIC
domain; however, support for a sleep mode has yet to appear in
commercial FPGAs. Active leakage power on the other hand
is that consumed in circuit blocks that are “awake” (blocks
that are in use). The absence of sleep mode support in current
FPGAs implies that at present, all leakage power dissipated in
the used part of an FPGA can be considered active leakage.

In this paper, we focus on optimizing active leakage power
dissipation in FPGAs. We illustrate how the leakage power
of typical FPGA hardware structures depends strongly on
the state of their inputs. We then present a novel leakage
reduction approach that leverages a property of basic FPGA
logic elements that allows either polarity of a logic signal
to be used without any area or delay penalty, and without
any modifications to the underlying FPGA hardware. We
intelligently choose polarities for signals in a way that places
hardware structures into their low leakage states. Following
this, we present a second leakage optimization technique in
which the leakage power consumptions of FPGA routing
resources are taken into account during the routing step of
the FPGA CAD flow. The objective of such “leakage-aware
routing” is to produce routing solutions in which a design’s
signals are routed using low leakage routing resources.

The remainder of the paper is organized as follows: In
Section II, we discuss related work on leakage optimization

2

in ASICs and microprocessors. Section III describes typi-
cal FPGA hardware structures, studies their leakage power
characteristics, and reviews recent published work on leakage
optimization in FPGAs. Our first approach to leakage reduc-
tion, based on intelligent polarity selection, is described in
Section IV. Section V presents our second leakage optimiza-
tion technique: leakage-aware routing. Both of the proposed
leakage reduction approaches are validated experimentally
by applying them to optimize leakage in a 90nm Xilinx
commercial FPGA. Conclusions are offered in Section VI. A
preliminary version of a portion of this work has appeared
in [6].

II. L EAKAGE POWER OPTIMIZATION

In this section, we summarize a few of the important leakage
reduction techniques used in ASICs and microprocessors. A
more detailed overview can be found in [7].

Several recent works have considered standby leakage
power optimization. In [8], [9], the authors introduce high
thresholdsleep transistors into the N-network (or P-network)
of CMOS gates. Sleep transistors are ON when a circuit is
active and are turned OFF when the circuit is in standby mode,
effectively limiting the leakage current from supply to ground.
A different approach to leakage reduction (and one that is
related to the first of our proposed techniques) is based on the
fact that a circuit’s leakage depends on its input state. In [10],
[11], a specific input vector is identified that minimizes leakage
power in a circuit; the vector is then applied to circuit inputs
when the circuit is placed in standby mode. This idea requires
only minor circuit modifications and has been shown to reduce
leakage by up to 70% in some circuits [11].

Active leakage reduction has also been addressed in the
literature. One approach performs dynamicVTH adjustment
based on system workload [12], [13]. The body effect is
used to raise transistorVTH when high system throughput
is not required and the circuit can be slowed down. Such
body bias methods can also be used for standby leakage
power reduction [14]. Other circuit-level techniques include
the use of multi or dual-threshold CMOS [15], [16], in which
transistors having different threshold voltages are available. In
this approach, low-VTH transistors are used in delay critical
paths and high-VTH transistors are used in non-critical paths.
Considerable leakage power reductions are possible, as there
are usually few delay critical paths. Another popular technique
is to replace individual transistors in gates with “stacks” of
transistors in series [17], [18], [1]; transistor stacks leak less
than individual transistors when in the OFF state. A related
approach is to use transistors with longer channel lengths,
which are known to have better leakage characteristics [7].
Note that the leakage improvements offered by the techniques
mentioned here do not come for free – each has an associated
cost, impacting circuit area, delay or fabrication cost.

III. FPGA HARDWARE STRUCTURES ANDLEAKAGE

CHARACTERISTICS

Before describing our leakage reduction methods, we review
the circuit structures that are common to current FPGAs and
study their leakage characteristics.

4-LU
T D FF

clk

S
S
S
S

S

f1

f2

f3

f4

...

f1 f2 f3 f4

SRAM cell

a) logic block

b) 4-LUT

M
U

X

M
U

X

Fig. 1. FPGA logic block.

i1

i2

i3

in

S S S...

config

M
U

X BUF

Fig. 2. Routing switch.

FPGAs consist of an array of programmable logic blocks
that are connected through a programmable interconnection
network. Most commercial FPGAs use 4-input look-up-tables
(4-LUTs) as the combinational logic element in their logic
blocks. 4-LUTs are small memories that can implement any
logic function having no more than 4 inputs. An abstract view
of an FPGA logic block is shown in Fig. 1(a), comprising
a 4-LUT along with a flip-flop (flip-flop can be bypassed).
Fig. 1(b) shows the internal details of a 4-LUT. 16 SRAM
cells hold the truth table for the logic function implemented
by the LUT. The LUT inputs (labeled f1-f4) select a particular
SRAM cell whose content is passed to the LUT output. Note

i1

i2

i3

i4

i1

i2

i3

i4

a) decoded multiplexer b) encoded multiplexer

s1

s2

s3

s4

s1 s2s1s1 s2 s2

s1

s1

s1

s1

s2

s2

SRAM cell

Fig. 3. Multiplexer implementations.

3

0

10

20

30

40

50

60

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

0

10

20

30

40

50

60

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

decoded multiplexer

encoded multiplexer

average power
when output = 0

average power
when output = 1

Fig. 4. Leakage power for multiplexers.

that logic blocks in commercial FPGAs contain clusters of
LUTs and flip-flops. For example, a logic block in the Xilinx
Virtex-II PRO FPGA contains 8 LUTs and 8 flip-flops [19].

Connections between logic blocks in an FPGA are formed
using a programmable interconnection network, composed
of variable length wire segments and programmable rout-
ing switches. A typical FPGA routing switch is shown in
Fig. 2 [20], [21]. It consists of a multiplexer, a buffer and
SRAM configuration bits. The multiplexer inputs (labeled i1-
in) connect to other routing conductors or to logic block
outputs. The buffer’s output connects to a routing conductor
or to a logic block input. The programmability of an FPGA’s
interconnection fabric is realized through SRAM cells in the
configuration block (labeled “config” in Fig. 2). The SRAM
cell contents control which input signal is selected to be driven
through the buffer.

The multiplexers in FPGA interconnect and LUTs are
typically implemented using NMOS transistor trees [20], such
as those shown in Fig. 3. Note that full CMOS transmission
gates are generally not used to implement multiplexers in
FPGAs because of their larger area and capacitance [22]. Fig. 3
shows two possible implementations of a 4-to-1 multiplexer.
Fig. 3(a) shows a “decoded” multiplexer, which requires four
configuration SRAM cells if used in an FPGA routing switch.
Input-to-output paths through this decoded multiplexer consist
of a single NMOS transistor. Fig. 3(b) shows an “encoded”

multiplexer that requires only two configuration SRAM cells,
though has larger delay as its input-to-output paths consist of
two transistors in series. In larger multiplexers, a combination
of the designs shown in Fig. 3 is also possible, allowing one
to trade-off area for delay or vice-versa.

When a logic 1 is passed through an NMOS-based mul-
tiplexer, a “weak 1” appears on the multiplexer’s output (≈
VDD −VTH). The weak 1 has the potential to cause excessive
leakage in the buffer attached to the multiplexer’s output in
Fig. 2. To deal with this, the buffer is normally implemented
as a “ level-restoring” buffer [23], [24]. In a level-restoring
buffer, the buffer’s input is pulled up to rail VDD when logic 1
is passed through the multiplexer. It is important to recognize,
however, that the multiplexers in modern FPGAs are large,
and are deeper than one level of NMOS transistor. Only the
output of the multiplexer is pulled up to rail VDD by the level-
restoring buffer; weak 1s will appear on internal multiplexer
nodes.

