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Abstract—Manufacturing process variations lead to variability
in circuit delay and, if not accounted for, can cause excessive timing
yield loss. The familiar traditional approaches to timing verifi-
cation, such as the use of process corners and predefined timing
margins, cannot readily handle within-die variations. Recently,
statistical static timing analysis (SSTA) has been proposed as a way
to deal with variability. Although many powerful techniques have
been proposed, the fact that SSTA requires a significant change
of methodology has delayed its wide adoption. In this paper, we
propose a framework whereby the familiar concepts of corners
and margins, which are generally meaningful at the transistor
or cell level, are elevated to the chip level in order to handle
within-die variations. This is achieved by using high-level models,
such as the generic path model or the generic circuit model with
different classes of paths, to represent the behavior of typical de-
signs. These models allow us to determine “yield-specific” margins
(setup and hold margins) and virtual corners, which, if applied
during standard (deterministic) timing analysis, would guarantee
the desired yield. Our framework can be used at an early stage of
circuit design and is consistent with traditional timing verification
methodology.

Index Terms—Classes of paths, early analysis, generic path,
process variations, setup and hold margins, statistical timing
analysis, timing yield, virtual corners.

I. INTRODUCTION

P ROCESS variations have an impact on circuit delay and
can cause timing yield loss if circuit delay fails to meet the

performance constraints. Traditionally, process variations have
been taken care of in various ways. In microprocessors, it is
typical to check circuit timing with nominal transistor files, and
to specify some predefined timing margin which should be left
as slack between the nominal delays and the timing thresholds,
in order to account for process variations. In ASICs, the practice
is to typically design circuits by making sure that the chip
passes the timing requirements at all process corners, including
nominal, worst, and best cases of device behavior. If these
settings are too pessimistic, then designers are forced to waste
time and effort optimizing a circuit using design conditions that
are too stringent.
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There has been considerable discussion in the literature that
the traditional methods of using process corners or using a
timing margin are breaking down. For one, in microprocessors,
where nominal process files are used and a timing margin needs
to be left as slack, there are no easy ways to decide what margin
should be used, particularly when one wants to account for
within-die variations, which have become important in modern
technology. In addition, if a given margin is used, there is no
indication as to what the resulting timing yield would be. On
the other hand, for ASICs, the number of corners is increasing,
making it very expensive to explore all corners, and anyway,
this traditional corner analysis approach cannot handle within-
die statistical variations [1].

Statistical techniques offer one alternative approach to deal-
ing with variability. Due to the increased importance of within-
die variations, there has been an increased interest in tackling
the timing yield problem by employing statistical techniques as
part of the circuit timing analysis step [2]–[7]. The aim is to
include statistical delay variations as an extension to traditional
STA leading to statistical static timing analysis (SSTA). In early
works [1], [3], [8], [9], within-die variations were assumed to
be totally uncorrelated. This assumption is not true in practice;
however, it is usually hard to express the correlations between
within-die parameter variations with a model built from process
data. Different attempts to model correlations have been pro-
posed. In [4], principal component analysis (PCA) was used to
decorrelate variations on a set of independent random variables
(RVs). In [10], a quad-tree partitioning is used to express
a regionwise spatial correlation among within-die variations.
In [6], correlation is taken care of using a canonical model,
where each variation is expressed in terms of global sources
of variations. In most of the published works, variations are
assumed to have a Gaussian (normal) distribution, and linear
(first-order) delay models are used. Recently, however, several
authors have investigated the case of non-Gaussian distribu-
tions and/or nonlinear delay models [11], [12]. Overall, SSTA
has significant computational cost, and some have suggested
[7] that some SSTA techniques unnecessarily complicate the
design flow, and the point was made that it may be useful to
explore early and simple SSTA techniques that would maintain
the current timing verification methodology.

With regard to the design flow, most proposed SSTA tech-
niques are applicable to fully specified and placed designs
and require advanced correlation models built from extensive
process data. Thus, these methods are “final sign-off” tools and
are not usable during the circuit design phase. Also, requiring
detailed process data can be problematic. For one, it may not be
available during the early design phase of a new chip, which is
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often being manufactured in a new process. In addition, there
is no agreement yet on a simple and universal model of within-
die correlation. One possibility is to assume that the correlation
dies down with on-die distance according to some polynomial
function. However, it is shown in [13] that distance is not the
key determinant of correlation but that correlation depends on
whether the distance in question is along a vertical or horizontal
direction. There is also evidence that correlation depends on
location within the reticle field, and not purely on distance.
Finally, SSTA techniques require a change in the traditional
timing verification methodology, which explains why these
techniques are not yet widely adopted. Given all these reasons,
it seems worthwhile to explore other options.

In this paper, we address the aforementioned challenges by
concentrating on the following aspects:

1) focusing on early analysis, possibly in the absence of
a complete circuit instance, which allows one to take
corrective actions early in the design phase;

2) operating in the absence of within-die correlation infor-
mation, for the reasons stated earlier, namely that correla-
tion information can either be unknown for a new process
or inaccurate;

3) keeping the current timing verification methodology
which uses corners and timing margins in place, and
extending it to handle within-die variations. This requires
elevating the concepts of corners and margins to the cir-
cuit (i.e., chip) level whereby virtual corners and timing
margins are deduced from circuit performance.

In order to enable early analysis, and given the absence of
complete details of the circuit implementation, it is necessary to
construct high-level models that capture circuit characteristics.
A model was used in [14] in which a generic critical path
model was employed as a way to capture the dependence of
circuit worst-case delays in a given technology, in the absence
of a specific circuit instance. In this model, a circuit is assumed
to consist of a large number of identical paths, whose delay
is representative of critical path delays in the target design.
Each of these generic paths consists of a specific number of
identical stages (a stage is a logic gate and the interconnect
at its output). This model has been successfully employed in
the industry, and was recently extended in [15], where it is
shown that the statistics of a large number of such generic
paths match very well the statistics of critical path delays in
the actual circuit. In this paper, we make use of the generic
path model, and extend it by proposing a flexible generic circuit
model based on multiple classes of generic paths, with different
depth. Such a representation can model virtually any circuit by
simple discretization of its path delays into specified classes.
We use these models to represent and analyze typical designs
in a target technology.

As stated earlier, we will assume that within-die variations
have some unknown correlation on the die. This does not mean
that we ignore correlation. On the contrary, we prove that, by
taking correlation to its extremes, we get useful (conservative)
bounds on the timing yield. Assuming that variations are pos-
itively correlated (this is further discussed hereafter), we show

that the conservative case is achieved when the systematic1

within-die variations of gate delay are assumed to be totally
correlated (ρ = 1) along a path, and the systematic within-die
variations of path delay are assumed to be uncorrelated (ρ = 0)
across a block (i.e., a collection of paths).

The analysis hereafter will lead to closed-form expressions
for the timing yield. Furthermore, the results will be two sided,
i.e., will take into account yield loss due to both setup and
hold time violations. The yield expressions allow one to extract
“yield-specific” timing margins that should be used on top
of the nominal maximum and minimum circuit delay, during
deterministic timing analysis, in order to guarantee the desired
yield. We refer to these margins as setup and hold timing
margins. We also show how to extract virtual corners at the
chip level, as opposed to traditional process corners which are
extracted at the transistor or gate level. Since these virtual cor-
ners are based on circuit performance, they do take within-die
statistical variations into account. Finally, we propose a method
that allows “controlled” budgeting of yield loss between setup
and hold violations. Our framework is therefore consistent with
traditional timing verification methodology. It can be applied at
an early stage of the design flow to predict which corners and
margins to use in order to achieve a target yield. Early versions
of this work have appeared in [16].

