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Abstract— We present a frequency domain current macro-
modeling technique for capturing the dependence of the block
current waveform on its input vectors. The macro-model is based
on estimating the Discrete Cosine Transform (DCT) of the current
waveform and then taking the inverse transform to estimate the
time domain current waveform. The DCT of a current waveform
is very regular and closely resembles the DCT of a triangular or
a trapezoidal wave. We use this fact and the relation between the
DCT, DFT, DTFT and the Fourier Transform to infer template
functions for the current macro-model. These template functions
are characterized using various parameters like amplitude, phase
decay factor, time period etc. These parameters are modeled as
functions of the input vector pair using regression. Regression is
done on a set of current waveforms generated for each circuit,
using HSPICE. These template functions are used in an automatic
characterization process to generate current macro-models for
various CMOS combinational circuits.

Index Terms— Current estimation, Power grid

The minimum feature size of very large scale integrated
(VLSI) circuits is continuously shrinking, and at the same
time device densities are increasing several-fold, leading to
increased power dissipation in these circuits. This large power
dissipation has a significant impact on the performance (speed,
battery life), reliability and economic cost of the integrated
circuits. Therefore, from both performance and cost point of
view power management has become a first order concern in
the design of VLSI circuits. The most common approach to
power management is to reduce the supply voltage. However,
while this approach has prevented power levels from increas-
ing as rapidly as they might have otherwise, it has resulted
in a significant increase in supply currents. Today’s high-end
microprocessors, for example, can consume supply current of
over 100 Amperes and it is getting worse. The International
Technology Roadmap for Semiconductors (ITRS-2001) indi-
cates that the total power supply current delivered to a high
performance integrated circuit will grow to about 200 Amperes
in 2006, and almost 500 Amperes in 2012. This is the result of
increasing power consumption and decreasing supply voltage.

These large supply currents coupled with the lower power
supply voltages and thinner wires employed in deep submicron
designs adversely effect the robustness of the power grid. The
power grid becomes more susceptible to large voltage drops at
the devices due to high instantaneous currents, a phenomenon
known as IR drop. The power supply lines also become more
prone to the formation of voids and shorts to nearby wires due
to electromigration caused by the large sustained currents. A
large IR drop slows down the devices significantly, reduces
the noise margin of circuits which might lead to functional
failures or soft errors. Thus large currents in the power grid
affect the reliability as well as performance of the circuit. As
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a result, power grid design and analysis is now an important
concern during chip design, not only for power dissipation
and reliability reasons, but for performance reasons as well.
Therefore, it is important to do early design planning of the
power grid, in order to reduce the chance of having to redesign
large parts of it [1]. To enable this, in an environment where
design blocks are being reused (hard IP blocks) one needs
block-level current models that can give the current waveform
drawn by a logic block in response to a given input vector
stream. With these current models, one can perform early
and fast block-level analysis (simulation) of the currents and
voltages in the power grid. These models can also be used to
speed up post-layout power grid verification of a chip, where
some hard IP blocks are being used.

In this regard we propose a bottom-up current waveform
macro-model for logic blocks. We work at a level of ab-
straction that may be called structural RTL: the circuit is
described as an interconnection of flip-flops and Boolean
(combinational) logic blocks. In this context, we develop a
cycle-based model for the current waveform of each com-
binational block that captures the dependence of the current
waveform per-cycle on the vector pair applied at the block
inputs. Models for larger sequential circuits may be built by
composition of our models for the combinational blocks and
simple cell level models for the memory elements. We assume
that one is reusing a previously designed logic block (a hard
IP block), so that all the internal structural details of the circuit
are known. Previous work in bottom-up macro-modeling has
targeted either the average power [2, 3, 4, 5, 6] or energy-
per-cycle [7, 8]. Current waveform macro-modeling is difficult
because of the large variations that are possible in current
waveform shapes, and due to the very large number of possible
vector pairs. To overcome this problem, we have developed
an approach for current waveform modeling that is based
on a transformation to the frequency domain. While time-
domain waveform shapes are highly varied, it turns out that
their frequency-domain transforms are not. Specifically, large
variations in waveform shapes in the time domain translate to
variations mostly in the values of parameters of the frequency-
domain transforms, but not in their overall shape. Given
a certain transform, we propose to construct a model that
captures the dependence of its parameters on the input vector
pairs. We have found that one can use low-order polynomial
models to capture this dependence, and we use regression
to compute the coefficients of these polynomials, based on
a number of randomly generated vector pairs for which the
circuit is simulated with a circuit simulator, in a process that
is similar to cell library characterization. Given the vector pair
at the circuit input, the model gives the parameter values and
thus the frequency transform, which we then invert to obtain
the time-domain current waveform.
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More specifically, we use Discrete Cosine Transform
(DCT), to construct the current macro-models. The reasons
for using DCT will become clear in subsequent sections. In
our approach a template equation is used to capture the DCT
of the per-cycle current waveform. The form of this template
equation is not exactly derived, but inferred by examining the
forms of the frequency transforms of two types of current
waveform shapes that one commonly sees in practice. In the
next section, we will describe the frequency transforms that
will be used as the basis for inferring a DCT model template
and, in section II, we will illustrate what typical shapes these
transforms take in practice. In section III, we will describe
the DCT model template that we have used, and describe the
model construction process and present an automatic macro-
model characterization flow. Finally, in section IV we include
experimental results that illustrate the validity of this approach.

I. DISCRETE COSINE TRANSFORM

The current waveform obtained from circuit simulation
(HSPICE) is a discrete-time signal, which can be obtained
from the periodic sampling of a continuous-time current
waveform, i.e,

i[n] = ic(nT ), 0 ≤ n ≤ N − 1 (1)

where N is the length of the current sequence, ic(·) is the
continuous-time current waveform and T is the sampling
period, whose reciprocal is the sampling frequency [9]. In
case of circuit simulation, T is equal to the (fixed) time step
specified in the transient analysis (we have used a time step of
0.01 ns). The 1-dimensional Discrete Cosine Transform [10].
(DCT) of a sequence {i [n] , 0 ≤ n ≤ N − 1} is defined as:

I[k] = α (k)
N−1∑
n=0

i [n] cos
[
π (2n + 1) k

2N

]
, 0 ≤ k ≤ N − 1

(2)
where α(0) =

√
1/N , α(k) =

√
2/N , for 1 ≤ k ≤ N − 1,

and the inverse transformation is given by:

i[n] =
N−1∑
k=0

α (k) I[k] cos
[
π (2n + 1) k

2N

]
, 0 ≤ n ≤ N − 1

(3)
In order to gain some insight into the form that the DCT
current macro-model may take, we look at the analytical forms
of the Fourier transform (FT) corresponding to simplified
representations of typical current waveforms. For example,
we consider a piecewise-linear triangular current waveform
and construct its FT as an analytical expression. The form
of this FT will suggest what forms we should use in our
DCT model template. We use FT to get an insight into DCT
because there is a relationship between the two transforms,
as follows: the DCT is closely related to the DFT (Discrete
Fourier Transform), which is a sampled form of the DTFT
(Discrete Time Fourier Transform), which is itself related to
the FT. We will now explain these relationships.

