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Abstract—As part of early system design, one must verify
that the power grid provides the underlying logic circuitry with
voltage levels that are within specified ranges. In this paper, we
describe a vectorless verification approach that can be applied
early in the design process. We adopt an RLC model of the grid
in the framework of current constraints that capture uncertainty
about circuit details and activity. With just a few linear programs
and one linear system solve, our proposed approach provides
tight conservative bounds on the maximum and minimum worst-
case voltage drops at every node of the grid. Results show the
accuracy and speed of our technique thus making it practical
and scalable.

Index Terms—Integrated circuits, overshoot, power grid, ver-
ification, voltage drop.

I. Introduction

THE RISING demand for low voltage modern integrated
circuits (ICs) has made efficient analysis of power grids

a critical task. A key concern is the fact that a poorly-
designed grid will result in excessive fluctuations in the voltage
levels supplied to the underlying logic thus slowing it down
and putting the overall circuit timing performance at risk.
Therefore, in order to ensure correct logic functionality, there
is a clear need for efficient grid verification.

There are two main causes of voltage violations; IR drop,
which is the result of the resistivity of the metal rails, and
Ldi/dt noise, which is due to the inductance of the rails and the
grid-package interconnections. In today’s designs, the increas-
ing number of transistors and the high operating frequencies
lead to large current demands and fast current transients both
of which produce large IR drops and considerable Ldi/dt
noise [1]–[3]. Note, in particular, that such inductive noise
can result in either drops or overshoots where voltage levels
at the grid nodes exceed that of the supply. Therefore, grid
verification should account for both voltage behaviors and grid
safety must be stated in terms of the maximum and minimum
worst-case voltage levels at each node on the grid.

Today, grid verification is typically done by simulation.
Such an approach requires full knowledge of the current wave-
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forms drawn by every logic block attached to the grid. These
waveforms would then be used to simulate the grid and get the
voltage drop at every node. Verifying the grid in this manner
proves to be problematic. For one thing, the number of current
traces needed to cover the space of voltage drops exhibited
on the grid is intractable for modern designs where grids
can consist of several million nodes. Several attempts have
been made to address the problem of searching the current
space for the worst-case current waveforms, including the
computation of bounds on possible currents [4] or of current
statistics [5]. Another major drawback is that a simulation
based flow does not allow for early grid verification, when
grid modifications can be most easily incorporated. The need,
then, is for a verification approach that does not depend on
simulation, i.e., a vectorless approach. Therefore, we adopt
the framework of partial current specifications, in the form of
current constraints [6], which will be detailed in Section II-C.
The constraints specify a feasible space in which currents
can vary during circuit operation. Under such constraints,
RLC grid verification becomes a problem of computing the
maximum and minimum voltage drops. In [7], the authors
computed these worst-case voltage drops by using a con-
vergent iterative process that requires the solution of linear
programs (LPs) while stepping repeatedly through time. This
approach becomes prohibitive even for medium size grids.

In this paper, we propose a novel technique to compute
upper bounds on the maximum worst-case voltage drops and
lower bounds on the minimum worst-case voltage drops on
the grid. These bounds require a few LPs and one linear
system solve. Experimental results in Section V show that the
improvement in runtime of our technique is dramatic while
ensuring small error values.

II. Background

A. Power Grid Model

We consider an RLC model of the power grid where each
branch is represented either by a resistor, referred to as an
r-branch, or by a resistor in series with an inductor, referred
to as an rl-branch. Two sets of nodes exist; one is internal
to the rl-branches. We denote its members as internal nodes.
The members of the other set are referred to as external
nodes. Some external nodes may be connected to ideal voltage
sources (assuming flip-chip technology, we will refer to an
ideal supply voltage source as a C4, with the understanding
that any parasitics that are part of a true C4 pad structure have

0278-0070/$26.00 c© 2011 IEEE



692 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

already been modeled and included in the grid description).
As a result, the inductance in our grid model represents the
inductive component of either the grid interconnect or the pad
structure that connects the grid to the external voltage sources.
There exists also a capacitor from every external node to
ground and some of these nodes have ideal current sources (to
ground) representing the currents drawn by the logic circuits
tied to the grid. In the derivation of the system equations, we
will use the state-variable approach to network analysis [8].

Let the power grid consist of m + n1 + p nodes, where
nodes 1, 2, . . . , m are internal nodes, nodes (m + 1), (m +
2), . . . , (m + n1) are external nodes with no voltage sources
attached, and the remaining nodes (m+n1+1), (m+n1+2), . . . ,

(m+n1 +p) are the external nodes where the p voltage sources
are connected. Let ck be the capacitance from every external
node k to ground. Let is,k(t) be the current source connected to
external node k, where the direction of positive current is from
the node to ground. We also assume that is,k(t) is defined for
every node k = 1, . . . , n where n = m + n1 so that all external
nodes with no current source attached have is,k(t) = 0, ∀t and
all internal nodes have is,k(t) = 0, ∀t. Let is(t) be the vector
of all is,k(t) sources. Let uk(t) be the voltage at every internal
or external node k, k = 1, . . . , n and let u(t) be the vector
of all uk(t) voltage signals. Moreover, let il(t) represent the
inductive branch currents where l = 1, . . . , m, and let i(t) be
the vector of all inductive branch currents. Notice that m also
represents the number of inductors in the grid. Fig. 1 is an
example of an RLC grid model.

B. System Equations

The time-domain equations that describe the circuit can be
derived by applying Kirchoff’s current law (KCL) at every
node k, where k = 1, 2, . . . , n. In general, applying KCL at
every non-C4 node of the grid, we get

Gu(t) + Cu′(t) + Mi(t) = −is(t) + G0vdd (1)

where G is an n × n conductance matrix as in the traditional
modified nodal analysis formulation [9]. The G matrix is
known to be diagonally-dominant symmetric positive definite
M-matrix (so that G−1 ≥ 0). G0 is an n×n matrix of the con-
ductance elements connected to Vdd sources [6]. C is an n×n

diagonal matrix of node capacitances with the understanding
that entries corresponding to internal nodes are 0, and M is an
n×m incidence matrix whose elements are either ±1 or 0, as
in [8]. The term ±1 occurs in location mij of the matrix when
node i is connected to the jth inductor, else a 0 occurs. The
sign of the non-zero terms depends on the positive direction
of current in the branch and on the node under consideration.
If the current assignment is away from the node, then the sign
is positive, else it is negative. Finally, vdd is a constant vector
whose entries are all equal to Vdd (the supply voltage).

If we set all is,k(t) = 0, ∀t, then no voltage drop should occur
on the grid. So, all branch currents will be zero and all node
voltages will have a value of Vdd . System (1) then becomes

Gvdd = G0vdd. (2)

Fig. 1. RLC grid model.