The rest of this paper is organized as follows. Sections II
and III describe the generic path model and the mathematical
framework pertaining to the formulation of the timing yield
expressions. In Section IV, we show how we determine the
yield-specific margins and virtual corners that should be used to
guarantee a desired target yield. Sections V and VI describe the
generic circuit model and the mathematical framework leading
to the selection of setup and hold margins. Margin budgeting, as
well as the control over yield loss, is presented in Section VII.
We conclude in Section VIII.

II. BACKGROUND: THE GENERIC PATH MODEL

In this section, we first present the parameter model which
captures process variations, and then show how we construct
the generic path model. The purpose is to provide some back-
ground based on the material from [15] and [16].

A. Parameter Model

For a given circuit element or layout feature i, let X(i) be a
zero-mean Gaussian RV that denotes the variation of a certain
parameter of this element from its nominal (mean) value. Thus,
for example, X(i) may represent channel length variations of
transistor i. It is standard practice [17] to break up the variations
into die-to-die and within-die components as follows:

X(i) = Xdd + Xwd(i). (1)

1The adjective “systematic” has unfortunately acquired two different mean-
ings in the literature. To some, systematic variations are those variations that
are repeatable, nonrandom, and deterministically dependent on some design
or layout feature. To others [14], systematic variations are variations that are
random but are not independent, i.e., what one may refer to as correlated
variations. There are ways to reconcile the two views, but in any case, this
paper assumes the second viewpoint: Systematic variations are those portions
of the total variations which are random and correlated.
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The die-to-die component Xdd is an independent2 zero-mean
Gaussian RV that takes the same value for all instances of this
element on a given die, irrespective of location. The within-
die component Xwd(i) is a zero-mean Gaussian which can take
different values for different instances of that element on the
same die. This leads to the following relationship between the
variances:

σ2(i) = σ2
dd + σ2

wd(i). (2)

Then, the within-die component is further broken down into
two components, namely, a systematic or somewhat correlated
component and a “random” component

Xwd(i) = Xwds(i) + Xwdr(i) (3)

where, for each i, the random component Xwdr(i) is an inde-
pendent zero-mean Gaussian. A similar relationship follows for
the variances

σ2
wd(i) = σ2

wds(i) + σ2
wdr(i). (4)

The within-die systematic component is expressed in the fol-
lowing way:

Xwds(i) = σwds(i)Zwds(i) (5)

where Zwds(i)’s are the correlated standard normal RVs (mean
zero and variance one).

Hence, our model for parameter variation X(i) consists
of an independent zero-mean die-to-die component Xdd with
variance σ2

dd, a correlated systematic within-die component
Xwds(i) with variance σ2

wds(i), and an independent random
within-die component Xwdr(i) with variance σ2

wds(i). In pre-
vious work, PCA is used to model within-die correlation by
expressing variations in terms of global variables. In this paper,
however, we do not require the use of any specific correlation
model. Instead, we express the within-die systematic compo-
nents as positively correlated RVs and derive bounds on the
timing yield which hold irrespective of the correlation model
used. We show next how gate delay variations and path delay
variations can be modeled using the same parameter model
defined previously.

B. Gate Delay

In general, there is a nonlinear relationship between gate
delay and transistor parameters. HSPICE simulations in an
industrial 90-nm CMOS library reveal, however, that this non-
linearity is not strong. Therefore, we will simply assume that
gate delay is linearly dependent on the process and, hence, is
Gaussian with mean that is equal to its nominal value.

For all the transistors within one logic gate, we assume that
their channel length variations are captured with a single RV
L(i), and their threshold voltage variations are captured with
a single RV V (i). We also assume that L(i) and V (i) have
been “decorrelated” using PCA [18], or any other transform,

2Throughout this paper, whenever an individual RV is described as “indepen-
dent,” this means that it is independent of all other RVs under consideration.

so that they are independent. For each gate, we can extract
sensitivities to the different varying process parameters using
circuit simulation. Hence, if D(i) is the deviation of the delay
of logic gate i from its mean (nominal) delay, we have

D(i) = αL(i) + βV (i) (6)

where α and β are sensitivity parameters, with suitable units,
that one can easily obtain from circuit simulation of a repre-
sentative logic gate. As a result, we can express the statistical
variations in delay of gate i as

D(i) = Ddd + Dwds(i) + Dwdr(i) (7)

so that

Ddd =αLdd + βVdd

Dwds(i) =αLwds(i) + βVwds(i)

Dwdr(i) =αLwdr(i) + βVwdr(i) (8)

σ2
dd,D =α2σ2

dd,L + β2σ2
dd,V

σ2
wds,D(i) =α2σ2

wds,L(i) + β2σ2
wds,V (i)

σ2
wdr,D(i) =α2σ2

wdr,L(i) + β2σ2
wdr,V (i). (9)

These equations provide a way in which the statistical model of
gate delay (i.e., its three variances) can be computed from the
underlying statistical model of transistor parameters.

C. Generic Path Delay

Consider a generic path of N logic stages (a stage is a logic
gate and the interconnect at its output). We will focus only on
gate delays and on transistor L and Vt variations. The method-
ology can be easily applied when more device parameters are
of interest or when interconnect parameter variations are to be
included as well. Let DN (j) denote the deviation of the delay
of path j from its mean (nominal) value

DN (j) =
N∑

i=1

D(i) = NDdd +
N∑

i=1

Dwds(i) +
N∑

i=1

Dwdr(i).

(10)

Recall that we are working under the assumption that within-
die systematic correlation is unknown, and thus, the system-
atic path delay component

∑N
i=1 Dwds(i) cannot be explicitly

resolved as is. However, because we will be using upper and
lower bounds in the yield analysis section where we study the
statistics of a large collection of generic paths, we also use
bounds here when deriving the delay model for these paths. In
Appendix A, we prove that a lower (upper) bound on the distri-
bution of a sum of Gaussian RVs with unknown correlation is
achieved when these RVs are assumed to be totally correlated
(independent). Applying this result to the systematic within-die
component of path delay leads to the following equation for the
variances:

σ2
DN

(j) = σ2
dd,DN

+ σ2
wds,DN

(j) + σ2
wdr,DN

(j) (11)
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where

σ2
dd,DN

=N2σ2
dd,D

σ2
wds,DN

(j) =N2σ2
wds,D(j), for lower bound

σ2
wds,DN

(j) =Nσ̂2
wds,D(j), for upper bound

σ2
wdr,DN

(j) =
N∑

i=1

σ2
wdr,D(i) = Nσ̂2

wdr,D(j)

and where σ̂2
wdr,D(j) and σ̂2

wds,D(j) are the average values of
σ2

wdr,D(i) and σ2
wds,D(i) over all N gates on this path. With

this, we have a full statistical model of path delay, so that we
can treat it as a “parameter” similarly to X(i).

III. YIELD ANALYSIS

With the random parameter model given previously, we now
define the parametric Max yield and the parametric Min yield
for parameter X as

Ymax(x) =P{X(i) ≤ x, i = 1, 2, . . . , n} (12)
Ymin(x) =P{X(i) > −x, i = 1, 2, . . . , n} (13)

where n is the number of instances of this parameter on chip.
Here, X(i) is a generic parameter that may represent process
variations (channel length or threshold voltage), or path delay
variations as we have shown in Section II-C, in which case the
parametric yield becomes a timing yield. In other words, when
X(i) represents path delay variation, the parametric Max yield
is the probability that all path delay variations are less than x,
and the parametric Min yield is the probability that all path
delay variations are greater than −x. Note that x is generally
positive since, in the Max yield case, we are interested in x
values that are greater than the mean of X (i.e., zero), while in
the Min yield case, we are interested in values that are smaller.