We performed SPICE simulations (at 110◦C) to measure the
leakage power of the multiplexers in Fig. 3. Our simulations
were conducted using BSIM4 SPICE models for a 1.2V 90nm
commercial CMOS process. We assigned values to the select
signals of the multiplexers so that input i1 was passed to the
multiplexer output and then simulated all 16 possible input
vectors. Fig. 4 shows the multiplexer leakage power results. A
vertical bar illustrates the leakage for each input vector. From
Fig. 4, we observe that leakage power in the multiplexers is
highly dependent on input state. For the decoded multiplexer,
the highest leakage occurs when logic 0 appears on input i1
(the input whose signal is passed to the output) and logic 1
appears on all other inputs; the lowest leakage occurs when
all inputs are logic 1. For the decoded multiplexer, there is
a 13.7X difference in leakage power between the highest and
lowest leakage states; for the encoded multiplexer, the leakage
power difference is 14.2X. In addition to the leakage for
each input vector, Fig. 4 shows the average leakage power
consumed when the output of the multiplexer is a logic 1
(solid horizontal line) and when the output of the multiplexer
is a logic 0 (dashed horizontal line).

Observe that for both multiplexers in Fig. 3, the average
leakage for passing a logic 1 to the multiplexer output is
substantially smaller than the average leakage for passing
logic 0. There are several reasons for this: First, as mentioned
above, when logic 1 (VDD) is applied to the drain terminal of
an ON NMOS device, a weak 1 (≈ VDD − VTH) appears at
the source terminal. The weak 1 leads to reduced subthreshold
leakage power in other multiplexer transistors that are OFF,
versus when the potential difference across an OFF transistor is
VDD [see Fig. 5(a)]. This is due to the effect of drain-induced
barrier lowering (DIBL) in short-channel transistors, which
causes threshold voltage to decrease (subthreshold current to
increase) when drain bias is increased [7].

In addition to affecting subthreshold leakage, another sig-
nificant source of leakage power variation is due to a reduction
in gate oxide leakage when the multiplexer is passing logic 1
to its output. Gate leakage is a considerable fraction of total
leakage in 90nm technology. Gate leakage in an ON NMOS
transistor depends significantly on the applied bias [25]. When

4

VDD

GND

GND

VDD

~= VDD - VTH

subthreshold leakage

VDD

GND GND

gate leakage

VDD

VDD ~= VDD - VTH

gate leakage

a) reduced subthreshold leakage

b) high gate leakage

c) low gate leakage

Fig. 5. Examples of transistor leakage states.

an NMOS transistor is passing logic 0, the voltage difference
between the gate and source is VDD (that is, VGS = VDD) and
the transistor is in the strong inversion state [see Fig. 5(b)].
Conversely, when the transistor is passing logic 1, the transis-
tor is in the threshold state (VGS ≈ VTH) [see Fig. 5(c)]. Gate
oxide leakage in the threshold state is typically several orders
of magnitude smaller than in the strong inversion state [25].
This property makes it preferable to pass logic 1 (versus
logic 0) from the gate leakage perspective.

Another important circuit element in FPGAs is a buffer
since they are present throughout the routing fabric and also
within logic blocks. We simulated the two stage buffer shown
in Fig. 6 and measured its leakage power in both input states.
The buffer’s transistors were sized to achieve equal rise and
fall times, and the second stage was chosen to be 3 times larger
than the first stage. Leakage power results for the buffer are
shown on the right side of Fig. 6. Although the difference
in power between the two input states is not as pronounced
as the differences observed for the multiplexers, we see that
about 20% more power is consumed when the buffer’s input
is a 0 versus when its input is a 1. The dependence of the
buffer’s leakage on input state is a result of NMOS and
PMOS devices having different leakage characteristics (both
gate oxide leakage and subthreshold characteristics), and the
dependence of leakage on transistor size. For example, gate
oxide leakage is considerably higher in NMOS versus PMOS
transistors [26] and is also directly proportional to transistor
size. Therefore, overall gate leakage is minimized when the
large NMOS transistor in the buffer’s second inverter stage is
OFF, which occurs when the buffer’s output state is logic 1.

Subthreshold leakage increases exponentially with tempera-
ture, and consequently, leakage is primarily a problem at high

Input Power (nW)
0 56.1
1 46.6

Fig. 6. Buffer implementation and leakage power.

temperature. This work concerns active leakage power in the
operating (hot) part of the FPGA and therefore, in this paper,
the proposed leakage reduction techniques are evaluated at
high temperature (110◦). Unlike subthreshold leakage, gate
oxide leakage is almost insensitive to temperature [27]. At
low temperature, gate oxide leakage comprises a significantly
larger fraction of total leakage. For completeness, we also ex-
amined the leakage characteristics of the basic FPGA hardware
structures at low temperature (40◦). The results are shown in
Fig. 7. Observe that similar leakage bias trends are apparent
at low temperature; namely, less leakage in consumed when
logic 1 is passed through the multiplexers and buffer versus
when logic 0 is passed through these structures. In fact, in the
multiplexers, the bias is more pronounced at low temperature.
For example, in the decoded multiplexer, the average leakage
power when the output is logic 0 is 140% higher than when the
output is logic 1. At high temperature, the leakage difference
between the two states is only 44%. In the buffer, the same
bias is present at low temperature, but it is less pronounced;
buffer leakage in the logic 0 state is about 7% higher than in
the logic 1 state (versus 20% higher at high temperature).

A. Leakage Power Optimization in FPGAs

Several recent studies have considered techniques for leak-
age power reduction in FPGAs. Optimization of sleep mode
leakage in FPGA logic blocks was addressed in [28], which
proposed the creation of fine-grained “sleep regions” , making
it possible for a logic block’s LUTs and flip-flops to be put
to sleep independently. In [29], the authors propose a more
coarse-grained sleep strategy in which entire regions of unused
logic blocks may be placed into a low leakage sleep state.

Active leakage in FPGAs has been addressed through the
use of dual-VDD techniques. [30] proposed dual-VDD FPGAs
in which some logic blocks are fixed to operate at high-VDD

(high speed) and some are fixed to operate at low-VDD (low-
power but slower). In [31], the same authors extended their
dual-VDD FPGA work to allow blocks to operate at either high
or low-VDD. [32] applies configurable dual-VDD concepts to
both logic blocks and interconnect. The costs involved with
deploying dual-VDD techniques include the distribution of
multiple power grids, and the need to supply multiple voltages
at the chip level.

Another approach to reducing leakage in FPGA intercon-
nect is to borrow and apply well-known leakage reduction
techniques from the ASIC domain [23]. In particular, [23]
proposes: 1) using a mix of low-VTH and high-VTH transistors
in the multiplexers, 2) using body-bias techniques to raise the

5

0

5

10

15

20

25

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

0

5

10

15

20

25

00
00

:

00
01

:

00
10

:

00
11

:

01
00

:

01
01

:

01
10

:

01
11

:

10
00

:

10
01

:

10
10

:

10
11

:

11
00

:

11
01

:

11
10

:

11
11

:

Input vector (i1i2i3i4)

P
o

w
er

 (
n

W
)

decoded multiplexer

encoded multiplexer

average power
when output = 0

average power
when output = 1

Input Power (nW)
0 19.3
1 18

a) Leakage power for multiplexers

b) Leakage power for buffer

Fig. 7. Low temperature leakage power results for multiplexers and buffer
(40◦C).

VTH of multiplexer transistors that are OFF, 3) negatively
biasing the gate terminals of OFF multiplexer transistors, and
4) introducing extra SRAM cells to allow for multiple OFF
transistors on “unselected” multiplexer paths. A more recent
paper by Ciccarelli et. al. applies dual-VTH techniques to the
routing switch buffers in addition to the multiplexers. Unlike
the techniques noted here, our proposed leakage reduction
methods impose no advanced process or biasing requirements
and do not degrade area-efficiency or performance.

