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Verification and Codesign of the Package and Die
Power Delivery System Using Wavelets

Imad A. Ferzli, Eli Chiprout, Member, IEEE, and Farid N. Najm, Fellow, IEEE

Abstract—As part of the design of large integrated circuits, one
must verify that the power delivery network provides supply and
ground voltages to the circuit that are within specified ranges.
We introduce the concept of time–frequency description of circuit
currents using wavelets, and use that to set up an optimiza-
tion framework that finds the worst-case supply/ground voltage
fluctuations. This framework allows for the quick determination
of the impact of either the package or the die on the worst-
case behavior, which enables their codesign. This approach has
been applied to an industrial microprocessor design, resulting in
realistic and nonobvious worst-case waveforms.

Index Terms—Integrated circuit packaging, power grid, veri-
fication, voltage drop, wavelet transform.

I. Introduction

THE INTENSE drive toward lower power designs has
highlighted the need for robust design of a chip’s

power delivery network (PDN). The PDN, starting at the
voltage regulation module (VRM), through the motherboard,
package, and finally the on-die power grid, must supply a
reliable source of power that is fairly free from fluctuations
over time. A large drop in supply voltage may lead to timing
violations or logic failure.

In order to ensure a stable power supply, designers are
interested in knowing the lowest possible voltage, Vmin, which
may be produced by the PDN and supplied to the transistors.
Vmin is a function of two major elements: the PDN system
response, and the current draw or excitation produced by
the die. To determine the PDN response, designers typically
model the PDN using either RLC elements or electromagnetic
models. While modeling the PDN system is generally accu-
rate, there remains a significant source of error in modeling
the worst-case current draw of the die: The number of
state transitions is astronomical and searching the current
space for the worst-case is a daunting task. Several at-
tempts have been made to address this problem, including
the computation of bounds on possible currents [1] or of
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current statistics [2]. A more formal approach has been
proposed [3] that constrains the problem with known design
bounds, rather than simulate or search through all possible
scenarios.

In this paper, we introduce the concept of time–frequency
descriptions of die currents using wavelets. Wavelet analysis
has been used in the computer-aided design community for
nonlinear circuit simulation [4] and applied in the analysis
of early design die current profiles to compute current statis-
tics [5]. In this paper, we show that wavelets are a natural
way to comprehensively characterize die behavior in the time–
frequency plane. We also show that this description may
be used to extract new relevant bounds that will serve in
determining the worst-case current draw.

The wavelet framework will allow us to find the worst-case
current draw for a given PDN on a systematic and general
basis. In the simplest cases, it yields solutions that are well-
known such as the reverse pulse technique (RPT) [6]. In
more complex cases, it opens up the possibility of obtaining
nonobvious worst-case die current waveforms that mimic
complex circuit behaviors.

The wavelet framework combines both the time and fre-
quency domains. Since finding worst-case voltage drop on the
PDN has both time and frequency dimensions, this framework
will give us the best of both worlds. Purely time-domain
techniques, including RPT, only deal with the simplest system
descriptions, whereas purely frequency-domain methods lack
accuracy, especially with state-of-the-art, multiresonant PDN
systems [7].

Our approach provides a broad design-assist value. Using
our approach, one can isolate particular frequency bands
depending on the PDN hierarchy of interest and find an
accurate worst-case scenario in the time-domain. Designers
will also be able to make systematic early predictions about
the trends in voltage drop, e.g., expected IR versus di/dt-
drop, and to quickly iterate between worst-case waveforms
with every change of package or die design, without writ-
ing new test cases for simulation or measurement, enabling
true die-package codesign. Compared with [3], which re-
lies on stepping through time or computing upper bounds
on maximum voltage drop, our technique requires no time
iterations and results in accurate strict worst-case scenar-
ios. It is also more versatile, handling indiscriminately RC
and RLC PDN models, and unlike [3], yields actual worst-
case waveforms which enable diagnostics. Our approach has
been applied in early design of an industrial microprocessor
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Fig. 1. Time–frequency description of a signal via a scalogram.

and has revealed realistic and nonobvious worst-case
scenarios.

This paper is organized as follows: Section II introduces
time–frequency analysis and paves the way for the continu-
ous wavelet transform (CWT), discussed in Section III. The
discrete wavelet transform (DWT) and its multiresolution
analysis (MRA) framework are the subject of Section IV. The
construction of the worst-case current stimulus is detailed in
Section V and an optimization problem that discovers the
worst-case stimulus and imposes appropriate constraints is
formulated in Section VI. Experimental results are showcased
in Section VII. We conclude in Section VIII.

II. Time–Frequency Analysis

Most readers are familiar with a time-domain description of
a waveform, and a frequency-domain transform of it, usually
obtained via a Fourier transform. However, there is another
class of transforms which produce results between these two,
called time–frequency transforms, of which wavelets are a
major subset [8]. These transforms are useful if one wants
to analyze the change of “frequency” behavior over time.
The word frequency is in quotes because, by definition, a
frequency lasts over an infinite time period. The usefulness
of wavelets, however, lies in their ability to capture the
“frequency properties” of time-limited bursts.

We begin with a simple example to give the reader an
intuition of the time–frequency description. Fig. 1 (bottom)
shows a time–frequency representation, known as a scalogram,
of the time-domain current at the top. The signal is made of
two sinusoidal components: a short, 800 MHz burst and a
40 MHz signal, starting at 25 ns. The x-axis of the scalogram
is time (same as the signal), and the y-axis the so-called scale,
which for now, it suffices to say, is akin to the inverse of
frequency. Each entry in the scalogram represents the value
of the CWT (Section III) over particular time windows at a

particular scale. The scalogram shows how this representation
follows the frequency contents of the signal in time: dark
colorations, corresponding to large transform values, match
the occurrence in time of the short 800 MHz burst at the low-
to-middle scales, then the 40 MHz wave at the high-scales.
Weak frequencies are too light to be visible on the scalogram,
indicating that the scalogram is apt at highlighting the strength
of a signal at certain frequencies over localized time windows.
The scalogram extends insights into the waveform visually,
and its values capture useful properties, such as a “wavelet
frequency envelope” (Section VI-C).