Thus, the material in this section, although focused on para-
metric yield, will actually be directly useful for computing
timing yield. It is noteworthy that both Max and Min yields
are of equal importance. Chips do fail because the maximum
(minimum) circuit delay is greater (smaller) than a performance
constraint determined by the setup (hold) constraints.

A. Slepian’s Inequality

In this section, we will find bounds on the two parametric
yields that were defined earlier. Using the following theorem
from multivariate normal probability [19], we will prove that
these bounds are a direct consequence of extreme cases of cor-
relation between the within-die systematic components across
the die.

1) Slepian’s Inequalities: Let V = ({V (i)}, i = 1, . . . , n)
and W = ({W (i)}, i = 1, . . . , n) be two random vectors of
size n, with both of them being multinormally distributed with
zero mean and covariance matrices Σ = {σij} and Γ = {γij},
respectively. Also, let σii = γii for i = 1, . . . , n. If σij ≥ γij

for all i �= j, in symbols Σ ≥ Γ, then

P {V (i) ≤ ai,∀i} ≥P {W (i) ≤ ai,∀i} (14)
P {V (i) > ai,∀i} ≥P {W (i) > ai,∀i} . (15)

Note that σii = σ2
i is the variance of V (i) and σij is the

covariance of V (i) and V (j).
The aforesaid result is quite interesting. It states that, given

two random vectors V and W having the same variances
(i.e., σii = γii), if one of them is more correlated than the other
(i.e., σij ≥ γij for all i �= j), then (14) and (15) hold.

A direct consequence of Slepian’s inequalities is to be able to
find upper and lower bounds on both Max and Min parametric
yields. As presented in Section II-A, the parameter vector X is
the following:

X(i) = Xdd + Xwds(i) + Xwdr(i) (16)

where Xwds(i)’s are arbitrarily correlated across the die. To
overcome the lack of information about within-die systematic
correlation, which is typically hard to get, we will introduce
two RVs that represent extreme cases of within-die systematic
correlation: the case of independence and the case of total
correlation.

Let X(0) be a random vector whose elements have the same
marginal distributions as those of X but with the property that
its within-die systematic components are independent. Also,
let X(1) be a random vector whose elements have the same
marginal distributions as those of X but with the property
that its within-die systematic components are positively totally
correlated. In other words, X , X(0), and X(1) have the same
individual variances but only differ in the extent of correlation
of the within-die systematic components, i.e., they differ in their
covariances.

Now, suppose that Σ, Σ(0), and Σ(1) are the covariance
matrices of parameter vectors X , X(0), and X(1), respectively.
These matrices have the same diagonal elements (representing
variances) but differ by their off-diagonal elements (represent-
ing covariances). Remember that X is a zero-mean random
vector, and its covariance matrix Σ = {σij} will be simplified
to the following, for i �= j:

σij =E [X(i) · X(j)]

=σ2
dd + E [Xwds(i) · Xwds(j)] (17)

where σij is the off-diagonal element of the covariance ma-
trix Σ. The second part of the aforementioned equation is
the covariance Σwds = {σwdsij

} of the within-die systematic
component. Therefore, we can write

σij = σ2
dd + σwdsij

. (18)

Notice here that the covariance of X(0) and X(1) will have the
same form as the aforementioned equation and only differ by
the value of σwdsij

: For X(0), σwdsij
= 0 since the within-die

systematic components are independent (correlation coefficient
equals zero). For X(1), σwdsij

is maximum, since maximum co-
variance occurs when the systematic RVs are positively totally
correlated (correlation coefficient equals +1).

If we assume that the within-die systematic components are
positively correlated (i.e., their covariances are always positive
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σwdsij
≥ 0), then the correlation coefficients are between the

two extremes of zero and one, so that

Σ(0) ≤ Σ ≤ Σ(1). (19)

Some comments are in order with respect to this positivity
assumption. The assumption of positive correlation is practical
for many sources of variability. A physical variation that slows
down a transistor, a gate, or a path is likely to have the same
effect on another that lies nearby. If the other device/gate/path is
far away, then it would probably be independent anyway. In this
paper, the RVs that will be assumed to be positively correlated
are the gate delays in one case and the path delays in another
case. Thus, we are not assuming that all process variables are
positively correlated. By saying that two gates (or two paths)
are positively correlated, we mean that when process variations
cause the delay of one of them to increase, then the delay of
the other does not decrease. Notice, however, that both gate and
path delays are typically functions of several process variables.
Therefore, this assumption is not as strong as requiring that
corresponding sensitivities to the same process parameters be
always of the same sign. To be sure, most commonly used
process parameters, such as L and Vth, have similar effects
on gate and path delay, e.g., an increase in channel length will
almost always slow down a logic gate; such process variables
lead to positive correlation. However, the fact that gate and
path delay variations are an aggregate effect of dependence on
a number of process variables is the best justification for our
assumption; even if one or two pathological process variables,
in advanced technology for instance, are such that they cause
opposite effects, they are unlikely to dominate to such an extent
so as to lead to overall negative correlation. Finally, in the
case of path-to-path correlation, the fact that many paths share
common subpaths would also contribute to overall positive
correlation between them. In any case, given this assumption,
then combining (19) with Slepian’s inequalities, we can write

P
{

X(0)(i) ≤ x,∀i
}
≤Ymax(x) ≤ P

{
X(1)(i) ≤ x,∀i

}
P
{

X(0)(i) > −x,∀i
}
≤Ymin(x) ≤ P

{
X(1)(i) > −x,∀i

}
(20)

where Ymax(x) and Ymin(x) are the parametric Max and Min
yields defined earlier. The aforesaid equations are fundamental,
because they capture the lower and upper bounds on the Max
and Min yields when the within-die correlation is unknown or
uncertain. In the following sections, we will derive expressions
for the lower and upper bounds given in (20).

B. Lower Bounds

Consistent with the previous section, we will now find
the expressions for the Max and Min yield lower bounds by
starting with an assumption that Xwds(i)’s are independent.
Let Y

(lb)
max(x) and Y

(lb)
min (x) be the Max and Min yield lower

bounds, respectively. For the lower bound analysis, the within-
die systematic and random components Xwds(i) and Xwdr(i)
are both independent RVs. Therefore, we can replace them both

by an independent within-die component Xwd(i) = Xwds(i) +
Xwdr(i). The following are the yield lower bound expressions:

Y (lb)
max(x) =P {Xdd + Xwd(i) ≤ x,∀i} (21)

Y
(lb)
min (x) =P {Xdd + Xwd(i) > −x,∀i} . (22)

Since Xdd is an independent zero-mean Gaussian with variance
σ2

dd, Z0 = Xdd/σdd is an independent standard normal RV
(mean zero and variance one), and the expressions for the yield
lower bounds can be expanded as

Y (lb)
max(x) =P{σddZ0 + Xwd(i) ≤ x,∀i} (23)

Y
(lb)
min (x) =P {σddZ0 + Xwd(i) > −x,∀i} . (24)

We now recall a result from basic probability theory that will
be used repeatedly in this paper. Let A be an arbitrary event
and X be an RV with a probability density function (pdf) f(x).
Then (see [20, p. 85]), we have

P{A} =

+∞∫
−∞

P{A|X = x}f(x)dx. (25)

This result is an extension to the continuous case of the simple
fact that P{A} = P{A|B} · P{B} + P{A|B} · P{B}, where
B is another event. Applying (25) to (23) and (24) and denoting
by φ(·) the pdf of the standard normal distribution give