IV. ACTIVE LEAKAGE POWER OPTIMIZATION VIA

INTELLIGENT POLARITY SELECTION

In Section III, we observed that in a modern commercial
CMOS process, the leakage power dissipated by elementary
FPGA hardware structures, namely buffers and multiplexers, is
typically smaller when the output and input of these structures
is logic 1 versus logic 0. Our first approach to active leakage
power optimization approach works by choosing a polarity
for each signal in an FPGA design, in a manner that enables

signals to spend the majority of their time in the logic 1
state (the logic state associated with low leakage power). A
fundamental property of a digital signal is its static probability,
which is the fraction of time a signal spends in the logic 1 state.
A signal with static probability greater than 0.5 spends more
than 50% of its time at logic 1. Our approach alters signal
polarity to achieve high static probability for most signals.
Unlike in ASICs, signal polarity inversion in FPGAs can be
achieved without any area or delay penalty, by leveraging a
unique property of the basic FPGA logic element.

Fig. 8 illustrates how a signal’s polarity can be reversed
in an FPGA. Part (a) of the figure shows a logic circuit
having two AND gates and an exclusive-OR gate. Part (b) of
the figure shows the circuit mapped into 2-input LUTs. The
memory contents are shown for each LUT and represent the
truth table of the logic function implemented by the LUT’s
corresponding gate. In this example, the aim is to invert
the signal int, so that its complemented rather than its true
form is produced by a LUT and routed through the FPGA
interconnection network. There are two steps to inverting a
signal. First, the programming of the LUT producing the signal
must be changed. Specifically, to invert the signal, all of the
0s in its driving LUT must be changed to 1s and the 1s
must be changed to 0s. Second, the programming of LUTs
that are fanouts of the inverted signal must be altered to
“expect” the inverted form. This is achieved by permuting
the bits in the SRAM cells of such “downstream” LUTs.
Part (c) of Fig. 8 shows the circuit after the signal int is
inverted. The permutation of bits in the inverted signal’s fanout
LUT is shown through shading: the contents of the top two
SRAM cells in the downstream LUT are interchanged with the
contents of the bottom two SRAM cells in the LUT. Through
this method, signal inversion in FPGAs can be achieved by
simply re-programming LUTs.

Our first approach to leakage power optimization is shown
in Fig. 9. The input to the algorithm is an FPGA circuit as
well as static probability values for each signal in the circuit.
We iterate through the signals and select those signals having
static probability less than 0.5. Such signals spend most of
their time in the logic 0 state and thus, they are candidates
for inversion. For each candidate signal, we first must check
if it can be inverted (discussed below). If we find that a
candidate signal is invertible, we invert it by re-programming
the FPGA configuration memory accordingly. After processing
all signals, the output of our algorithm is a modified design,
having signals that spend the majority of their time in the logic
state favourable to low leakage power.

The majority of signals in FPGA designs are produced by
LUTs and drive LUTs and all such signals can be inverted
using the approach shown in Fig. 8. In a commercial FPGA
however, in addition to LUTs, other types of hardware struc-
tures are usually present. Some signals driven by or driv-
ing non-LUT structures may also be invertible, since FPGA
vendors frequently include extra circuitry for programmable
inversion. However, some signals may not be invertible, such
as those driving special control circuitry, entering the FPGA
device from off-chip, or driving certain pins on non-LUT
structures. As a concrete example, consider that the Xilinx

6

0
0
0
1

0
0
0
1

0
1
1
0

a b

c d

int
1
1
1
0

0
0
0
1

1
0
0
1

a b

c d

int
a
b

c
d

int

a) original circuit b) 2-LUT implementation c) after signal inversion

Fig. 8. LUT circuit implementation; illustration of signal inversion.

function OptimizeLeakage(design, signal static probabilities)

 for each signal n in the design do

 if static_probability(n) < 0.5 then

 if signal n can be inverted then

 invert(n)
 // FPGA is re-programmed; n replaced with n

 return new design

Fig. 9. Leakage optimization algorithm.

Virtex-II PRO FPGA contains 18-by-18 block multipliers [19].
The inputs to the multipliers do not have programmable
inversion. Therefore, any signal feeding a multiplier input
should not be inverted by the proposed polarity selection
approach, as doing so would be functionally incorrect (it would
change the multiplication results). Similarly, Virtex-II contains
large blocks of static RAM memory. Inverting a signal that
drives a block RAM address input is not straightforward, as
it implies a shuffling of memory contents, and block RAM
memory contents is frequently pre-loaded during an FPGA’s
initial configuration phase. A two-pass approach would be
needed to invert block RAM address signals: First, the polarity
selection optimization would be executed, permitting block
RAM address signal inversion. Then, the polarity selection
results would be used to determine the appropriate rearrange-
ment of block RAM memory contents. The memory contents
would be shuffled appropriately, prior to FPGA configuration.

Altering the polarity of a signal n with static probability
P (n), changes the signal’s probability to 1−P (n). Therefore,
for signals having static probability close to 0.5, the benefits
of inversion on leakage optimization are minimal, since the
static probability of such signals remains close to 0.5 after
inversion. Low leakage power can be achieved when signals
have static probability close to 0 or 1. The question that arises
then is whether the signals in real circuits exhibit this property.
Below, we show that it is unlikely that the majority of signals
in circuits will have probabilities close to 0.5, which bodes
well for the proposed leakage optimization approach.

The average rate of logic transitions on a (non-clock)

signal n, F (n), can be expressed as a function of the signal’s
static probability [34], [37]:

F (n) = 2 · P (n) · [1 − P (n)] (1)

where F (n) is commonly referred to as signal n’s normalized
switching activity. F (n) ranges from 0 to 0.5 and can be
interpreted as the fraction of clock cycles in which signal
n toggles. Note that (1) is a frequently used approximation
that becomes exact in the absence of temporal correlations in
signal n’s switching activity (n’s values in two consecutive
clock cycles are independent). Solving (1) for P (n), yields:

P (n) =
1 ± √

1 − 2 · F (n)
2

(2)

which is plotted in Fig. 10. Observe that P (n) is 0.5 only
when F (n) is 0.5 and that for a fixed decrease in F (n), there
is a change in P (n) towards either 0 or 1. From Fig. 10,
we infer that if the switching activities of the majority of
signals in circuits are not clustered close to 0.5, then the
static probabilities of signals will also not be clustered close
to 0.5. Switching activity in combinational circuits is well-
studied. Prior work by Nemani and Najm found that switching
activities are generally not clustered around a single value
and that on average, activity decreases quadratically with
combinational depth in circuits [35]. We can therefore expect
there to be a range of different static probabilities amongst
the signals of a circuit and that “deeper” signals in circuits
will have static probabilities approaching either 0 or 1. This
analysis suggests that for many signals, changing polarity will
have a significant impact on leakage power.

A. Experimental Study and Results

We evaluate the effectiveness of the proposed leakage power
reduction approach by applying it to optimize active leakage
in a state-of-the-art 1.2V 90nm Xilinx commercial FPGA. An
analysis of the leakage in this FPGA has appeared recently
in [36]. We first describe our methodology and subsequently
we provide results.

1) Methodology: The target FPGA is composed of an
array of configurable logic block (CLBs) tiles, I/Os and other
special-purpose blocks such as multipliers and block RAMs.
Smaller versions of the FPGA contain only the CLB array

7

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
ta

tic
 p

ro
ba

bi
lit

y
-

P
(n

)

Switching activity - F(n)

Fig. 10. Static probability versus switching activity.

S
LIC

E
S

LIC
E

S
LIC

E
S

LIC
E

IN
T

E
R

C
O

N
N

E
C

T

LU
T

LU
T

F
F

F
F

CLB

SLICE

Fig. 11. Configurable logic block (CLB) tile.

and I/Os. An embedded version of the FPGA, containing
the CLB array only, is also available for incorporation into
custom ASICs. In this paper, we focus on leakage optimization
within the FPGA’s CLB array, which represents the bulk of
the FPGA’s silicon area, especially in smaller devices and the
embedded version. The non-CLB blocks (e.g., block RAMs)
are not unique to FPGAs; leakage optimization in these blocks
has been studied in other contexts.