Wavelet analysis essentially breaks down a signal into a
weighted summation of wavelets. The CWT, discussed in
Section III, is an infinite summation of wavelets and pro-
vides the starting point for understanding wavelet-based time–
frequency analysis. The DWT, on the other hand, breaks the
signal down into a finite number of wavelets, as we show in
Section IV. The treatment provided in Sections III and IV is
based on [8], and is tailored to our needs, leaving out all but
the most relevant elements of wavelet analysis.

For the purpose of finding the worst-case current draw, our
approach is to use wavelet analysis to construct or synthesize a
hypothetical worst-case current draw that results in maximum
voltage drop given a number of time-domain and frequency-
domain constraints that are known or can be derived in early
design. The basic idea is to find a suitable set of wavelets
to describe a current waveform (Section V) and formulate
an optimization problem (Section VI) in the weights of these
wavelets, whose solution results simultaneously in the shape of
the worst-case current waveform and the value of the maxi-
mum voltage drop.

III. Continuous Wavelet Transform

The CWT is the starting point for understanding time–
frequency analysis using wavelets. In its basic form, the CWT,
denoted by T (a, b), captures the correlation between a signal
x(t) and a time function ψ(t), known as a wavelet, whose time-
axis is dilated by a factor a, known as the scale parameter,
and which is translated along the time-axis by b, called the
translation

T (a, b) =
1√
a

∫ +∞

−∞
x(t)ψ

(
t − b

a

)
dt. (1)

We denote the wavelet at scale a and translation b by ψa,b(t)

ψa,b(t) =
1√
a
ψ

(
t − b

a

)
(2)

where the factor 1/
√
a normalizes the energy of all the

wavelets ∫ +∞

−∞
|ψa,b(t)|2dt = Eψ

�
=

∫ +∞

−∞
|ψ(t)|2dt. (3)

There are three admissibility conditions which a real-valued
time function ψ(t) must satisfy in order to be a proper wavelet.

1) Eψ < ∞: the wavelet is localized in time.
2)

∫ +∞
−∞ ψ(t)dt = 0: the wavelet has a zero long-term

average.
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Fig. 2. Haar wavelets with various scales and translations.

3)
∫ +∞

−∞ |ψ(f )|2/|f |df < ∞, where ψ(f ) is the Fourier
transform of ψ(t): the wavelet is localized in frequency.

The Haar wavelet shown in Fig. 2(a) and used throughout
consists of one section of a square wave

ψ(t) =

⎧⎨
⎩

+1, 0 < t < 1/2
−1, 1/2 < t < 1
0, otherwise.

(4)

Wavelets act like bandpass filters [8] with a given bandwidth
depending on the scale a, and a center frequency fc within
this bandwidth where the Fourier spectrum is maximum. The
center frequency for the Haar wavelet can be shown to occur
at

fc(a) ≈ 2.33/(πa). (5)

We now give a brief intuitive interpretation of the wavelet
transform. One could think of the scale parameter a as an
inverse frequency, and the translation parameter b as a simple
time shift. If the scale parameter a is increased, the time
span of the wavelet would increase while its center frequency
would decrease and its bandwidth shrink, in accordance with
F{ψ(t/a)} = |a|ψ(af ). The transform value T (a, b) can be
qualitatively thought of as a measure of the match between
the frequency contents of x(t) in the vicinity of t = b and the
wavelet’s bandwidth at scale a: the stronger the match, the
larger |T (a, b)|. Hence, the name time–frequency analysis.
While the Fourier transform reveals the frequency contents
of a signal regardless of time, the wavelet transform matches
the frequency contents of a signal around time t = b, with the
frequency spectrum of the wavelet at scale a, ∀(a, b) ∈ R2, so
that the wavelet transform acts like a filter (more precisely, a
continuum of filters for all scales). The ability of the wavelet
transform to capture time-localized frequency information has
made it a powerful tool in signal processing. The reader
may refer to [8] for a detailed quantitative treatment of this
subject.

IV. Discrete Wavelet Transform

The DWT allows the breakdown of a signal into a finite
number of wavelets. The starting idea is that the transform
domain (a, b) has a lot of redundancy [8], and it is sufficient

to select and use only certain discrete values of a and b. By
far the most common choice is to use

a = 2m and b = 2mn (6)

where m and n are integers. This scheme results in a so-called
dyadic grid in the transform domain. The notation is also
changed, for clarity, so that the wavelet ψm,n(t) now denotes

ψm,n(t) =
1√
2m

ψ

(
t − 2mn

2m

)
= Amψ

(
2−mt − n

)
(7)

where we call Am = 2−m/2 the amplitude of the wavelet at
scale m. Notice that ψ0,0(t) = ψ(t). Fig. 2 shows the Haar
wavelet with m = 0, 1, 2, and n = 0. The transform integral
becomes

Tm,n =
∫ +∞

−∞
x(t)ψm,n(t)dt (8)

referred to as the DWT. In the DWT literature it is common
to refer to m and n as the scale and translation parameters,
respectively, even though, strictly speaking, the true scale is
a = 2m and the true translation is b = 2mn.