Define vk(t) = Vdd − uk(t) to be the voltage drop at node
k and v(t) as the vector of all voltage drops. Then, if we use
(1) and (2), the first system equation becomes

Gv(t) + Cv′(t) − Mi(t) = is(t). (3)

Notice that in (3) we do not take into account the rela-
tionship between the inductor branch current and the inductor
voltage. It remains to model this relationship. The necessary
equations were derived in [8] and are simply stated here.
Notice that these equations will be applied to all inductances.
So, the number of equations will be m. Relating all inductive
branch currents to the voltage drop across the respective
inductors we get the second system equation

MT v(t) + Li′(t) = 0 (4)

where L is an m × m diagonal matrix of inductance values.
Notice that the matrix multiplying the voltage vector is the
transpose of the incidence matrix [8]. The pair of equations (3)
and (4) represent the complete behavior of the power grid,
as a dynamical system. Using a backward finite difference
approximation

(
v′(t) ∼= v(t)−v(t−�t)

�t

)
, a discrete-time version

of (3) and (4) can be written as

(
G +

C

�t

)
v(t) − Mi(t) = is(t) +

C

�t
v(t − �t) (5)

MT v(t) +
L

�t
i(t) =

L

�t
i(t − �t). (6)

The equation variables are the node voltages and the inductive
branch currents. Note that G + C

�t
is also a symmetric positive

definite M-matrix. For properties of M-matrices, the reader
is referred to [10].

C. Current Constraints

In our approach, we perform a verification of the grid in
the absence of complete information about currents drawn
by the underlying circuit, what may be called a vectorless
approach. We do this because the currents are typically hard
to specify, for at least two reasons: 1) there is a large variety
of possible current waveforms, so that the worst case is hard to
determine up-front and simulation of a large set of waveforms
is prohibitively expensive, and 2) grid design and verification
cannot wait until the chip design is nearly-complete, and is
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typically done early in the design flow, so that the details of
the underlying circuitry may not yet be available or complete.

Current constraints, originally introduced in [6], capture
the uncertainty about the circuit currents arising from both
unknown circuit behaviors and the fact that one is uncertain
about circuit details early in the design flow. The aim is to
verify that the grid is safe (i.e., its voltages remain within
certain bounds), under all possible transient current waveforms
which satisfy these constraints. Two types of constraints are
defined: local constraints and global constraints.

Local constraints are upper bounds on individual current
sources, where a current source can represent a single logic
gate or cell, but more typically should represent a larger block.
They can be expressed as

0 ≤ is(t) ≤ iL ∀t ≥ 0 (7)

where iL is the vector of peak values that the current sources
can draw—it is a “DC” upper bound on the transient waveform
vector is(t). It is important to remember, however, that it is
only the constraints that are DC; the currents themselves are
transient. To ensure that these constraints are well-defined for
every node of the grid, we enforce the condition that any
node with no current source connected would have a zero iL
component.

If only local constraints are provided, the problem is much
simplified, but the results would be overly pessimistic, because
it is never the case that all chip components simultaneously
draw their maximum currents, hence the need for global
constraints, which are upper bounds on the sums of groups
of current sources. They represent the peak total power dissi-
pation of a group of circuit blocks. Assuming we have a total
of κ global constraints, they can be expressed in matrix form as

0 ≤ Uis(t) ≤ iG ∀t ≥ 0 (8)

where U is a κ × n matrix that consists only of 0s and 1s
which indicate which current sources are present in each global
constraint. As for the case of local constraints, note that iG is
a fixed time-independent upper bound, a DC constraint, but
the currents themselves are transient waveforms over time.

How would one obtain/specify these constraints in practice?
If a logic block is available and small enough to simulate,
then one can generate the constraints by an “offline” process
of simulation, which can be viewed as a characterization of
that block. If the block is not yet available or is too large
to simulate, then one would need to rely on design expertise
and engineering judgment (how big it is, what its power needs
were in a previous technology and how scaling would affect
those needs, and so on). If, early in the design flow, nothing is
known about this block, not even its detailed functionality, one
typically is able to come up with an area budget for it. From
that, and from the projected power density (watts/µm2) for
the target process technology, one can generate a rough current
constraint for it. The bottom line: something is typically known
about that block, which with good engineering judgment can
be formulated into constraints. After all, if truly nothing is
known about the circuit currents, then the grid simply cannot
be verified.

Another possibility is that the current constraints can be
used to implement a “spec-based” design flow; a chip-level
designer would simply specify the constraints based on design
expertise, and the grid is verified under these constraints. The
constraints now become design guidelines to be observed in
subsequent design activity. If all design teams follow these
guidelines and verify their blocks, the end result would be a
grid that is safe by construction.

Together, the local and global constraints define a feasible
space of currents, which we denote by F , so that is(t) ∈ F if
and only if it satisfies (7) and (8). Later in the paper, we will
define algorithms that operate on a vector is(t) and which are
applicable at any value of time t. In that context, we will use
the shorthand is ∈ F to denote the fact that is(t) is feasible,
for any given t.

III. Problem Definition

Before we proceed, we will show how the exact RLC
grid verification boils down to solving linear programs that
depend on a certain matrix inverse and on some matrix-
matrix multiplications. The aim is to lay the ground-work
for the rest of the paper, in which upper bounds on the
maximum worst-case voltage drops and lower bounds on the
minimum worst-case voltage drops are computed using a very
efficient approach that minimizes the cost of computing the
inverse and that limits the number of required matrix-matrix
multiplications. The novelty of this paper is two-fold. First,
we transform the RLC grid into a reduced circuit to alleviate
the problems associated with its system matrices and to allow
for fast matrix manipulations. Second, we derive efficient
tight upper and lower bounds on the maximum and minimum
worst-case voltage drops respectively. However, we do need to
provide some detailed background on the RLC grid verification
to motivate our contribution.

We are interested in the vectors of maximum and minimum
worst-case voltage drops, over all possible currents in F . To
simplify the notation, let

A =

⎡

⎣
G + C

�t
−M

MT L
�t

⎤

⎦ B =

⎡

⎣
C
�t

0

0 L
�t

⎤

⎦

x(t) =

⎡

⎣
v(t)

i(t)

⎤

⎦ b(t) =

⎡

⎣
is(t)

0

⎤

⎦

(9)

so that, combining (5) and (6), we can write

x(t) = A−1Bx(t − �t) + A−1b(t). (10)

Consider the special case where the grid had no stimulus for
all t ≤ 0, so that x(0) = 0. At time t = �t, we can write

x(�t) = A−1Bx(0) + A−1b(�t)

= A−1b(�t). (11)
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At 2�t and at 3�t, we have

x(2�t) = A−1Bx(�t) + A−1b(2�t)

= A−1BA−1b(�t) + A−1b(2�t) (12)

x(3�t) = A−1Bx(2�t) + A−1b(3�t)

=
(
A−1B

)2
A−1b(�t) + A−1BA−1b(2�t)

+ A−1b(3�t). (13)

This can be repeated, so that at any future time p�t, we have

x(p�t) =
p−1∑

k=0

(
A−1B

)k
A−1b((p − k)�t). (14)

At every point in time t ∈ [0, p�t], the input vector b(t)
must be feasible, i.e., we must have is(t) ∈ F . To simplify
the notation, we define Fb to be the feasible space of b(t) so
that b(t) ∈ Fb if and only if is(t) ∈ F . Under that condition,
we are interested in the maximum and minimum worst-case
voltage attained (separately) by each component of the v(p�t)
subvector of x(p�t). In order to compactly capture this notion,
we introduce the following notation.

