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Efficient Block-Based Parameterized Timing
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Abstract—In order for the results of timing analysis to be
useful, they must provide insight and guidance on how the circuit
may be improved so as to fix any reported timing problems.
A limitation of many recent variability-aware timing analysis
techniques is that, while they report delay distributions, or verify
multiple corners, they do not provide the required guidance for
re-design. We propose an efficient block-based parameterized
timing analysis technique that can accurately capture circuit
delay at every point in the parameter space, by reporting all paths
that can become critical. Using an efficient pruning algorithm,
only those potentially critical paths are carried forward, while all
other paths are discarded during propagation. This allows one to
examine local robustness to parameters in different regions of the
parameter space, not by considering differential sensitivity at a
point (that would be useless in this context) but by knowledge of
the paths that can become critical at nearby points in parameter
space. We give a formal definition of this problem and propose
a technique for solving it, which improves on the state of the
art, both in terms of theoretical computational complexity and
in terms of runtime on various test circuits.

Index Terms—Hyperplane, parameterized timing analysis,
piece-wise planar (PWP), PVT variations, required arrival times.

I. Introduction

S IGNAL and clock path delays in integrated circuits are
subject to variations arising from many sources, including

(manufacturing) process variations, (supply/ground) voltage
variations, and temperature variations. These are collectively
referred to as PVT variations. During design, one accounts for
the delay variability by either “padding” the path delays with a
timing margin so that the chip would yield well at all process
corners in spite of the variations (application-specific inte-
grated circuits approach), or by “binning” the resulting chips
at different frequencies (microprocessors). While this is not a
new problem, the scale of the problem has increased recently,
because: 1) an increasing number of circuit parameters have
significant variability, causing an increase in the number of
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corners; and 2) within-die variations are becoming more sig-
nificant, and they cannot be handled by the traditional corner-
based approach. The variables or parameters under study
are of two types: many transistor and metal line parameters
are directly related to underlying statistical process variables,
so they may be modeled as random variables, with certain
distributions; on the other hand, the supply/ground voltage and
temperature are not random, and must be modeled as simply
unknown or uncertain variables, within known bounds.

Given the two types of variables under study, two types of
solution techniques have emerged: statistical static timing anal-
ysis (SSTA) and multicorner static timing analysis (MCSTA).
SSTA models parameters as random variables, assuming that
their distributions and correlations are known a priori [1]–[3],
and provides the distribution of circuit delay, from which the
timing yield can be estimated. On the other hand, MCSTA
models the PVT parameters as uncertain variables, within
given bounds, and attempts to verify the timing at all corners
in a single timing run [4]. All these techniques consider the
circuit delay to be dependent on a number of PVT parameters,
be they random or uncertain. Therefore, one can describe
the required overall solution to this problem as parameterized
static timing analysis (PSTA).

The motivation for this paper is the simple notion that in
order for the results of timing analysis to be useful they must
provide guidance on how the circuit may be improved so as
to fix any reported timing problems. To understand the need
for PSTA in general, consider the simple case where delay
is linear in the variational (PVT) parameters. In a circuit, the
delay of any input-output path becomes a linear expression in
terms of the parameters, or what we refer to as a hyperplane.
At the nominal PVT point, the hyperplane corresponding to
the path with the largest delay (under nominal conditions) is
dominant (over all others). As we move around in PVT space,
some other path may become critical, and, correspondingly,
another hyperplane may become dominant. Overall, across the
whole PVT space, the total circuit delay follows some piece-
wise planar (PWP) surface. This surface is defined by all the
hyperplanes that can become dominant at some point in PVT
space. We refer to these hyperplanes as potentially dominant
and to their corresponding paths as potentially critical.