Dyadic grid wavelets have the key property of forming an
orthonormal basis, which enables reconstructing the signal
x(t)

x(t) =
+∞∑

m=−∞

+∞∑
n=−∞

Tm,nψm,n(t). (9)

The above is a synthesis of a signal in terms of an under-
lying basis of wavelets. It forms the basis of using wavelet
decomposition to construct worst-case currents, as we show
in Section V.

In the decomposition (9) both translations (n) and scales
(m) run between −∞ and +∞. First, we limit the translations
by observing that they only need to cover the duration of
the signal. If N is an integer such that the time interval
[0, 2N ] covers the duration of x(t), then no more than 2N−m

translations are necessary at scale m, which can be taken,
without loss of generality, to be n = 0, . . . , 2N−m − 1, so
that (9) becomes

x(t) =
+∞∑

m=−∞

2N−m−1∑
n=0

Tm,nψm,n(t). (10)

A. Multiresolution Analysis

MRA allows us to write (10) in terms of a finite number
of scales m. MRA relies on companion functions to wavelets,
called scaling functions, denoted φ(t), dilated and translated
in the same way as wavelets

φm,n(t) =
1√
2m

φ

(
t − 2mn

2m

)
= 2−m/2φ

(
2−mt − n

)
(11)

so that φ0,0(t) = φ(t). However, a scaling function is different
from a wavelet in that its dc component is nonzero. In fact,∫ +∞

−∞ φ(t)dt = 1. The Haar scaling function is a pulse over
[0, 1]: φ(t) = 1, for 0 < t < 1, and φ(t) = 0, otherwise.
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Fig. 3. MRA using the Haar system.

It can be shown that scaling functions and wavelets at scale
m are linear combinations of shifted scaling functions at scale
m− 1. In the Haar system, the expressions are

ψm+1,n(t) =
1√
2

[φm,2n(t) − φm,2n+1(t)] (12)

φm+1,n(t) =
1√
2

[φm,2n(t) + φm,2n+1(t)]. (13)

These relationships will come in handy in Section V-B.
The utility of scaling functions becomes clear when we con-

sider their frequency interpretation. Fig. 3 shows the frequency
spectra |φ3,0(f )| (scaling function) and |ψ0,0(f )|, |ψ1,0(f )|,
|ψ2,0(f )|, and |ψ3,0(f )| (wavelets), on a log-frequency scale,
where for clarity, only the largest (first) “hump” is shown.
The figure shows that, wavelets act as bandpass filters and
the scaling function acts as a low-pass. In this example, all
signal content up to about 0.01 is captured by φ3,n(t), while
higher frequency content is captured by ψ3,n(t), ψ2,n(t), etc.
That is, in MRA, a collection of wavelets working together
cover an overall pass-band with the scaling function covering
the frequencies below this pass-band.

We need to limit the number of scales m needed in the
decomposition (10) from both above and below, and the
frequency spectrum of wavelets guides both choices. The key
idea is that each wavelet is able to resolve a pass-band in
which it is the “dominant” wavelet, as shown in Fig. 3. Since in
practice, one is interested in signal content only up to a certain
frequency fmax, we set up the parameters of the expansion so
that the smallest (fastest) wavelet has a pass-band that covers
fmax. This can be easily done, by using (5), to choose the
slowest wavelet with center frequency greater than fmax as
the fastest wavelet in the decomposition. This sets the smallest
required scale mmin.

While wavelets resolve frequencies in their pass-bands, the
same cannot be said about scaling functions in the low-
pass-band, in the sense that there is no resolution among
the low-frequencies. In Fig. 3, there is no information on
the relative magnitude of different frequencies below 0.01, as
there is between frequencies of 0.01 and 1. This observation
sets the guideline for choosing an upper limit mmax on the
decomposition: one should choose the maximum scale mmax

so that wavelets of scales mmin, . . . , mmax cover the frequency

Fig. 4. Example MRA decomposition.

Fig. 5. Impedance plot in an early design microprocessor.

band (fmin, fmax), where one is interested in resolving signal
content, and then use a scaling function for all lower fre-
quencies. Without loss of generality, and conforming with the
wavelet literature, we can number the scales mmin, . . . , mmax as
1, . . . , m0, so that the full decomposition of the signal becomes

x(t) =
2N−m0 −1∑
n=0

Sm0,nφm0,n(t) +
m0∑
m=1

2N−m−1∑
n=0

Tm,nψm,n(t). (14)

We emphasize that the decomposition is set up so that ψ1,n(t)
and ψm0,n(t) are respectively the wavelets with the shortest and
longest duration in the analysis.

The coefficients Sm0,n are referred to as the approximation
coefficients and Tm,n are the detail coefficients. The fast
wavelet transform computes the approximation and detail
coefficients, and we only show the skeleton of the algorithm
for the Haar case, in Algorithm 1. It operates mostly by
computing “coefficients from coefficients,” in lines 3 and 4,
which is the key to its efficiency. The starting point for the
algorithm is the sequence S0,n of approximation coefficients at
scale 0, which are the areas under the signal over consecutive
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Algorithm 1: The FWT algorithm for the Haar case.
Require: S0,0, S0,1, . . . , S0,2N−1

1: for (m = 1, . . . , m0) do
2: for (n = 0, 1, . . . , 2N−m − 1) do
3: Sm,n = 1√

2

(
Sm−1,2n + Sm−1,2n+1

)
4: Tm,n = 1√

2

(
Sm−1,2n − Sm−1,2n+1

)

unit-width time windows

S0,n =

+∞∫
−∞

x(t)φ(t−n)dt =

n+1∫
n

x(t)dt, n = 0, 1, . . . , 2N−1. (15)

We illustrate the MRA decomposition with a simple ex-
ample, adapted from [8], and shown in Fig. 4. Consider the
signal x(t) = 1, 0 ≤ t < 1, x(t) = 2, 1 ≤ t < 2, x(t) = 3,
2 ≤ t < 3, and x(t) = 4, 3 ≤ t < 4. Algorithm 1 yields the
details and approximations at scales 1 and 2. For example, T1,0

and T1,1 are each −1/
√

2. T2,0 and S2,0 are respectively −2 and
5. To see how this decomposition reconstructs x(t), consider
for instance the first time step: noting from (12) and (13)
that the wavelet and scaling function amplitudes are 1/

√
2

for m = 1, and 1/2 for m = 2, the contribution of T1,0 is
−1/

√
2 × 1/

√
2 = −1/2, that of T2,0 is −2 × 1/2 = −1, and

that of S3,0 is 5 × 1/2 = 5/2. The total contribution of details
and approximations at the first time step therefore adds up to
1, as expected.