The N -sample DCT is related to a 2N -sample DFT [10],
as follows. The DCT of an input sequence of N -samples can
be obtained by extending the input to a 2N -sequence sample

with even symmetry, taking a 2N -point DFT, and saving N
terms of it. The even extension of i[n] is defined as:

i′[n] =
{

i[n] n = 0, 1, . . . , N − 1
i[2N − 1 − n] n = N, N + 1, . . . , 2N − 1 (4)

and the 2N -point DFT of i′[n], is given by:

I ′[k] =
1√
2N

2N−1∑
n=0

i′[n]e−j(2kπn/2N)

=
1√
2N

e(jkπ/2N)
N−1∑
n=0

i[n] cos
[
(2n + 1)kπ

2N

]
(5)

which shows that the 2N -point DFT and the DCT are closely
related except for the constants and the extra phase term.
The relationship between the DFT and the DTFT [9], is as
follows. The DFT of a sequence, {i′n}2N−1

n=0 , is a set of evenly
spaced samples of the DTFT over the frequency range 0
to 2π, multiplied by a constant factor to make the DFT an
orthonormal transform. Thus:

I ′[k] =
1√
2N

Id (ω) |ω= 2πk
2N

k = 0, 1, . . . , 2N − 1 (6)

where Id(ω) is the DTFT of the sequence {i′n}, defined by:

Id(ω) =
2N−1∑
n=0

i′[n]e−jωn (7)

where ω is the frequency in radians. Finally, if we consider
that the sequence {i′n} is obtained by sampling from an
even-extended continuous time current waveform, then the
relationship between Id(ω) and the Fourier transform (FT) of
the continuous waveform, denoted by Ic(Ω), is given by [9]:

Id(ω) =
1
T

∞∑
n=−∞

Ic

(
ω + 2πn

T

)
(8)

where Ω has been replaced by
(

ω+2πn
T

)
. When n = 0,

which corresponds to a DTFT between −π ≤ ω ≤ π, we
get Ω = ω

T [9]. Thus, in summary, the DCT of a discrete
time sequence is related to the Fourier transform of an even-
extended version of the continuous-time function from which
the given discrete-time samples were taken. In section II and
III, we discuss different possible approximations to the ac-
tual current waveform, present their corresponding continuous
transforms, analyze them and then develop the DCT current
macro-model templates based on them. But before we discuss
the model templates, we present some properties of the DCT
of the current waveform that make it an attractive choice for
macro-model construction.

A. Properties of Current Waveform DCT

Some interesting properties of the DCT of the current
waveform are as follows:

Energy-per-cycle property: The DC sample, I[0], of the
current waveform DCT corresponds to energy-per-cycle [4,7]
for the given input vector pair. In fact:

I[0] =
EPC

VddΔt
√

N
(9)
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where EPC is the energy-per-cycle for the given input vector
pair, Vdd is the supply voltage, Δt is the sampling time
period and N is the length of the current sample. Thus, while
estimating the DCT of the current waveform, we also estimate
the energy-per-cycle of the current waveform as a function of
input vector pair.

Energy compaction property: The DCT of the current
waveform offers energy compaction so that one needs to
estimate only a few dominant frequency components in order
to capture the overall features of the time domain current
waveform. It can also tolerate some error in estimation because
of this property as any error in the estimation of these
dominant samples, gets spread out in time domain when
we do the inverse transform. Even though the error affects
all the time domain samples, the impact of this error gets
distributed over several samples. For example, given a 10,000
point DCT, one can get a reasonable estimate of the time
domain current waveform by estimating the first few dominant
terms as shown in Fig 1. In this plot we show the actual current
waveform, and the approximate current waveform obtained by
just keeping the 200 dominant terms of a 10,000 point DCT
and taking its inverse. The remaining terms of the DCT are
reduced to zero. Thus we remove the high-frequency terms
from the DCT of the current waveform, which do not have a
significant impact on current waveform shape. By removing
these high-frequency terms we make the current waveform
smooth which may lead to some inaccuracies in studying
the impact of di/dt, but as we will show in section IV for
early design cycle estimation, the results are fairly accurate.
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Figure 1 Actual vs. approximate current waveform
with truncated DCT

II. ANALYSIS OF CURRENT WAVEFORMS

A CMOS combinational logic circuit draws current over
one cycle in response to a vector pair at its inputs, and these
waveform shapes typically fall into three categories:

Approximately triangular: In this case, the time domain
current waveform has an approximately triangular geometry,
and the DCT of the current waveform is similar to the DCT
of an ideal triangular waveform.

Approximately trapezoidal: In this case, the time domain
current waveform has an approximately trapezoidal geometry,

and the DCT of the current waveform is similar to the DCT
of a regular trapezoidal waveform.

Multiple peaks In this case the time domain current wave-
form has multiple peaks which are separated in time. We use
partitioning in the time-domain to convert such a waveform
to a sequence of single-peak waveforms, which may be either
triangular or trapezoidal, which are then modeled accordingly.

In the following, we will explore the FT of the triangular
and the trapezoidal current waveforms, which will be used to
infer reasonable forms of our DCT model templates.

A. Triangular Current Waveform

A typical triangular current waveform and its piece-wise
linear triangular approximation are shown in Fig. 2. Before
taking the DCT, we increase the waveform time duration
and assume zero values for the waveform over the time
extension. This is referred to as “zero padding,” and its main
advantage is that it increases the resolution of the DCT
(the corresponding DTFT is sampled more closely), which
gives a smoother DCT curve. With this, we use a simple
generic template for the current macro-model as discussed in
section III. Zero padding in the time domain is equivalent to
using a higher sampling frequency in the frequency domain
to sample DTFT and get the corresponding DFT/DCT [9].
Thus, even though the original current waveform ends at 2000
samples (which corresponds to 20 ns for our sampling period
of 0.01 ns), we have shown 10,000 sample points in Fig 2.
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Figure 2. Typical triangular Figure 3. Diagram explaining
current waveform and its approx. f tri(t)
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Figure 4 Typical DCT of a triangular current
waveform

Since the DCT of a discrete time signal is related to the
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Fourier transform of the even extension of the corresponding
continuous time signal, we construct an even extension of
the piece-wise linear triangular waveform and derive the
corresponding continuous Fourier transform. The triangular
waveform shown in Fig. 2 can be analytically expressed as:

ftri(t) =

⎧⎪⎨
⎪⎩

0, for 0 ≤ t ≤ d;
A(t − d)/a, for d ≤ t ≤ a + d;
A(a + b + d − t)/b, for a + d ≤ t ≤ a + b + d;
0, for a + b + d ≤ t ≤ Q.

(9)
where a, b, c, d are the dimensions shown in Fig. 3, and Q =
a + b + c + d. The Fourier transform of the even extension of
ftri(t), denoted by Ftri(Ω) is given by:

Ftri(Ω) = Ae−jΩ(Q)

[
2 cosΩ(b + c) − 2 cosΩ(a + b + c)

aΩ2

]

+ Ae−jΩ(Q)

[
2 cosΩ(b + c) − 2 cosΩ(c)

bΩ2

]
(10)

where Ω is the frequency in the analog (continuous) domain
and is related to ω, the digital frequency by ω = ΩT . In
our case, we have T = .01 ns and N = 10, 000 before the
even extension. After extension, we have 2N samples therefore
ω = 2πk/2N = πk/10, 000 and Ω = πk/100 rad/ns. It is
important to note that for Ω = πk/100, Ftri(Ω) is real for all
integral values of k because a + b + c + d = NT .