Y (lb)
max(x) =

+∞∫
−∞

P {Xwd(i) ≤ x − σddz,∀i}φ(z)dz

Y
(lb)
min (x) =

+∞∫
−∞

P {Xwd(i) > −x − σddz,∀i}φ(z)dz. (26)

Since Xwd(i)’s are independent, then we can express their joint
probability as a product

Y (lb)
max(x) =

+∞∫
−∞

n∏
i=1

P {Xwd(i) ≤ x − σddz}φ(z)dz

Y
(lb)
min (x) =

+∞∫
−∞

n∏
i=1

P {Xwd(i) > −x − σddz}φ(z)dz. (27)

Now, replacing the integrals by the mean or expected value
operator E[·] and using the fact that, for a normal RV W with
zero mean, P{W > −w} = P{W ≤ w}, we get

Y (lb)
max(x) = E

[
n∏

i=1

Φ
(

x − σddZ0

σwd(i)

)]
(28)

Y
(lb)
min (x) = E

[
n∏

i=1

Φ
(

x + σddZ0

σwd(i)

)]
(29)
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where σ2
wd(i) = σ2

wds(i) + σ2
wdr(i) is the variance of Xwd(i)

and Φ(·) is the cumulative distribution function (cdf) of the
standard normal.

Equations (28) and (29) represent the parametric Max and
Min yield lower bounds. Note the dependence on the number
of parameter instances n. Later in this paper, we will show that
as n goes to infinity, the aforementioned equations will take
other forms which are independent of n.

C. Upper Bound

Similarly, we will now find expressions for upper bounds on
the parametric Max and Min yields. Recall from Section III-A
that when Xwds(i)’s are positively totally correlated, one gets
an upper bound on the parametric yields. The following equa-
tions represent the upper bounds on the parametric yield, where
Xwds(i)’s are totally correlated:

Y (ub)
max (x) =P {Xwdr(i) + Xwds(i) + σddZ0 ≤ x,∀i} (30)

Y
(ub)
min (x) =P {Xwdr(i) + Xwds(i) + σddZ0 > −x,∀i} .

(31)

Total correlation of the within-die systematic components
means that there is a unique RV that models all the systematic
variations across the die. Hence, the model for Xwds(i) will be
the following:

Xwds(i) = σwds(i)Z1 (32)

where Z1 is an independent standard normal. Making use of
(25) twice on variables Z0 and Z1, and noting that Xwdr(i)’s
are independent with variance σ2

wdr(i), we get the following
expressions:

Y (ub)
max (x) =E

[
n∏

i=1

Φ
(

x − σddZ0 − σwds(i)Z1

σwdr(i)

)]
(33)

Y
(ub)
min (x) =E

[
n∏

i=1

Φ
(

x + σddZ0 + σwds(i)Z1

σwdr(i)

)]
. (34)

The same analysis used in the lower bound case is applied
here to get the aforesaid equations. For the sake of conciseness,
several steps were omitted.

As a result of Sections III-B and III-C, we have an upper
and a lower bound on each of the parametric Max and Min
yields. With a simple change of variables, as will be illustrated
in the next section, these bounds can be computed by numerical
integration. If a Max or Min yield of, for example, better than
90% is desired, then one can set the lower bound Y

(lb)
max(x) or

Y
(lb)
min (x) to 0.9 and work backward to get the value of the

threshold x. The upper and lower bounds are the results of
extreme cases of within-die systematic correlations. Therefore,
when combined together, they become very useful in estimating
the yield when the correlations are uncertain or unknown.

Fig. 1. Parametric max yield bounds.

D. Illustration

As an illustration, we will assume all variances to be the same
across the die. This means that σ2

wds(i) = σ2
wds and σ2

wdr(i) =
σ2

wdr. Then, we can rewrite (28), (29), (33), and (34) in the
following way:

Y (lb)
max(x) =E

[
Φn

(
x − σddZ0

σwd

)]
(35)

Y
(lb)
min (x) =E

[
Φn

(
x + σddZ0

σwd

)]
(36)

Y (ub)
max (x) =E

[
Φn

(
x − σddZ0 − σwdsZ1

σwdr

)]
(37)

Y
(ub)
min (x) =E

[
Φn

(
x + σddZ0 + σwdsZ1

σwdr

)]
(38)

where σwd was defined earlier to be
√

σ2
wds + σ2

wdr.
In order to compute the aforementioned equations, we use

the definition of the expected value operator (as an integral),
and with a change of variables of u = Φ(z0) and v = Φ(z1),
we get

Y (lb)
max(x) =

1∫
0

Φn

(
x−σddΦ−1(u)

σwd

)
du

Y
(lb)
min (x) =

1∫
0

Φn

(
x+σddΦ−1(u)

σwd

)
du

Y (ub)
max (x) =

1∫
0

1∫
0

Φn

(
x−σddΦ−1(u)−σwdsΦ−1(v)

σwdr

)
dudv

Y
(ub)
min (x) =

1∫
0

1∫
0

Φn

(
x+σddΦ−1(u)+σwdsΦ−1(v)

σwdr

)
dudv.

(39)

The plots of the bounds on the parametric Max yield for
different values of n are shown in Fig. 1, where we have
assumed that σ2

dd = 0.5σ2 and σ2
wds = σ2

wdr = 0.25σ2, with
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Fig. 2. Parametric max yield bounds for k = 3.

σ2 being the total variance. Notice that the yield decreases for
larger n, as expected. Also note that as x increases, it is more
likely that the max of X(i) is less than x.

E. Bounded Variations

Notice that, in the previous expressions for the yield, the
yield decreases for larger n. One would somewhat expect this,
but it is surprising to note that the yield approaches zero as
n goes to infinity for any combination of values of the three
variances. This may also be seen in the plots of Fig. 1. This is
somewhat nonphysical and arises due to the fact that we have
assumed that the distribution of Xwdr(i) is normal; recall that
the normal distribution extends to ±∞ in both directions. In
reality, one would expect process variations (and, consequently,
delay variations) to be bounded. If a device somewhere deviates
by large amounts, like 6σ or 7σ, then chances are that there is
a serious problem with that die and that it would be lost due
to other reasons other than timing yield. Therefore, it is a good
idea to limit the spread of the cdf of Xwdr(i) to some multiple
of σ in order to avoid these nonphysical effects at large n.
In this section, therefore, we will use a truncated normal
distribution for Xwdr(i). For clarity of presentation, we will
restrict the analysis to the illustrative special case introduced in
Section III-D where all variances are the same across the die.
The analysis can be extended to the general case. Suppose,
therefore, that Xwdr(i) is bounded by ±kσ, and let Φt(x)
represent the cdf of the truncated standard normal, which is zero
for x ≤ −k and one for x ≥ k.

We can plug Φt(·) instead of Φ(·) (for Xwdr(i)) into the
aforementioned equations and plot the resulting Max and Min
yield integrals, as shown in Fig. 2 for the Max yield. In this
case, the yield loss at higher n values is limited so that the 1e6
and 1e8 plots in each group are indistinguishable. This is to
be expected, because the “tail” of the distribution has been cut
off, and it is primarily the tail that causes the yield loss at very
large n.