Suppose f (c) : Rn → R
n is a vector function whose

components are denoted f1(c), . . . , fn(c), and let A ⊂ Rn.
Now, define a vector z ∈ R2n, such that, with i ∈ {1, 2, . . . , n},
zi is the maximum of fi(c) over all c ∈ A and zn+i is the
minimum of fi(c) over all c ∈ A . We will denote this by the
following operator:

z = eopt
∀c∈A

(f (c)) (15)

where the “eopt(·)” notation is introduced to denote the fact
that this is an element-wise optimization. Notice that each
component zi, ∀i = 1, . . . , n may be found separately by
solving the following maximization problem:

maximize fi(c)

subject to c ∈ A
(16)

and each component zn+i, ∀i = 1, . . . , n may be found sepa-
rately by solving the following minimization problem:

minimize fi(c)

subject to c ∈ A.
(17)

Using this notation, we can express the maximum and mini-
mum worst-case voltage drops at all nodes at time τ = p�t by

xopt(τ) = eopt
∀b(t)∈Fb

(
p−1∑

k=0

(
A−1B

)k
A−1b((p − k)�t)

)

(18)

where the notation “∀b(t) ∈ Fb” means that, for every time
point t ∈ [0, τ], the current is(t) satisfies all the (local and
global) constraints.

In practice, we are interested in the steady state solution
where the system becomes independent of the initial condition

(b(t) = 0, ∀t ≤ 0). Since the RLC grid model is a dynamical
system with a limited memory of its past, then the steady
state solution can be obtained by evaluating (18) at points far
away from the initial condition, i.e., as p → ∞. Thus, the
general solution to the exact voltage drop maximization and
minimization problem is

xopt(τ) = lim
p→∞ eopt

∀b(t)∈Fb

(
p−1∑

k=0

(
A−1B

)k
A−1b((p − k)�t)

)

.

(19)

Although the RLC model is dynamic, i.e., its currents and
voltages vary with time, the constraints are DC and do not
depend on time. Hence, F is the same for each time step. With
this, the components of (19) can be “decoupled,” leading to

xopt(τ) = lim
p→∞

p−1∑

k=0

eopt
∀b∈Fb

[(
A−1B

)k
A−1b

]
(20)

where b is simply an (n + m) × 1 vector of variables with a
subvector is that satisfies the (local and global) constraints,
without reference to any particular point in time. This is a
major simplification of the problem, as it has the advantage
that the number of constraints for each optimization is fixed
and does not span all previous time points.

Unfortunately, (20) is of theoretical interest only. It cannot
be directly computed, as it stands, because it has to be
evaluated for a large number of time steps until convergence
and because the element-wise optimizations require a matrix
inverse A−1 and LPs that are proportional to the number of
nodes plus the number of inductive branch currents in the
grid which for modern designs is in the thousands or even
the millions. Also, it includes matrix-matrix multiplications
at every time step. As an alternative, and in the rest of the
paper, we propose a solution to efficiently verify the voltage
drops on the RLC grid. We will find an upper bound on
the maximum worst-case voltage drop and a lower bound
on the minimum worst-case voltage drop on every node on
the grid. These bounds will first require a few applications
of the “eopt(·)” operator. Instead of p applications, only
r applications are needed where r will be defined below.
The vector resulting from the above operation will then be
combined with an analytical expression to give the bounds at
p → ∞.

A. Discussion

Before we proceed with our proposed solution, we will
provide some discussion to highlight the impact of this paper
and the significance of grid verification under an RLC grid
model. The discussion will focus on a small 6-node RLC
grid.

One of the difficulties in analyzing RLC grid models,
especially the portions around a C4 pad, is that only certain
temporal arrangements of the circuit currents may lead to
the worst-case voltage drops on the grid. An example is
shown in Fig. 2, which illustrates the current stimulus that
induces the maximum worst-case voltage drop on one of
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Fig. 2. Current configuration leading to the maximum worst-case voltage drop and the corresponding voltage waveform obtained by HSPICE simulation.

Fig. 3. Current configuration leading to the minimum worst-case voltage drop (overshoot) and the corresponding voltage waveform obtained by HSPICE
simulation.

the grid nodes. The figure also shows the voltage waveform
resulting from simulating the grid, using HSPICE, subject
to that current stimulus. This current stimulus was found
by running the exact verification approach in (20). The ap-
proach also reported a maximum worst-case voltage drop
of 63.68884 mV. This worst-case value was confirmed by
the voltage waveform generated by HSPICE as it showed a
maximum voltage drop of 63.67949 mV. Another example
is shown in Fig. 3, which illustrates the current stimulus
that causes the maximum overshoot (minimum worst-case
voltage drop) on the same grid node. This stimulus, along
with a maximum worst-case overshoot of 23.7449925 mV,
is also found by running the exact verification technique.
Again, HSPICE was used to confirm the results by simu-
lating the grid subject to that current stimulus. In this case,
HSPICE reported a maximum overshoot of 20.96346 mV.
The HSPICE-generated voltage waveform is also shown in
Fig. 3. An important aspect that was revealed by simu-
lation using HSPICE is that the worst-case voltage wave-
forms gradually build up in magnitude until they reach their
peaks.

As one can see, the current waveforms leading to the worst-
case drops are quite complex even for this small 6-node grid.
Such complexity arises from the transient system behavior
and is compounded by imposing local and global constraints
on the power grid current sources under the vectorless
verification framework. Note that the global constraints are
the reason some currents do not transition from zero to their
peak values at certain points in time. As a result, to uncover
such current loads, along with the worst-case voltage drops,
we employed the novel and unique approach that is derived
in (20). From Table I in Section V, it is also clear that using

this exact approach becomes computationally prohibitive even
for small-size grids. Therefore, our proposed upper and lower
bound approach, is a fast verification technique that can
uncover the fact that there exists a combination of feasible
current waveforms which can result in voltage violations, be
they overshoots or voltage drops.

