
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008 1291

A Linear-Time Approach for Static Timing Analysis
Covering All Process Corners

Sari Onaissi, Student Member, IEEE, and Farid N. Najm, Fellow, IEEE

Abstract—Manufacturing process variations lead to circuit tim-
ing variability and a corresponding timing yield loss. Traditional
corner analysis consists of checking all process corners (combina-
tions of process parameter extremes) to make sure that circuit
timing constraints are met at all corners, typically by running
static timing analysis (STA) at every corner. This approach is
becoming too expensive due to the increase in the number of
corners with modern processes. As an alternative, we propose a
linear-time approach for STA which covers all process corners
in a single pass. Our technique assumes a linear dependence of
delays and slews on process parameters and provides estimates of
the worst case circuit delay and slew. It exhibits high accuracy in
practice, and if the circuit has m gates and n relevant process
parameters, the complexity of the algorithm is O(mn).

Index Terms—Hyperplanes, multicorner, process variations,
static timing analysis (STA).

I. INTRODUCTION

THE CONTINUOUS scaling of very large-scale integration
(VLSI) technology has led to an increase in the impact that

manufacturing process variations can have on circuit delays.
These process variations can include die-to-die and within-
die process variations, and more generally, they include supply
voltage and temperature variations.

One traditional approach to timing verification, at least for
application-specific integrated circuits (ASICs), is to make sure
that a circuit passes its timing requirements at every process
corner, using static timing analysis (STA). We will refer to this
as traditional corner analysis. A loose definition of a “process
corner” is that it is a vector of extreme values of all process
parameters under consideration. However, such techniques,
which involve performing STA over all corners, can be time
consuming as the number of corners can be exponential in
the number of process parameters under study. Moreover, such
methods usually do not allow for the incorporation of within-
die variations into the timing analysis of a circuit.

With the increase in the number of interesting process vari-
ables in modern processes, the increased cost of traditional
corner analysis has become a concern. One alternative approach

Manuscript received June 1, 2007; revised September 28, 2007 and
January 11, 2008. This work was supported in part by Intel Corporation and
in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC). This paper was recommended by Associate Editor D. Sylvester.

The authors are with the Department of Electrical and Computer En-
gineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail:
sari@eecg.utoronto.ca).

Digital Object Identifier 10.1109/TCAD.2008.923635

has been statistical STA (SSTA) [2], [5]–[7], [9], [13]. In SSTA,
process parameters are considered to be random variables
(RVs), and they lead to other RVs that model cell delays and
signal arrival times. However, SSTA has certain problems of
its own. For one thing, it depends on knowledge of correlations
among within-die features, which are not easily available. Also,
it is not necessarily very cheap, particularly when one needs
to use principal component analysis to resolve the within-die
correlation issue. Furthermore, certain parameters that affect
timing are not statistical in nature and cannot be handled using
SSTA. For example, supply voltage and temperature variations
are not necessarily statistical; rather, they are uncertain. As-
suming that an uncertain variable has a statistical distribution
(of any kind) when it actually does not can lead to wrong con-
clusions. SSTA techniques typically compute bounds on delays
(slews) by looking at worst case points in delay (slew) distribu-
tions. However, to the best of our knowledge, all these methods
use parameter distributions, or at the very least, they use the
fact that parameters have distributions with certain properties
(e.g., apply the central limit theorem) in order to compute these
bounds. Therefore, when some of the underlying parameters
are uncertain and not random, the application of such methods
becomes problematic. In this paper, we consider all parameters
to be uncertain rather than statistical. Obviously, any statistical
parameter (with known finite-span distribution) can be modeled
by an uncertain parameter (with a certain range), but not the
other way around. Therefore, this paper can be used to handle
statistical parameters as well, for example, if their distributions
are uncertain or if their correlations are unknown, so that one is
prepared to assume them to be independent.

We propose a novel technique for all-corner analysis in a
single shot, with an approach that looks very much like a single
run of STA. This is achieved by using linear models of delay
and slew (in terms of underlying parameters) and propagating
sensitivities through the circuit. The computational complexity
of the algorithm will be seen to be O(mn), where m is the
number of gates or cells in the circuit and n is the number
of process parameters under consideration. Compare this with
the cost of traditional corner analysis, which is O(m2n). Our
approach is not ideal, it does incur some error in the estimation
of the worst case delay, for example, but this error is negligible
for the circuits that we have tested.

The rest of this paper is organized as follows. An overview
is given in Section II, which conveys the salient features of our
technique including the delay and slew model and the scope
of this paper. In Section III, we present our “max” operation
for finding the maximum of a set of affine linear functions in
process parameters. A description is then given in Section IV

0278-0070/$25.00 © 2008 IEEE

1292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

Fig. 1. Simple 1-D case.

of the propagation technique through a single logic gate,
cell, or stage. Section V is a brief description of circuit-level
propagation, and Section VI describes implementation issues.
Finally, Section VII presents empirical validation results, and
concluding remarks are given in Section VIII.

II. OVERVIEW

The general idea of our approach is very similar to traditional
STA, except that, instead of using specific values of arrival
times, delays, and slews, we represent them as affine linear
functions of the underlying process parameters.

A. Linearity

Linearity is not too strong an assumption, as one may
easily verify by circuit simulation on a modern process, and
it has been widely adopted recently in the context of SSTA
(e.g., in [13]). Propagating linear functions of delay in the
context of STA means that “add” and “max” operations have
to be performed on these linear functions at every node of
the timing graph. Moreover, state-of-the-art slew propagation
techniques also require the use of a “max” operation when
finding the slew of a signal at the output of a logic cell, although
this “max” operation is used in a somewhat less straightforward
way than in the case of delays. Thus, propagating linear func-
tions in a timing graph would seem problematic at face value
because, while the summation of two linear functions is also a
linear function, this is not true when one considers the “max”
operation. For instance, in the simplest case when, for example,
delay depends linearly on a single parameter, such as in Fig. 1,
the max of two intersecting straight line segments ab and cd is
a broken line aed. In this paper, instead of the true maximum
of two planes, which is not a plane, we will use a new plane
which is an upper bound on the two planes at all points. Thus,
in Fig. 1, we would use the dashed line ad in place of the true
maximum aed. We will only be concerned with the accuracy
(tightness of this upper bound) at the process corners and not at
any nominal midrange points. The trick is to do this efficiently
and with good accuracy. It looks easy in the 1-D case, but it is
not so simple in general.

As a final comment on the linearity question, we should
mention that, even if the linear dependence of gate delay
(or slew) on process parameters is not strictly valid, one can
still apply the proposed technique by first constructing a linear
expression which is an upper bound on whatever nonlinear
surface that one may have for describing the true dependence
of delay (or slew) on these parameters, and then use that

linear expression in place of the true delay (or slew) in our
algorithm.

B. Delay and Slew Model

All delays (and consequently all arrival times) and slews in
the logic circuit will be captured as affine linear functions of
normalized process parameters, whose values range between
−1 and +1. We will refer to these functions as delay and slew
hyperplanes; if there are n process parameters under consider-
ation, these functions represent planes in (n + 1)-dimensional
space. Normalizing a process parameter is a trivial operation,
which can be illustrated with a simple example. Suppose that
the delay of a logic gate depends linearly on one process
parameter, for example, Vt, according to D = α0 + s∆Vt,
where −0.05 V ≤ ∆Vt ≤ 0.05 V and s has units of seconds
per volt. This process parameter can be normalized, i.e., made
to vary between −1 and +1, by simply multiplying s by
0.05 V, leading to a new sensitivity coefficient α = (0.05 V)s
whose units are seconds. If a unitless variable X , which varies
between −1 and +1, is used to represent the normalized
threshold voltage, then the gate delay can now be written as
D = α0 + αX .