In Fig. 4, we show the DCT of a typical triangular wave-
form, the DCT of its piecewise-linear approximation, and the
DCT samples obtained from the continuous transform F tri(Ω).
The DCT plot of the current waveform has a very regular
shape, making it a good candidate for model construction,
which is one reason why we chose the DCT over other
transforms. Compared to the DFT, the DCT has only real
terms, which also makes the model simpler. Fig. 4 shows only
the first 100 points of the 10,000 point DCT, for clarity, and is
typical of all triangular current waveform shapes that we have
seen. The DCT plot of the current waveform appears to be a
decaying sinusoid. Therefore, instead of constructing a model
for each point on the DCT (every frequency component), we
use a generic function (a template) to model the entire DCT.
In order to infer the form of this template, we compare the
plot of continuous transform with the DCT plot. Except for a
scale factor, it is obvious that Ftri(Ω) has the right shape and
thus may help us define the form of the current macro-model.

The most important aspect to observe is that the amplitude
of Ftri(Ω) decays as the square of the frequency, a fact which
we will make use of in developing our DCT model template.
Since the DCT looks like a decaying sinusoid, we can use a
simple sinusoid which decays as a square of the frequency. But
unlike a decaying sinusoid which has a constant time period,
the plots in Fig. 4 show that in case of a current waveform
and its approximations (both discrete and continuous transform
plots) the time period is varying (we can use the difference
between consecutive maxima/minima to measure the time
period). We use this fact in our model as well. It actually
helps simplify our current macro-model, in the sense that we
do not use multiple cosine terms as in Ftri(Ω), instead we
use a simplified expression with a variable time period, as
discussed in section III.A.

B. Trapezoidal Current Waveform

In some cases, the current waveform has trapezoidal shape,
as shown in Fig. 5, which also shows a piecewise linear trape-
zoidal approximation to the current waveform. The equation
of the piece-wise linear trapezoidal wave is given by:

ftra(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for 0 ≤ t ≤ a
A(t − a)/b, for a ≤ t ≤ a + b
A, for a + b ≤ t ≤ a + b + c (11)
A(U − t)/d, for a + b + c ≤ t ≤ U
0 for U ≤ t ≤ W

where the dimensions are illustrated in Fig. 6, U = a+b+c+d
and W = a+ b+ c+d+ e. The Fourier transform of the even
extension of ftra(t), denoted by Ftra(Ω) is given by:

Ftra(Ω) = Ae−jΩ(W )

[
2 cosΩ(V ) − 2 cosΩ(W − a)

bΩ2

]

+ Ae−jΩ(W )

[
2 cosΩ(e + d) − 2 cosΩ(e)

dΩ2

]
(12)

where V = c + d + e. As before, it turns out that Ftra

is real for the values of Ω under consideration. In Fig 7,
we show the DCT of the current waveform, the DCT of
the trapezoidal waveform approximation, and the plot of the
continuous transform. Again, we can observe that, except for
a scale factor, the continuous transform plot compares well
with the actual current waveform DCT. Thus, we can use the
continuous transform to infer the shape of the DCT model
template. The most obvious inference we can draw from the
continuous transform, is, as before, the quadratic decay in the
amplitude of the DCT, in terms of frequency.

If we compare the plots in Fig. 4 and Fig. 7, we can see
that the DCT plot of a trapezoid shows some deviation from
the perfectly decaying sinusoid which we got for triangular
waves. The same observation holds true for the respective
continuous transform as well. This makes the estimation of a
trapezoidal current waveform difficult, because we cannot use
a decaying sinusoid with a varying time period to simplify
our model, as we do in the case of triangular waveforms (see
section III). Therefore, we have proposed a slightly different
analytical expression for the trapezoidal current waveform
in our macro-model. The macro-model equation is based on
Ftra(Ω) to some extent, and also based on the observation of
the plots. Figure 7, shows that we cannot use a single cosine
function to capture the current waveform DCT, therefore,
for trapezoidal waveforms, we use two cosine terms (the
continuous transform has 4 cosine terms), and again use a
varying time period. In case of trapezoidal waveforms too, we
use the difference between consecutive maxima (or minima)
as the time period. The DCT plots show that this difference
varies for successive maxima (or minima). We use this in-
formation in our macro-model, as discussed in section III.B.
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Figure 5. Typical trapezoidal Figure 6. Diagram explaining
current waveform and its approx. f tra(t)
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Figure 7 Typical DCT of a trapezoidal current
waveform

C. Waveform Partitioning

When we have current waveforms with multiple peaks
which are far apart, the DCT of the current waveform gets
distorted. Multiple peak current waveforms can actually be
considered as a summation of time shifted single peak cur-
rent waveforms. The DCT of such a summation of current
waveforms is equal to sum of the DCT of each of those time
shifted current waveforms. This is true because DCT is a
linear transformation. In Fig. 8, we show a typical multiple
peak current waveform with two distinct peaks which are
far apart. The DCT of the multiple peak current waveform
obtained after zero padding is shown in Fig 9. Since the DCT
of current waveform shown in Fig. 9 is distorted it is difficult
to model it as the DCT of a triangular or trapezoidal waveform.
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Figure 8. Typical multiple Figure 9. DCT of a mutiple peak
peak current waveform. current waveform
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Figure 10 DCT of the current waveform after partitioning
waveform

Therefore, for multiple peak current waveforms we use a
simple heuristic technique to partition the time domain current
waveform. Partitioning converts the multiple peak time domain
current waveform into a sequence of single-peak waveforms.
The flow chart for the partitioning technique is shown in
Fig. 11 and the steps are described below.

Step 1: Given a sample current waveform of length N
(here N corresponds to the current sample length before zero
padding), detect the global peak current (current sample with
the maximum magnitude) ipg and the corresponding index i tg

at which this peak occurs. This can be done by traversing
through the current waveform. Set ip = ipg , it = itg and
index = 0.

Step 2: From the peak index, it traverse to a point where
the current value is less than 10% ( a user defined threshold)
of the global peak, i.e. i[n] ≤ 0.01ipg and note the index n.
Set pindex = n. This is a partition.

Step 3: Consider the remaining current samples from
i[pindex +1] to i[N −1] (where N is the length of the current
sample) and detect the new peak ip and the corresponding
index it among these samples.

Step 4: Compare the new peak ip with a user defined
threshold to see if it is significant. In our case we compare
it with ipg found in step 1. If the current ip ≥ .15ipg, go to
step 5, else stop, partitioning is not required.

Step 5: Set index = index + 1. Go to Step 2.

With the above partitioning technique, one can partition
multiple peak current waveforms, and even detect if there
are any multiple peaks in a set of current waveforms. The
current waveform shown in Fig. 8 was partitioned using the
above algorithm and the DCT of the resulting partitions is
shown in Fig. 10. The DCT of the partitions do not show
any significant distortion and appear to be decaying sinusoids.
In this case, therefore one can can use a triangular template
function (discussed in section III) for each of the partitions.
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Set ip =  ipg ;  it = itg  ;  n = i t + 1

i[n] <= 0.01 ipg;

Detect global peak current ipg and the corresponding sample index itg

Set p index  =  n;

Set ip =  max(i[pindex + 1], i[N−1]);

Set it =  maxindex(i[pindex + 1], i[N−1]);

if ip <  0.15 i pg ;

     Set n = i t + 1 ;

   n = n + 1;
No

 Yes

STOP
Yes

No

Set index  = index + 1 ;

Set index  =  0;