IV. Proposed Solution

A. Grid Transformation

An alternative way of writing (6) is

i(t − �t) =

(
L

�t

)−1

MT v(t) + i(t) (21)

where i(t) and i(t − �t) are the inductive branch currents at
time t and t−�t, respectively. Note that these are the currents
in what we previously defined as rl-branches. Fig. 4 shows a
sample branch with two external nodes j and k, with voltage
drops vj and vk, an internal node d, with voltage drop vd , and
a branch current il. Depending on the assigned direction of
the inductive branch current, two cases arise. Fig 4(a) shows
the case where il flows away from the internal node d. The
KCL equation at node d at time t can be written as

gvd(t) − gvk(t) = il(t). (22)

(Recall that vd and vk are voltage drops). Equation (22) is
precisely the row in (3) corresponding to node d. Let the vector
gT

d denote the same row of the matrix G. Then, a compact form
of (22) becomes

gT
d v(t) = il(t). (23)
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Fig. 4. Typical rl-branch. (a) First case. (b) Second case.

Applying (23) at time t − �t, we get

gT
d v(t − �t) = il(t − �t). (24)

Fig 4(b) shows the case where il flows toward the internal node
d. In this case, the KCL equation at node d at time t − �t

gives

−gT
d v(t − �t) = il(t − �t). (25)

Depending on the current assignment in every rl-branch, we
can either apply (24) or (25) to all the internal nodes to obtain

Ĝv(t − �t) = i(t − �t) (26)

where Ĝ is an m × n matrix whose kth row is that of either
G or −G and it corresponds to the internal node of the kth
rl-branch. Combining (21) and (26) eliminates i(t − �t) and
leads to

Ĝv(t − �t) =

(
L

�t

)−1

MT v(t) + i(t). (27)

Then, we substitute i(t) from (27) into (5) to get

(

G+
C

�t
+M

(
L

�t

)−1

MT

)

v(t)=

(
C

�t
+MĜ

)
v(t−�t)+is(t).

(28)

It is clear that (28) technically eliminates the inductive branch
currents from the equation variables thus drastically reducing
size of the system under verification. A similar transformation
technique was employed in [11] for a different grid model
and using the trapezoidal finite difference approximation. In
our paper, the RLC grid represented by (5) and (6) is now
transformed into a circuit with similar properties as the RC
grid model [12]. As is the case for the system matrix in
the RC case, and unlike A in (9), G + C

�t
+ M( L

�t
)−1MT

is sparse, symmetric, positive definite, and a banded M-
matrix. For such a matrix, it is well known that its inverse
has entries whose values decay exponentially as one moves
away from the diagonal [13]. Such matrices are often referred
to as practically sparse and their inverses can be efficiently
computed, with a high degree of precision, by using a sparse
approximate inverse technique (SPAI) [14]. As we will see
in Section IV-B, computing the matrix inverse efficiently and
accurately is crucial for our approach.

B. Upper and Lower Bounds

1) Overview: Now we will show how the upper and lower
bounds can be obtained. The derivation of the main result will
proceed in two steps. First, we will prove that the bounds at
time t can be obtained from the bounds at time t−r�t, where
r is a crucial parameter that we will define below and which
represents a small number of time steps. Second, we will show
that this means that the true upper and lower bounds at infinity
can be written as a matrix-vector product. The matrix is the
inverse of (I − R), where R is a matrix to be introduced
below, that depends on r. The vector will be obtained by r

applications of the “eopt(·)” operator.
2) Bounds on Voltage Drops That Are r�t Steps Apart: We

use (28) to write an equation analogous to (10) as follows:

v(t) = D−1Ev(t − �t) + D−1is(t) (29)

where D = G+ C
�t

+M( L
�t

)−1MT and E = C
�t

+MĜ. Because the
RLC grid is a stable linear system and because the backward
difference approximation used in (5) and (6) is absolutely
stable [15], it follows that for is(t) = 0 ∀t and any bounded
initial state v(0), (29) converges to 0 as t → ∞. One can
show that this means that ρ(D−1E) < 1, where ρ(D−1E) is
the magnitude of the largest eigenvalue of D−1E, called the
spectral radius of the matrix. Following the same reasoning as
in Section III, the voltage on the grid at any time p�t can be
written as

v(p�t) =
p−1∑

k=0

(
D−1E

)k
D−1is((p − k)�t) (30)

where is(t) ∈ F for t ∈ [0, p�t]. Let r be a positive integer
such that p/r is an integer, then grouping every r consecutive
terms in (30) leads to

v(p�t) =

p/r−1∑

k=0

(
D−1E

)kr

⎡

⎣
r−1∑

q=0

(
D−1E

)q
D−1is((p − q − kr)�t)

⎤

⎦ .

(31)

As we will see in Section IV-B4, it is possible to choose an
appropriate choice of r, which allows the computation of the
upper and lower bound vectors. Define

N =
(
D−1E

)r
(32)

s(t) =
r−1∑

q=0

(
D−1E

)q
D−1is(t − q�t) (33)

keeping in mind that both N and s(t) are functions of r.
Claim 1: Equation (31) can be represented as a recursive

relation as follows:

v(t) = Nv(t − r�t) + s(t) ∀t = r�t, 2r�t, . . . , p�t (34)

where v(0) = 0 for all t ≤ 0.
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Proof: Let v�(t) be the value of (31), and v†(t) be that
of (34). It is obvious that the case at time t = r�t is satisfied,

i.e., v�(r�t) = v†(r�t) =
r−1∑

q=0

(D−1E)qD−1is(r�t −q�t). Then,

the claim is true by induction if we prove the following for
all t = p�t:

v�(p�t − r�t) = v†(p�t − r�t) ⇒ v�(p�t) = v†(p�t).
(35)

Assuming the left-hand side of (35) is true, we get

v†(p�t) = Nv†(p�t − r�t) + s(p�t)

= Nv�(p�t − r�t) + s(p�t). (36)

Using (31) at t = (p�t − r�t), we obtain

v�(p�t − r�t) =
p−r

r
−1∑

k=0

(D−1E)kr

⎡

⎣
r−1∑

q=0

(D−1E)qD−1is ((p − r − q − kr)�t)

⎤

⎦ .

(37)

Combining (36) and (37), and using (32) and (33) leads to

v†(p�t) =
p−r

r
−1∑

k=−1

(D−1E)(k+1)r

⎡

⎣
r−1∑

q=0

(D−1E)qD−1is ((p − r − q − kr)�t)

⎤

⎦ .

(38)

Let j = k + 1, then we can re-write equation (38) as follows:

v†(p�t) =

p/r−1∑

j=0

(D−1E)jr

⎡

⎣
r−1∑

q=0

(D−1E)qD−1is ((p − q − jr)�t)

⎤

⎦ .