When working with a truncated normal, it is noteworthy that
we can derive asymptotes on the parametric yield curves that
are independent of n. This means that as n tends to infinity, the
parametric yield curves will be equal to these asymptotes. The

TABLE I
REQUIRED SETTINGS FOR A YIELD LOWER BOUND

derivations are not shown, for space limitation, but lead to the
following results, where Y0(x) = limn→∞ Y (x):

Y0
(lb)
max(x) = Φ

(
x − kσwd

σdd

)
(40)

Y0
(lb)
min(x) = Φ

(
x − kσwd

σdd

)
(41)

Y0
(ub)
max(x) = E

[
Φ
(

x − σddZ0 − kσwdr

σwds

)]
(42)

Y0
(ub)
min (x) = E

[
Φ
(

x + σddZ0 − kσwdr

σwds

)]
(43)

where, as before, Z0 = Xdd/σdd is an independent standard
normal RV. Equations (40) and (41), particularly when applied
to timing yield as we will do later in this paper, exhibit similar
observations as was made in [21]. Namely, the within-die
variations determine the mean of the yield, while the die-to-
die variations determine the spread of the yield. Fig. 2 shows
the plot of these asymptotes for the Max yield case. These
asymptotes are very tight and indistinguishable on the plot from
the 1e6 and 1e8 curves.

In practice, one is quite interested in the yield lower bound
expressions. Table I summarizes the conditions required to get
a lower bound on the Max (Setup time) yield and the Min (Hold
time) yield. It summarizes the results of this section, along with
Section II-C, to show that, in the case of path delay, where gate
delays are the “parameters,” in order to produce a lower bound
on the yield, one must set the within-die systematic variations
of gate delays to be totally correlated (ρwds = +1). Looking at
block delay, where delay is the maximum/minimum of a large
number of paths, with path delays as the “parameters,” and in
order to produce a lower bound on both Setup (Max) and Hold
(Min) yields, one must set the within-die systematic variations
of path delays to be independent (ρwds = 0).

IV. APPLICATION: TIMING MARGINS

AND VIRTUAL CORNERS

In the previous section, we have presented the mathematical
framework leading to closed-form expressions for the paramet-
ric yield. We have also noted that when X(i)’s represent path
delay variations, the parametric yield is essentially a timing
yield, which is of more interest. As stated in Section I, two dual
concepts are important for designers, namely, the concept of
a timing margin to account for variations and/or the concept
of a corner or device file setting, with which to run timing
analysis. In this section, we show how we use the timing yield
expressions in order to select, for a desired target yield, the
corresponding timing margin and virtual corner that guarantee
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that yield. Note that the corner is labeled as virtual because
it is extracted from a design’s performance, unlike traditional
corners which are extracted by looking at transistors’ or gates’
performances.

Let N1 be the number of stages (gates) on a path that would
be representative of long critical paths in a given design. We
also consider that the design contains a large number of such
disjoint (nonintersecting) critical paths of N1 gates. If one is
interested in the maximum circuit delay, then the Max timing
yield expression can be used

Ymax(τ1) = P {DN1(j) ≤ τ1,∀j} ≥ Y0
(lb)
max(τ1) (44)

where DN1(j) is the path delay variation described in
Section II-C and Y0

(lb)
max(·) is the lower bound expression for

the yield found in Section III-E, with path delay being consid-
ered as the “parameter.” Since the paths being considered are
disjoint, then any correlations between their delays are only
due to correlations in the process variations, and not to the
sharing of circuit component. If Y is the desired target Max
yield, then the techniques of Section III effectively provide the
inverse function to compute the margin τ1 for any desired Y

τ1 = Y0
(lb)
max

−1
(Y). (45)

This τ1 is the timing margin of an N1-gate path for the
desired specified Max yield Y . Therefore, in order to get
the desired yield, the circuit should be designed to “pass”
the timing constraints when DN 1(j) = τ1 for all j. Now, to
get the virtual corner, we need to move from the margin to the
process (transistors). We use the same technique of Najm and
Menezes [5], where the margin τ1 is equally distributed first
among the gates along the path, i.e., D(i) = τ1/N1, and then,
using the gate delay model, we relate the transistor corner with
the gate margin

δ =
τ1/N1

ασL(i) + βσV (i)
. (46)

This δ effectively defines the device setting for which the
circuit should be tested for timing constraint violations so as
to guarantee that the timing Max yield is at least Y . Similar
analysis can be used for the Min yield case to verify the
minimum circuit delay.

We now illustrate this with a numerical example. Assume
that the variances of channel length and threshold voltage
follow the following ratio:

(
σ2

dd,L, σ2
wds,L, σ2

wdr,L

)
=
(
0.5σ2

L, 0.25σ2
L, 0.25σ2

L

) ∀i

(47)(
σ2

dd,V , σ2
wds,V , σ2

wdr,V

)
=
(
0.5σ2

V , 0.25σ2
V , 0.25σ2

V

) ∀i.

(48)

At the gate level, σ2
D = (α2σ2

L + β2σ2
V ) and

(
σ2

dd,D, σ2
wds,D, σ2

wdr,D

)
=
(
0.5σ2

D, 0.25σ2
D, 0.25σ2

D

) ∀i.
(49)

In addition, at the path level, we have

σ2
dd,DN1

= 0.5N2
1 σ2

D (50)

σ2
wds,DN1

= 0.25N2
1 σ2

D, for lower bound (51)

= 0.25N1σ
2
D, for upper bound (52)

σ2
wdr,DN1

= 0.25N1σ
2
D. (53)

The last two equations are notable for the absence of the square
factor in N1, since they result from averaging of variations due
to independence. Let σ2

DN1
be the total path variance. If we

want a Max yield that is greater than 95%, then we use the
expression in (45) with Y = 0.95 and truncation factor k = 3
to get the timing margin which is, in this case, τ1 ≈ 3.1σDN1

.
Then, using (46), we get

δ =
(

3.1σDN1
/N1

ασL + βσV

)
. (54)

Note that σDN1
= N1σD

√
0.75 + 0.25N−1

1 resulting from
adding the path variances in the lower bound case, and assum-
ing that N1 = 9, we get

δ = 2.73

√
α2σ2

L + β2σ2
V

ασL + βσV
. (55)

If r = (ασL)/(βσV ), then

δ = 2.73
√

1 + r2

1 + r
. (56)

If, for example, r = 1, then δ ≈ 1.93, so that the circuit would
need to be simulated (and its timing checked), with all its
transistors’ channel lengths and threshold voltage being set
at their +1.93σ points. Notice that, since α and β depend
on transistor sizing, (56) provides a way in which δ can be
controlled by circuit optimization and/or process tuning.

Note that δ ≈ 1.93 is obtained from the lower bound which
corresponds to the worst possible setting of correlation as
discussed earlier. We have also used the upper bound on the
yield (corresponding to best setting of correlation) to compute
an optimistic virtual corner at a 95% yield, and it was found to
be δ ≈ 1.43.

V. GENERIC CIRCUIT MODEL

The generic path model for circuits is useful to study setup
margins (Max yield) or hold margins (Min yield) separately.
However, in order to study the interactions among long and
short paths, and the tradeoffs between setup and hold margins,
a more detailed model is required. In this section, we provide
such a model, which we refer to as the generic circuit model,
which involves the specification of different classes of paths, as
an extension of the generic path model.

According to this model, a generic circuit is a collection
of a certain number M of classes of paths. Each class j =
1, 2, . . . , M consists of nj identical generic paths of depth Nj .
The depth is the number of stages along a path as defined
earlier; a stage is a logic gate or cell along with its fan-
out interconnect network. In a logic circuit, if a logic path is
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TABLE II
GENERIC CIRCUIT WITH FIVE CLASSES OF PATHS

well optimized, then every stage is loaded by a total output
capacitance which is three to four times as big as its own input
capacitance, hence the standard FO4 configuration, so that the
stages on a path have approximately the same delay.

We use the same assumption as before that all stages have
the same nominal delay and the same sensitivity to process
variables (α and β). Thus, all stages are identical, and all paths
within the same class are identical; paths in different classes
have different depth.