In general, having normalized all process parameters, a de-
lay or slew hyperplane is captured by a linear expression as
follows:

H = α0 + α1X1 + α2X2 + · · · + αnXn (1)

where Xi are the normalized process parameters, α0 is the nom-
inal value of delay or slew, and αi are the sensitivities of H to
the different normalized process parameter variations. A corner
C is defined as a set of values of all the normalized process
parameters, where each of the parameters takes a value of
either −1 or +1. Therefore, C = (X1,X2, . . . , Xi, . . . , Xn),
where Xi = ±1 for 1 ≤ i ≤ n. If the total number of process
parameters under consideration is n, then the total number of
corners is 2n.

The value of a hyperplane at a corner is the figure obtained
by substituting values of the coordinates of the corner in the
equation of the hyperplane. Thus, if, for a certain hyperplane,
the value at corner C is DC , then the point (C,DC) belongs
to this plane in (n + 1)-dimensional space. This terminology
is used to refer to both delays and slews, depending on the
hyperplane being considered. We also use the notation H(C)
to refer to the value of hyperplane H at corner C. Finally, we
will use the terminology “height of a point” in a hyperplane to
refer to the value (delay or slew) of that point. This will help
provide some intuition for the various operations that we will
perform on hyperplanes.

C. Scope of This Paper

In traditional corner analysis, one is typically concerned with
global die-to-die variations, not with within-die variations. The
true reason for this is the exponential complexity of traditional
corner analysis. It becomes too expensive to enumerate combi-
nations of within-die variations. However, due to the linear-time

ONAISSI AND NAJM: LINEAR-TIME APPROACH FOR STA COVERING ALL PROCESS CORNERS 1293

complexity of our approach, as will be seen later, it is actually
possible to apply it to within-die variations as well. Indeed, the
only requirement on our variables Xi in (1) is that their various
combinations be meaningful process corners that one cares
about. Some of them may be physical, some may be voltage
or temperature, some may be global, some may be local, etc. In
this paper, we will simply refer to the Xi as process parameters
and to their combinations as process corners, without regard to
exactly what type of parameters they are.

Due to space limitations, and for clarity of the presentation,
the description of the technique in this paper will be somewhat
limited. For one thing, we will focus on combinational circuits,
which are the crux of the problem, and we will only discuss
the problem of estimating the largest circuit delay and slew.
In other words, we focus on setup constraints. However, the
work is applicable as is to hold constraints, and we will show
a couple of charts at the end that illustrate our results on
estimation of the minimum circuit delay and slew (required to
check for hold time violations). Furthermore, if one includes
within-die variables, then the technique becomes useful for
checking the margins that one needs to leave for clock skew and
other mismatch related effects. With-in die variations would
be handled by including a separate (independent) variable for
each gate/region. This may result in longer delay expressions.
Whether it is pessimistic or not depends on whether the assump-
tion of independence among these variables, made by the user,
is realistic or not. This is not discussed in detail here, and more
work is required to fully apply our approach in that context.
This remains a possible future application of this paper.

III. MAX OPERATION

In traditional STA, “add” and “max” operations are used to
find the signal arrival time and slew at the output of a node
in the timing graph, given the arrival times and slews of its
input signals. As mentioned earlier, our method is quite similar
to traditional STA, except that, instead of propagating delays
and slews as exact values, they are propagated as hyperplanes.
This gives rise to the need for an efficient method for finding
the maximum of a given set of hyperplanes (note that adding
hyperplanes is a very simple operation). For a given set of
hyperplanes, if we consider the largest value at every corner
(over all the input hyperplanes evaluated at that corner), then
the resulting set of 2n points obviously need not lie on a single
hyperplane. For example, in Fig. 2, the four highest points at
the corners are (−1, −1, 10), (−1, +1, 10), (+1, −1, 16),
and (+1, +1, 14), and they are not coplanar. Yet, in order to
maintain computational efficiency, we will insist on modeling
all delays and slews with hyperplanes. Thus, we seek to find
a hyperplane that acts as a ceiling to the given hyperplanes at
all corners, never underestimating the maximum value at any
corner but possibly overestimating it at some, as we never want
to underestimate the maximum delay or slew at any process
corner. We are interested in a maximum hyperplane that has
minimal overestimation. The problem of finding an optimal
such hyperplane, which minimizes, for example, the average
overestimation error at all corners, can be formulated as a linear
program (LP). However, such an LP would be of exponential

Fig. 2. Peak point of two hyperplanes.

complexity, which is not acceptable. Instead, in this paper, we
propose a linear-time algorithm for finding a “good” maximum
hyperplane that is a ceiling on all the given hyperplanes without
being too pessimistic. Let the following k hyperplanes be our
given set of hyperplanes for which we want to find a maximum
hyperplane:

H1 = α
(1)
0 + α

(1)
1 X1 + α

(1)
2 X2 + · · · + α(1)

n Xn

H2 = α
(2)
0 + α

(2)
1 X1 + α

(2)
2 X2 + · · · + α(2)

n Xn

·
·
·

Hk = α
(k)
0 + α

(k)
1 X1 + α

(k)
2 X2 + · · · + α(k)

n Xn. (2)

We refer to these hyperplanes as the input hyperplanes, and we
shall refer to our objective hyperplane (their maximum) as the
output hyperplane HF .

Let P be the largest value over all corners of these input
hyperplanes, i.e.,

P =
k

max
i=1

[
2n

max
j=1

(Hi(Cj))
]

. (3)

We refer to P as the peak value of the input hyperplanes. Let
the peak value occur at corner Cp = (X∗

1,X
∗
2, . . . , X

∗
n), on

hyperplane Hp, where Hp is one of the k input hyperplanes,
so that

Hp(Cp) = P. (4)

We will call Hp the peak plane, Cp the peak corner, and the
point (Cp, P) the peak point of the k input hyperplanes.

Recall that the output hyperplane HF acts as a ceiling to the
k input hyperplanes at all corners but, at the same time, attempts
to minimize the overestimation incurred at some corners. In this
respect, we specify certain criteria that the output hyperplane
should satisfy and will then describe our algorithm. These
criteria are meant to reduce the overestimation error and to

1294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

make sure that the output hyperplane never underestimates the
maximum value at any corner.
1) Output Hyperplane Criteria: We require the output hy-

perplane HF to satisfy the following criteria.
1) For every corner Cj , for 1 ≤ j ≤ 2n, we require that

HF (Cj) ≥
k

max
i=1

(Hi(Cj)) (5)

so that the output hyperplane should never underestimate
the maximum value at any corner.

2) For every corner Cj , for 1 ≤ j ≤ 2n, we require that

HF (Cj) ≤ P (6)

where P is the peak value defined previously. The pur-
pose of this criterion is to limit the overestimation in-
curred by the output hyperplane.

3) Given that the peak point defined earlier is (Cp, P), we
also require

HF (Cp) = P (7)

so that the output hyperplane does not incur overestima-
tion at the peak corner.

In order to find an output hyperplane that meets these criteria,
our approach consists of the following four major tasks to be
performed: 1) finding the peak point over all input hyperplanes;
2) changing the origin; 3) raising the input hyperplanes; and
4) covering the raised hyperplanes with the output hyperplane.
In what follows, we explain each of these operations and
explain the procedures that we use to achieve these tasks. We
also prove that these procedures indeed achieve the required
tasks and that the combination of these four tasks results in a
hyperplane that satisfies the criteria specified before.

A. Finding the Peak Point

Recall that the peak point (Cp, P) is such that P is the
highest value achieved in the k input hyperplanes at all the
corners, and Cp = (X∗

1,X
∗
2, . . . , X

∗
n) is the corner at which

this value occurs. This point belongs to the peak plane Hp. An
example of a peak point is the point (+1, −1, 16) in Fig. 2.

In order to find the peak point, the highest value of every
hyperplane and its corresponding corner are first found for each
of the k input hyperplanes. For a given plane Hi, its highest
value pi can be found by using

pi = α
(i)
0 +

n∑
j=1

∣∣∣α(i)
j

∣∣∣ . (8)

The corner cpi corresponding to this value can be easily found

by setting Xj = +1 if α
(i)
j > 0 and Xj = −1 if α

(i)
j < 0.

We then find

P =
k

max
i=1

(pi) (9)

and the peak corner Cp is simply the corner corresponding to
the highest among all the pi values.