A CLB tile contains both logic and routing resources. A
simplified view of a CLB is shown in Fig. 11. The logic
resources in a CLB consist of four logic sub-blocks, called
SLICEs. Each SLICE contains two LUTs, two flip-flops as
well as arithmetic and other circuitry. The interconnect consists
of variable length wire segments that connect to one an-
other through programmable, buffered switches similar to that
shown in Fig. 2. Table I provides further detail on the major
circuit blocks in a CLB tile. The IMUX (input multiplexer)
selects and routes a signal to a SLICE input pin. The OMUX
(output multiplexer) selects and routes a signal from a SLICE
output pin to a neighboring logic block. Other interconnect
blocks are named corresponding to their length: DOUBLE
blocks drive wire segments that span 2 CLB tiles, HEX blocks
drive wires that span 6 CLB tiles and LONG resources span
the entire width or height of the FPGA. Note that a single CLB
tile contains multiple instances of each of the blocks listed in
Table I.

Fig. 12 shows our leakage optimization and analysis flow.

TABLE I

MAJOR CIRCUIT BLOCKS IN TARGET FPGA.

Circuit block Details

IMUX 30-to-1 multiplexer, buffer
OMUX 24-to-1 multiplexer, buffer
DOUBLE 16-to-1 multiplexer, buffer
HEX 12-to-1 multiplexer, buffer
LONG n-to-1 multiplexer, buffer

(n device/orientation dependent)
LUT 16-to-1 multiplexer, in/out buffers
FLIP-FLOP programmable set/reset

TABLE II

CHARACTERISTICS OF BENCHMARK CIRCUITS.

Circuit LUTs FFs # of Logic Levels

alu4 500 0 8
apex4 1,078 0 16

cps 524 0 11
dalu 323 0 8

ex1010 1,112 0 32
ex5p 557 0 11

misex3 257 0 10
pdc 609 0 14
seq 1,193 0 13

spla 229 0 7
industry1 1,511 2,128 16∗
industry2 1,654 1,278 16∗
industry3 2,818 368 20
industry4 2,942 1,262 4
industry5 8,676 5,507 8
industry6 4,895 318 24∗

∗ longest path has both LUTs and carry logic.

As mentioned above, the input to our algorithm is an FPGA
circuit as well as the static probability value for each of
the circuit’s signals. In our experiments, we use 10 large
combinational MCNC benchmark circuits and 6 industrial
circuits collected from Xilinx customers; the circuits are listed
in Table II. The MCNC circuits are first synthesized (from
VHDL) using Synplicity’s Synplify Pro tool (ver. 7.0). Then,
the circuits are technology mapped, placed and routed in the
target FPGA using the Xilinx software tools (ver. M6.2i).
The industrial circuits are already available in technology
mapped form so only the placement and routing steps are
required for these circuits. Column 4 of Table II lists the
combinational depth of each benchmark circuit, as reported
by the Xilinx static timing analysis tool. For most circuits,
the longest path contains only LUTs; however, for three of
the industrial circuits (marked with * in Table II), the longest
path contains both LUTs and carry logic.

In [6], we presented preliminary results for circuits that
were not optimized for performance (speed). In practice,
however, most FPGA users seek a high performance design
implementation. Consequently, we used the Xilinx place and
route tools to generate a performance-optimized layout for
each benchmark design as follows: First, each design was
placed and routed with an easy-to-meet timing (critical path
delay) constraint. Then, based on the performance achieved,
a more aggressive constraint was generated and the place and

8

HDL synthesis (Synplify Pro)

Technology mapping

Placement and routing

F
P

G
A

 v
en

do
r

to
ol

s

MCNC HDL circuit

Simulation (VSS or ModelSIM)

Routed design

Device usage analysis

Static probability data

Power analysis script

Active leakage power for design

Design usage data

S
im

ulation
vectors

C
ircuit block

leakage data
(from

 S
P

IC
E

)

Industrial circuit

Leakage Optimization (Optional)

Static probability data

Fig. 12. Leakage analysis flow.

route tools were re-executed using the new constraint. The
entire process was repeated until a constraint that could not
be met by the layout tools was encountered. We evaluate the
proposed leakage reduction technique in the layout solution
corresponding to the most aggressive (but achievable) con-
straint observed throughout the entire iterative process.

To gather static probability data, the routed benchmark
circuits were simulated using either the Synopsys VHDL
System Simulator (VSS) or Mentor Graphics’ ModelSIM. The
simulators have built-in capabilities for capturing the fraction
of time a signal spends at logic 1 (i.e., static probability).
Since we do not have access to simulation vectors for the
circuits, the circuits were simulated using 10,000 randomly
chosen input vectors1. In the vector set for each design, the
probability of each primary input toggling between successive
vectors was 50%. Note that, given the static probabilities of
a circuit’s primary input signals, the static probabilities of
the circuit’s internal signals can be computed using well-
known probabilistic techniques [37]. Thus, simulation is not a
requirement for the use of our optimization approach and we
expect that the approach could be incorporated into EDA tools
that automatically perform the proposed leakage optimization.

We performed SPICE simulations for each type of circuit
block in the FPGA’s CLB tile and captured the leakage power
consumed by each block for each of its possible input vectors.
Circuit regularity permitted the blocks with many inputs to
be partitioned into sub-blocks which were then simulated
independently. To illustrate, consider a 16-to-1 multiplexer,
constructed using four 4-to-1 multiplexer in a “fi rst stage” , and
a fifth 4-to-1 multiplexer in a “second stage” . One need not
simulate all 216 input combinations of the 16-to-1 multiplexer
to gather accurate leakage data for each of these input com-
binations. One can simulate the individual 4-to-1 multiplexers
and combine their leakage results to produce leakage data for

1Clock and control inputs on circuits were presented with appropriate (non-
random) signals.

the large 16-to-1 multiplexer. This was the approach taken
to gather leakage data for the commercial blocks with many
inputs. Notably, we observed the leakage characteristics of the
commercial FPGA’s circuit blocks to be similar to those of the
generic structures studied in Section III.

In our experiments, the total active leakage power, Lactive,
was computed twice for each benchmark circuit, both with
and without the proposed active leakage optimization. Lactive

is defined as the sum of the leakage power in each used
circuit block. By analyzing the FPGA (routed) implementation
solution for a benchmark, we can determine its circuit block
usage, including the signals on the inputs and outputs of each
used circuit block.

Computing the leakage for a used instance of a circuit
block in a benchmark involves combining the power data
extracted from the block’s SPICE simulation with usage data
from the benchmark circuit’s FPGA implementation and static
probability data from the benchmark’s HDL simulation. It is
worth reinforcing that we do not use the power data presented
in Section III in our experimental study; rather, we use power
data extracted from SPICE simulations of the commercial
FPGA’s circuit blocks.

Consider a used instance B of a circuit block in a bench-
mark and let
v represent an input vector that may be presented
to block B. Each bit bi in vector
v corresponds to an input i on
block B. Let SB,i represent the signal on input i of block B in
the benchmark’s FPGA implementation. The static probability
of signal SB,i, P (SB,i), is a known quantity, extracted from
the benchmark’s HDL simulation. If bit bi is logic 1 in vector

v, then we define the static probability of bit bi, PB(bi), to
be equal to P (SB,i). On the other hand, if bi is logic 0 in
v,
then PB(bi) is defined to be 1 − P (SB,i). We can compute
the probability of vector
v appearing on the inputs of block
B, PB(
v), as the product of its constituent bit probabilities:

PB(
v) =
∏

bi ε �v

PB(bi) (3)

The average active leakage power for a used circuit block B,
Lactive(B), is computed as a weighted sum of the leakage
power consumed by B for each of its input vectors:

Lactive(B) =
∑

�v ε VB

PB(
v) · Lactive(B�v) (4)

where VB represents the set of all possible input vectors for
circuit block B and Lactive(B�v) represents the leakage power
consumed by block B when its input state is vector
v, obtained
from SPICE simulations.