(39)

Therefore, v�(p�t) = v†(p�t). This completes the proof.
We will now show that (34) leads to upper and lower bound
vectors on the worst-case voltage drop on the grid. Define

[
s(r)
max(t)

s
(r)
min(t)

]
= eopt

∀is∈F
s(t). (40)

Notice from (33) that (40) depends on the last r time steps.
But we know that the current constraints are DC and that F
is the same for each time point, then the result of running
“eopt(s(t))” would be the same for any t. We can therefore

decouple the components of (40) leading to

[
s(r)
max(t)

s
(r)
min(t)

]
= eopt

∀is(t)∈F

r−1∑

q=0

(
D−1E

)q
D−1is(t − q�t) (41)

=
r−1∑

q=0

eopt
∀is∈F

[(
D−1E

)q
D−1is

]
�

[
s(r)
max

s
(r)
min

]
(42)

where is is simply an n × 1 vector of variables that satisfies
both local and global constraints. Thus, the result of applying
eopt(s(t)) for any consecutive r time steps is the vector
composed of s(r)

max and s
(r)
min.

Claim 2: Let Q be the matrix of the element-wise absolute
values of the entries of N. Let S be the element-wise non-
positive matrix S = 1

2 (N − Q). If vlb(0) = vub(0) = 0, then for
vlb(t) and vub(t) computed as

[
vub(t)
vlb(t)

]
=

[
N − S S

S N − S

] [
vub(t − r�t)
vlb(t − r�t)

]
+

[
s(r)
max

s
(r)
min

]
(43)

we have vlb(t) ≤ v(t) ≤ vub(t), ∀t = r�t, 2r�t, . . . , p�t.
Proof: Since v(0) = 0 for all t ≤ 0, then the base case

at time t = 0 is satisfied as an equality, i.e., vlb(0) = v(0) =
vub(0) = 0. Then, the claim is true by induction if we prove
the following for all t = r�t, 2r�t, . . . , p�t:

vub(t − r�t) ≥ v(t − r�t)
vlb(t − r�t) ≤ v(t − r�t)

}
⇒ vub(t) ≥ v(t)

vlb(t) ≤ v(t).
(44)

Assuming the left-hand side of (44) is true, and by making
use of the fact that S is a non-positive matrix and N − S is a
non-negative matrix, we get

(N − S)vlb(t − r�t) ≤ (N − S)v(t − r�t)

≤ (N − S)vub(t − r�t)

Svub(t − r�t) ≤ Sv(t − r�t) ≤ Svlb(t − r�t).

(45)

Adding the above two equations leads to

(N − S)vlb(t − r�t) + Svub(t − r�t) ≤ Nv(t − r�t)

≤ (N − S)vub(t − r�t) + Svlb(t − r�t).
(46)

Adding (46) to s
(r)
min ≤ s(t) ≤ s(r)

max, then utilizing (34) and (43),
we obtain

vlb(t) ≤ v(t) ≤ vub(t).

This completes the proof.
Therefore, given bounds on v(t − r�t), bounds on v(t) exist
and can be computed using claim 2.

3) Bounds in the Steady State: Even though one can
only compute bounds on voltage drops that are r time steps
ahead in time, we are interested in upper and lower bounds
in the steady state case, i.e., when t = p�t → ∞. Let
y(t) = [vub(t) vlb(t)]T and w = [s(r)

max s
(r)
min]T . Then, in matrix

notation, (43) yields

y(t) = Ry(t − r�t) + w (47)
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where R is a 2n × 2n matrix defined as

R =

[
N − S S

S N − S

]
. (48)

Writing (47) at every time step r�t, 2r�t, . . . , p�t, yields

y(r�t) = w

y(2r�t) = Rw + w

y(3r�t) = R2w + Rw + w

...

y(p�t) = (Rp−1 + . . . + R + I)w. (49)

It is therefore clear that the convergence of the upper/lower
bound depends on the convergence of the matrix series (Rp +
. . . + R + I) as p → ∞. It is well known [10] that the series
(Rp + . . .+R+I) converges as p → ∞ if and only if ρ(R) < 1,
under which condition the limit of the series is (I − R)−1.
Consequently, as p → ∞, the series in (49) converges to

[
vub(∞)
vlb(∞)

]
= lim

p→∞ y(p�t) = (I − R)−1w (50)

provided that ρ(R) < 1, a condition which we now explore.
4) Convergence: Denote the set of all eigenvalues of a

matrix X by σ(X). We mentioned earlier that the spectral
radius is the magnitude of the largest eigenvalue and since
ρ(D−1E) < 1, then we can say

max
∀λ∈σ(D−1E)

|λ| < 1. (51)

The spectral mapping theorem [16] provides that, if X is a
square matrix and k is an integer, then σ(Xk) = {λk : λ ∈
σ(X)}. From this and by using (32), it follows that

ρ(N) = max
∀λ∈σ(D−1E)

|λr| < 1. (52)

So, in order to show that ρ(R) < 1, it will be useful to relate
the spectral radius of R to that of N.

Claim 3: The set of the eigenvalues of R, called the spec-
trum of R, is the union of the spectrums of N and Q.

Proof: Recall that the eigenvalues of R are the roots of
the following characteristic polynomial:

det(R − λI) = 0 (53)

where λ ∈ C. Replacing R by its block-matrix representation
from (48), and using |X| to denote the det(X), then

det(R − λI) =

∣
∣
∣
∣

N − S − λI S

S N − S − λI

∣
∣
∣
∣ . (54)

Since the determinant of a matrix is invariant under elementary
row additions, and by using the block-matrix determinant [17],

we manipulate (54) to obtain

det(R − λI) =

∣
∣
∣
∣

N − λI N − λI

S N − S − λI

∣
∣
∣
∣

= |N − λI| × ∣
∣N − S − λI − S(N − λI)−1(N − λI)

∣
∣ .

(55)

Using (53) and (55), it is easy to see that the eigenvalues of
R should satisfy

det(N − λI) = 0 (56)

or

det(N − 2S − λI) = 0. (57)

The spectrum of R is thus the union of the spectrums of N

and N − 2S. Recall from claim 2 that 2S = N − Q. Hence,
Q = N − 2S. This completes the proof.

As a result, the series in (49) converges, as p → ∞,
if and only if ρ(N) < 1 and ρ(Q) < 1. We already saw
that the spectral radius of N is less than 1, but that of Q

is not trivial and is expensive to compute. In this paper, we
employ a conservative criterion to bound ρ(Q) based on the
fact that, for any matrix X and any matrix p-norm, we have
ρ(X) ≤ ‖X‖p [10]. More specifically, we will bound ρ(Q)
by the minimum of the ‖Q‖∞ and the ‖Q‖1 norms that are
defined as

‖Q‖∞ � max
1≤i≤n

n∑

j=1

|qij| (58)

‖Q‖1 � max
1≤j≤n

n∑

i=1

|qij|. (59)

Since (58) and (59) are the maximum row/column sum of the
absolute value of the entries of Q, and since Q is the matrix
of element-wise absolute value of the entries of N, we have
‖N‖1 = ‖Q‖1 and ‖N‖∞ = ‖Q‖∞. Therefore, a sufficient
condition for the convergence of the series in (49), as p → ∞,
is when the minimum of ‖N‖∞ and ‖N‖1 is less than unity.