Finding the highest point of every hyperplane is of complex-
ity O(n), and doing this for all k input-delay hyperplanes is
O(kn). Finding the maximum of all these points is O(k), so
that the overall complexity of finding the peak point is O(kn).

B. Changing the Origin

The next step is to change the origin of the system of
coordinates in (n + 1)-dimensional space such that the new
origin is at the point (Cp, 0). We also want to change the
directions of some of the coordinate axes so that the new
normalized process parameters in this system (Yi) vary between
zero and two. This transformation of the coordinate system is
not absolutely required but is cheap and will make subsequent
steps of the algorithm clearer and more understandable. Let us
call the peak corner in the new system of coordinates C ′

p, where
C ′

p = (0, 0, . . . , 0); thus, the peak point in the modified system
of coordinates becomes (C ′

p, P).
Let the transformed equations of the input hyperplanes, after

modifying the system of coordinates, be as follows:

H ′
1 = β

(1)
0 + β

(1)
1 Y1 + β

(1)
2 Y2 + · · · + β(1)

n Yn

H ′
2 = β

(2)
0 + β

(2)
1 Y1 + β

(2)
2 Y2 + · · · + β(2)

n Yn

·
·
·

H ′
k = β

(k)
0 + β

(k)
1 Y1 + β

(k)
2 Y2 + · · · + β(k)

n Yn. (10)

Modifying the system of coordinates is a simple exercise in
analytical geometry, and it can be shown that one can achieve
it by replacing Xj with −X∗

j (Yj − 1) for 1 ≤ j ≤ n, in each
of the k input hyperplane equations. It is also easily shown
that substituting Xj with −X∗

j (Yj − 1) in the equation of a
hyperplane Hi in (2) results in

β
(i)
0 = α

(i)
0 +

n∑
j=1

α
(i)
j X∗

j (11)

and, for 1 ≤ j ≤ n, we have

β
(i)
j = −α

(i)
j X∗

j . (12)

These relations are used to find the expressions for the k input
hyperplanes in the modified system of coordinates. For a single
hyperplane, the complexity of this operation is O(n), and thus,
for all the k hyperplanes, the complexity is O(kn).

1) Remarks: Without loss of generality, if the peak hyper-
plane is H ′

k, then it is easily shown that β
(k)
0 = P and that

β
(k)
j ≤ 0 for 1 ≤ j ≤ n. To see this, recall that C ′

p is the
corner at the origin in the new coordinate system, i.e., C ′

p =
(0, 0, . . . , 0), so that the value of the constant term of the
peak plane must be P . Moreover, if any β

(k)
j > 0, for some

1 ≤ j ≤ n, then we can always find a point that is higher than
(C ′

p, P) by setting the value of Yj to two. This is a contradiction
because no point has a delay that is higher than P among all of
the input hyperplanes.

ONAISSI AND NAJM: LINEAR-TIME APPROACH FOR STA COVERING ALL PROCESS CORNERS 1295

Fig. 3. Raising a hyperplane.

Likewise, if, for a hyperplane H ′
i other than the peak plane,

the highest point also corresponds to the peak corner C ′
p,

then, by the same reasoning, each β
(i)
j ≤ 0 for 1 ≤ j ≤ n.

Furthermore, in the case, when the highest point of a hyperplane
H ′

i corresponds to a corner other than C ′
p, then at least one

β
(i)
j ≥ 0. If this were not true, then the highest point in such

a hyperplane would correspond to the peak corner C ′
p.

C. Raising the Hyperplanes

We then perform an operation that we call “raising hyper-
planes” on all of the input hyperplanes. Intuitively, the purpose
of this step is to raise some corners of every hyperplane, by as
little as possible, but by just enough to make it pass through
the peak point at the peak corner. This will greatly facilitate
the subsequent step of choosing an output hyperplane. As an
example of this operation, one of the planes (HO) of Fig. 2 is
shown in both its original form and in its “raised” form in Fig. 3.
Then, Fig. 4 shows both the peak plane HP and the new raised
plane HR; both planes now pass through the peak point at the
peak corner.

Raising a hyperplane is the most crucial and involved step in
our algorithm. The three required criteria of Section III-A1 lead
to three related criteria that our “raised” hyperplanes must meet.
For a hyperplane H ′

i in (10), let the corresponding “raised”
hyperplane be H ′′

i , which is given by

H ′′
i = γ

(i)
0 + γ

(i)
1 Y1 + γ

(i)
2 Y2 + · · · + γ(i)

n Yn. (13)

1) Raised Hyperplane Criteria: For any hyperplane H ′
i in

(10), the criteria for its “raised” hyperplane H ′′
i in (13) are as

follows:

1) For every corner C ′
j , for 1 ≤ j ≤ 2n, we require that

H ′′
i

(
C ′

j

)
≥ H ′

i

(
C ′

j

)
(14)

so that a “raised” hyperplane never underestimates the
value of the original hyperplane at any corner.

Fig. 4. Raised planes.

2) For every corner C ′
j , for 1 ≤ j ≤ 2n, we require that

H ′′
i

(
C ′

j

)
≤ P (15)

where P is the peak value of the k input hyperplanes.
The purpose of this criterion is to limit the overestimation
incurred by a raised hyperplane at corners.

3) Given that the peak point in the modified system of
coordinates is (C ′

p, P), then we require that

H ′′
i

(
C ′

p

)
= P (16)

so that every “raised” hyperplane passes through the peak
point.

It is easy to see that (16) leads to the requirement that the
constant term in the equation of any “raised” hyperplane be P ,
since C ′

p = (0, 0, . . . , 0), so that, for all 1 ≤ i ≤ k, we have, as
a first result

γ
(i)
0 = P. (17)

2) Procedure: Given the remarks in Section III-B1, we can
classify our input hyperplanes into three classes. The first class
contains only one hyperplane: the peak plane. The second class
contains planes, other than the peak plane, whose highest points
happen to be at the peak corner C ′

p. The third class consists
of those remaining hyperplanes whose highest points are at
corners other than the peak corner. The steps taken to “raise”
a hyperplane differ from one class to another, as considered
in the following three cases. In each case, we will describe
without proof the procedure applied in our algorithm. We then
give a section in which the validity of all the steps is rigorously
proven.

a) Case 1: This is the case when the hyperplane belongs
to the first class, i.e., it is the peak plane. In this case, we select

γ
(i)
0 = β

(i)
0 = P (18)

and, for 1 ≤ j ≤ n

γ
(i)
j = β

(i)
j . (19)

1296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

Thus, the hyperplane remains unchanged.
b) Case 2: This is the case when the hyperplane belongs

to the second class, i.e., the highest point in this plane is
achieved at the peak corner C ′

p. In this case, and as shown in

Section III-B1, β
(i)
j ≤ 0, for 1 ≤ j ≤ n. For this case, in order

to “raise” hyperplane H ′
i, our procedure is to only change the

value of its constant term and of only one of its sensitivity
coefficients β

(i)
j , where 1 ≤ j ≤ n. There is some flexibility

in the choice of exactly which coefficient to change. Best em-
pirical results are obtained by choosing the largest coefficient,
i.e., the least negative one. Assume, without loss of generality,
that β

(i)
1 = maxn

j=1(β
(i)
j). Then, the “raised” hyperplane is

obtained according to the following construction:

γ
(i)
0 =P (20)

γ
(i)
1 =

−P + β
(i)
0 + 2β

(i)
1

2
(21)

and, for 2 ≤ j ≤ n

γ
(i)
j = β

(i)
j . (22)

Because the original plane H ′
i ≤ P at all corners, then, at the

corner (2, 0, 0, . . . , 0), H ′
i ≤ P leads to β

(i)
0 + 2β

(i)
1 ≤ P , and

therefore, γ
(i)
1 ≤ 0, and so γ

(i)
j ≤ 0, for 1 ≤ j ≤ n.

c) Case 3: This is the case when the highest point of this
plane corresponds to a corner other than the peak corner C ′

p.
In this case, and as we saw in Section III-B1, at least one
β

(i)
j ≥ 0, for 1 ≤ j ≤ n. In this case, in order to “raise” a

plane H ′
i, we change the value of the constant term and of all

the sensitivities with positive values in the expression for that
hyperplane. Assume, without loss of generality, that β

(i)
j ≥ 0,

for 1 ≤ j ≤ n̂, where n̂ is the number of positive sensitivities
of H ′

i. In this case, we formulate the “raised” hyperplane
according to

γ
(i)
0 = P (23)

and, for 1 ≤ j ≤ n̂

γ
(i)
j =

−P + β
(i)
0 +

∑n̂
l=1 2β

(i)
l

2n̂
(24)

and, for n̂ + 1 ≤ j ≤ n

γ
(i)
j = β

(i)
j . (25)

As in the previous case, because H ′
i ≤ P at all corners, then,

by a judicious choice of a specific corner, we easily find that
−P +β

(i)
0 +

∑n̂
j=1 2β

(i)
j ≤0. Thus, in this case as well, γ(i)

j ≤0,
for 1 ≤ j ≤ n.