An example of the leakage power computation approach
for a block with 2 inputs is shown in Fig. 13. In the example,
the signal, X , on block input I1 has a static probability of
0.25 and the signal, Y , on input I2 has a static probability
of 0.33. A table gives the power consumed by the block for
each possible input vector. Consider, for example, the vector
in which I1 = 1 and I2 = 0. The leakage power consumed
by the block for this vector is 8. The probability of the vector
appearing on the inputs of the block is: P (X) · [1−P (Y)] =
0.25·(1−0.33) = 0.1675. Thus, the contribution of this vector

9

signal X

I2

I1 I2 POWER
 0 0 5
 0 1 6
 1 0 8
 1 1 10

I1

signal Y
B

P(X) = 0.25, P(Y) = 0.33

Lactive(B) = (1 - 0.25)•(1 - 0.33)•5 + (1 - 0.25) •0.33•6 +
 0.25•(1 - 0.33) •8 + 0.25•0.33*10 = 6.1

from
 S

P
IC

E
 sim

ulations

from benchmark’s HDL simulation

Fig. 13. Example active leakage power computation.

0

5

10

15

20

25

30

35

40

45

al
u4

ap
ex

4

cp
s

da
lu

ex
10

10

ex
5p

m
is

ex
3

pd
c

se
q

sp
la

in
du

st
ry

1

in
du

st
ry

2

in
du

st
ry

3

in
du

st
ry

4

in
du

st
ry

5

in
du

st
ry

6

L
ea

ka
g

e
p

o
w

er
 r

ed
u

ct
io

n
 (

%
)

avg = 25.3%

Fig. 14. Leakage power reduction results.

to the block’s active leakage is 0.1675 ·8 = 1.34, which is the
third term in the equation shown in Fig. 13.

Note that it is entirely possible that some inputs to a used
circuit block may have no signal on them. For example, some
inputs to a routing switch (see Fig. 2) may attach to conductors
that are not used in the FPGA implementation of a benchmark
circuit. In a commercial FPGA, unused routing conductors
are not allowed to “fl oat” to an indeterminate voltage state.
In the target Xilinx FPGA, unused routing conductors are
pulled up to logic 1. Pulling unused routing conductors into
the low leakage logic 1 state benefits overall leakage in the
FPGA, since an FPGA implementation of a benchmark circuit
requires only a fraction of the FPGA’s routing resources. To
demonstrate this, we performed a detailed analysis of a portion
of the routing in the industry4 benchmark. In industry4’s
routing, we found that there were 15235 used DOUBLE
resources, and 5918 used HEX resources. On average, 10.4
(of 16) inputs on each DOUBLE resource in industry4’s rout-
ing attached to unused routing conductors. The remaining 5.6
inputs (on average) attached to routing conductors with an
active logic signal on them; that is, 5.6 inputs attached to
routing conductors that were used in the routing of industry4.
Likewise, the HEX resources in industry4 had 7.6 (of 12)
inputs attached to unused routing conductors, on average, with
the remaining 4.4 inputs attached to used routing conductors.
In other words, considering all HEX and DOUBLE resources
used in industry4, nearly 2/3 of the inputs to these resources
attach to unused routing conductors and are therefore pulled
to logic 1. This amplifies the need for the “prefer logic 1”
approach taken in the polarity selection optimization.

Leakage power was not a primary design consideration in

the target commercial FPGA. We envision that our active
leakage reduction approach will be used in conjunction with
a future, leakage-optimized FPGA architecture. Consequently,
in our experiments, we consider only the active leakage power
and ignore leakage in the unused part of the FPGA2. We view
unused leakage as a separate optimization problem that can be
addressed by either powering down the unused circuit blocks
or by applying the standby leakage optimization techniques
mentioned in Section II. Further, we do not include the leakage
in the FPGA’s SRAM configuration cells. Since the contents of
such cells changes only during the initial FPGA configuration
phase3, their speed performance is not critical. Thus, the
SRAM configuration cells can be slowed down and their
leakage reduced or eliminated using previously-published low
leakage memory techniques (e.g., [38]) or by implementing
memory cells with high-VTH or long channel transistors.

2) Results: We begin by comparing the active leakage
power consumed in the unoptimized circuits with that con-
sumed in the optimized circuits. Fig. 14 shows the percent-
age reduction in active leakage power for each circuit. The
improvement ranges from 15% to 38%, with the average
being 25%. The power benefits observed are quite substantial,
considering that the proposed optimization has no impact on
circuit area or delay, and requires no hardware changes.

Table III gives the detailed power results for each circuit.
Columns 2-4 give power data for the unoptimized circuits.
Columns 2 and 3 present the power dissipated in the inter-
connect and non-interconnect (labeled “other”) circuit blocks,
respectively. Column 4 presents the total active leakage power
for each circuit. Columns 5-7 present analogous data for the
optimized circuits. In these columns, percentage improvement
values (versus the unoptimized circuits) are shown in paren-
theses. From Table III, we see that the proposed optimization
is more effective at reducing leakage in the interconnect ver-
sus the non-interconnect circuit blocks. The non-interconnect
blocks include LUTs, flip-flops and other circuitry. We ob-
served that flip-flop leakage power was only slightly dependent
on whether the flip-flop was storing a logic 0 or a logic 1.
Consequently, flip-flop leakage is not affected substantially by
the proposed method. Similarly, we found that the LUTs in
the target FPGA contain additional input buffers and other
circuitry that make their leakage less sensitive to their input
state. In the unoptimized circuits, 24% of active leakage power
is dissipated in the non-interconnect circuit blocks (on average)
and 76% in the interconnect blocks. In the optimized circuits,
32% of leakage is attributable to non-interconnect blocks.

The results in Table III show there to be a wide variation
in improvement across the circuits. This can be partially
explained by considering the distribution of static probabilities
amongst a circuit’s signals. The proposed technique offers
the greatest benefit in circuits having many signals with low
static probability, and the least benefit in circuits having many
signals with static probability ≥ 0.5 (these signals are already
in the low leakage state). Note that the static probability of a

2The leakage power results for a given benchmark circuit include all
leakage in the FPGA circuit blocks that are used in the benchmark’s FPGA
implementation, whether or not such used circuit blocks are idle.

3FPGA device configuration is typically done only once: at power-up.

10

TABLE III

DETAILED ACTIVE LEAKAGE POWER RESULTS.

Unoptimized Optimized

Interconnect Other Total Interconnect Other Total
Circuit (µW) (µW) (µW) (µW) (%) (µW) (%) (µW) (%)

alu4 690 193 883 494 (28.4) 187 (3.1) 681 (22.8)
apex4 1625 415 2040 1060 (34.8) 410 (1.2) 1470 (27.9)

cps 698 183 881 476 (31.8) 180 (1.6) 656 (25.6)
dalu 465 126 591 341 (26.7) 125 (0.8) 466 (21.1)

ex1010 1747 427 2174 1045 (40.2) 424 (0.7) 1469 (32.4)
ex5p 829 210 1039 432 (47.8) 210 (0.0) 642 (38.2)

misex3 295 99 394 222 (24.8) 97 (2.0) 319 (19.1)
pdc 854 235 1089 598 (30.0) 230 (2.1) 828 (24.0)
seq 1895 453 2348 1335 (29.6) 451 (0.4) 1786 (23.9)

spla 315 89 404 239 (24.1) 87 (2.2) 326 (19.3)
industry1 3415 1557 4972 2164 (36.7) 1530 (1.7) 3693 (25.7)
industry2 2392 1340 3732 1408 (41.1) 1306 (2.6) 2713 (27.3)
industry3 4987 1573 6560 4086 (18.1) 1558 (0.9) 5644 (14.0)
industry4 6856 1927 8782 3531 (48.5) 1856 (3.7) 5386 (38.7)
industry5 14696 6486 21183 10657 (27.5) 6412 (1.1) 17069 (19.4)
industry6 6429 3524 9953 3919 (39.0) 3464 (1.7) 7382 (25.8)

Average: 33.1% 1.6% 25.3%

signal in a circuit is a function of both the simulation vector set
as well as the circuit’s logic functionality. From Table III, we
see that the best results were achieved for the circuit industry4,
with leakage reduced by 38%. Fig. 15(a) shows a histogram of
static probabilities in this circuit, extracted from the ModelSIM
simulation. The horizontal axis represents static probability;
the vertical axis represents the fraction the circuit’s signals
having static probability in a specific range. Observe that for
this circuit, the majority of signals have low static probability,
with more than 60% of signals having probability less than 0.1.
We verified that the skewed distribution was not a result of the
simulation vector set failing to adequately exercise the circuit.
In fact, more than 90% of the signals in circuit industry4
experienced toggling during its simulation. Fig. 15(b) shows
the histogram for the circuit industry3, for which the worst
results were observed. Here we see many signals having static
probability close to 0.5. For such signals, the static probability
remains close to 0.5 after inversion, limiting the benefit of
the leakage reduction approach. Further characterization and
control of static probability in FPGA circuits is a direction for
future work.