The classes can be viewed as the result of discretization
of path delays into “bins” of paths with equal or similar
delay. We further assume the existence of a “circuit depth
histogram” which provides the fraction of the total number of
paths that each class constitutes. We express these fractions as
probabilities

P{N = Nj} = γj , j = 1, 2, . . . , M (57)

where N is a discrete RV that represents path depth, Nj is the
depth of paths in class j, and γj is the fraction of total paths
that have a depth of Nj . If n is the total number of paths in a
circuit, then the number of paths nj in class j is

nj = γj × n
M∑

j=1

γj = 1. (58)

An example is given in Table II, which, for a test circuit A
with five classes, lists the values of Nj and γj for every class.
Also shown is the corresponding path count nj in every class
based on an assumed total path count of 10 000. The table also
shows the nominal path delay D

(nom)
Nj

in every class. Based
on such a circuit model, we will provide the mathematical
framework that leads to predicting timing margins that need to
be left to guarantee a desired timing yield. We will also validate
our margins with Monte Carlo simulations. We consider the
generic circuit to be an intuitive and useful model for logic
circuits in the same way as the generic path has been found to
be useful [14], [15]. Recall that timing yield is the probability
that circuit delay is within the specified timing constraints.
These constraints can be upper limits on the maximum circuit
delay, lower limits on the minimum circuit delay, or both in
what is known as interval or two-sided constraints. Yield loss is
incurred if circuit timing falls outside the constraints. Note that
constraints on the maximum circuit delay are also known as
setup time constraints, and constraints on the minimum delay
are known as hold time constraints. In the next section, we
define and express the setup yield and the hold yield in closed
forms. Then, we combine the two analyses and present a margin
budgeting scheme which allows to make a tradeoff between
yield loss due to setup and hold violations.

VI. SETUP AND HOLD YIELD ANALYSIS

Setup yield YS can be written in the following informal way:

YS = P{All path delays are less than max constraint}. (59)

Recall that, in our generic circuit representation with multiple
classes, each class consists of identical generic paths whose
delay variation is modeled using the generic parameter model.
Let DNj

(i) be the path delay variation of path i in class j. Then,
we can express path delay variation using the parameter model
in the following way:

DNj
(i) = D

(dd)
Nj

+ D
(wds)
Nj

(i) + D
(wdr)
Nj

(i) (60)

= D
(dd)
Nj

+ D
(wd)
Nj

(i) (61)

where j = 1, . . . , M is the class index, i = 1, . . . , nj is the
path index in class j, and the right-hand side is simply the
three components of variability. Note that, in the second line,
we have combined the systematic and random components
into one within-die component of variability whose variance
is equal to the sum of the variances of the systematic and
random components. Now, combining the aforesaid model for
path delay with (59) gives the formal expression for setup yield

YS = P
⎧⎨
⎩

M⋂
j=1

[ nj⋂
i=1

(
DNj

(i) ≤ τj

)]⎫⎬⎭ (62)

where the
⋂

operator is used to indicate that we are interested
in the probability of all these joint events.

In other words, the setup yield is the probability that, over all
classes M , all path delay variations in each class are less than
a timing margin τj (specific to each class j). This margin is the
amount of “padding” or slack, which should be kept between
the maximum delay constraint and the nominal path delay in
class j, to account for delay variations. Using the previous
expression for the setup yield, we will later show how we can
predict a unique setup margin τs that should be left as slack
on the maximum nominal path delay in order to guarantee a
desired setup yield for the circuit under consideration.

Starting from (62), and noting that the second intersection
defines a statistical max operation, we can write the following:

YS = P
⎧⎨
⎩

M⋂
j=1

[
nj

max
i=1

(
DNj

(i)
) ≤ τj

]⎫⎬
⎭ . (63)

In Section III-A, it was shown, using Slepian’s inequality,
that if the systematic within-die delay variations are assumed to
be uncorrelated, then this would lead to a lower bound on the
statistical max and min operations. We will use again this result
here to write the following lower bound on the setup yield YS :

YS ≥ P
⎧⎨
⎩

M⋂
j=1

[
nj

max
i=1

(
D

(dd)
Nj

+ D
(wd)
Nj

(i)
)
≤ τj

]⎫⎬
⎭ (64)

where D
(wd)
Nj

(i)’s are assumed to be uncorrelated for different
i’s (hence independent because it is Gaussian).
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A. Asymptotic Convergence

Let Zj be an RV that is equal to the maximum delay variation
for class j. This is shown in the following:

Zj =
nj

max
i=1

(
D

(dd)
Nj

+ D
(wd)
Nj

(i)
)

(65)

=D
(dd)
Nj

+
nj

max
i=1

(
D

(wd)
Nj

(i)
)

(66)

=D
(dd)
Nj

+ Wj (67)

where Wj = maxnj

i=1(D
(wd)
Nj

(i)). Note that because the die-to-
die component is the same for all i’s, then we can take it outside
the max operation. We will now prove that as nj → ∞, the
variance of Wj will go to zero; therefore, we can approximate
Wj by a constant μj that is equal to its 50th percentile Wj,50%.

Let Y be the maximum of n independent identically distrib-
uted standard normal RVs. In studying the asymptotic proper-
ties of such an RV, it has been shown in [22] that V = ln(Y −ln)
has a unique limiting distribution that is independent of n,
where ln is a coefficient (not an RV) that is proportional to√

2 log n. Since V has a distribution that is independent of n,
its variance s2 is independent of n. Therefore

s2 = Var [ln(Y − ln)] = ln
2 Var[Y ] (68)

where Var[·] denotes variance and

Var[Y ] =
s2

l2n
→ 0, as n → ∞ (69)

which is true because l2n is proportional to log n.
This result can be applied to Wj , which is the maximum of

nj independent zero-mean Gaussian RV D
(wd)
Nj

(i), after scaling
each by its standard deviation to transform them to standard
normal RVs. Since the variance of Wj goes to zero for large nj ,
we can approximate it by its 50th percentile Wj,50% which we
denote by μj . Now, let Ẑj be an RV such that

Ẑj = D
(dd)
Nj

+ μj . (70)

Then, Zj converges to Ẑj for large nj . Note that μj is given by

μj = Wj,50% = Φ−1
(
(0.5)

1
nj

)
× σ

(wd)
Nj

(71)

where σ
(wd)
Nj

is the standard deviation of D
(wd)
Nj

.

Fig. 3 shows the plots of the distributions of Zj (solid) and Ẑj

(dashed) for increasing values of nj = 10, 100, 1e3, 1e6, 1e7,
and 1e9. The approximation is very tight for nj that is greater
than 100, and the two become indistinguishable for larger nj .
Since we anticipate each class of paths to contain hundreds, if
not thousands, of paths, then the approximation is very good,
and Ẑj will be used in lieu of Zj in the analysis hereafter.
Also note that the use of truncated normals accelerates the
convergence and guarantees that μj in (71) remains bounded.

Fig. 3. Approximate and true distributions.

B. Setup Yield Expression

Starting from (64), and replacing the expression inside the
brackets by Ẑj , we get the following expression for the setup
yield:

YS ≥P
⎧⎨
⎩

M⋂
j=1

(
Ẑj ≤ τj

)⎫⎬
⎭ (72)

=P
⎧⎨
⎩

M⋂
j=1

(
D

(dd)
Nj

≤ τj − μj

)⎫⎬
⎭ . (73)

Recall that the die-to-die component of variation affects all the
circuits in the same way, i.e., the variation is governed by a
single RV

D
(dd)
Nj

= σ
(dd)
Nj

Z0 (74)

where σ
(dd)
Nj

is the standard deviation of the die-to-die compo-
nent and Z0 is a standard normal RV. Note that σ

(dd)
Nj

depends
on j and is different for different classes. Combining (73) and
(74) gives the following expression for the setup yield:

YS ≥P
⎧⎨
⎩

M⋂
j=1

⎛
⎝Z0 ≤ τj − μj

σ
(dd)
Nj

⎞
⎠
⎫⎬
⎭ (75)

=P
⎧⎨
⎩Z0 ≤ M

min
j=1

⎛
⎝τj − μj

σ
(dd)
Nj

⎞
⎠
⎫⎬
⎭ (76)

= Φ

⎛
⎝ M

min
j=1

⎛
⎝τj − μj

σ
(dd)
Nj

⎞
⎠
⎞
⎠ = Yo (77)

where Yo is the desired lower bound on the setup yield YS .