This can be achieved by making use of the fact that for
any matrix X such that ρ(X) < 1, we have lim

k→∞
‖Xk‖p = 0

for any p-norm [10]. This implies that ‖Xk‖p asymptotically
decreases with increasing k. From this, and from the fact that
N = (D−1E)r and ρ(D−1E) < 1, we can say that

∃ r0 ∈ N such that ‖(D−1E)r0‖p < 1 (60)

where N is the set of integers. Therefore, our approach will be
to find such an r0 for either p = 1 or p = ∞, set r = r0, so that
either ‖N‖1 < 1 or ‖N‖∞ < 1, which ensures convergence.

In Section V, we show that the value r0 required to
guarantee convergence is small in practice.

5) Choice of Time Step: We digress briefly to mention that,
when transient analysis is used, the exact worst-case voltage
drop values, as well as their upper and lower bounds, depend
on the choice of time step �t. To see why, observe that in all of
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the above derivations, we are implicitly assuming that currents
may change arbitrarily in their feasibility region F within �t

time. This would allow currents to switch from zero to their
local constraint values, or vice versa, within a single time step.
This is clearly not true when �t is very small because the
switching activity of the currents is dictated by the speed of
the underlying logic circuit. Note that our implicit assumption,
when used with a small �t, is conservative because obviously
all slower current scenarios are covered. On the other hand, �t

has to be small enough to capture the true transient behavior
of the grid voltages. As a result, design expertise should guide
the choice of �t, by striking a balance between the dynamics
of the current loads and the grid transient behavior. We also
caution the reader that too small a �t might introduce noise in
the computations and render them useless due to roundoff error
issues that arises when �t is close to the machine epsilon [18].

Note that the convergence of our approach, as evident from
Section IV-B4, is immune to the choice of time step �t. There
always exists a value of r for which the matrix series in (49)
converges.

C. Upper and Lower Bound Algorithm

In this section, we present a high-level description of
our proposed approach that finds upper and lower bounds
on the worst-case voltage drops on the grid. Algorithm 1,
RLC BOUND, takes as input an RLC circuit along with the
local and global constraints. It returns upper and lower bounds
on the voltage drop on every node on the grid as the final
output.

The algorithm starts by constructing the reduced system as
described by (28), and it computes the corresponding matrices
D and E. Note that such computation is cheap as it only
requires matrix additions. The M

(
L
�t

)−1
MT submatrix of D

is extracted from the circuit topology. It is basically the “G
matrix” of the inductive elements. Denote by dij the entry of
D in the ith row and jth column. Then, an inductor lc between
nodes a and b contributes to four locations in D. A value of
�t
lc

is added to daa and dbb, and a value of −�t
lc

is added to dab

and dba. As for the MĜ submatrix of E, it is constructed as
follows. Consider the rl-branch shown in Fig. 4. If the current
assignment is away from node d, as shown in Fig 4(a), then
gT

d is added to the dth row of MĜ and −gT
d is added to its

jth row. If the current assignment is toward node j, as shown
in Fig 4(b), then −gT

d is added to the dth row of MĜ and gT
d

is added to its jth row.
After that, D−1 is efficiently computed (using SPAI [14])

and stored in memory. By capturing only the significant entries
of the inverse, the SPAI method guarantees a sparse yet
very accurate approximation of D−1. For more information
on SPAI, the reader is referred to Appendix A. Once D−1

is computed, the algorithm then computes w in (42) for
r = 1 which requires n maximizations and n minimiza-
tions. The fact that D−1 is sparse allows us to reduce the
size of each of these optimizations resulting in quite fast
optimization runs. Then, RLC BOUND calls Procedure 1,
VAR STEP OPTIMIZATION. The purpose of this proce-
dure is to find an r, and the corresponding w, such that either
‖N‖1 < 1 or ‖N‖∞ < 1. It first computes N for r = 1
(step 1) and stores it in memory. The procedure then iterates
while checking ‖N‖1 and ‖N‖∞. As long as the condition
fails, r is incremented and an update of w is carried out as
follows. Based on (42), we can express w for a given r as

w =
r−2∑

q=0

eopt
∀is∈F

[
(D−1E)qD−1is

]
+ eopt

∀is∈F

[
(D−1E)r−1D−1is

]
.

The first term on the right-hand side is simply w at r − 1,
and (D−1E)r−1 in the second term is N, also at r − 1. Since
both quantities were computed and stored a priori, the update
simply requires a matrix-matrix multiplication (step 4), and
one “eopt” (step 5). Procedure 1 also keeps on updating N

using (32). As soon as an r is reached such that either ‖N‖1 <

1 or ‖N‖∞ < 1, Procedure 1 exits and returns the current r,
N, and w values to Algorithm 1. The latter resumes execution
at step 7. As discussed in Section IV-B4, the series in (49) is
now guaranteed to converge and the closed form solution of
the upper and lower bounds is computed in steps 7–8 via an
LU factorization and a forward/backward solve.

Note that the multiplications in steps 1, 4, and 6 of Proce-
dure 1 drop any entry in the result whose value is below some
user-defined threshold. This maintains the sparsity structure of
N and P as long as r is small, thus allowing the reduction in
the size of the LPs required for updating w is step 5.

V. Experimental Results

Algorithm 1, along with Procedure 1, has been implemented
in C++. The algorithm uses the Mosek optimization pack-
age [19] to solve the required linear programs. We carried
out several experiments on a set of randomly-generated power
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TABLE I

Speed and Accuracy Comparisons of the Proposed Approach with the Exact Approaches

Power Grid Our Approach Comparison to Exact Approach Cost of Exact Methods
Nodes r cpu Time Upper Bound Error Lower Bound Error cpu Time of cpu Time of Time Steps

the Approach in (20) the Approach in [7]
51 3 1.55 s 1.4627 mV 1.32 mV 19.81 s 38.49 min 73
88 5 7.87 s 3.764 mV 5.07 mV 133.17 s 5.36 h 110
150 2 3.38 s 1.007 mV 1.1658 mV 4.09 min 6.62 h 51
187 2 4.47 s 3.923 mV 4.13 mV 16.74 min 3.08 days 105
250 1 3.716 s 0.5 mV 2.058 mV 59.2 min – 129
295 5 18.204 s 7.34 mV 6.35 mV 35.97 min – 62
2325 3 2.16 min 3.40 mV 1.47 mV 4.3 h – 95
8835 3 39.93 min 9.9 mV 5.2 mV 3.45 days – 101
13 527 1 1.22 h – – – – –
19 613 3 2.91 h – – – – –
42 897 4 4.16 h – – – – –
76 328 4 9.83 h – – – – –
118 971 7 22.32 h – – – – –
170 193 5 36.19 h – – – – –