Figure 11. Partitioning algorithm

III. MACRO-MODEL CONSTRUCTION

In order to formulate a macro-model, one needs to develop
a mapping between the input Boolean vector pair and certain
variables that can be the input variables to the macro-model.
These variables can then be used as predictor variables in
regression to estimate the parameters of the DCT template
function. Basically, the current macro-model is a template
function whose parameters are modeled as functions of these
predictor variables. The coefficients of these functions are
obtained through regression analysis. Now, for a given input
vector, a single node at the primary input can undergo one of
the following four transitions {0 → 1, 1 → 0, 1 → 1, 0 → 0}.
We treat the set of four possible transitions at each primary
input as a categorical variable [11]. In general, a categorical
variable with k levels (in our case 4) is transformed into k−1
variables (in our case 3) each with 2 levels. This process of
creating variables from categorical variables is called dummy
coding [11]. In our case, we use three variables x1, x2 and
x3 to code the categorical variables. The dummy coding for
the 4 levels of our categorical variable is shown in the second,
third and fourth columns of Table I (and also shown in [7]).
These three columns are labeled as x1, x2, x3 in Table I. The
mapping shown in Table I, does not impose any implicit order
among the variables and it prevents any bias in the effects
these variables may have on the current waveform. Basically,
each input transition is mapped to a vector of [x1 x2 x3], but

this has a clear disadvantage in that it increases the number
of variables as well as the number of regression coefficients.
But we have found that, depending on the Hamming distance
of the vector pair, we can introduce a less expensive solution,
as follows. For large Hamming distances (more than 60% of
the primary inputs are switching), very few inputs undergo
0 → 0 and 1 → 1 transition, therefore we can assume that
the categorical variable has just two levels, so that a single
variable is required to represent a primary input. The mapping
for large Hamming distance is shown in the fifth column of
Table I, and it is labeled as y. Thus, we can map each transition
at the primary input to the corresponding dummy variable and
thus generate a set of input variables for a given input vector
pair.

The above case analysis based on the fraction of primary
inputs switching, was found to be useful for other reasons also.
It was observed that in most cases if the input vector pair has
a large Hamming distance (more than 60% of primary inputs
switching), a triangular template was suitable but for small
Hamming distances (less than or equal to 60% of primary
inputs switching) one had to choose from either the triangular
or trapezoidal template depending on the circuit. Therefore, it
was really difficult to construct a single analytical expression
to capture the DCT for all input vector pairs (in which
the Hamming distance is implicit, not an explicit variable)
when one can see both the triangular and trapezoidal current
waveforms for the same logic block. Moreover the variance in
the model parameters across Hamming distance was so large
(especially between small and large Hamming distances) that it
was difficult to capture them with simple polynomial functions
with reasonable accuracy in a single analytical expression.
Since complex higher order polynomials require more co-
efficients, and are usually not very accurate when it comes
to modeling through regression, we preferred classifying the
input vector pair based on the fraction of primary inputs
switching. Classifying the input vectors pairs based on the
fraction of primary inputs switching is very similar to the
earlier classification based on individual Hamming distance
proposed in [12, 16]. But the biggest advantage of classifica-
tion based on fraction of inputs switching is that, the number
of analytical expressions required to build a complete model
does not grow linearly with the number of primary inputs, p,
for a given logic block. When partitioning is done based on
Hamming distance of the input vector pairs, the actual current
macro-model is a set of analytical expressions, corresponding
to each Hamming distance. But if partitioning is done based on
fraction of primary inputs switching, the number of analytical
expressions required to specify the current model has an
upper bound (in our case, we can have at most 5 analytical
expressions). This in turn reduces the number of coefficients
needed to build the model and it also reduces the number of
simulations required to construct the model using regression.
Therefore in our macro-model construction flow we partition
the input vector pairs into following groups, and construct one
single analytical expression for each group:

1. Up to 10% of primary input(s), p, switching. If 0.1p is
not a whole number, consider the corresponding �0.1p� and
the same holds for rest of the partitions.
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TABLE I

DUMMY CODING FOR TRANSITIONS AT A SINGLE NODE.

y x1 x2 x3 y
0 → 1 0 0 1 1
1 → 0 0 1 0 2
1 → 1 1 0 0 3
0 → 0 0 0 0 4

2. For 10% to 20% of primary inputs switching.
3. For 20% to 30% of primary inputs switching.
4. For 30% to 60% of primary inputs switching.
5. For 60% to 100% of primary inputs switching, we

construct a single model. This group falls in the category of
large Hamming distance. We will show later it is much easier
to construct accurate models for large Hamming distances.

In this classification, if we come across cases where we
have already built the model for a given Hamming distance
(in the previous partition), we do not build a new model for
that Hamming distance in the next partition. This is because,
in some cases, such as say a design with 4 inputs, the 10%
switching criterion (=0.4) with ceiling function would corre-
spond to 1, and the 20% switching (=0.8) with ceiling function
would again correspond to 1. Even though we partition the
input vector pairs based on the fraction of primary inputs
switching, the actual analytical expression for each partition
is a function of the input vector pair itself. In the next two
sections, we present the template functions used to model
the DCT of the current waveforms and present techniques to
estimate the parameters of these template functions.

A. Triangular Template

The triangular template is a simplified as well as a modified
version of Ftri(Ω). The simplification is achieved because we
explicitly incorporate the effect of the changing time period.
We estimate the first few time periods (in our case, five)
directly and use them in a single cosine term, whose other
parameters do not change. We can do this only because of
the energy compaction achieved with transforms like DCT.
The template equation for the DCT of the triangular current
waveform is given by:

Itri(k) = D(k)A cos
(

2π(k − 1)
Ti

)
, k = 1, 2, . . . (13)

where k is the sample index, D(k) is a decay factor, A is
a scale factor, which we refer to as amplitude, and T i, i ∈
{1, 2, 3, 4, 5} is the variable time period. The DCT value cor-
responding to Itri(k)|k=0 is called the DC Value. These terms
are the parameters of the template, which we relate to the
variables associated with the input vector pair. The triangular
template is very similar to what was presented in [12], except
for polynomial functions used to model the parameters of the
template function, which have been modified to account for
possible interaction between the input variables, through cross
product terms. In order to construct the current macro-model
we model the parameters of template function as a function
of input vector pair as described in the next few sections.
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1) Decay Factor : In order to model the decay factor as
a function of the input vector pair, we use the following
functional form, which is motivated by the inverse square
dependence on frequency seen in Ftri :

D(k) =
f(x)k

g(x)k2 + h(x)
(14)

where x is either y (a vector of length one, refer to Table I) or
the vector [x1 x2 x3] (refer to Table I), depending on whether
the model is for a small or large Hamming distance input
vector pair, and f(x), g(x), h(x) are polynomial functions
of the variables associated with the input vector pair. All the
three polynomial functions f(x), g(x), h(x) have the same
form and it is given by:

Πp
i=1(αiyi + βi), for large Hamm. dist. (15)

Πp
i=1(αi1x1,i + αi2x2,i + αi3x3,i + βi),

for small Hamm. dist. (16)

where p is the number of primary inputs. With the above
polynomial functions, one can account for possible interac-
tion between the input variables, through the cross-product
terms, without significantly increasing the number of co-
efficients compared to a linear model. The coefficients of
these polynomials are obtained by substituting these polyno-
mial functions into (14) and using non-linear regression. The
sample current waveforms for regression are obtained from
HSPICE simulations using randomly generated vector pairs
for a given Hamming distance, in a process of characterization
(see section III.C). For regression, we consider the points on
the DCT corresponding to the maxima and minima of the
decaying sinusoid, normalize them by the amplitude A (so
that D(1) = 1; the normalization is required because the
model for I(k) given above includes an explicit term for the
amplitude). Furthermore, in order to reduce the computational
cost of building the model, we only consider the maxima and
minima in the first five cycles during regression. Some typical
decay factor curves and their corresponding estimates obtained
using our model are shown in Fig 12. These were obtained
from the alu2 MCNC benchmark circuit [13].