3) Proof of Correctness: We will now prove that, for each
of the three cases under consideration, the “raised” hyperplane
meets the criteria specified in Section III-C1. Notice that, in
all three cases, the “raised” hyperplane H ′′

i has a constant term
γ

(i)
0 = P , and γ

(i)
j ≤ 0, for 1 ≤ j ≤ n. Recall also that the peak

corner is at the origin C ′
p = (0, 0, . . . , 0); thus, for each of these

cases

H ′′
i

(
C ′

p

)
= γ

(i)
0 = P. (26)

Therefore, the “raised” hyperplane H ′′
i satisfies the third crite-

rion of Section III-C1 for all the three cases.
Moreover, given that, for all the three cases, γ(i)

j ≤ 0, and be-
cause 0 ≤ Yj ≤ 2, for 1 ≤ j ≤ n, then it is also straightforward
to see, from (13), that, for all corners Ct, 1 ≤ t ≤ 2n

H ′′
i (Ct) ≤ γ

(i)
0 = P. (27)

Thus, the “raised” hyperplane H ′′
i satisfies the second criterion

of Section III-C1 for all the three cases in Section III-C2.
It remains to prove that, for all the three cases of

Section III-C2, the “raised” hyperplane H ′′
i satisfies the first

criterion of Section III-C1. Recall that this criterion is the
requirement that the delay of the “raised” hyperplane H ′′

i , at
any corner, be no less than the delay of the original hyperplane
H ′

i at the same corner.
We start with Case 1. In this case, the hyperplane H ′

i is the
peak plane, and it is not changed. Thus, the first criterion of
Section III-C1 is trivially satisfied for this case.

We now consider Case 2. In this case, only one of the sensi-
tivities of H ′

i is changed to find H ′′
i , and we assumed, without

loss of generality, that β
(i)
1 is the sensitivity term to be changed.

Also, the constant term of the hyperplane, β
(i)
0 , was changed

by increasing its value to γ
(i)
0 = P . Notice that the original

value β
(i)
0 ≤ P because this is not the peak plane. Thus, it is

impossible for the “raised” plane to underestimate the delay at
a corner C ′

t which has Y1 = 0. Therefore, it is enough to prove
that H ′′

i does not underestimate the delay at any corner C ′
t,

where Y1 = 2. Given such a corner C ′
t = (2, Y2, . . . , Yn),

we have

H ′′
i (C ′

t) = P + 2γ
(i)
1 + γ

(i)
2 Y2 + · · · + γ(i)

n Yn (28)

which, using (21) and (22), can be written as

H ′′
i (C ′

t)=P + 2

(
−P + β

(i)
0 + 2β

(i)
1

2

)
+

n∑
j=2

β
(i)
j Yj (29)

which easily reduces to

H ′′
i (C ′

t) = β
(i)
0 + 2β

(i)
1 +

n∑
j=2

β
(i)
j Yj = H ′

i (C ′
t) . (30)

Therefore, the first criterion of Section III-C1 is satisfied for
every corner C ′

t in this case.
We finally consider Case 3. In this case, all the positive

sensitivities of H ′
i are changed in order to arrive at H ′′

i , and
we assumed, without loss of generality, that the only positive
sensitivities are β

(i)
j ≥ 0, for 1 ≤ j ≤ n̂. In addition, the con-

stant term of the hyperplane expression β
(i)
0 is changed, and its

value is increased to P . Thus, it is impossible for the “raised”
hyperplane to underestimate the value at a corner C ′

t which has
Yj = 0, for 1 ≤ j ≤ n̂. Therefore, it is enough to prove that H ′′

i

ONAISSI AND NAJM: LINEAR-TIME APPROACH FOR STA COVERING ALL PROCESS CORNERS 1297

does not underestimate the value at any corner C ′
t for which at

least one Yj = 2, for 1 ≤ j ≤ n̂.
It would suffice to prove that H ′′

i does not underestimate
the value at corners C ′

t, where all Yj = 2, for 1 ≤ j ≤ n̂. This

is because, with γ
(i)
j ≤ 0 and β

(i)
j ≥ 0, for 1 ≤ j ≤ n̂, if, for

such a corner C ′
t, H ′′

i (C ′
t) ≥ H ′

i(C
′
t), then changing any Yj ,

for 1 ≤ j ≤ n̂, from two to zero would only increase the value
of H ′′

i (C ′
t) and decrease the value of H ′

i(C
′
t), thus maintaining

the inequality. Now, given such a corner C ′
t, where Yj = 2, for

1 ≤ j ≤ n̂, we have

H ′′
i (C ′

t) = P + 2
n̂∑

j=1

γ
(i)
j +

n∑
j=n̂+1

γ
(i)
j Yj (31)

which, using (24) and (25), can be written as

H ′′
i (C ′

t) = P + 2
n̂∑

j=1

(
−P + β

(i)
0 + 2

∑n̂
l=1 β

(i)
l

2n̂

)

+
n∑

j=n̂+1

β
(i)
j Yj (32)

which easily reduces to

H ′′
i (C ′

t)=β
(i)
0 +2

n̂∑
j=1

β
(i)
j +

n∑
j=n̂+1

β
(i)
j Yj =H ′

i (C ′
t) . (33)

Therefore, the first criterion in Section III-C1 is satisfied for any
corner C ′

t in this Case 3.
4) Complexity: “Raising” one hyperplane requires the ex-

amination of each of its sensitivities and might involve the
modification of these sensitivities according to prespecified
equations. Thus, “raising” one hyperplane is of complexity
O(n), and performing this operation for all the k input hyper-
planes is O(kn).

D. Covering the Raised Hyperplanes

We now have a set of raised hyperplanes shown in (34).
These hyperplanes satisfy the three criteria for raised hyper-
planes in Section III-C1, and our goal now is to find an output
hyperplane that satisfies the criteria of Section III-A

H ′′
1 = P + γ

(1)
1 Y1 + γ

(1)
2 Y2 + · · · + γ(1)

n Yn

H ′′
2 = P + γ

(2)
1 Y1 + γ

(2)
2 Y2 + · · · + γ(2)

n Yn

·
·
·

H ′′
k = P + γ

(k)
1 Y1 + γ

(k)
2 Y2 + · · · + γ(k)

n Yn. (34)

Let the expression for the desired output hyperplane be

H ′
F = λ0 + λ1Y1 + λ2Y2 + · · · + λnYn. (35)

Our algorithm finds the output plane based on

λ0 = P (36)

and, for 1 ≤ j ≤ n

λj =
k

max
i=1

(
γ

(i)
j

)
. (37)

After finding the equation of the output hyperplane in the
modified system of coordinates, we change our system back
to the original one. This can be easily done by reversing
the transformations performed before. This yields the required
equation of the output hyperplane.
1) Proof of Correctness: We will prove that the out-

put hyperplane found earlier satisfies the criteria set in
Section III-A. In our discussion, H ′

F refers to the equation of
the output hyperplane in the modified system of coordinates,
whereas HF refers to the equation of this hyperplane in the
original system.