TABLE II

Runtime Breakdown of the Proposed Approach

Power Grid Our Approach Runtime Breakdown
Nodes Approximate Inverse Matrix Multiplication Optimization System Solve

(Step 3 in Algorithm 1) (Steps 1, 4, and 6 in Procedure 1) (Step 5 in Algorithm 1 and Step 5 in Procedure 1) (Step 8 in Algorithm 1)
8835 12.39 min 15.37 min 8.73 min 3.42 min

13 527 15.45 min 32.80 min 18.67 min 6.27 min
19 613 22.68 min 1.59 h 47.20 min 9.33 min
42 897 1.4 h 1.67 h 35.86 min 29.52 min
76 328 2.91 h 4.28 h 1.16 h 1.47 h

118 971 3.82 h 12.39 h 3.12 h 3 h
170 193 5.77 h 19.55 h 5.36 h 5.51 h

grids, using a 2.6 GHz Linux machine with 8 GB of memory.
The grids were based on user specifications, including grid
dimensions, metal layers, pitch and width per layer, percentage
of rl-branches, and C4 and current source distribution. These
C4s and current sources were randomly placed on the grid.
Moreover, the circuits generated include user-defined RLC
models for the package-grid interconnections and all the
experiments were performed on grids with up to ten global
constraints and 1.1 V supply voltage.

To assess the quality of our results, we computed the
maximum and minimum worst-case voltage drops on the grid
using two exact verification approaches. The first approach
was proposed by the authors of [7] where these worst-case
voltage drops at every node are computed by solving a set of
LPs at consequent time steps until convergence. The drawback
of this approach is that the number of constraints is multiplied
by the number of time steps which, even for small grids,
can lead to potentially very large optimization problems. The
second exact method was formulated in this paper for the RLC
case as given in (20). Even though the method also uses LPs to
compute the worst-case voltage drops, its advantage over the
previous exact technique is that the number of constraints at
each time step is fixed and does not span previous time-points.
Still, the method requires a matrix inverse that is computed
once, in addition to matrix-matrix multiplications and solving
linear programs at every time step until convergence.

Note that we used the same �t value for the exact methods
as well as our upper/lower bound technique. We assumed the

underlying logic circuitry of all the grids under study can run
at a maximum frequency of 10 GHz, so that, as was done
in [20], we use a �t value of 1 ps.

Table I shows the speed and accuracy of our proposed
technique for computing the upper and lower bound voltage
drop vectors. We compare our results with the vectors of
maximum and minimum worst-case voltage drops resulting
from the two exact approaches we discussed earlier. As an
accuracy measure, we report the maximum absolute error
between the upper and lower bound vectors obtained by our
technique and the vectors resulting from the exact verification.
Column 4 shows the maximum absolute error between the
upper bound voltage drop vector and the exact maximum
voltage drop vector, and column 5 shows the maximum
absolute error between the lower bound voltage drop vector
and the exact minimum voltage drop vector. The number of
grid nodes is reported in column 1, and the value of r for which
our approach converges is shown in column 2. The table also
reports the runtimes of the three methods under consideration
as well as the number of time steps required by the two
exact approaches to converge. Results show that our proposed
method resulted in a maximum absolute error of around 10mV

across all nodes on the grids under study. Note that this error
comes from two main sources. The first one is the sparse
approximation of D−1. We keep this to a minimum by using
a very small εk in (67), in the range of 10−9 to 10−7. This
means that the maximum difference between an entry in the
kth column of the exact inverse and the corresponding entry in
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Fig. 5. Accuracy of the proposed approach.

the kth column of the approximate inverse is between 10−9 and
10−7. The second, and main, source of error comes from the
computation of the upper/lower bound vectors via (50). The
reason an error is incurred is because our method performs
optimizations for the first r time steps only, where r is a very
small number of time steps compared to what is required in
the exact approach.

The error comparisons could not be extended to larger grids
and we were able to perform these comparisons for grids
with a maximum of 8835 nodes since the exact approaches
are computationally expensive for larger grids. The exact
technique of [7] took 3.08 days for the 187-node grid, while
that presented in (20) took 3.45 days for the 8835-node
grid. Results show that our approach runs several orders of
magnitude faster than the exact computations which exhibit
impractical times even for small grids. For instance, computing
the upper and lower bound vectors for the 8835-node grid took
39.93 minutes while computing the exact worst-case voltage
drops using (20) took 3.45 days. This is over 124X speed
up! Moreover, our technique allows one to verify grids with
a relatively large number of nodes; verification of a 170 193-
node grid requires 36.19 h. This would have taken several days
or even weeks in the exact case. Note also that, for all the grids
under consideration, the maximum value of r for which (49)
converges is very small thus limiting the number of matrix
multiplications and the number of linear programs. Thus, our
method makes checking an RLC power grid a feasible and
practical solution.

One might argue that such grids are still small when
compared to full-chip grids containing millions of nodes. Nev-
ertheless, our approach is important for at least two reasons:
1) it is an approach to rigorously check the safety of an RLC
grid in a truly vectorless approach, and 2) our method can be
applied to the top-level main feeder network of the grid that is
not as large as grids at the end of the design flow. The ability
to test the main feeder network early in the design flow is a
major advantage of our technique. We believe that it can lead
to practical methods for early vectorless grid verification.

Table II shows a breakdown of the runtime of the major
components of our approach for the largest seven grids we

investigated. Column 2 represents the time it takes to compute
D−1 using SPAI. Column 3 shows the runtime of the matrix-
matrix multiplications required, and columns 4 and 5 report
the runtimes of the optimization component and the linear
system solve, respectively. Even though the matrix-matrix
multiplications comprise a significant portion of the total
runtime of the algorithm, there is scope to achieve considerable
speedup in computing D−1 as well as in performing the
linear optimization step, by exploiting parallelism inherent
in SPAI and “eopt.” From Appendix A, the columns of the
approximate inverse can be computed by n independent least-
square problems. Also, recall from Section III that “eopt” is an
element-wise optimization where each element can be found
separately. As a result, given a cluster of multi-core machines,
the runtime of these two components, if parallelized, would
be reduced by a factor equal to the total number of cores in
the cluster. This represents a significant speedup given that
the combined runtime of SPAI and “eopt” for the grids under
study represents 30% to 55% of the total runtime. Therefore,
with parallelism exploited, our algorithm can be fast enough
to verify power grids with a larger number of nodes.