V. Worst-Case Current Stimuli

Assume the PDN is a linear time-invariant RLC circuit, with
v nodes and q current sources. We define a PDN stimulus
as a collection of current waveforms {i1(t), . . . iq(t)}, that
simultaneously load the PDN, such that ij(t) attaches to the
jth current source. In the following, we will often mention
the case when the PDN has a single stimulus ij(t) on the jth
current source and 0 on all other current sources.

Our overarching aim is to use MRA to construct a synthetic
worst-case PDN stimulus that maximizes voltage drop at a
PDN node of interest, and to compute the resulting maximum
drop. We call the stimulus “synthetic” because we do not
observe it in actual traces or simulations, but rather, we
construct it to yield the worst-case voltage drop which satisfies
specified constraints.

More specifically, consider an arbitrary time point t0. Our
objective is to construct, for every node z of interest on
the PDN, a worst-case stimulus which maximizes voltage
drop on that node at t = t0. It will become clear, in our
formulation below, that t0 is indistinguishable from any other
time point. Therefore, maximizing voltage drop at t = t0 is
tantamount to maximizing voltage drop at any arbitrary time
point during circuit operation. This point is key: although
our problem is that of maximizing voltage drop, a transient
quantity during circuit operation, we approach it by a single-
time-point optimization.

We work backward from t0 and construct the waveforms
{i1(t),. . . iq(t)} that make up the PDN stimulus indirectly,

computing for each a set of details (Tm,n) and approximations
(Sm,n). As per (14), a waveform is a well-defined linear
expression of its details and approximations. The situation is
the reverse of the example in Fig. 4: we need to construct
the waveform x(t), by first setting the waveform duration to
4, then computing suitable values for T1,0, T1,1, T2,0, and S2,0

(under constraints), to build a piecewise constant waveform
(1, 2, 3, 4).

The computed waveform will be the solution to a voltage-
drop-maximizing optimization problem, and will therefore be
a guaranteed worst-case. Before formulating the optimization
problem, we need to determine, for every waveform in the
PDN stimulus: 1) the time span of its shortest wavelet; 2)
its duration; and 3) its composition, in terms of wavelets and
scaling functions at every scale. The remainder of this section
addresses these issues, and we formulate the optimization
problem in Section VI. In Sections V-A, V-B, and V-C we
focus on some waveform ij(t) that is part of the worst-case
stimulus for some PDN node z. We will refer to the pair (j, z)
as the “input/output pair.”

A. Time Span of the Shortest Wavelet

It is typical, in today’s design processes, to characterize
the PDN in terms of its impedance plot, i.e., a profile of
voltage drop versus current excitation frequency. For one
thing, this plot gives insight on the highest current frequency
at which the PDN exhibits significant voltage drop. Fig. 5
shows the impedance plot of a high-level PDN in an early
design high-performance microprocessor. Guided by such a
plot, and based on PDN design expertise, designers are able
to specify a maximum current frequency, fmax, for which they
are interested in verifying the PDN.

As we did in Section IV-A, we choose the shortest wavelet
so as to have a center frequency equal to fmax, and set its scale
to m = 1. Noting that the scale a of a wavelet coincides with
its time span, we compute the time span amin of the shortest
wavelet from (5)

amin = 2.33/(πfmax). (16)

Let u be the time unit over which the synthetic waveform is
constant, which represents the time unit for our analysis. We
have

u = amin/2 (17)

see, e.g., Fig. 4. In that figure, if fmax = 300 MHz, then amin

should be set to 2.47 ns, and u becomes 1.235 ns. Therefore,
one time unit corresponds to 1.235 ns. Since scale m = 1 has
a time span of amin = 2u, scales m = 2, 3, etc., therefore
represent wavelets and/or scaling functions spanning 4u, 8u,
and so on.

B. Waveform Duration

Guided by impedance plots, designers can also specify
a lower-bound fmin on the frequency of interest, and this
guides the choice of the largest scale m0 needed in the
waveform decomposition: we set the time span amax of the
longest wavelet such that its center frequency is at most
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equal to fmin. In addition, given the dyadic structure of the
MRA decomposition, amax/amin must be a power of 2. These
requirements translate to

amax = 2�log2(fmax/fmin)�amin (18)

where �·� is the ceiling function. We deduce the largest scale
m0

m0 =
[
log2(amax/amin) + 1

]
=

[
log2(2fmax/fmin).

]
(19)

Going back to the example of Fig. 4, and assuming that
fmax = 300 MHz and fmin = 200 MHz, then amin = 2.47 ns,
and amax = 2amin = 4.94 ns. The largest scale is m0 = 2.

We begin by describing qualitatively the process of comput-
ing the required duration dj of the waveform ij(t). Recall that
we are interested in the worst-case stimulus for node z. Let
hm,0,j,z(t) be the voltage drop waveform on node z when the
PDN has a single stimulus of ψm,0(t) on current source j. Our
basic idea is to inspect, for every scale m = 1, 2, . . . , m0, the
time dm,j at which hm,0,j,z(t) dies down (to some negligible
value, ε) and select dj = max (dm,j), m = 1, . . . , m0.
We do require that dm,j be an integer multiple of 2mu,
which ensures that scale m contains an integer number of
wavelets.