2) Amplitude and DC component: One of the primary
reasons for partitioning the current macro-model based on the
fraction of primary inputs switching, is the large variance in
the values of A, the amplitude and I(0), the DC value, across
the input vector space. With partitioning, we can model both A
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and I(0) along the lines of the polynomial functions discussed
in section III.A.1, given by:

Πp
i=1(αiyi + βi), for large Hamm. dist. (17)

Πp
i=1(αi1x1,i + αi2x2,i + αi3x3,i + βi),
for small Hamm. dist. (18)

where p is the number of primary inputs and x1,i, x2,i, x3,i and
yi are the variables associated with the input vector pair and
obtained using the mapping shown in Table I. The coefficients
of the above polynomial functions are obtained using linear
regression on the same set of waveforms used for D(k). The
first sample of the DCT of the current waveform corresponds
to the DC Value I[0] and the next sample corresponds to the
Amplitude i.e, A = I[1]. These data points are obtained from
the sample current waveforms and used in linear-regression
to obtain the coefficients of the polynomial functions. It must
be emphasized that A and I[0] are modeled with different
polynomial functions, as far as the coefficients go but they
have the same functional form as represented in (17) and
(18). Estimating the DC value separately simplifies the DCT
template function for the current waveform I tri. Otherwise,
for k = 0 the template function would have required a phase
angle, φ, as a function of the input vector pair. This would
have required a non-linear regression to estimate φ which is
computationally more expensive than simple linear regression.
A typical plot of actual DCT amplitude vs estimated DCT am-
plitude is shown in Fig 13 and a similar plot for the DC value is
shown in Fig 14. As discussed in section I.A, I[0] corresponds
to the energy-per-cycle for a given input vector pair and it
is a by-product of our current macro-modeling methodology.
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3) Time Period : The variable time period for the DCT
template is measured as the difference between successive
maxima/minima of DCT of the actual current waveform. In
our macro-modeling technique we estimate the first five time
periods of the DCT template and this is denoted by T i, i ∈
{1, 2, 3, 4, 5}. The choice of just five time periods is empirical
and gives good accuracy because of the energy compaction
property of the DCT discussed in section I.A. But, if one
attempts to build a single comprehensive model for each of
these time periods across all the possible input vector pairs
the time period turns out to be the most difficult parameter to
model. To make things worse, this parameter has the largest
impact on the current model, because any error in time period
causes significant change in the frequency spectrum. However,
if we partition the model based on the fraction of primary
inputs switching as proposed earlier, we find that within a
partition there is not a significant variation in the time period.

Therefore for every partition, we compute during charac-
terization a nominal value for each of the first five time
periods. This is selected as the peak value of the distribution
of observed time periods for that partition. In statistical terms,
we choose the mode of the time period distribution as the
time period for a given partition of the input vector pairs.
The choice of the first five time periods is not a limitation of
the model and can be increased, if there is a need. A typical
histogram of the first time period for alu2 is shown in Fig. 15,
and it can be seen that there is no significant variation in the
time period. The triangular template provides a good model in
cases of both large and small Hamming distances, but in some
cases for small Hamming distance, the trapezoidal template is
better. However, estimating the coefficients of the parameters
of the triangular template is simpler and which would become
clear after we discuss the trapezoidal template.

B. Trapezoidal Template

A trapezoidal template equation model seems to best fit
the current waveforms for low Hamming distances, when the
fraction of primary inputs switching is ≤ 60%. The trapezoidal
template presented here is similar to that presented in [14] and
is given by:

Itra(k) = AD1(k)
[
cos

(
2π(k − 1)

Ti

)]



9

+ AD2(k) [cos (2π(k − 1)ω)] , k = 1, 2, . . . (19)

where k is again the sample index, Ti, i ∈ {1, 2, 3, 4, 5}, is the
variable time period, A is the amplitude, ω is the frequency of
the second cosine term and D1(k), D2(k) are the decay factors
corresponding to the cosine terms. The DCT of a trapezoidal
current waveform deviates from the simple decaying sinusoid
which we observe for the triangular current waveform, as
shown in Fig. 7. Therefore, we introduce a second cosine
term in the trapezoidal template, as a single cosine term
cannot capture this deviation. Since a trapezoidal waveform
can be considered as a linear combination of two triangular
waveforms, the proposed template function is equivalent to a
linear combination of the DCT of two triangular waveforms.
This is possible because DCT is a linear transform. Therefore
the DCT of a linear combination of triangular waveforms
in time domain is equal to sum of the individual DCT.
The parameters of the trapezoidal template are motivated
by the continuous Fourier transform of the piecewise-linear
trapezoidal waveform, Ftra, discussed in section II.B, some
empirical observations and the fact that a trapezoidal current
waveform is a linear combination of two triangular waveforms.
These observations help in simplifying the template function to
just two cosine terms. The simplification is achieved by using
the same concept of variable time period T i as discussed in
section III.A.3.

The six parameter models needed to completely specify the
trapezoidal template as a function of the input vector pair are
given below:

Amplitude: We use I[1] as the amplitude in our template
function, because the DCT appears to be a decaying sinusoid.
This is estimated separately using linear regression and is
motivated by the term A which appears in Ftra (refer to (12)).
It is given by:

A = w(x) (20)

where w(x) is a polynomial function of the input vector pair.
Decay Factor (D1(k), D2(k)): These two terms are moti-

vated by the inverse square dependence on frequency seen in
Ftra (refer to (12)) and are given by:

D1(k) =
p(x)k

r(x)k2 + s(x)
, D2(k) =

q(x)k
r(x)k2 + s(x)

(21)

where p(x), q(x), r(x) and s(x) are polynomial functions of
the variables associated with the input vector pair.

Time Period, Frequency (Ti, ω): Since the DCT template
uses two cosine terms we need two frequency terms. The phi-
losophy behind using two cosine terms is that one cosine term
would produce a basic decaying sinusoid (as in the triangular
case) and the other would account for the deviations from
the decaying sinusoid that are seen at low Hamming distance.
Therefore, the variable time period T i is used with one of the
two cosine terms, the one which is aimed at generating the
decaying sinusoid. The frequency ω of the other cosine term is
modeled as a polynomial function of the variables associated
with the input vector pair. The variable time period T i also
helps in simplifying the model to some extent by reducing
the model to just two cosine terms instead of at least four as
suggested by the form of Ftra. The variable time period terms

Ti are approximated as the difference between consecutive
maxima (or minima) of the DCT of the current waveform. As
in the triangular case the time period does not vary much for
a given partition, as shown in Fig. 16. Therefore, we use the
same method as described in section III.A.3. to get an estimate
of the first five time periods. Basically, from the distribution
of time periods for a given Hamming distance, we choose the
time period value which occurs most often (in statistical terms,
we choose the mode of the time period distribution as the
time period for a given Hamming distance). The first five time
periods are enough to get an estimate of the dominant terms
of the DCT, because of energy compaction. The frequency of
the other cosine term is given by:

ω = t(x) (22)

where t(x) is a polynomial function of the variables associated
with the input vector pair.