To further showcase the accuracy of our algorithm, Fig. 5
shows a scatter plot of the relative errors, in percent, versus
the maximum worst-case voltage drops on a 2325-node grid.
The figure also shows the curve corresponding to an absolute
error of 5 mV where a point on the curve represents a node
voltage drop that is over-estimated by exactly 5 mV. On the
other hand, a point with an over-estimation greater than 5
mV will lie in the region above the curve. From the resulting
scatter plot, it is clear that such absolute errors are very small
meaning that our algorithm is very accurate. Note that for
some maximum worst-case voltage drops, especially those
with small magnitudes, the relative error can be high. This,
however, is of no concern in practice, as the critical voltage
drops are those that are relatively large. In that case, the
relative error incurred is small. A similar behavior is observed
for the relative errors versus the minimum worst-case voltage
drops.

VI. Conclusion

With the rising demand of low voltage designs, power
grid verification is becoming increasingly important. We
introduced a fast and efficient inductance-aware early
verification technique in the framework of current constraints.
Our approach transforms the RLC grid into a reduced circuit
to alleviate the problems associated with its system matrices
then, it computes conservative bounds on the worst-case
voltage drops on the grid. The approach requires only a few
linear programs and one linear system solve thus making
early grid verification under the RLC model practical and
scalable. Prior art simply could not handle grids of more than
a couple thousand nodes, and even for such systems runtimes
were prohibitive. Our method showed a drastic improvement
in runtime; verifying a grid of about 170 000 nodes took
just over 36 h. Results also showed that, for the girds under
study, the errors incurred by our technique were relatively
very small, never exceeding 10 mV.



702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 5, MAY 2011

Appendix

It is obvious from Section IV-B that D−1 is essential for
the computation of the upper and lower bounds and needs
to be computed in a fast and accurate manner so as not to
compromise the speed and accuracy of the overall technique.
In Section IV-A, we stated that in addition to eliminating
the inductive branch currents and reducing the system size,
the advantage of the RLC grid transformation is that D−1 is
practically sparse and thus can be efficiently computed by a
sparse approximate inverse technique.

In what follows, we will briefly explain the SPAI given
in [14]. Let M be an n×n matrix and let the vector mk denote
the kth column of M. Note that this M is different from the
incidence matrix defined in Section II-B. Let ek be the n × 1
vector consisting of all zeros, except for its kth component
which is 1. Then, consider the n × 1 vector, called the kth
residual, defined by

rk = Dmk − ek ∀k = 1, 2, . . . , n. (61)

It is clear that, if we choose M = D−1, then rk = 0, ∀k. In
general, the norm of the residual ‖rk‖2 (the Euclidean or l−2
norm in this case) is positive, and becomes zero only when
M = D−1. Thus, the norms of the residuals, for all k, provide
a measure of how far M is from being equal to the desired
matrix inverse D−1. Let M� � D−1, so that when M takes the
value M�, then ‖rk‖2 = 0, ∀k.

Given some user-defined tolerance η, SPAI computes an
approximation M̂ to the actual inverse matrix M�. It operates
by finding an M̂ matrix that gives a very small residual norm,
as an approximation to the unknown M� (which, as we saw
above, would give a zero residual). The technique starts with
an arbitrary initial matrix M and iteratively refines its columns
by minimizing the Frobenius norm ‖DM − I‖F subject to η.
Recall that for any n × n matrix H , the Frobenius norm is
defined as [10]

‖H‖F =

√√
√
√

n∑

i=1

n∑

j=1

|hij|2 (62)

where hij are the entries of H , which can be re-written as

‖H‖F =

√√
√
√

n∑

k=1

‖Hek‖2
2 =

√√
√
√

n∑

k=1

‖hk‖2
2 (63)

where hk is the kth column of H . Obviously, the minimum
of (63) (which is zero) occurs when H = 0. Likewise, the
minimum of ‖DM − I‖F (which is zero) occurs when M =
D−1 = M�. By reducing ‖DM − I‖F until it is less than η,
SPAI finds an M̂ that is a good approximation to M� = D−1.
To see how SPAI works, consider that

‖DM − I‖2
F =

n∑

k=1

‖(DM − I)ek‖2
2

=
n∑

k=1

‖Dmk − ek‖2
2 =

n∑

k=1

‖rk‖2
2. (64)

In this way, the problem of finding an approximate inverse M̂

separates into n independent least-squares problems

For each k = 1, 2, . . . , n, vary mk so as to minimize
‖rk‖2

2 until an mk is found for which ‖rk‖2 ≤ η.

While ‖rk‖2 > η, the iterative refinement of mk proposed
by [14] attempts to improve on the column by appending
the most profitable entries, i.e., the ones that will result in
the largest reduction in ‖rk‖2. In this manner, the technique
automatically captures the sparsity pattern by including the
significant entries of the inverse while avoiding fill-ins.

The numerical study in [14] shows that SPAI is stable and
it captures the main entries of D−1 extremely well. Moreover,
it is an extremely efficient technique. It is inherently parallel
as the columns of M̂ can be computed independently of one
another. Moreover, the computation of a column is cheap; it
requires a matrix-vector product and several QR factorizations
of small submatrices of the original sparse matrix D.

Normally, SPAI terminates when ‖rk‖2 is smaller than a
user-supplied η, for every k. If m�

k is the kth column of M� =
D−1, then clearly Dm�

k = ek, so that rk = Dmk − ek = D(mk −
m�

k). This leads to

‖mk − m�
k‖∞ = ‖D−1rk‖∞ ≤ ‖D−1‖∞‖rk‖∞ (65)

where ‖·‖∞ is the infinity norm. We define the error tolerance
εk > 0, where εk ∈ R is a scalar. As the authors did in [21],
we modify SPAI so that it stops when, for every k, we have

‖rk‖∞ ≤ εk

‖D−1‖∞
(66)

which achieves the condition that, for every k

‖m̂k − m�
k‖∞ ≤ εk. (67)

It remains to explain how ‖D−1‖∞ is found, when D−1 is
unknown! This is easy to do, in fact, because D is an M-
matrix, as follows. Let a be the n × 1 vector of all 1s, so
that aT = [1 1 · · · 1]. Then, D−1a is a vector whose every
component is the sum of all the entries in the corresponding
row of D−1. Because D−1 ≥ 0, then each component of D−1a

is actually the sum of the absolute values of all the entries in
that row of D−1. Thus, the component with the largest value
in D−1a is, in fact, the “largest absolute row sum” of D−1

which is its infinity norm. In other words, if b is a vector such
that Db = a, then it is clear that

‖D−1‖∞ = ‖D−1a‖∞ = ‖b‖∞. (68)

Finding this b is easy, by performing one LU-factorization
of D, followed by a backward and a forward solve starting
with a.
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