First of all, because λ0 = P , it follows that H ′
F (C ′

p) = P ,
and equivalently, HF (Cp) = P ; thus, the third criterion of

Section III-A is satisfied. Because γ
(i)
j ≤ 0, 1 ≤ j ≤ n, for

all raised hyperplanes, then λj ≤ 0, for 1 ≤ j ≤ n. Given that
0≤Yj ≤2, for 1≤j≤n, it is easy to see that, for any corner C ′

t

in the modified system of coordinates, 1≤ t≤2n, H ′
F (C ′

t)≤P ,
and equivalently, HF (Ct) ≤ P for any corner Ct in the original
system of coordinates. Thus, the output hyperplane satisfies the
second criterion of Section III-A.

It remains to be proven that the output hyperplane satisfies
the first criterion of Section III-A. Recall that this criterion
is that the output hyperplane should not underestimate the
maximum value at any corner. From the first criterion of
Section III-C1, we know that, for any “raised” plane H ′′

i and
at any corner C ′

t in the modified system of coordinates, we
have H ′′

i (C ′
t) ≥ H ′

i(C
′
t), where H ′

i is the hyperplane that was
“raised” in order to create H ′′

i . From (36), (37), and the fact that
0 ≤ Yj ≤ 2, for 1 ≤ j ≤ n, we can deduce that, for all corners
(C ′

t), 1 ≤ t ≤ 2n, in the modified system of coordinates

H ′
F (C ′

t) ≥
k

max
i=1

(H ′′
i (C ′

t)) . (38)

Thus, by using the first criterion for “raised hyperplanes” of
Section III-C1, we can easily deduce that

H ′
F (C ′

t) ≥
k

max
i=1

(H ′
i (C ′

t)) (39)

and, equivalently, that, for all corners (Ct), 1 ≤ t ≤ 2n, in the
original system of coordinates

HF (Ct) ≥
k

max
i=1

(Hi(Ct)) . (40)

Therefore, the output hyperplane also satisfies the first criterion
of Section III-A.
2) Complexity: Finding each value of λ takes a time that

is linear in k, and thus finding all n values is of complexity
O(nk). An examination of the complexities of all the steps in-
volved in finding the maximum of a set of k hyperplanes reveals
that the computational complexity of our “max” operation is
O(nk).

1298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

IV. METHOD AT LOGIC STAGE LEVEL

We now present our method for delay and slew hyperplane
propagation through a logic stage. A logic stage is defined
as a logic cell and its output interconnect structure. In this
section, we present a method, where, given the signal-arrival-
time and slew hyperplanes at the inputs of a logic stage, the
signal-arrival-time and slew hyperplanes at its outputs can be
found. The output hyperplanes (delay and slew) become inputs
for the analysis of downstream stages. In what follows, we first
present our method for delay and slew propagation through the
logic cell of the logic stage and then through its interconnect
structure, and in both cases, a separate analysis is presented for
each of delay and slew propagation. In our analysis, we assume
that the logic cell and its output interconnect have already
been characterized, so that the delay, slew, and variability
introduced by the cell and the interconnect structure can be ac-
counted for.

A. Propagation in Logic Cell

Our approach extends the traditional timing model of a logic
cell to find hyperplane expressions for the signal arrival time
and slew at the output of every timing arc of the cell, given
the signal-arrival-time and slew hyperplanes at the input of the
timing arc and the load-capacitance hyperplane at its output.
Using our max operation for hyperplanes from Section III, we
then find hyperplane expressions for the signal arrival time
and slew at the output of the logic cell. As mentioned before,
the signal-arrival-time and slew hyperplanes at the inputs of
the logic stage are assumed to be known; thus, the delay
and slew information at the input of the logic cell is avail-
able. Moreover, using the methods of [1] and [11], we find a
hyperplane expression for the “effective” load capacitance of
the cell.

Note that, for a given input, the delay introduced by the
cell for a rising signal at the output differs from the delay
in the case of a falling signal, and the same is true for slew.
Therefore, in our analysis, we distinguish between the rising
and falling timing arcs of the cell inputs, and as a result, each
input can have two timing arcs. Whether one wants to take
into account rising timing arcs or falling timing arcs, or both,
in the computations of the output hyperplanes depends on the
objective of the analysis. Suppose that our cell has u inputs.
If one is interested in, for example, the output arrival time and
slew for a rising output, then only the rising timing arcs are
considered, and the number of timing arcs under consideration
would be u. Now, if one simply wants the worst case output
arrival time and slew regardless of signal direction, then both
rising and falling timing arcs would be considered, leading to
a total of 2u timing arcs. In any case, and in order to show a
generic analysis, we will assume that the cell has k timing arcs,
where k could either be u or 2u.

1) Delay Propagation: The timing model for a logic cell
provides a means (typically a table) to find the signal arrival
time at the output of every timing arc, for a given input-
signal slew, output-capacitive loading, and input-signal arrival
time. The output arrival time of the logic cell is then typically

computed as the maximum of output arrival times of those
timing arcs

Dout =
k

max
i=1

(Darc,i). (41)

Focusing on a single timing arc, let its input slew be Sin, its
input arrival time be Din, and its output (effective) capacitance
load be Cout. The output arrival time Darc of this timing arc
can be found as the sum of the input arrival time and the
delay introduced by the logic cell for this timing arc. Let
function F (·) represent the functional dependence of the delay
introduced by the logic cell on its many variables; thus, Darc

can be expressed as follows:

Darc = Din + F (Sin, Cout,X1, . . . , Xn). (42)

We assume a linear model for Sin, Cout, and Din in terms of
process variables

Sin = Snom
in +

n∑
j=1

αjXj

Cout = Cnom
out +

n∑
j=1

βjXj

Din = Dnom
in +

n∑
j=1

δjXj (43)

where Snom
in , Cnom

out , and Dnom
in represent the nominal values of

input slew, output load, and input arrival time, respectively. We
define the nominal point in the domain of the function F (·) to
be the point (Snom

in , Cnom
out , 0, 0, . . . , 0). Let Dnom

g,arc be the value
of the cell-introduced delay at the nominal point for this timing
arc. Thus

Dnom
g,arc = F (Snom

in , Cnom
out , 0, 0, . . . , 0) . (44)

Using a first-order Taylor series expansion of F (·) around the
Dnom

g,arc, we can approximate the expression in (42) as follows:

Darc = Dnom
in +

n∑
j=1

δjXj + Dnom
g,arc +

∂F

∂Sin

∣∣∣∣
nom

× (Sin − Snom
in) +

∂F

∂Cout

∣∣∣∣
nom

× (Cout − Cnom
out)

+
n∑

j=1

(
∂F

∂Xj

∣∣∣∣
nom

× Xj

)
(45)

where the partial derivatives are taken at the nominal point.
Given (43), this can be further simplified, leading to

Darc = Dnom
arc +

n∑
j=1

ωjXj (46)

where

Dnom
arc =Dnom

in +Dnom
g,arc (47)

ωj = δj +
∂F

∂Sin

∣∣∣∣
nom

× αj +
∂F

∂Cout

∣∣∣∣
nom

× βj +
∂F

∂Xj

∣∣∣∣
nom

.

(48)

ONAISSI AND NAJM: LINEAR-TIME APPROACH FOR STA COVERING ALL PROCESS CORNERS 1299

The value of the partial derivative (∂F/∂Xj)|nom can be found
by characterizing a logic cell at the nominal point to find
its delay sensitivity to process parameter Xj . However, it is
not practical to characterize a cell for every possible nominal
input slew and effective output capacitance combination. In
this paper, we propose the use of the method of “relative
sensitivities,” in which the sensitivity in a single input-slew
and output-capacitance context can be used to approximate the
sensitivity in any circuit context. This method is described in
detail in Section VI-C. However, our hyperplane propagation
method does not require the use of this approximation, and one
could use tables to store values of (∂F/∂Xj)|nom, as is usually
done for delays and slews.