V. ACTIVE LEAKAGE POWER OPTIMIZATION VIA

LEAKAGE-AWARE ROUTING

We now introduce our second approach to active leakage
optimization, which we refer to as leakage-aware FPGA
routing. The idea is based on two observations:

1) Different routing switch types in an FPGA have different
leakage power consumptions. For example, as illustrated
in Table I, some switch types have wider input multi-
plexers or larger buffers than other switch types, leading
to higher average leakage.

2) Between any two logic block pins in an FPGA, there
exist a variety of different routing paths, comprised of
different routing switch types. The routing step of the

CAD flow is tasked with selecting a path between the
driver and load pin on each of a design’s signals.

FPGA routers employ a cost function and aim to find low-
cost paths through the routing fabric from each signal’s source
pin to its load pin(s) [39], [40]. The cost of a complete routing
path is defined as the sum of the costs of the path’s constituent
routing resources (switches). A cost function associates a
particular cost value with each routing resource in the FPGA.
Cost values can be chosen based on any number of criteria,
for example, delay, scarcity, capacitance or congestion. The
idea behind leakage-aware routing is to select the cost for
each routing resource in proportion to the resource’s leakage
power consumption, and then to use such costs during routing.
The intent is to associate higher costs with more “ leaky”
switch types, making them less likely to be selected during
routing, ultimately producing routing solutions having lower
active leakage power consumptions.

The router in the Xilinx CAD flow classifies a design’s
driver/load connections as either critical or non-critical, based
on their timing slack relative to the design’s performance con-
straints. Critical and non-critical connections are then routed
in timing-driven or cost-driven mode, respectively [41]. In
timing-driven mode, detailed RC delay calculations are used
during routing to minimize driver/load connection delay. In
cost-driven mode, each routing resource is given a specific
cost (as mentioned above) and the router attempts to minimize
the total path cost for a given driver/load connection. The
specific resource cost assignment used within the Xilinx router
is proprietary; however, it reflects a combination of delay,
wirelength and scarcity. We refer to the original, unmodified
Xilinx router as the baseline router.

The proposed leakage-aware routing approach can be ap-
plied in tandem with the polarity selection optimization de-
scribed in Section IV. Consequently, we used the optimized
circuits (optimized through polarity selection) to derive a set

11

0

10

20

30

40

50

60

70

[0
.0

:0
.1

]

[0
.1

:0
.2

]

[0
.2

:0
.3

]

[0
.3

:0
.4

]

[0
.4

:0
.5

]

[0
.5

:0
.6

]

[0
.6

:0
.7

]

[0
.7

:0
.8

]

[0
.8

:0
.9

]

[0
.9

:1
.0

]

Static probability

%
 o

f
si

g
n

al
s

0

10

20

30

40

50

60

70

[0
.0

:0
.1

]

[0
.1

:0
.2

]

[0
.2

:0
.3

]

[0
.3

:0
.4

]

[0
.4

:0
.5

]

[0
.5

:0
.6

]

[0
.6

:0
.7

]

[0
.7

:0
.8

]

[0
.8

:0
.9

]

[0
.9

:1
.0

]

Static probability

%
 o

f
si

g
n

al
s

a) circuit industry4

b) circuit industry3

Fig. 15. Histograms of static probability.

of new, leakage-aware routing resource costs. We analyzed the
leakage of each used routing resource in the optimized circuits
and from this, computed the average leakage of each routing
resource type. The results are shown in Fig. 16, normalized to
the leakage consumed by a DOUBLE resource. Observe that
the average leakage of a HEX resource (which spans 6 CLB
tiles) is slightly lower than that of a DOUBLE resource (which
spans 2 CLB tiles), implying that on a leakage basis, using
a HEX should be “cheaper” than using a DOUBLE4. This
relative costing is counter to other traditional costing criteria,
such as wirelength, in which the cost of a HEX would be set
considerably higher than the cost of a DOUBLE.

We modified the Xilinx router and altered the costs that
are used in cost-driven mode, setting the cost of each routing
resource in proportion to the average leakage of its routing
resource type. Since our aim is to reduce leakage without
compromising performance, we continue to allow the router to
route timing-critical connections in timing-driven mode. Only
non-critical connections are routed using the new leakage-
derived costs. We refer to the modified router as the leakage-
aware router.

4A routing resource that drives a long wire segment may consume less
leakage than some other resource that drives a short wire segment. This is
possible since switch leakage does not depend on the metal segment length.
Rather, leakage depends on the switch multiplexer size and structure, and
transistor sizings in the multiplexer and buffer.

0

0.5

1

1.5

2

2.5

DOUBLE IMUX OMUX HEX LONG

Routing resource type

N
o

rm
al

iz
ed

 a
ve

ra
g

e
le

ak
ag

e
p

o
w

er

Fig. 16. Average leakage of routing resource types.

A. Experimental Study and Results

Using the leakage-aware router, we target the 90nm com-
mercial FPGA described in Section IV-A with the same set
of 16 benchmark circuit designs. We repeated the procedure
described in Section IV-A.1 that computes an aggressive but
feasible timing constraint for each design. We compared these
constraints with those produced using the baseline router. The
results are shown in Table IV. Columns 2 and 3 show the
critical path delay constraint for each circuit routed using
the baseline and leakage-aware routers, respectively. Note that
the same placer was used in both cases. The parentheses in
column 3 show the percentage degradation in performance
when the leakage-aware router is used versus the baseline
router. Ten of the 16 circuits experienced a slight perfor-
mance degradation, though no degradation was larger than
5%. The performance of the remaining 6 circuits actually
improved slightly (negative values in the table). Changes to
the router’s cost function lead to variability in the routing
solutions produced, resulting in performance improvements in
some cases. On average, the degradation across all circuits was
0.3%, which we consider to be noise. We conclude that any
reductions in leakage power offered by leakage-aware routing
do not come at the expense of speed performance. As with
the polarity selection optimization presented in Section IV,
leakage-aware routing is a “no cost” leakage reduction tech-
nique.

We applied the polarity selection optimization in conjunc-
tion with leakage-aware routing and computed the leakage in
the resultant circuits. Leakage was computed using the same
approach described in Section IV-A.1. Fig. 17 summarizes the
results observed and illustrates the reduction in leakage in the
optimized versus unoptimized circuits. Each bar in the figure
represents the percentage reduction in leakage for a given
circuit; the bars are partitioned to show the portion of the total
reduction due to the polarity selection and leakage-aware rout-
ing optimizations, respectively. The average reduction across
all circuits is 30.2%. Though the bulk of the power reduction
is due to the polarity selection optimization, the benefits of
leakage-aware routing are nonetheless substantial, especially
in the industrial benchmark circuits.

Detailed leakage power results for each circuit are shown in

12

TABLE IV

EFFECT OF LEAKAGE-AWARE ROUTING ON CRITICAL PATH DELAY.