C. Setup Margin τs

The aforementioned equation for the setup yield YS is very
important because it will allow us to budget each margin τj

and to finally assign a unique setup margin τs for the circuit,
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which guarantees a desired setup yield as follows. Let amin be
such that

amin =
M

min
j=1

⎛
⎝τj − μj

σ
(dd)
Nj

⎞
⎠ . (78)

Recall that μj and σ
(dd)
Nj

are determined and fixed for each
class, but τj is to be determined. If a setup yield of, for example,
YS = Y is required, then we can set the lower bound Yo in (77)
to Y , and get a value for amin as follows

amin = Φ−1(Y). (79)

We can then use this value of amin to budget the yield between
the different classes. In order to reduce the design effort for
class j, one would like the margin τj to be small, and so we
require

τj − μj

σ
(dd)
Nj

= amin, j = 1, . . . , M (80)

where, effectively, we require the different class contributions
to the yield to be equal. In this way, we have “relaxed” the yield
requirements for each class while ensuring that the overall
desired yield is met. As mentioned, this is important, since it
has the benefit of reducing the design effort required to meet
the timing and yield constraints.

This gives us the following expression for each class margin:

τj = σ
(dd)
Nj

× amin + μj , j = 1, . . . , M. (81)

Recall that the margin τj represents how much designers should
leave as slack between the nominal path delay of class j and
the maximum delay constraint (setup constraint). Let D

(nom)
Nj

be the nominal path delay of the generic paths of class j. Then,
we can define a unique setup margin τs to be padded on top
of the maximum nominal path delay for all classes in order
to guarantee that the desired setup yield is attained. This is
expressed in the following way:

τs =
M

max
j=1

(
D

(nom)
Nj

+ τj

)
− M

max
j=1

(
D

(nom)
Nj

)
(82)

which may be explained with the help of Fig. 4. For each class
with the nominal path delay of D

(nom)
Nj

(hashed bars), we get
the class margins τj (solid bars) using (81). We then apply (82),
subtracting the maximum nominal delay from the maximum
delay with the added margin τj to get the setup margin τs.
Therefore, we are providing a unique margin to be allowed on
the nominal maximum circuit delay in order to guarantee the
required yield. Note that no other path delays exceed the point
defined by the maximum nominal delay with the added setup
margin τs.

D. Monte Carlo Validation

In this section, we validate our approach with Monte Carlo
analysis based on an industrial 90-nm CMOS library. For this

Fig. 4. Setup margin computation.

matter, we use circuit A that was defined in Table II. This
circuit has five classes of paths with different depths, nominal
delay values, and numbers of paths. We assume that two process
parameters are varying (channel length and threshold voltage),
to which we determine gate delay sensitivities for every class
of path. In our experiment, it was observed that the variation
in process parameters resulted in 20%–27% 3σ gate delay
variation. Also, we have assumed a breakdown of (50%, 25%,
and 25%) total parameter variance into die-to-die, systematic
within-die, and random within-die variances, respectively, as
was done earlier. Applying the analysis described in Section V,
we can get the path delay model for each class of paths.

We assume that the desired setup yield is Y = 99.73%.
Applying our analysis on circuit A, without truncation of
parameter variations, we get a setup margin τs = 4.85 ns that
corresponds to 36% of the maximum nominal path delay of
13.5 ns found in Table II. Recall that this margin is valid
for arbitrary within-die correlation since it was derived from
the yield lower bound. It is therefore a conservative timing
margin; this means that, for a given correlation setting, the true
setup margin is expected to be less than the margin that we
have predicted. We verify this statement through Monte Carlo
simulations for different within-die correlations. To this end, we
have considered a k × k grid on which we place all the 10 000
paths of circuit A. We also use a number (p) of RVs to model
the within-die correlations between paths. If p is large, within-
die correlation between paths is weak. If p is small, correlation
is strong. We have run Monte Carlo for 10 000 samples and
generated the distribution of maximum path delay. From this
distribution, we determined the 99.73% delay percentile and
subtracted from it the maximum nominal path delay to get
the setup margin. We have run this experiment for different
values of p to emulate situations ranging from high correla-
tion to almost independence. Monte Carlo analysis predicted
setup margins ranging from 3.54 ns (for strong correlations) to
4.54 ns (for weak correlations) as opposed to our 4.85-ns pre-
dicted margin. Fig. 5 shows the predicted margins for the exper-
iments that we performed. Note that the leftmost Monte Carlo
margin corresponds to the case of strong correlations, and the
rightmost Monte Carlo margin corresponds to the case of weak
correlations.
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Fig. 5. Monte Carlo setup margins for 99.7% setup yield.

E. Hold Yield

In the previous section, we presented in detail the analysis
that led to the final expression for the setup yield YS and the
corresponding setup margin τs. In this section, we will briefly
repeat the same analysis for the hold yield. Recall that the hold
yield can be informally defined in the following way:

YH =P{All path delays are greater than min constraint}. (83)

Using the same analysis as before, we can rewrite the hold yield
to be

YH = P
⎧⎨
⎩

M⋂
j=1

[ nj⋂
i=1

(
DNj

(i) ≥ −τ ′
j

)]⎫⎬⎭ (84)

where τ ′
j is the margin (positive) that should be left between

the minimum constraint and the nominal path delay for class j.
The aforementioned equation can be transformed in the same
way as previously done

YH =P
⎧⎨
⎩

M⋂
j=1

[
nj

min
i=1

(
DNj

(i)
) ≥ −τ ′

j

]⎫⎬
⎭ (85)

=P
⎧⎨
⎩

M⋂
j=1

[
D

(dd)
Nj

+
nj

min
i=1

(
D

(wd)
Nj

(i)
)
≥ −τ ′

j

]⎫⎬
⎭ . (86)

Again, using Slepian’s inequality, the assumption that
D

(wd)
Nj

(i)’s are independent will give us a lower bound on
the hold yield. This allows us again to approximate the
minimum of nj independent Gaussian RVs by a constant μ′

j

that is equal to Uj,50%, the 50th percentile of the distribution

of Uj = minnj

i=1(D
(wd)
Nj

(i)) [22]

μ′
j = Uj,50% = Φ−1

(
1 − (0.5)

1
nj

)
× σ

(wd)
Nj

. (87)

The final expression for the hold yield is

YH ≥ 1 − P
⎧⎨
⎩Z0 ≤ M

max
j=1

⎛
⎝−τ ′

j − μ′
j

σ
(dd)
Nj

⎞
⎠
⎫⎬
⎭ (88)

= 1 − Φ

⎛
⎝ M

max
j=1

⎛
⎝−τ ′

j − μ′
j

σ
(dd)
Nj

⎞
⎠
⎞
⎠ . (89)

In the same way as before, we will choose a bmax to guarantee
a desired hold yield of, for example, YH ≥ Yo = Y

bmax =
M

max
j=1

⎛
⎝−τ ′

j − μ′
j

σ
(dd)
Nj

⎞
⎠ = Φ−1 (1 − Y) . (90)

Then, we can budget τ ′
j in such a way that

−τ ′
j − μ′

j

σ
(dd)
Nj

= bmax, j = 1, . . . , M. (91)

This gives us the margins that should be left between the
minimum delay constraint (hold constraint) and the nominal
path delay of every class of paths

τ ′
j = −σ

(dd)
Nj

× bmax − μ′
j , j = 1, . . . , M. (92)

Note here that τ ′
j is positive because bmax and μ′

j are both
negative.