To see the reasoning behind this, we appeal once again to the
example in Fig. 4, picturing the figure as a decomposition of
some waveform ij(t). The inclusion of two wavelets at scale 1,
as shown on the figure, assumes that the PDN response on
node z, to a wavelet at scale 1 attached to current source j,
takes longer than 2u but dies down in 4u (d1,j = 4u), while
the presence of a single wavelet at scale 2 implies that the
response of the PDN to a wavelet at that scale dies down
within 4u (d2,j = 4u).

We now discuss how to compute hm,0,j,z(t), for all in-
put/output pairs (j, z). A brute-force approach would be
to simulate the PDN network qm0 times, such that every
simulation includes the PDN with a single stimulus con-
sisting of a wavelet at a given scale (m0 scales in to-
tal), attached to some current source (q sources in total),
with voltage measured at every node. This job, however,
can be done far more efficiently, requiring only q step re-
sponse simulations of the PDN, followed by efficient linear
operations.

Let U(t) be the unit step function, defined as U(t) = 0, for
t < 0, and U(t) = 1, for t > 0. Notice that

φ0,0(t) = U(t) − U(t − amin/2) = U(t) − U(t − u) (20)

where u is the time unit. Let yj,z(t) and sm,n,j,z(t) be the voltage
drop responses on node z of the PDN to a single stimulus on
current source j consisting respectively of U(t) and φm,n(t).
Because the PDN network is linear, time-invariant, we can
write from (20)

s0,0,j,z(t) = yj,z(t) − yj,z(t − u). (21)

Using (11), in which the time unit u is implicit, and the time-
invariance of the PDN, we have

sm,n,j,z(t) = sm,0,j,z(t − n2mu). (22)

Fig. 6. Example composition for a synthetic stimulus {i1(t), i2(t)}.

Algorithm 2 leverages the PDN linearity to compute the
hm,0,j,z(t).

Observe that lines 4 and 5 are a direct result of (12)
and (13). Lines 1–6 need to be executed qv times, once
for every (j, z) pair, to perform full characterization of
the hm,n,j,z(t). However, these steps are efficient, and con-
sist of waveform additions and shifting. The step responses
yj,z(t) for every (j, z) pair can be obtained by way of q
step function simulations of the PDN network, each sim-
ulation consisting of a single step function stimulus on
one input, with the output voltage drop measured on all
nodes.

C. Waveform Composition

We have seen that a waveform ij(t) consists of a number
of wavelets at scales 1, . . . , m0, as determined by the duration
of the PDN response wavelets at every scale. In this section,
we make further remarks on the composition of the waveform.
We illustrate our remarks with the example in Fig. 6.

Let nm,j be the number of wavelets at scale m (in the
terminology of Section V-B, nm,j = dm,j/2mu). In Fig. 6, e.g.,
n1,1 = 3, n2,1 = 2, and n3,2 = 1. To every wavelet is associated
an unknown detail coefficient, that will serve as a variable in
the optimization problem in Section VI.

The reader may wonder why wavelets at the smallest scales
do not cover the entire duration dj , e.g., in Fig. 6, scale 1 for
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i2(t) extends only 4u prior to t0. While doing so would be
correct, it would induce an unnecessary performance penalty,
because the more wavelets the more optimization variables.
For instance, if the PDN response to a single stimulus
i2(t) = ψ1,0(t) becomes insignificant within 4u, then a wavelet
at scale 1 attached to current source 2 and starting earlier than
t0 − 4u does not have any meaningful bearing on the voltage
drop at t0.

The piecewise constant shape of the resulting waveform
is a consequence of the Haar system, where wavelets and
scaling functions are piecewise constant. We illustrate our
ideas with the Haar system due to its simplicity, but our
approach is the same with all other wavelets (which have
scaling functions) [8].

Finally, we note that the scaling function’s approximation
coefficient in a waveform serves as its dc component, as can
be seen in Figs. 4 and 6. Therefore, the overall composition
of the waveform is a dc component and a number of shifted
wavelets at scales 1, . . . , m0, modulated by detail coeffi-
cients.

To summarize, consider the waveform ij(t), and denote its
dc component by idc,j , its largest scale by m0, the number
of wavelets at scale m by nm,j , and its detail coefficients by
Tm,n,j

ij(t) = idc,j +
m0∑
m=1

nm,j∑
n=0

Tm,n,jψm,n(t). (23)

The decomposition of (23) is illustrated in Fig. 6.

VI. Optimization Problem

A. Objective Function

In this section, we formulate an optimization problem whose
solution results simultaneously in the shape of the worst-case
current waveform and the value of the maximum voltage drop
at any point in time. Let v(t) denote the voltage drop waveform
on node z, due to an arbitrary PDN stimulus. Our objective is
to maximize the voltage drop at t = t0, or v(t0). Let vj(t) be the
voltage drop waveform when the PDN has a single arbitrary
stimulus ij(t). By linearity of the PDN, we write

v(t0) =
q∑
j=1

vj(t0). (24)

Thus, the objective function requires expressions for each
vj(t0).

Let hm,n,j,z(t) be the voltage drop waveform on node z,
due to a single stimulus ψm,n(t) attached to current source j.
Following the waveform decomposition of Section V-C, and
due to the time-invariance of the PDN system, we have

hm,n,j,z(t0) = hm,0,j,z
(
(nm,j − n)2mu

)
. (25)

From (25), we conclude that hm,n,j,z(t0) is readily computed
from the results of Algorithm 2.