Baseline routing Leakage-aware routing
performance (ns) performance (ns)

Circuit (% degradation)

alu4 11.05 11.12 (0.6)
apex4 14.31 14.79 (3.4)

cps 11.59 11.90 (2.7)
dalu 11.43 11.32 (-0.9)

ex1010 21.84 22.08 (1.1)
ex5p 12.92 12.32 (-4.6)

misex3 11.89 11.53 (-2.9)
pdc 13.93 13.63 (-2.0)
seq 13.30 13.55 (1.9)

spla 10.76 10.91 (1.4)
industry1 4.63 4.51 (-2.6)
industry2 10.83 10.78 (-0.5)
industry3 16.79 17.19 (2.3)
industry4 4.83 4.94 (2.1)
industry5 5.13 5.23 (2.0)
industry6 21.86 22.07 (1.0)

Average
Degradation: 0.3%

0

5

10

15

20

25

30

35

40

45

50

al
u4

ap
ex

4

cp
s

da
lu

ex
10

10

ex
5p

m
is

ex
3

pd
c

se
q

sp
la

in
du

st
ry

1

in
du

st
ry

2

in
du

st
ry

3

in
du

st
ry

4

in
du

st
ry

5

in
du

st
ry

6

L
ea

ka
g

e
p

o
w

er
 r

ed
u

ct
io

n
 (

%
)

Leakage-aware routing

Polarity selection

avg = 30.2%

Fig. 17. Leakage power reduction results for combined polarity selection
and leakage-aware routing.

Table V. Columns 2 and 3 give data for the interconnect and
non-interconnect (labeled “other”) circuit blocks, respectively.
Column 4 gives the total active leakage power. The numbers in
parentheses are percentage improvement values that show the
reduction in leakage power relative to the unoptimized circuits.
(they compare the data in Table V with the data in columns 2-
4 of Table III). Notice that, as expected, only leakage in the
interconnect circuit blocks is affected by leakage-aware rout-
ing; leakage in the “other” circuit blocks is unchanged versus
using the polarity selection optimization alone (see column 6
of Table III). For the MCNC circuits, the average reduction
in total active leakage was 29.4%. In the industrial circuits,
larger leakage reductions were observed, with the average
reduction being 31.6%, due primarily to larger reductions in
interconnect leakage for these circuits. The circuit industry4
experienced the largest leakage reduction of nearly 44%. In
summary, the results show that the additional leakage power
reductions offered by leakage-aware routing are considerable,
especially given that the approach involves software changes
only, and imposes no hardware, fabrication or performance
cost.

As mentioned above, the cost of a HEX resource in the

TABLE V

DETAILED ACTIVE LEAKAGE POWER RESULTS FOR LEAKAGE-AWARE

ROUTING COMBINED WITH POLARITY SELECTION.

Interconnect Other Total
Circuit (µW) (%) (µW) (%) (µW) (%)

alu4 460 (33.3) 187 (3.1) 647 (26.7)
apex4 953 (41.4) 410 (1.2) 1363 (33.2)

cps 434 (37.9) 180 (1.6) 614 (30.3)
dalu 341 (26.7) 125 (0.8) 466 (21.2)

ex1010 972 (44.4) 424 (0.7) 1396 (35.8)
ex5p 431 (48.0) 210 (0.0) 641 (38.3)

misex3 201 (31.6) 97 (2.0) 298 (24.2)
pdc 542 (36.5) 230 (2.1) 772 (29.1)
seq 1177 (37.9) 451 (0.4) 1628 (30.7)

spla 217 (31.3) 87 (2.2) 304 (24.9)
industry1 1840 (46.1) 1530 (1.7) 3369 (32.2)
industry2 1191 (50.2) 1306 (2.6) 2497 (33.1)
industry3 3515 (29.5) 1558 (0.9) 5073 (22.7)
industry4 3085 (55.0) 1856 (3.6) 4941 (43.7)
industry5 9404 (36.0) 6412 (1.1) 15816 (25.3)
industry6 3268 (49.2) 3464 (1.7) 6731 (32.4)

Average (MCNC): 36.9% 1.4% 29.4%
Average (Industrial): 44.3% 2.0% 31.6%

leakage-aware router is similar to that of a DOUBLE resource.
Whereas, in the baseline router, the cost of HEX is higher than
that of a DOUBLE. Certainly, leakage-aware routing leads to
higher HEX utilization, and since the capacitance of a HEX is
larger than that of a DOUBLE, it is conceivable that leakage-
aware routing may increase dynamic power consumption. A
future research direction is to investigate this possibility, and,
if deemed a problem, to enhance leakage-aware routing to
account for it, perhaps by taking signal switching activity into
account when deciding how a signal should be routed. That
being said, we anticipate that the proposed techniques will be
applied in a future low-leakage FPGA, perhaps implemented
in 65 or 45nm process technology. At such technology nodes,
we expect that leakage power, not dynamic power, will be the
overriding power consideration.

VI. CONCLUSIONS

Trends in technology and voltage scaling have made leakage
power a first class consideration in digital CMOS design. In
this paper, we presented two “no cost” approaches to active
leakage power reduction in FPGAs. We began by studying
the leakage power characteristics of common FPGA hardware
structures and found that their leakage depends strongly on the
state of their inputs. We proposed a novel approach for leakage
power reduction in which polarities are selected for logic
signals to place hardware structures into low leakage states as
much as possible. Our technique is based on a unique property
of FPGA logic elements (LUTs) that permits either the true or
complemented form of a signal to be generated, without any
area or delay penalty. Experimental results for a 90nm state-
of-the-art commercial FPGA show the proposed approach
reduces active leakage by 25%, on average. Subsequently, we
introduced the idea of leakage-aware routing, in which the
cost function used during the routing step of the FPGA CAD
flow is altered to consider the leakage power consumptions of
routing resources. Leakage-aware routing incurs no significant

13

performance penalty, and offers additional leakage reductions.
Combining the two techniques produces a total active leakage
reduction of up to 44%, with the average reduction being 30%.

VII. ACKNOWLEDGEMENTS

The authors thank Tim Tuan of Xilinx Research Labs for his
helpful suggestions and his assistance with the HSPICE sim-
ulations. The authors also thank Xilinx for the infrastructure
support. The comments provided by the anonymous reviewers
are gratefully acknowledged.

REFERENCES

[1] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold leakage mod-
eling and reduction techniques,” in IEEE/ACM International Conference
on Computer-Aided Design, 2002, pp. 141–148.

[2] K. Poon, A. Yan, and S. J. E. Wilton, “A flexible power model for
FPGAs,” in International Conference on Field Programmable Logic and
Applications, 2002, pp. 312–321.

[3] L. Shang, A. Kaviani, and K. Bathala, “Dynamic power consumption in
the Virtex-II FPGA family,” in ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, 2002, pp. 157–164.

[4] V. George and J. Rabaey, Low-Energy FPGAs: Architecture and Design.
Boston, MA: Kluwer Academic Publishers, 2001.

[5] Spartan-3 FPGA Data Sheet, Xilinx, Inc., San Jose, CA, 2003.
[6] J. Anderson, F. Najm, and T. Tuan, “Active leakage power optimization

for FPGAs,” in ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 2004, pp. 33–41.

[7] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leak-
age current mechanisms and leakage reduction techniques in deep-
submicrometer CMOS circuits,” in Proceedings of the IEEE, Feb. 2003,
pp. 305–327.

[8] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry, “Dynamic and
leakage power reduction in MTCMOS circuits using an automated
efficient gate clustering technique,” in ACM/IEEE Design Automation
Conference, 2002, pp. 480–485.

[9] T. Sakurai, “Minimizing power across multiple technology and design
levels,” in IEEE/ACM International Conference on Computer-Aided
Design, 2002, pp. 24–27.

[10] J. Halter and F. Najm, “A gate level leakage power reduction method
for ultra-low-power CMOS circuits,” in IEEE Custom Integrated Circuits
Conference, 1997, pp. 475–478.

[11] A. Abdollahi, F. Fallah, and M. Pedram, “Runtime mechanisms for
leakage current reduction in CMOS VLSI circuits,” in ACM/IEEE
International Symposium on Low Power Electronics and Design, 2002,
pp. 213–218.

[12] C. Kim and K. Roy, “Dynamic Vth scaling scheme for active leakage
power reduction,” in IEEE Design, Automation and Test in Europe
Conference, 2002, pp. 163–167.

[13] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power microproces-
sors under dynamic workloads,” in IEEE/ACM International Conference
on Computer-Aided Design, 2002, pp. 721–725.