DC Value (I(0)) : The first sample of the DCT of the cur-
rent waveform corresponds to the DC value. This is estimated
separately for the same reasons discussed in section III.A.2
and is given by:

I[0] = u(x) (23)

where u(x) is a polynomial function of the input vector pair.
The coefficients of u(x) are estimated using linear regression
on a set of data points obtained from sample current wave-
forms.

Since the trapezoidal model is usually used with low Ham-
ming distances, x corresponds to the vector [x1 x2 x3] for
all the polynomial functions used in the trapezoidal template.
The polynomial functions p(x), q(x), r(x), s(x), t(x), u(x)
and w(x) used to model the various parameters of the template
have the same form, given by:

Πp
i=1(αi1x1 + βi2x2 + γi3x3 + δi) (24)

where p is the number of primary inputs. These parameters
are then substituted in the DCT template (19), (except for A
and I[0]) and the coefficients of the polynomials are estimated
simultaneously using non-linear regression to construct the
current macro-model. As mentioned earlier, A and I[0] are
estimated separately using linear regression. The polynomial
function obtained for A after linear-regression is substituted in
the template function before the estimation of other parameters
using non-linear regression. This technique simplifies the non-
linear regression, and reduces the number of parameters to
be estimated using non-linear regression. Moreover, since the
value of A can be obtained easily, it is simpler to estimate it
directly using linear-regression.

Thus, we can estimate the parameters of the triangular and
trapezoidal template, given a set of sample current waveforms.
But, in order to construct the current macro-model automat-
ically (without any user intervention), we need a technique
to:

1. Determine the sample size on the fly during characteriza-
tion. Since we use regression to construct the model, we need
an appropriate sample size to build the model. We cannot use
all the possible input vector pairs to build the model because of
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the exponential nature of possible input vector pairs. A logic
block with p primary inputs has 22p possible input vector pairs.

2. Determine the appropriate template function to be used
for a given partition of input vectors, while constructing the
model. We have to chose either a triangular, or a trapezoidal
template, or possibly decide about partitioning the time domain
current waveform.

In order to accomplish the above two tasks, we need some
quantitative metrics and an automatic current model charac-
terization flow based on such metrics. In the next, section we
present such a macro-model characterization flow.
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Figure 17. Characterization flow

C. Characterization Flow

In this section, we propose a characterization flow that can
be used to generate current macro-models for a combinational
logic block, given its low-level description and a circuit
simulator. In our case, the low-level description corresponds
to a SPICE description of the circuit and HSPICE as the
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circuit simulator. In order to automate the model development
flow, we need to choose on the fly the correct template and
also the number of simulations needed to build the model.
This leads us to the need for a set of quantitative metrics
which can be used to decide the appropriate template and
the number of simulations. In this regard, we propose to use
a metric borrowed from statistics, called the coefficient of
determination [14], denoted by R2 and given by:

R2 = 1 −
∑N−1

l=0 ‖i(l)− î(l)‖2∑N−1
l=0 ‖i(l) − ī‖2 (25)

where i(l) is the actual current waveform sample, ī is the
mean of the samples of the actual current waveform, î(l)
is the estimated current waveform sample, and here N is
the length of the current waveform sequence without zero
padding. The coefficient of determination R2 measures the
proportion of variability of the dependent variable explained
by regression on predictor variables. The closer R 2 is to 1,
the more accurate the model is. Since it is very difficult to
achieve a value closer to 1, we use a threshold of R2 > 0.75
to test the accuracy of the model. Actually, we found that
if R2 > 0.75, the current estimates were fairly accurate.
We use this metric to choose between the two templates or
decide upon partitioning. The steps of the automatic current
characterization flow based on this metric are given below. The
objective of this flow is to minimize the chances of building
multiple models using different templates and is based on the
observations made while analyzing several current waveforms.
In this flow, we will assume that we have a sample size
determination algorithm, which will be discussed later in the
next section.

Step 1: Simulate the circuit using the circuit simulator for a
set of randomly generated input vector pairs for a given input
vector pair partition. Get the time domain current waveforms
and the corresponding DCT. The set of input vector pairs used
is called the initial characterization set and denoted by S.
The size of the initial characterization set is a function of the
number of primary inputs, p of the logic block. This comes
from the fact that the number of data points for regression
should be at least equal to the number of coefficients in the
model. Since in our modeling flow we estimate the A and I[0]
separately, the initial number of simulations, is chosen based
on the number of coefficients in the polynomial function for
A or I[0].

Step 2: By default, use the triangular template to build
the model, since it occurs most frequently. The model pa-
rameters can be estimated using the methodology described
in section III.A. Since the model estimates the DCT of the
current waveforms in the sample set S, get the corresponding
time-domain current waveform samples, î(l) for the sample
set S using the model.

Step 3: Evaluate R2 for each current waveform and get
the average R2, denoted by R2

avg. We call it the the average
coefficient of determination and it is given by:

R2
avg =

1
|S|

|S|∑
m=1

R2(m) (26)

where |S| is the size of the initial characterization set.
Step 4: If R2

avg > 0.75, then the template is correct and
use the sample size determination algorithm to get the correct
sample size and stop, else go to step 5.

Step 5: Check the range of Hamming distance of input
vectors under consideration, if the model is being built for
large Hamming distance (more than 60% of primary inputs
switching), use the partitioning algorithm to partition the time
domain current waveform and use a triangular template for
each partition. If the model is being built for small Hamming
distance use the trapezoidal template and increase the size of
S, because the trapezoidal template has more coefficients.

Step 6: Build the model again depending on the decision
made in step 5. Get the corresponding R2

avg. If for large
Hamming distance R2

avg does not improve, assume that the
current model is the best one can achieve with this technique.
One can try the trapezoidal template for individual partitions
and build the model again. But our experimental results show
that such a case should not arise. If the model is for small
Hamming distance go to step 7, else go to step 8.

Step 7: If for small Hamming distance R2
avg does not

improve even with trapezoidal template use partitioning. After
partitioning the time domain current waveform use the triangu-
lar template for each partition and build the model and evaluate
R2

avg. It should improve, if it doesn’t then one can assume that
it is the best one can achieve with this technique. One can
again try using the trapezoidal template for each partition, but
we have not come across such a scenario.

Step 8: Basically by step 6 or 7 one should have the correct
model template and therefore one can use the sample size
determination algorithm to get the correct sample size and
build the model.

The above steps are based on our current macro-modeling
experience and the objective is to get the correct template the
first time in majority of cases. Since the triangular template
occurs most of the time, we use it first. The threshold value
for R2

avg can be set by the user but the value 0.75 suggested
above is also again based on observations made during the
characterization of current models for various logic blocks,
some of which are listed in Table II. A flow-chart depicting
the above characterization flow is shown in Fig. 17. In the
next section, we present a simple algorithm to determine an
adequate sample size and complete the building of the model.

1) Sample Size: Once the correct template is known, we
need to know the size of the sample set for characterization and
go on to build the model. The size of initial characterization
set is a function of p, the number of primary inputs. But we
need a large enough sample set so that it adequately represents
all the vector pairs for a given partition and gives a good
value of the parameters. If the characterization sample set
adequately represents the entire set (the entire set of input
vector pairs for a given partition will be just referred to as
the population, a term borrowed from statistics) or at least a
majority of vector pairs for a given partition, then the model
can be used for estimating the current waveform of other
elements of the population. It is to be noted that including
the entire population in the characterization set is infeasible
because of the large population size as discussed earlier. In this
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regard we developed a simple algorithm based on a number of
quantitative metrics of goodness of fit. The algorithm is based
on the simple philosophy that as the size of the characterization
set increases, the ability of the macro-model to estimate the
current waveforms for random input vector pairs which are
not a part of the characterization set improves. The intuitive
reason for this is the fact that as the size of the characterization
set increases the model gets trained for more elements of the
population and thus its ability to predict the behavior of the
population improves. The steps of the algorithm to determine
the size of the sample set are outlined below:

Step 1: Get the correct template and the model built using
the initial characterization set S from the characterization flow
described in section III.C.