Finally, we combine the aforesaid margins with the values
of nominal path delay D

(nom)
Nj

to get a unique hold margin τh

for the circuit. This margin should be left as slack between the
minimum constraint and the minimum nominal path delay over
all classes

τh =
M

min
j=1

(
D

(nom)
Nj

)
−

M
min
j=1

(
D

(nom)
Nj

− τ ′
j

)
. (93)

Our hold analysis was validated using the same strategy
presented in Section VI-D, and have found that Monte Carlo
simulations predicted hold margins ranging from 1.56 ns to 2.05
(for various correlations) as opposed to 2.22 ns predicted by our
approach.

VII. APPLICATION: MARGIN BUDGETING

In the previous section, we presented a way to verify that
a desired setup yield or hold yield is met. The method is
simple, in that it provides a setup margin τs, and a hold margin
τh, which should be allowed on the nominal maximum and
minimum path delays, respectively, to guarantee the desired
yields. We now combine the two analyses together, and give
an expression for the total yield YT , which captures both setup
and hold yield loss. This provides control over the amount of
yield loss from either setup or hold violations. This means that
if hold yield is dear, one can pick the margins in such a way
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that all timing yield losses are due to setup yield loss and vice
versa. The total yield is

YT = P
{

M⋂
j=1

[(
D

(dd)
Nj

+
nj

min
i=1

(
D

(wd)
Nj

(i)
)
≥ −τ ′

j

)

⋂(
D

(dd)
Nj

+
nj

max
i=1

(
D

(wd)
Nj

(i)
)
≤ τj

)]}
. (94)

Again, a lower bound is guaranteed when the within-die varia-
tions are assumed to be uncorrelated. Then, by applying the ap-
proximations that were presented earlier, mainly replacing the
minimum and maximum operations by their constant estimators
gives the final expression for the total yield

YT ≥P
⎧⎨
⎩

M⋂
j=1

[
−τ ′

j − μ′
j ≤ D

(dd)
Nj

≤ τj − μj

]⎫⎬
⎭ (95)

=P{bmax ≤ Z0 ≤ amin} (96)
= Φ(amin) − Φ(bmax) (97)

where μj , μ′
j , Z0, bmax, and amin are as defined before. Note

that we need to assign values for amin and bmax in order to
guarantee a desired total yield YT . Once we have chosen their
values, the same previous analysis applies, i.e., find τj and τ ′

j

from amin and bmax using (81) and (92), respectively, and then
determine the setup margin τs and the hold margin τh using
(82) and (93), respectively.

Looking at (97), it is easy to see that if a total yield of,
for instance, YT ≥ 95% is desired, then different solutions
(amin, bmax) exist. For each solution, the amount of yield loss
from setup and hold violations differs, but the total yield loss
is the same. Let LT , LS , and LH be the total, setup, and hold
yield losses, respectively. Then, we can write

LT = 1 − YT = 1 − Φ(amin) + Φ(bmax) (98)
LS = 1 − YS = 1 − Φ(amin) (99)
LH = 1 − YH = Φ(bmax). (100)

Note that the total yield loss equals the sum of yield loss from
setup and hold. We now define the “yield loss budget” ξ in [0, 1]
to be the fraction of total yield loss induced by hold violations.
This means that

LH = ξLT (101)
LS = f(1 − ξ)LT . (102)

Combining the aforementioned four equations enables us to get
a unique (amin, bmax) and, hence, a unique (τh, τs) solution for
a specific yield loss budget ξ

bmax = Φ−1(ξLT ) (103)
amin = Φ−1 (1 − (1 − ξ)LT ) . (104)

We have tested the previous analysis on circuit A shown
in Table II. For a total yield of YT = 95% and a yield loss
budget of ξ = 0.8, our results show that, without truncating the
parameter distributions, the resulting margins are τs = 4.44 ns
(33% of the maximum nominal delay of 13.5 ns) and τh =

TABLE III
SETUP AND HOLD MARGINS FOR DIFFERENT TEST CIRCUITS

Fig. 6. Yield loss budgeting: Sweep over ξε(0, 1), YT = 95%.

1.81 ns (23% of the minimum nominal delay of 8 ns). We have
performed additional tests for different test circuits with varying
number of classes of paths; the margins were derived at two
yield targets, namely, 95% and 98%, and for two cases, namely,
without truncation (k = ∞) and with truncation (k = 3), and
a yield loss budget of ξ = 0.8. Our results are recorded in
Table III, where setup and hold margins are normalized to the
nominal maximum and minimum circuit delay, respectively.

Fig. 6 shows an interesting plot of τh versus τs, for circuit A
at a desired yield of 95%, which was obtained by sweeping the
yield loss budget ξ between 0+ and 1−. As expected, when the
setup margin is increased (more slack), causing setup yield loss
to decrease, we can reduce the hold margin and incur more hold
yield loss while maintaining the same total yield. This gives
designers more flexibility in their choice of margins.

VIII. CONCLUSION

In this paper, an early technique for timing analysis was
proposed, one that maintains the traditional methodology of
using timing margins and corners. Our technique is based on
a timing yield model which allows one to determine and budget
the setup and hold margins required for a proposed chip design,
as well as to elevate the concept of corners to the chip level
by carefully selecting a “virtual corner” based on the desired
circuit yield metric. The technique is valid irrespective of (and
for any possible setting of) the within-die correlations, which
allows one to handle situations of unknown or uncertain corre-
lations. The process requires up-front specification of the target
process technology and the circuit style, through a generic
circuit description in terms of one or more classes of generic
paths. As a result, the proposed technique provides setup and
hold timing margins which, if observed for the longest and
shortest nominal path delays during subsequent circuit design,
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would allow the chip to meet the timing yield target. These
margins are not unique, but may be traded off against each
other, so that one may allow more setup yield loss than hold
yield loss, or vice versa, by simply changing a single parameter.

APPENDIX

BOUNDS ON SUM OF GAUSSIAN RVS

In this section, we will find bounds on the distribution of the
sum of N normally distributed RV X(i)’s with unknown cor-
relation. These bounds will turn out useful when we build the
generic path variational delay model. Essentially, we prove that
if the unknown correlation ranges from zero (independence) to
one (total correlation), then a lower bound on the distribution
of the sum is achieved when X(i)’s are assumed to be totally
correlated, and an upper bound is achieved when X(i)’s are
assumed to be independent.

Let S =
∑N

i=1 X(i), where S is a zero-mean normal RV
with some variance; call it σ2

s . The distribution of S is as
follows:

P{S ≤ x} = Φ(x/σs) (105)

where Φ(·) is the standard normal cdf. Since Φ(·) is increasing,
then P{S ≤ x} is decreasing in σs (for x ≥ 0, which is the
range of interest if one is looking to achieve high yield). The
variance of S is a function of the variances of X(i)’s and
the unknown correlation coefficient ρij

σ2
s =

N∑
i=1

σ2
Xi

+ 2
∑
i�=j

ρijσXi
σXj

. (106)

Therefore, it is easy to see that a lower (or upper) bound
on the distribution of S is achieved when σs is maximized
(or minimized), i.e., when ρij are set to one (or zero).
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