After the hyperplanes Darc,i are found for 1 ≤ i ≤ k, our
method for finding the maximum of a set of hyperplanes is used
to find Dout as seen in (41).
2) Slew Propagation: There are many methods for slew

propagation in logic gates. One method, sometimes used in
practice, involves finding the slews at the outputs of all timing
arcs of the cell and propagating their maximum value. However,
this method, sometimes referred to as worst slew propagation,
results in an overly pessimistic analysis [14]. At the other end
of the spectrum, some traditional approaches find the timing
arc with the maximum signal arrival time at its output and
propagate the slew at the output of this timing arc to the
output of the cell. This leads to an overly optimistic analysis
of downstream logic stages. In our case, we use an extension
of the general method described in [8] and [14] independently.
In this method, the slew at the output of every timing arc is
first found, as in other methods. These slews are then adjusted
or “tuned” (in order to control the pessimism of the analysis),
as will be explained in detail shortly. This leads to a modified
set of arc slews, Sarc,i for 1 ≤ i ≤ k. The output slew of the
logic cell is then computed by finding the maximum of these
modified timing arc slews

Sout =
k

max
i=1

(Sarc,i). (49)

For a single timing arc, the timing model of a logic cell provides
a means to find the signal slew at output, given input slew and
output capacitive loading. However, the method in [8] and [14]
adds a “tuning” factor to this slew. Let H(·) be the function
used to find the slew at the output of a specific timing arc. Let
v be a given nonnegative parameter; the modified slew at the
output of the timing arc, Sarc, is written as [8], [14]

Sarc =H(Sin, Cout,X1,X2, . . . , Xn)+v(Darc−Dout) (50)

where Sin is the input-signal slew hyperplane, Cout is the output
(effective) capacitance, Darc is the arrival-time hyperplane at
the output of the timing arc, and Dout is the arrival-time
hyperplane at the output of the cell. Darc and Dout are found,
as shown in Section IV-A1. Sin and Cout are linear functions of
process parameters, as shown in (43). The value of parameter v
depends on the desired level of pessimism; however, the method
to choose an optimal value for this parameter is beyond the
scope of this paper and is covered thoroughly in [14]. In any
case, and whatever the chosen value, this does not affect the

applicability of our method. That being said, it is worth noting
that, for testing purposes, we use v = 2. This is equivalent
to propagating the latest time that a signal passes the 90%
threshold (10% for falling signals) [14]. As we did in the case
of delays, we now find a hyperplane expression for Sarc. Let
Snom

arc be the value of the arc output slew at the nominal point
(Snom

in , Cnom
out , 0, 0, . . . , 0). Thus

Snom
arc = H (Snom

in , Cnom
out , 0, 0, . . . , 0) + v (Dnom

arc − Dnom
out) .

(51)

Recall from (46) that the sensitivity of Darc to Xj is ωj . Also,
let σj be the sensitivity of Dout to process parameter Xj . Using
a first-order Taylor series expansion of H(·) around the Snom

arc ,
we can approximate the expression in (50) as follows:

Sarc = Snom
arc +

∂H

∂Sin

∣∣∣∣
nom

× (Sin − Snom
in)

+
∂H

∂Cout

∣∣∣∣
nom

× (Cout − Cnom
out)

+
n∑

j=1

(
∂H

∂Xj

∣∣∣∣
nom

× Xj

)
+ v

n∑
j=1

(ωj−σj)Xj . (52)

Thus, by using (43), (52) can be written as

Sarc = Snom
arc +

n∑
j=1

γjXj (53)

where

γj =
∂H

∂Sin

∣∣∣∣
nom

× αj +
∂H

∂Cout

∣∣∣∣
nom

× βj

+
∂H

∂Xj

∣∣∣∣
nom

+ v(ωj − σj). (54)

The value of (∂H/∂Xj)|nom can also be found by character-
izing the gate at the nominal input-slew and output-capacitance
context it is in. However, in this case, we also propose the use of
the method of “relative sensitivities” to approximate its value.

After finding the hyperplanes Sarc,i for all of the timing arcs
of the cell, we use our method for finding the maximum of a set
of hyperplanes to find Sout as seen in (49).
3) Complexity: Delay and slew hyperplane propagation

through the logic cell requires finding the maximum of the set
of k input-delay hyperplanes and the maximum of the set of k
modified input-slew hyperplanes. The total complexity of this
operation is thus O(kn).

B. Delay and Slew Propagation in Interconnect

In order to be able to propagate delay and slew hyperplanes
to subsequent logic stages, we must first account for the delay,
slew, and variability introduced by the interconnect structure
of the current logic stage. When performing timing analysis,
interconnect structures are typically modeled as RC trees.
Process parameter variations cause variability in the values
of resistances and capacitances of an interconnect structure,

1300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

and in this section, we describe a method that can be used to
account for the resulting variability in the delays and slews
of signals traveling through interconnect. Let the logic stage
(and hence the interconnect structure) have f fan-out nets. In
what follows, we present a method used to find the delay and
slew hyperplanes at each of these f nodes, given the arrival time
and slew hyperplanes at the input of the interconnect RC tree.
1) Delay Propagation: The delay of a signal traversing an

interconnect structure is affected by the slew rate of the signal at
the input of that interconnect structure. In [4], the delay Dnode

required for a signal to travel from the input of an interconnect
RC tree to a particular fan-out node, for a ramp input signal, is
described as

Dnode = (1 − α)Estep + αDstep (55)

where Estep is the Elmore delay metric of the step input
response at that node and Dstep is its exact step input response
delay. Dstep is usually approximated by methods such as the
D2M metric, or can even be found by using HSPICE, and α is
given by

α =
(

2m2 − m2
1

2m2 − m2
1 + S2

in−tree

) 5
2

(56)

where Sin−tree is the input-signal transition time (or slew), and
m1 and m2 are the first- and second-order moments of the step
input response at that node, respectively. In our case, Sin−tree

is the slew at the output of the logic cell, which we model to be
linearly dependent on process parameter variations as shown
in Section IV-A2. Moreover, Estep, Dstep, m1, and m2 are also
assumed to be linearly sensitive to process parameter variations.
The step response moments can be written as follows:

m1 =mnom
1 +

n∑
j=1

s
(1)
j Xj (57)

m2 =mnom
2 +

n∑
j=1

s
(2)
j Xj . (58)

The sensitivities of these moments, of Estep, and of Dstep

to process parameter variations can be obtained by using the
method described in [10]. It is obvious from (55) that Dnode

is not an affine linear function in process parameter variations.
However, in this paper, we find such a linear approximation by
applying a first-order Taylor series expansion of (55) around the
nominal point as proposed in [10]. After finding a hyperplane
expression for Dnode, we add to it the signal arrival time at the
input of the interconnect structure to get the signal-arrival-time
hyperplane at that fan-out node. Results in [10] show that this
approximation of Dnode is accurate.
2) Slew Propagation: In order to find the slew of a signal at

a node of an interconnect RC tree, moment analysis (for step
input) is usually performed, and a 10%–90% metric Sstep is
found for every fan-out node of the RC interconnect structure.
A method for computing such a metric is given in [4]. Also, the
authors of [4] show that, for the more realistic case of a ramp

input signal, a node signal slew rate Snode can be computed by
using the following expression:

Snode =
√

S2
step + S2

in−tree (59)

where Sin−tree is the slew of the input signal of the interconnect
structure and Sstep is defined earlier. In our case, we model
Sin−tree as a hyperplane, as mentioned in Section IV-B1, and
Sstep as

Sstep = Snom
step +

n∑
j=1

λjXj (60)

where λj , 1 ≤ j ≤ n, are the sensitivities of the step slew
metric to process parameter variations. These sensitivities are
found by using the results of [10] and performing a first-order
Taylor series expansion. It is obvious from (59) that Snode is
not linearly dependent on process parameter variations, so we
describe a linear approximation for it. Let Snom

node be the value
of Snode at the nominal point, i.e.,

Snom
node =

√(
Snom

step

)2 +
(
Snom

in−tree

)2
. (61)

Using a first-order Taylor series expansion of (59), we can write

Snode = Snom
node +

n∑
i=j

ψjXj (62)

where

ψj =
(

∂

∂Xj

√
S2

step + S2
in−tree

) ∣∣∣∣
nom

=
Snom

step λj + Snom
in−treeαj

Snom
node

.