Let kj be the voltage drop on node z due to a dc stimulus of
1 A on current source j, i.e., the dc gain from current source

Algorithm 2: Computation of hm,0,j,z(t) for a pair (j, z)
.

Require: u (suitable time unit), yj,z(t).
1: s0,0,j,z(t) = yj,z(t) − yj,z(t − u)
2: s0,1,j,z(t) = s0,0,j,z(t − u)
3: for m = 1, . . . , m0 do
4: sm,0,j,z(t) = 1√

2

[
sm−1,0,j,z(t) + sm−1,1,j,z(t)

]
5: hm,0,j,z(t) = 1√

2

[
sm−1,0,j,z(t) − sm−1,1,j,z(t)

]
6: sm,1,j,z(t) = sm,0,j,z(t − 2mu)

j to node z. Combining (23) with (25), we write vj(t0) as
follows

vj(t0) = kjidc,j +
m0∑
m=1

nm,j∑
n=0

hm,0,j,z
(
(nm,j − n)2mu

)
Tm,n,j. (26)

We combine (24) with (26) to write the objective function

v(t0) =
q∑
j=1

kjidc,j +

q∑
j=1

m0∑
m=1

nm,j∑
n=0

hm,0,j,z
(
(nm,j − n)2mu

)
Tm,n,j.

(27)

Therefore, the objective function is a linear combination of
the idc,j and Tm,n,j , our optimization variables.

B. Current/Power Constraints

A broad range of current/power bounds can be imposed
on the PDN stimulus, given specifications known about the
design at an early stage. Such bounds have been used in prior
art to formulate a verification approach for power networks
(see, e.g., [3]), and can be easily embedded into our wavelet-
based framework. The simplest bounds are on the minimum
and peak-currents, such as

0 ≤ ij(t) ≤ imax,j, for 0 ≤ t ≤ t0 (28)

where the value of imax,j is known by specification or simula-
tion of the design block represented by ij(t). Another bound
commonly available from design specification is a global
power envelope Pmax for a given chip. Denoting the supply
voltage by Vdd , we can express the global power envelope as

q∑
j=1

ij(t) ≤ Pmax/Vdd, for 0 ≤ t ≤ t0. (29)

We can readily use (23) to integrate bounds such as (28)
and (29) as linear constraints in terms of the optimization
variables. This is best illustrated by appealing, once again, to
the example in Fig. 6. For instance, a constraint 0 ≤ i2(t) ≤ 1
expands into

0 ≤ A3T3,0,2 + idc,2 ≤ 1
0 ≤ A1T1,0,2 + A2T2,0,2 − A3T3,0,2 + idc,2 ≤ 1
0 ≤ −A1T1,0,2 + A2T2,0,2 − A3T3,0,2 + idc,2 ≤ 1
0 ≤ A1T1,1,2 − A2T2,0,2 − A3T3,0,2 + idc,2 ≤ 1
0 ≤ −A1T1,1,2 − A2T2,0,2 − A3T3,0,2 + idc,2 ≤ 1
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Fig. 7. DWT-scalogram establishes the maximum frequency footprint of a
given test. Maximum values are darkest.

where Am = 2−m/2 is wavelet amplitude at scale m, as
in (7).

A third type of constraints that designers can infer is in
the form of max delta, i.e., a bound on the change in current
between successive time units. It can be written in the form

−δ ≤ ij(t) − ij(t − u) ≤ δ, for u ≤ t ≤ t0. (30)

These constraints are not the only ones possible. Any linear
constraints in the instantaneous values of ij(t) (e.g., waveform
averages) can do: Since every ij(t) is a linear combination of
some of the optimization variables idc,j and Tm,n,j , any linear
inequality in terms of the ij(t) is a linear constraint on the
problem.

C. Wavelet Frequency Envelope

We mentioned in Section II that scalograms capture useful
properties about the time-signal being analyzed. One such
property is the wavelet frequency envelope, or the maximum
transform value along every scale. When the signal analyzed
is a current or switching trace, this value is a proxy for
the maximum energy burst for a given frequency band (the
wavelet’s pass-band at each scale) generated by the current
trace.

From the perspective of PDN design, we would want to an-
alyze commonly used high-level benchmark power simulation
traces (architectural, register transfer level or logic) in order to
generate time–frequency constraints. These constraints would
complement current and power bounds, which are normally
specified a priori by designers.

The wavelet frequency envelope can be formed by applying
Algorithm 1 on the available traces and taking the maximum
observed values of the resulting detail coefficients, for every
scale: We take these values to form a set of optimization
constraints. This process is shown in Fig. 7, which illustrates
a DWT-based seven-level scalogram (bottom panel) on a time-
signal similar to a typical switching trace. Dark squares on the

Fig. 8. Wavelet frequency envelope in an early stage microprocessor.

scalogram indicate large values of the wavelet transform at the
corresponding scale and time window. A wavelet frequency
envelope, obtained after analyzing 50 power traces of an
early stage microprocessor design, is shown in Fig. 8 (scale
m = 1 represents a wavelet spanning 10 clock cycles). Every
individual trace results in a scalogram similar to Fig. 7,
from which scale-wise maximum detail coefficient values are
extracted (the dashed line on Fig. 8 is one such trace). The
wavelet frequency envelope, shown in a solid line, is obtained
from the maximum details at every scale, observed in any test.