Step 2: Generate another random sample of input vector
pairs called T for the given input vector pair partition. Simu-
late the logic block using HSPICE (or any circuit simulator)
to get the current waveforms for the set of vector pairs in T .

Step 3: Test the model on the set of random input vector
pairs, denoted by T , generated in step 2. Comparison is
done using three metrics: a) Average relative error in peak
current estimation, epavg. b) Average relative error in the
time instant at which the peak occurs, etavg. c) Coefficient
of determination, R2

avg.

These error metrics are easy to compute and give a good
estimate of the accuracy of the model. The relative errors have
been described in section IV. The size of the test set T is user
defined in our case we use |T | = |S|, where |S| is the size
of the initial characterization set, obtained at the beginning of
the characterization flow. The sample set T is called the test
set and remains fixed during the algorithm.

Step 4: Compare the metrics with user defined thresholds.
In our case, we use less that 20% relative error for peak
current and the time instant at which peak occurs. A reasonable
threshold for the coefficient of determination is that it should
be greater than 0.75. If the metrics satisfy the threshold
criterion, then stop. If any or all of the metrics are above
threshold and not improving since last iteration, then stop,
else go to step 5.

Step 5: Increase the size of the characterization set S, by a
user defined amount, and build the model again. In our case
we found that we need to increment |S| by at least 10. So we
used the following technique to get the increment value.

a) Calculate the number of Hamming distances covered
in each input vector pair partition, denoted by Hnum. b)
if Hnum ≥ 10, |S| = |S| + Hnum, else |S| = |S| +
�(10/Hnum)�Hnum.

In order to build the model, use the previous solution
as the initial guess for the non-linear regression part of
the characterization flow. There can be multiple flavors for
increasing the size of the characterization, but in our case we
do some more HSPICE simulations and increase the size of
S, and not tamper with the test set T (basically the model is
tested on the same set each time). After building the model
go back to step 3.
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Figure 18. Sample size determination

At the end of this algorithm we have the characterization set
and the model. Though the model is tested on different sample
of random input vector pairs, it may not represent the entire
population. But we believe that randomization of the sample
set T alleviates some of the problem. Thus, it is possible
to build current macro-models for a logic block without any
user intervention. In Fig. 18 we present a flow chart for
the sample size determination algorithm. The characterization
flow was used in conjunction with the sample size determina-
tion algorithm to generate current macro-models for various
benchmark circuits. In the next section we present some
experimental results that illustrate the validity of our approach.
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listed in Table II
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TABLE II

BENCHMARK CIRCUITS USED IN FIGS. 19–29

Circuit #I #O #Cells RMSavg (A) ep,avg ep,max

c880 60 26 383 .0045 17.23% 27.90%
alu2 10 4 368 .0037 19.20% 35.74%
c432 36 7 217 .0028 12.43% 29.73%
cu 14 11 48 5.4423e-04 18.38% 31.93%

f51ml 8 3 105 0.0011 19.21% 39.43%
mux 21 1 91 4.4271e-04 17.95% 33.16%

random8 8 1 158 9.3857e-4 12.76% 37.11%
parity 16 1 68 7.7149e-04 15.37% 41.98%
vdao 17 27 341 0.0049 16.22% 25.67%
c499 41 32 202 0.0055 13.28% 14.52%

pcler8 27 17 101 9.8475e-04 8.47% 13.26%
sct 19 7 83 6.4798e-04 9.21% 15.67%
x2 10 3 50 5.4249e-04 14.35% 47.22%
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Figure 20. itactual vs itest for ckts.
listed in Table II
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Figure 21. RMS error vs. peak current for
ckts. listed in Table II

IV. EXPERIMENTAL RESULTS

A set of randomly generated vectors were used to simulate
various benchmark circuits in HSPICE. The circuits are shown
in Table II, where we have listed the number of inputs,
outputs, and cells for each circuit. The choice of circuits was
influenced by the fact that we are using HSPICE to build
the models, and that therefore large circuits with large input
counts would require unacceptable simulation times. In order
to overcome this limitation, one can presumably use more
efficient simulators, like PowerMill, or gate-level simulation
techniques such as [15]. The resulting current waveforms were
used to construct the current macro-model for the respective

TABLE III

ERROR METRICS FOR BENCHMARK CIRCUITS USED IN FIGS. 19–29

Circuit absep,max (A) et,avg R2
avg #sim.

c880 0.0009 10.20% 0.8047 3000
alu2 0.0007 8.13% 0.7721 650
c432 0.0024 11.46% 0.8117 2300
cu 0.0003 2.32% 0.8674 550

f51ml 0.0005 2.12% 0.7918 320
mux 0.0002 4.23% 0.8845 800

random8 0.0006 4.38% 0.8391 1000
parity 0.0004 3.98% 0.9034 640
vdao 0.0018 8.89% 0.7840 900
c499 0.0021 7.69% 0.8279 1500

pcler8 0.0010 5.21% 0.9021 900
sct 0.0009 6.31% 0.8967 600
x2 0.0001 2.43% 0.8734 500

TABLE IV

CHARACTERIZATION DATA FOR BENCHMARK CIRCUITS

Circuit model char.(days) model eval.(hr) edi/dt,avg (A/ns)
c880 3.36 2.2 12.94%
alu2 1.19 0.52 14.89%
c432 2.7 1.93 17.38%
cu 0.17 0.47 22.56%

f51ml 0.35 0.39 20.25%
mux 0.67 0.63 17.38%

random8 1.05 1.04 12.83%
parity 0.39 0.48 14.20%
vdao 1.3 0.90 12.34%
c499 1.85 1.50 10.24%

pcler8 0.92 0.83 13.34%
sct 0.49 0.51 15.89%
x2 0.19 0.42 14.20%

circuits using the proposed approach. In Table III, the last
column shows the total number of simulations (number of
vector pairs) needed to build the macro-model for all the input
vector partitions, for each circuit.