(63)

Note that the Sstep hyperplane is not a true upper bound on the
actual step response slews at every process corner. Thus, the lin-
ear approximation that we found for Snode will not be an upper
bound on actual response slews at various process corners.

As we did in the case of delays, and in order to verify
the accuracy of the approximation in (62), we performed cor-
ner analysis and ran our algorithm on circuit “c432” of the
ISCAS ’85 benchmark suite. At every node of every intercon-
nect structure, we compared the maximum slew as predicted by
the slew hyperplane to maximum corner slew found by using
corner analysis. Fig. 5 shows the percentage errors between
maximum corner slews as approximated by the slew hyperplane
in (62) and as found by corner analysis at these RC-tree nodes.
This histogram shows that, in most instances, the slew hyper-
plane approximates the maximum corner slew in a reasonably
accurate manner.
3) Complexity: Finding the nominal delay and slew at the

output node of an interconnect structure takes constant time
irrespective of n, the number of process parameters under
consideration. Moreover, finding the sensitivity of delay or slew
to a particular process parameter at a given node takes constant
time, and as a result, finding the delay and slew hyperplanes at a
given interconnect node is of computational complexity O(n).
Therefore, for an interconnect structure with f fan-out nets, the

ONAISSI AND NAJM: LINEAR-TIME APPROACH FOR STA COVERING ALL PROCESS CORNERS 1301

Fig. 5. Percentage error of slew plane corner estimation for circuit c432 of
ISCAS ’85.

total computational complexity for finding the delay and slew
hyperplanes at all its fan-out nodes is O(fn).

C. Overall Complexity for a Logic Stage

An investigation of all the operations that our method re-
quires at a logic stage shows that the total complexity for a
single logic stage is O(kn + fn), where k could either be the
number of inputs of the cell u or twice that number, f is the
number of fan-out nets, and n is the number of process param-
eters being considered. Thus, the complexity of our method
at the logic stage can be written as O(un + fn). Because,
for obvious technology reasons, both u and f are bounded by
some small fixed number, such as, perhaps, ten, and because
they do not scale with the size of the problem, then the overall
complexity for analysis of one logic stage is O(n).

V. METHOD AT CIRCUIT LEVEL

As stated earlier, our approach is quite similar to traditional
STA at the circuit level. Thus, in order to find the maximum
delay and slew of the circuit under process variations, we apply
our method to logic stages whose input delay and slew informa-
tion (hyperplanes) is available and then propagate the resulting
delay and slew hyperplanes to subsequent logic stages. This
process is repeated until we get the delay and slew hyperplanes
at the primary output nodes of the circuit. In order to find the
maximum circuit delay and slew, we add a dummy logic stage
to our timing graph such that the primary outputs of the circuit
form its inputs and that no delay or slew is introduced by this
stage. Our algorithm is now applicable one final time to give
a single hyperplane for the overall circuit delay and another
for circuit slew. It is then straightforward to find the maximum
values of delay and slew that these planes can produce. The
complexity of this step is O(zn), where z is the number of
primary output nodes of the circuit. If a circuit has m stages
in total, and because the analysis of a single stage is O(n),
and because z ≤ m, then the overall complexity of STA for the
whole circuit, covering all 2n process corners, is only O(mn).

Thus, for a given fixed circuit size m, the complexity grows
linearly with the number of variable process parameters n.

VI. IMPLEMENTATION

As is to be expected, our algorithm requires a precharacter-
ized cell library and some variational model of interconnect
delay.

A. Logic-Cell Characterization

We constructed and characterized a small CMOS cell library
in 90-nm technology, and these cells were used as the standard
cell library for our testing. For every input arc in every logic
cell, the rise and fall delays and slew rates of the cell were
computed, using HSPICE, for a number of input slew (slope)
rates and load capacitances. The results were stored in tables
called nominal delay tables and nominal slew tables, where,
given an input and its slew rate (slope), and the load capacitance
on the cell, the delay and slew can be computed through
interpolation between appropriate values from the delay and
slew tables, respectively. This is the standard modern approach
for modeling the delays and slews of logic cells [12].

Then, the sensitivities of the delays and slews were found
for variations in four process parameters: the NMOS thresh-
old voltage (∆Vtn), the NMOS channel length (∆Ln), the
PMOS threshold voltage (∆Vtp), and the PMOS channel length
(∆Lp). The sensitivities to every process parameter were found
by fixing all other process parameters at their nominal values,
choosing a number of values for this parameter, and finding the
delay and slew of the cell in each case using HSPICE. After
that, linear regression was performed on the resulting values to
find the unnormalized sensitivities of cell delays and slews to
the process parameter. The sensitivities were then normalized
so that the parameters vary between −1 and 1.

For every input arc, this characterization is performed for a
transition in the input which causes a rise in the output signal
and for a transition which causes a fall in the output signal.
Thus, for the case of, for example, delay, every input arc has
a rise delay hyperplane that uses rise sensitivities and has a
fall delay hyperplane that uses fall sensitivities, and the same
is true for slew rates. It is worth noting that median values
were chosen for the input slew rates and load capacitances in
the characterization process and that we keep a record of the
nominal delay and slew of the cell for these slew and load
capacitance values. The significance of this point will become
clear shortly.

B. Interconnect Characterization

As mentioned previously, an interconnect fan-out structure
is described as a tree of lumped resistances and capacitances,
i.e., an RC tree. Our test circuits were arbitrarily placed and
routed. For all interconnect RC trees, we let values of resis-
tances lie between 100 and 300 Ω and values of capacitances lie
between 15 and 25 fF . One is given the sensitivities of every
resistor and capacitor to the relevant process parameters, as in
[10]. From this, one finds the nominal delay and slew at every

1302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

Fig. 6. Approximated versus actual delay sensitivities of a NAND gate.

node of the tree, as well as the sensitivities of the delay and
slew at every node to the same process parameters by using the
methods described in Section IV-B. The process parameters of
interest in this paper, as in [10], are the metal width (∆W), the
metal thickness (∆T), and the interlayer dielectric thickness
(∆H). For the test cases considered in this paper, we limited
the effect that a process parameter can have on the value of a
resistor or a capacitor to no more than 10%.

C. Relative Sensitivities

The sensitivities to physical parameters, which were mea-
sured during cell characterization (with some median input
slope and output load applied), need to be modified according to
the context of the cell in the given circuit, i.e., according to the
actual slope and load presented to the cell in the circuit. This is a
subtle point, which we have found that it can be overcome with
good accuracy by a straightforward scaling operation. Consider
the case of logic-cell delay sensitivities. For a particular timing
arc of a logic cell in a single nominal characterization context
(Sch

in , Cch
out), let the nominal output delay be D0 and the delay

sensitivity to process parameter Xj be δj . In a circuit context,
where the nominal delay of this timing arc is, for example,
Dnom

g,arc, we approximate the sensitivity, δ′j , of this timing arc
delay to Xj as follows:

δ′j ≈
Dnom

g,arc

D0
δj . (64)

We found this approximation to be simple and reasonably
accurate. Fig. 6 shows a comparison of actual normalized
sensitivities of a gate delay to different process parameters
on the one hand and these sensitivities as predicted by our
method on the other hand. This figure shows that our method
approximates sensitivities quite accurately.

We also use the method of relative sensitivities in the case
of slews to approximate the value of sensitivities in a particular
circuit context. Let the nominal slew at the output of a timing
arc of the cell be S0, and its sensitivity to process parameter Xj

be αj , in the nominal characterization context (Sch
in , Cch

out). For
a circuit context where the nominal slew at the output of the

Fig. 7. Approximated versus actual slew sensitivities of a NAND gate.