Let Tm,max,j be the value of the wavelet frequency envelope
for ij(t) at scale m. We write optimization constraints as

−Tm,max,j ≤ Tm,n,j ≤ Tm,max,j , ∀n = 0, . . . , nm,j − 1. (31)

Going back to Fig. 6 for an example, assume that, in absolute
value, the details at scale 2 for i1(t) are less than T2,max,1 = 5,
and those at scale 3 for i2(t) less than T3,max,2 = 6. This
would imply the following three constraints: −5 ≤ T2,0,1 ≤ 5,
−5 ≤ T2,1,1 ≤ 5, and −6 ≤ T3,0,2 ≤ 6. It is easy to see that
constraints in the form of (31) are linear in the optimization
variables Tm,n,j . Therefore, they are readily usable in our
problem.

D. Problem Formulation and Solution

max v(t0) =
q∑
j=1

kjidc,j +
q∑
j=1

m0∑
m=1

nm,j∑
n=0

hm,0,j,z
(
(nm,j − n)2mu

)
Tm,n,j

such that

peak current 0 ≤ ij(t) ≤ imax,j , 0 ≤ t ≤ t0

(peak power)
q∑
j=1

ij(t) ≤ Pmax/Vdd, 0 ≤ t ≤ t0

(max delta) −δ ≤ ij(t) − ij(t − u) ≤ δ, u ≤ t ≤ t0
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(current expression) ij(t) = idc,j +
m0∑
m=1

nm,j∑
n=0

Tm,n,jψm,n(t)

(wavelet envelope) −Tm,max,j ≤ Tm,n,j ≤ Tm,max,j ,

m = 1, . . . , m0, n = 0, . . . , nm,j–1.

The above problem is a linear program (LP) in the Tm,n,j and
idc,j . The solution of this problem leads to the worst-case volt-
age drop on node z of the PDN, whereas arg max v(t0) yields
the optimization variables, which can directly be plugged
into (23) to construct synthetic waveforms ij(t), j = 1, . . . , q,
leading to the worst-case synthetic stimulus for node z.

VII. Experimental Results

A. PDN Verification and Trend Prediction

We tested the proposed approach on several models of an
early stage, high-performance microprocessor design, and in
this section, we showcase how it provides design-assist value.
As is standard practice among microprocessor design groups,
we used PDN/die models consisting of RLC networks from
the VRM to the die, with the die modeled as lumped current
sources [7]. Such models are known to capture well the die-
level voltage drop. The justification for a lumped die model
lies in that, seen from the VRM, voltage drop across the die
is, up to high-frequencies, predominantly global [9].

Fig. 9 illustrates a full-die current stimulus of duration
t0 = 47 ns, which captures worst-case voltage drop in a high-
frequency band. We substantiated our voltage drop calculations
by simulating the PDN with this load: The computed worst-
case drop of 120 mV matched with simulation, and occurred
at t0, as expected. However, simulation shed additional light
in showing the computed worst-case waveform gradually
building up the magnitude of voltage oscillations until culmi-
nating at t0. Our approach covers arbitrary frequency bands
by generating waveforms of various durations: for a wide
band of a few hundred kilohertz to a few hundred megahertz,
we generated a stimulus lasting about 6 µs. We note that, in
general, the resulting worst-case stimuli were characterized by
fairly regular, low-frequency variations at the beginning, with
higher-frequency components (wavelets) progressively kicking
in, creating local fine patterns that intensify near the end
point, t0.

Our approach may be construed as a generalization of
RPT [6]. While RPT works backward from t0 to construct
a worst-case current waveform simply as a sequence of full-
swing step functions Imax to Imin and Imin to Imax, our approach
yields finer patterns in the current waveform, visible on Fig. 9.
The reason is that it embeds sophisticated considerations
in ways RPT cannot: minimum and maximum waveform
frequency, max delta, wavelet frequency envelope, and global
power constraints. Indeed, when we stripped our optimization
formulation from these constraints, we observed that our
worst-case waveforms matched with RPT-generated ones, but,
as expected, these waveforms overestimate maximum voltage
drop with respect to their constrained counterparts, and our
experiments indicated 16–25% overestimation. Therefore, our
technique has the clear benefit of offering less pessimistic

Fig. 9. Example worst-case current waveform and its induced voltage drop.

Fig. 10. Predicted voltage drop breakdown for early stage microprocessor
models. (a) Predicted voltage drop breakdown on Core 1 in an early-stage
four-core design. (b) Predicted breakdown of di/dt voltage drop.

predictions, and broader user-characterization of current wave-
forms than is possible with RPT. Furthermore, complex PDN
models with several current sources, which are simply beyond
RPT, can be naturally handled with our technique.

Our approach can help designers predict voltage drop trends
in an early design stage. By that, we are referring to the
ability to systematically quantify the relative magnitudes of
different voltage drop components. To illustrate this idea, we
applied our analysis on a four-core early stage design, and
measured the contribution of leakage, IR-drop, and di/dt
switching activity for each core, on the worst-case voltage
drop on Core 1. For example, once the optimization problem of
Section VI is solved, the impact on Core 1 of di/dt switching
that occurs on Core j is computed as

m0∑
m=1

nm,j∑
n=0

hm,0,j,1
(
(nm,j − n)2mu

)
Tm,n,j/max v(t0).

Fig. 10(a) shows sample results: IR-drop was found to
contribute 18.2 % of the total drop (with a separate 1.5%
share for leakage). And while it is expected that the largest
individual contributor to di/dt drop on Core 1 is switching
activity on the same core (30.8 %), the combined impact of
the other cores exceeds that individual contribution (51.5%),
thereby firmly establishing the need for an integrated cross-
core analysis.