The current macro-models obtained after the characteri-
zation flow were then tested for accuracy using a different
set of randomly generated vector pairs. The resulting current
waveforms from the macro-model were evaluated using two
types of criteria: quantitative and qualitative. Among the
quantitative measures, we used the Root Mean Square Error
(RMS) to compare the estimated waveform with the actual
waveforms, given by:

RMSE =

√√√√ 1
K

K−1∑
l=0

‖i(l)− î(l)‖2
(27)

where i(l) is the actual current waveform, and î(l) is the
estimated current waveform, and K is the length of the current
waveform sequence without zero-padding. Table II, shows the
average RMS error for various benchmark circuits, under the
column “RMSavg”, which is computed as:

RMSavg =
1
P

P∑
m=1

RMSE(m) (28)

where P is the number of vectors used to test the macro-
model. In order to give some intuition as to the goodness of
these average error numbers, and some measure of spread,
we compared the RMS error for each vector pair with the
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actual peak current. Such a comparison can used to determine
the quantity of error, and the significance of the error. In
Fig. 21, we show the combined RMS error vs peak current
plot for the benchmark circuits listed in Table II. The plot
shows that the RMS error is more or less bounded across the
various current peak values for the benchmark circuits, and
increases very slowly with the current peak. It should also be
noted that in this plot, the slope of the line from the origin to
that point is the relative percentage error of that point, with
respect to the peak current value. Since we use regression to
estimate the parameters of our macro-model, we also use the
coefficient of determination to test the accuracy of the macro-
model. The coefficient of determination (R2), as explained
earlier, measures the proportion of variability of the dependent
variable explained by regression on predictor variables. The
closer R2 is to 1, the better the model captures the current
waveform. Since R2 is a statistic for each current waveform,
we use R2

avg, the average coefficient of determination. In
Table III, we have included the average coefficient under the
column R2

avg.
An estimate of the time instant and the value of the peak

current for various blocks would facilitate a fast power bus
analysis. Therefore we used the relative error in peak current
value and the time at which the peak occurs as another set of
quantitative metrics to test the accuracy of our macro-model.
The relative error is defined as:

err =
‖xactual − xest‖

xactual
(29)

where x is either the peak current, ip, or the time instant
at which the peak occurs, tp. In Table II, ep,avg denotes the
average error in peak current estimation, and in Table III e t,avg

denotes the average error in the estimation of the time instant
at which the peak occurs. The average error in each case is
computed using:

ex,avg = 100
1
P

P∑
i=1

erri (30)

Table II also includes the maximum relative error in peak
current estimation for each benchmark circuit, denoted by
ep,max. In some cases maximum relative long is close to
40%, therefore we have included the absolute error in peak
current estimation at which the maximum relative error occurs
in Table III. The absolute error in peak current is denoted
by absep,max. Comparison of the absolute error and the
maximum error in peak current shows that, maximum relative
error occurs when the absolute error is very low. Therefore,
maximum error occurs when the magnitude of peak current
is very low, and even though absolute error in peak current
estimation is small it gets magnified when using the relative
error metric. But overall, Table II shows that the average error
in peak current estimation over the set of vectors is less than
20% for all the circuits considered. Also Table III shows that
the average error in tp is less that 15% in all cases. In order to
show that the ip,est and tp,est can be estimated accurately for
different vector pairs, using our macro-model, we have also
included the corresponding correlation plots of the estimated
values versus actual values in Figs. 19 and 20. In Fig. 19, we

show a combined plot of ip,actual v.s. ip,est for the benchmark
circuits listed in Table II, and similarly in Fig. 20 we show
a combined plot of tp,actual v.s. tp,est. The correlation plots
are close to linear. The time instant plots show fewer number
of points because most of the points are superimposed on
top of each other. Table IV, shows the model characterization
and evaluation times. It also includes the average relative
error in the estimation of peak current slope, in its fourth
column. The peak current slope is defined as the ratio of
peak current to the time instant at which the peak occurs,
and in the given context it can be be calculated as ip/tp. The
model characterization (denoted in the second column) time is
entirely dominated by circuit simulation time, and the model
evaluation time (denoted in the third column) is dominated
by the inverse DCT evaluation time. The DCT sample length
was constant across all the benchmark circuits, therefore the
model evaluation time is a function of the number of current
samples generated for each benchmark circuit. These runtimes
were obtained on a Sun UltraSparc-II, 450MHz machine. The
model characterization and evaluation times correspond to the
number of current samples (number of simulations) specified
in the last column of Table III. In Fig. 23, we show a plot
of absolute error in peak current vs the peak current. In
this plot the slope of a line from origin to a given point,
represents the relative error in peak current estimation. It
can be seen, that the absolute error increases very slowly
with the current peak. Finally, in Figs. 23–29, we present
a qualitative comparison of the actual and estimated current
waveform for the benchmark circuits listed in Table 2, for
some example Hamming distances. The current waveforms for
qualitative comparison were obtained by simulating the circuit
for a given vector pair with a certain Hamming distance, as
shown in the figures. In this comparison, we superimpose the
the estimated current waveform on top of the actual current
waveform obtained from HSPICE for randomly generated
vector pairs. This is a qualitative measure because the plots
are mostly useful for visual comparison. The comparison plots
show good accuracy in most cases. In Fig. 23, we show the
current waveform plot for alu2 where only 3 out of 10 inputs
are switching. The figure shows some deviation from the actual
plot because the Hamming distance is low. The same obser-
vation can be made regarding other low Hamming distance
waveforms. Thus, small Hamming distance waveforms show
more deviation from the actual current waveform, because
for large Hamming distances the input variables are mostly
confined to just two values. In case of low Hamming distances,
the inputs can take any of four values. Moreover when a
small fraction of inputs are switching, the current waveform
significantly depends on what inputs are switching, which
leads to large variations in the current amplitude. However,
the current magnitude itself is much lower in case of low
Hamming distance, so that the absolute error is actually small.
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Figure 22. Abs. error in peak current vs. peak
current for ckts. listed in Table II
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Figure 23. Act. vs. est. current waveform for
alu2, Ham. dist=3

In Figs. 26 and 27, we show the results obtained for some
skewed transitions. Figure 26 is obtained by switching the top
thirty bits alternately from low to high and high to low. In
Fig. 27 the first waveform is obtained, by switching half the
bits from low to high and the second waveform is obtained by
switching half the bits from high to low. In Figs. 28 and 29, we
show the results obtained by assuming different arrival times
for the various inputs. The input arrival times were randomly
varied from 0ns to 1ns. It can be seen that variations in input
arrival times reduces the current peak. Therefore, if the model
is characterized assuming identical arrival times for all the
inputs, it may lead to some inaccuracies. But Figs. 28 and 29
also show that, at a high-level of abstraction, the errors due to
different arrival times may be tolerable. Even though for lower
Hamming distances we see some deviations from the actual
current waveforms and the model ignores the different arrival
times of various inputs, we must point out that the model in
fact works very well, capturing the required current waveforms
in a high-level black box macro-model.
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Figure 24. Act. vs. est. current waveform
for cu, Ham. dist=2
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Figure 25. Act. vs. est. current waveform
for c432, Ham. dist=32
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Figure 26. Act. vs. est. current waveform
for c880, Ham. dist=30

V. CONCLUSION

In order to enable early block-level analysis of the power
grid, when using hard IP blocks, we have proposed a cycle-
based current waveform modeling technique for combinational
logic blocks that involves predicting the frequency transform
from the input vector pairs, and using the inverse transfor-
mation to get back the time-domain waveform. The use of
frequency domain analysis is motivated by our observation
that, while the time domain waveforms show large variations
in shape (making them hard to model in the time domain),
the frequency domain transforms (such as DCT) show much
less variation and are mostly limited to variations in their
parameter values. For the DCT, we have shown that it is
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possible to build models for its parameters in terms of the input
vector pairs. The models include coefficients whose values are
computed by a process of characterization based on HSPICE
simulations on a number of randomly generated vector pairs.
While we continue to improve the estimation and validate this
technique on more circuits, the data so-far show that this type
of estimation is indeed possible, enabling early block-level
simulation (hence fast, and for a large number of vectors) of
power grids under transient current conditions.
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Figure 27. Act. vs. est. current waveform
for c880, Ham. dist=30
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Figure 28. Est. current waveform with diff.
arrival times for c880, Ham. dist=30
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Figure 29. Est. current waveform with diff.
arrival times for c880, Ham. dist=32
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