TABLE I
OUR APPROACH VERSUS THE CORNER APPROACH

timing arc is Snom
arc , the sensitivity α′

j of the timing arc slew to
Xj is approximated by using

α′
j ≈ Snom

arc

S0
αj . (65)

Fig. 7 shows a comparison of slew sensitivities estimated using
this method to actual characterized slew sensitivities. This
figure shows that the error incurred when using this method is
relatively low.

VII. RESULTS

We ran our algorithm on all circuits of the ISCAS ’85
benchmark suite [3], mapped to our 90-nm cell library. In
order to test the accuracy of our approach, we compared the
maximum delay of every circuit as computed by our algorithm
to the maximum delay computed by finding the delay of the
circuit at every process corner (process variables vary between
−10% and 10% around their nominal values). Note that, when
finding the delay of a circuit at a process corner, characterized
sensitivities are used to compute the delays of individual logic
cells. The results and comparison between the two approaches
are shown in Table I, which shows that our approach predicts
the maximum delay of these circuits quite accurately. The
bar diagrams in Figs. 8 and 9 show these same results, with
three bars for every circuit. The first bar is found by running
traditional STA for every process corner and recording the

ONAISSI AND NAJM: LINEAR-TIME APPROACH FOR STA COVERING ALL PROCESS CORNERS 1303

Fig. 8. Maximum delays for smaller circuits.

Fig. 9. Maximum delays for larger circuits.

smallest value found (over all corners) for the maximum delay
of the circuit. The second bar shows the largest value found
(over all corners) for the maximum delay of the circuit. The
third bar shows the worst case delay reported by our approach.
It is noteworthy that there is a significant difference between the
first and second bars, indicating that process variations cause a
significant delay spread for these circuits, and that our approach
finds, in linear time, a tight upper bound on the worst case
delay. We also compared the maximum slew rates of output
signals as computed by our algorithm to the maximum slew
rates found by running traditional STA at all process corners.
Figs. 10 and 11 show the results for max slew. Note that
the estimated delays and slews are, in some cases, smaller
than those of the corner approach. The reason behind this
is that the linearized interconnect delay, slew, and effective
capacitance expressions are not conservative and might under-
estimate values at certain corners. This means that, although
our “max” operation is conservative with respect to its inputs,
the inputs themselves might not be conservative with respect
to the true values. Finding a conservative linear approximation
for interconnect delay, slew, and effective capacitance under
process variability is beyond the scope of this paper, and for
now, this remains a limitation of our method.

Fig. 10. Maximum slews for smaller circuits.

Fig. 11. Maximum slews for larger circuits.

Fig. 12. Minimum delays for larger circuits.

Finally, as mentioned earlier, our approach is applicable to
the min delay and min slew cases as well, for checking hold
time violations. In this respect, Fig. 12 shows similar data for
the min delay case.

We also recorded the run times of our approach for these
circuits and compared them with the run times of the corner
approach. As expected, the results in Table II show that our

1304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

TABLE II
RUN-TIME COMPARISON

approach achieves a speedup of approximately six to seven
times when compared with the corner approach. While our
approach is O(mn) (for a circuit with m gates and n relevant
process parameters), the computational complexity of the cor-
ner approach is O(m2n), hence the observed speedup. More-
over, as the number of process parameters being considered
increases with future technology, this speedup will become
even more dramatic.

VIII. CONCLUSION

All-corner timing analysis in linear time has been the “holy
grail” in timing analysis for some time. In this paper, a linear-
time approach has been presented, which does this with neg-
ligible error. The error is conservative in most cases. This
technique uses standard/traditional timing models for cells and
interconnect and, hence, is very easy to integrate into today’s
design methodology. It is hoped that this paper will lead to
practical techniques for handling variability in VLSI design.

ACKNOWLEDGMENT

The authors would like to thank K. Heloue for his helpful
feedback and contributions to this paper.

REFERENCES

[1] S. Abbaspour, R. Banerji, P. Feldman, and D. D. Ling, “Efficient varia-
tional interconnect modeling for statistical timing analysis by combined
sensitivity analysis and model-order reduction,” in Proc. ACM/IEEE Int.
Workshop TAU, Feb. 2007, pp. 86–91.

[2] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, “Computation and
refinement of statistical bounds on circuit delay,” in Proc. Des. Autom.
Conf., Jun. 2–6, 2003, pp. 348–353.

[3] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
mark circuits and a target translator in Fortran,” in Proc. IEEE ISCAS,
Jun. 1985, pp. 663–698.

[4] F. Y. Liu, C. V. Kashyap, C. J. Alpert, and A. Devgan, “Closed-form delay
and slew metrics made easy,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 23, no. 12, pp. 1661–1669, Dec. 2004.

[5] H. Chang and S. Sapatnekar, “Statistical timing analysis considering spa-
tial correlations using a single PERT-like traversal,” in Proc. IEEE/ACM
ICCAD, Nov. 9–13, 2003, pp. 621–625.

[6] A. Gattiker, S. Nassif, R. Dinakar, and C. Long, “Timing yield estimation
from static timing analysis,” in Proc. Int. Symp. Quality Electron. Des.,
Mar. 2001, pp. 437–442.

[7] K. R. Heloue and F. N. Najm, “Statistical timing analysis with two-sided
constraints,” in Proc. ICCAD, Nov. 2005, pp. 829–863.

[8] J. Soreff, J. F. Lee, D. L. Ostapko, and C. K. Wong, “On the signal
bounding problem in timing analysis,” in Proc. IEEE/ACM ICCAD, 2001,
pp. 507–514.

[9] J. A. G. Jess, K. Kalafala, S. R. Naidu, R. H. J. M. Otten, and
C. Visweswariah, “Statistical timing for parametric yield prediction of
digital integrated circuits,” in Proc. Des. Autom. Conf., Jun. 2–6, 2003,
pp. 932–937.

[10] D. Sylvester, K. Agarwal, M. Agarwal, and D. Blaauw, “Statistical inter-
connect metrics for physical-design optimization,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 25, no. 7, pp. 1273–1288,
Jul. 2006.

[11] J. Qian, S. Pullela, and L. Pillage, “Modeling the ‘effective capacitance’
for the RC interconnect of CMOS gates,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 13, no. 12, pp. 1526–1535, Dec. 1994.

[12] S. Sapatnekar, Timing, 1st ed. Norwell, MA: Kluwer, 2004.
[13] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and

S. Narayan, “First-order incremental block-based statistical timing analy-
sis,” in Proc. Des. Autom. Conf., Jun. 2004, pp. 331–336.

[14] J. Vygen, “Slack in static timing analysis,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 25, no. 9, pp. 1876–1885, Sep. 2006.

Sari Onaissi (S’08) received the B.E. degree in com-
puter and communications engineering (with high
distinction) from the American University of Beirut,
Beirut, Lebanon, in 2005, and the M.A.Sc. degree
in electrical and computer engineering (ECE) from
the University of Toronto, Toronto, ON, Canada, in
2007, where he is currently working toward the Ph.D.
degree.

His research is on computer-aided design for in-
tegrated circuits and is focused on timing under
variability.

Farid N. Najm (S’85–M’89–SM’96–F’03) received
the B.E. degree in electrical engineering from the
American University of Beirut, Beirut, Lebanon, in
1983, and the Ph.D. degree in electrical and comput-
er engineering (ECE) from the University of Illinois
at Urbana–Champaign (UIUC), Urbana, in 1989.

From 1989 to 1992, he was with Texas Instru-
ments, Dallas, TX. He was then with the ECE
Department, UIUC, as an Assistant Professor and
became an Associate Professor in 1997. Since 1999,
he has been with the ECE Department, University of

Toronto, Toronto, ON, Canada, where he is currently a Professor. His research
is on computer-aided design (CAD) for very large scale integration (VLSI),
with an emphasis on circuit-level issues related to power, timing, variability,
and reliability.

Dr. Najm was an Associate Editor for the IEEE TRANSACTIONS ON VLSI
SYSTEMS from 1997 to 2002 and is currently an Associate Editor for the
IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS.
He received the IEEE TRANSACTIONS ON CAD Best Paper Award in 1992,
the NSF Research Initiation Award in 1993, and the NSF CAREER Award
in 1996.