A key advantage of our framework is being frequency-
aware. Modern PDNs have complex frequency responses with
several resonant modes, each determined by a set of electrical
and design parameters. For example, the resonant mode at the
highest frequency, commonly referred to as “first droop” [7] is
a strong function of package inductance and die capacitance.
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Lower frequency resonance, i.e., “second droop,” and “third
droop” [7], depend on other parameters including motherboard
design and bulk capacitors. Designers of different stages of
the PDN will therefore be interested in gauging voltage drop
across specific frequency ranges: e.g., package designers may
care only about minimizing worst-case voltage drop in the
first droop range. While current methods to gauge the extent
of first, second, and third droop are tedious, measurement-
heavy and limited [7], our method naturally incorporates theses
considerations by specifying fmax and fmin and leveraging the
wavelet filtering properties. Fig. 10(b) shows the breakdown of
the three resonant modes in terms of their share of worst-case
di/dt voltage drop. It is worth noting that each core required
about 500 optimization variables to cover the frequency range
of first, second, and third droop.

B. Package/Die Codesign

We applied our approach to the optimization of package
inductance Lpkg for an early design microprocessor model. The
idea was to vary Lpkg around the design point and compute
the expected worst-case voltage drop with die constraints
unchanged (currents, power, frequency). The alternative for
designers today is to discover the Lpkg value which results
in the least voltage drop by simulating the power delivery
network for all traces and all candidate Lpkg values. Compared
with this optimization-by-simulation, our approach has two
key advantages: besides the obvious one that simulations are
not guaranteed to uncover worst-case drop, simulating the
PDN for several (and we used 50) multimillion-cycle traces
is simply impracticable. In this respect, our approach is both
faster and more accurate.

Fig. 11 shows a plot of the predicted maximum voltage
drop versus Lpkg. The x-axis depicts the percentage variation
from the current design point, represented by the 0 point. The
figure shows a plateau around the current design point and
reveals that designers have approximately a 30% headroom
in their choice of Lpkg without incurring a voltage drop
penalty. In fact, the figure predicts a slight improvement in
the worst-case voltage drop if Lpkg were to be increased by
about 25% from its planned value. This, somewhat surprising
finding, stems from the fact that a change in Lpkg changes the
PDN frequency response, and the interplay between the new
frequency response and the wavelet envelope bounds (which
are frequency constraints), results in a net decrease in the
maximum voltage drop. Such feedback is of great value to
designers: the possibility to change Lpkg has direct financial
bearing on the chip design. To our knowledge, no other method
or commercial tool provides such feedback today.

C. Application to On-Die Power Grids

The on-die component of the PDN, widely known as
the power grid, is a mesh structure with several layers of
metallization, connected “from above” to the package, and
“from below” to circuit devices [9]. To test our approach on
power grids, we carried out an experiment where we fixed
the dimension of a grid (5 mm × 5 mm), total power budget
(1 W), and die capacitance (200 nF), then progressively added

Fig. 11. Application to Lpkg optimization.

TABLE I

Application to Power Grid Verification

Grid Size Simulation Optimization Average Max
(#Nodes) Time (h) Time #Variables Vdrop (mV)

(182 Nodes) (s)

11 100 1.6 11 675 59

14 300 1.7 8 604 35

26 000 3.6 5 543 20

36 500 11.3 4 522 13

metallization layers and verified the grid with every new layer.
The grid was modeled as an RC network [9] and the power
budget nonuniformly distributed over 182 current loads. Grid
verification consisted of finding the worst-case voltage drop
in the 50 MHz—1 GHz range, over the 182 nodes with loads
attached. Table I shows the results: Beginning with two metal
layers M1 and M2 (row 1), we added M3 (row 2), then M4
(row 3), then M5 and M6 (row 4). Results were obtained on
a server with two dual-core, 2.6 GHz processors.

We divided runtime into two components: 1) simulation of
step-responses (Section V-B), carried out with HSpice; and
2) solution of the optimization problem (Section VI-D), done
with PCx, a freely available LP package. It is clear that
simulation is the overwhelming bottleneck. However, since
the required simulations are generic step responses, simulators
tailored for the power grid will drastically improve efficiency.
Also, simulation is a precharacterization step: users need to do
it once for a given PDN and can re-run the verification with
different constraints or over different frequency bands with-
out further simulation. More importantly, these results show
that the cost of maximizing voltage drop, which essentially
searches the feasibility space of currents in time, came down
to the computation of step responses.

The second highlight is the efficiency of the optimization
itself, due to the relatively small number of variables needed
per optimization problem (column 4 reports the average
number over the 182 problems solved). The key lies in the
spatial locality of power grids [9]: excitations from some
current source have little impact on the grid beyond a certain
neighborhood around the source. Locality has also a frequency
aspect: a high-frequency excitation propagates over a smaller
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neighborhood than a low-frequency one. Our framework picks
up spatial locality seamlessly, while computing wavelet re-
sponses from (25) and Algorithm 2: if the response on node
z to a wavelet at some scale and source is negligible at t0, the
corresponding variable is dropped out of the zth optimization
problem, leaving, for every node, only the set of relevant
sources and scales (frequencies), as optimization variables.
This also explains the trend of requiring fewer optimization
variables with more grid layers: all other things equal, the
greater the connectivity of the grid (more metal), the less it
is prone to voltage drop, and the smaller the neighborhood of
influence per source at a given frequency.

VIII. Conclusion

We introduced the concept of time–frequency description of
circuit currents using wavelets, and formulated an optimization
framework that solves for the worst-case supply voltage drop.
Using this framework, we were able to integrate a broad
range of constraints, and introduce new ones based on time–
frequency die behavior. We applied this framework on an
early stage design process, for package-die codesign, and
on power grids, showing how it naturally fills designers’
needs for sytematic predictions and characterizations of the
power delivery network. The proposed approach was applied
in early design of a four-core industrial microprocessor. The
application of this approach revealed realistic and nonobvious
worst-case scenarios, including the contribution to maximum
voltage drop of the die, package, and motherboard stages, and
enabled what–if analysis to discover optimal design points.
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