[14] A. Keshavarzi, S. Ma, and et. al., “Effectiveness of reverse body bias
for leakage control in scaled dual Vt CMOS ICs,” in ACM/IEEE
International Symposium on Low Power Electronics and Design, 2001,
pp. 207–211.

[15] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw,
“Duet: An accurate leakage estimation and optimization tool for dual-
Vt circuits,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 10, no. 2, pp. 79–90, Apr. 2002.

[16] K. Usami, N. Kawabe, M. Koizumi, K. Seta, and T. Furusawa, “Au-
tomated selective multi-threshold design for ultra-low standby applica-
tions,” in ACM/IEEE International Conference on Low Power Electron-
ics and Design, 2002, pp. 202–206.

[17] S. Narendra, S. Borkar, V. De, D. Antoniadis, and A. Chandrakasan,
“Scaling of stack effect and its application for leakage reduction,” in
ACM/IEEE International Symposium on Low Power Electronics and
Design, 2001, pp. 195–200.

[18] M. Johnson, D. Somasekhar, L.-Y. Choiu, and K. Roy, “Leakage control
with efficient use of transistor stacks in single threshold CMOS,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 10,
no. 1, pp. 1–5, Feb. 2002.

[19] Virtex II PRO FPGA Data Sheet, Xilinx, Inc., San Jose, CA, 2003.
[20] G. Lemieux and D. Lewis, “Circuit design of routing switches,” in

ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2002, pp. 19–28.

[21] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, and
et. al., “The Stratix routing and logic architecture,” in ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 2003,
pp. 12–20.

[22] G. Lemieux, “Design of interconnection networks for programmable
logic devices,” in Ph.D. Thesis. Department of Electrical and Computer
Engineering, University of Toronto, 2003.

[23] A. Rahman and V. Polavarapuv, “Evaluation of low-leakage design
techniques for field-programmable gate arrays,” in ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, 2004, pp.
23–30.

[24] J. Anderson and F. Najm, “A novel low-power FPGA routing switch,”
in IEEE Custom Integrated Circuits Conference, 2004, pp. 719–722.

[25] R. Guindi and F. Najm, “Design techniques for gate-leakage reduction in
CMOS circuits,” in IEEE International Symposium on Quality Electronic
Design, 2003, pp. 61–65.

[26] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin, “Limits of
gate-oxide scaling in nano-transistors,” in IEEE Symposium on VLSI
Technology, 2000, pp. 90–91.

[27] A. Agarwal, C. Kim, S. Mukhopadhyay, and K. Roy, “Leakage in nano-
scale technologies: Mechanisms, impact and design considerations,” in
ACM/IEEE Design Automation Conference, 2004, pp. 6–11.

[28] B. Calhoun, F. Honore, and A. Chandrakasan, “Design methodology for
fine-grained leakage control in MTCMOS,” in ACM/IEEE International
Symposium on Low Power Electronics and Design, 2003, pp. 104–109.

[29] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. Irwin, and
T. Tuan, “Reducing leakage energy in fpgas using region-constrained
placement,” in ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 2004, pp. 51–58.

[30] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined
dual-Vdd/dual-Vt fabrics,” in ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 2004, pp. 42–50.

[31] F. Li, Y. Lin, and L. He, “FPGA power reduction using configurable
dual-Vdd,” in ACM/IEEE Design Automation Conference, 2004, pp.
735–740.

[32] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. Irwin, and
T. Tuan, “A dual-Vdd low power FPGA architecture,” in International
Conference on Field Programmable Logic and Applications, 2004, pp.
145–157.

[33] L. Ciccarelli, A. Lodi, and R. Canegallo, “Low leakage circuit design
for FPGAs,” in IEEE Custom Integrated Circuits Conference, 2004, pp.
715–718.

[34] M. Cirit, “Estimating dynamic power consumption of CMOS circuits,” in
IEEE/ACM International Conference on Computer-Aided Design, 1987,
pp. 534–537.

[35] M. Nemani and F. Najm, “High-level area and power estimation for
VLSI circuits,” IEEE Transactions on Computer Aided Design of Inte-
grated Circuits and Systems, vol. 18, no. 6, pp. 697–713, June 1999.

[36] T. Tuan and B. Lai, “Leakage power analysis of a 90nm FPGA,” in
IEEE Custom Integrated Circuits Conference, 2003, pp. 57–60.

[37] G. Yeap, Practical Low Power Digital VLSI Design. Boston, MA:
Kluwer Academic Publishers, 1998.

[38] C. Kim, J.-J. Kim, S. Mukhopadhyay, and K. Roy, “A forward body-
biased low-leakage SRAM cache: Device and architecture considera-
tions,” in ACM/IEEE International Symposium on Low Power Electron-
ics and Design, 2003, pp. 6–9.

[39] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based
performance-driven router for FPGAs,” in ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 1995, pp. 111–117.

[40] J. Swartz, V. Betz, and J. Rose, “A fast routability-driven router for FP-
GAs,” in ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 1998, pp. 140–149.

[41] J. Anderson, S. Nag, K. Chaudhary, S. Kalman, C. Madabhushi, and
P. Cheng, “Run-time-conscious automatic timing-driven FPGA layout
synthesis,” in International Conference on Field Programmable Logic
and Applications, 2004, pp. 168–178.

14

PLACE
PHOTO
HERE

Jason H. Anderson received the B.Sc. degree in
Computer Engineering from the University of Man-
itoba, Winnipeg, MB, Canada, in 1995, and the
M.A.Sc. degree in Electrical and Computer Engi-
neering from the University of Toronto, Toronto,
ON, Canada, in 1997. Since 2001, he has been
working toward the Ph.D. degree in Computer En-
gineering at the University of Toronto.

In 1997, Mr. Anderson joined Xilinx, Inc. in San
Jose, CA, as a member of implementation tools
group, where he developed placement and routing

tools for Xilinx field-programmable gate arrays (FPGAs). In 2000, he received
the Ross Freeman Award for Technical Innovation, the highest innovation
award given by Xilinx, for his contributions to the Xilinx placer technology.
Presently, he is a Senior Staff Engineer at the Xilinx Toronto Development
Centre. He is an inventor on more than a dozen issued and pending U.S.
patents. His research interests include all aspects of computer-aided design
(CAD) and architecture for FPGAs.

Mr. Anderson was awarded the Natural Sciences and Engineering Research
Council (NSERC) of Canada Postgraduate Scholarship in 2001, and the
Ontario Graduate Scholarship in both 2003 and 2004.

PLACE
PHOTO
HERE

Farid N. Najm received the B.E. degree in Elec-
trical Engineering from the American University of
Beirut (AUB) in 1983, and the M.S. and Ph.D. de-
grees in Electrical and Computer Engineering (ECE)
from the University of Illinois at Urbana-Champaign
(UIUC) in 1986 and 1989, respectively. He worked
with Texas Instruments in Dallas, TX, 1989-1992,
then joined the ECE Department at UIUC as an
Assistant Professor, becoming Associate Professor
in 1997. In 1999, he joined the ECE Department at
the University of Toronto, where he is now Professor

and Vice-Chair of ECE.
Dr. Najm is a Fellow of the IEEE, and is Associate Editor for the IEEE

Transactions on CAD. He received the IEEE Transactions on CAD Best Paper
Award in 1992, the NSF Research Initiation Award in 1993, the NSF CAREER
Award in 1996, and was Associate Editor for the IEEE Transactions on
VLSI 1997–2002. He served as General Chairman for the 1999 International
Symposium on Low-Power Electronics and Design (ISLPED-99), and as
Technical Program Co-Chairman for ISLPED-98. He has also served on the
technical committees of ICCAD, DAC, CICC, ISQED, and ISLPED. Dr. Najm
has co-authored the text “Failure Mechanisms in Semiconductor Devices,”
2nd Ed., John Wiley & Sons, 1997. His research is on computer-aided design
(CAD) for integrated circuits, with an emphasis on circuit level issues related
to power dissipation, timing, and reliability.