Suppose we are at some operating point in PVT space,
and we are interested in the robustness of the circuit at that
point. In other words, we are interested in the impact of
variations on overall circuit delay around that point. What
information would be useful to the designer in this case?
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One could consider providing the sensitivity of delay, at that
point, to the various PVT parameters, such as by means of the
partial derivatives of delay to each of the parameters. However,
because of the PWP nature of the delay surface, such point
metrics are actually useless. One may find the derivatives to
have low values at that point, yet one may be very close
to a “break point” in the surface where another hyperplane
with much larger sensitivities suddenly becomes dominant.
Instead, one must be able to quickly discover what paths
(i.e., hyperplanes) become dominant in a certain neighborhood
around the point of interest. Given a list of problematic paths
in the neighborhood, when working on fixing some path, one
avoids being “blind-sighted” to the criticality of other paths.
Thus, in order for the results of timing analysis to be useful,
we believe that the whole PWP surface is required. It is
not enough to give the user the worst-case corner; that does
not provide a full picture of what needs to be fixed. Also,
simply providing the timing yield, as is done in SSTA, or
simply providing a list of a large number of paths, with a
failure probability for each, does not give sufficient insight
into what paths need to be fixed around the operating point.
Instead, a PWP surface (for the total circuit delay) allows
one to examine the local neighborhood in order to see which
parameters and paths may be problematic (so that one can
focus on them as part of redesign). It should be mentioned
that the “broken” nature of the delay surface is not due to
the linearity assumption. Instead, it is actually due to the max
function that is implicit in the problem of timing verification
of setup constraints (a similarly broken delay surface results
from the min function in a similar problem of verifying hold
constraints). If one assumes a nonlinear, say polynomial, delay
dependence, one simply ends up with a piece-wise polynomial
surface, which presents the same sort of problems.

In order to faithfully represent the PWP surface for the
total circuit delay, we must include (during propagation in the
timing graph) all the hyperplanes that can become dominant
somewhere in PVT space. Simply carrying along all paths can
be problematic due to possible path count explosion; hence,
an efficient pruning strategy is needed, whereby redundant
paths that cannot become dominant anywhere in PVT space
are identified and pruned during the propagation. This problem
was studied in [5], where an exact pruning algorithm and a
sufficient condition for pruning were proposed, and where it
was found that indeed the number of potentially dominant
paths is manageable and does not explode. In that work, the
exact algorithm (as we will see) has time complexity O(p2n2),
where p is the number of PVT parameters and n is the number
of hyperplanes to be pruned, and the sufficient condition is
O(pn2). In this paper, we propose: 1) a more efficient exact
solution to the pruning problem that takes O(p2mn) time,
where m is the number of potentially dominant hyperplanes
at the circuit outputs; and 2) a sufficient condition for pruning
that is O(pn). We will see that the resulting improvements in
runtime can be significant for hard circuits.

The rest of this paper is organized as follows. In Section II,
we review some basic terminology and formally describe the
pruning problem. We also describe the pruning techniques
presented in [5], and assess the complexity of their exact

pruning algorithm. In Section III, we transform the pruning
problem from the parameterized timing domain to the domain
of computational geometry, and show how it relates to two
standard problems in that field. In Section IV, we present our
exact pruning algorithm and sufficient condition for pruning,
and study the complexity of these pruning strategies. We
provide test results and comparisons to previous work in
Section V. After that, Section VI introduces the concept of
partial critical surfaces, and Section VII gives an extension of
our method where these are propagated in the timing graph
instead of complete critical surfaces. Finally, we give our
concluding remarks in Section VIII.

A preliminary version of this paper appeared in [6], which
presented a sufficient condition method and an exact method
for finding all potentially critical paths, or the critical sur-
faces, at the outputs of a circuit. In this paper, we present
an extension that allows one to find only the potentially
critical paths, which violate timing constraints, instead of all
potentially critical paths, as given in Sections VI and VII. The
hyperplane delays of such paths form what we refer to as
partial critical surfaces, and these are cheaper to find than the
full critical surfaces. This provides designers with a timing
analysis method that is faster than the state-of-the-art method
of [6], but which is guaranteed to find only potentially critical
paths that violate timing constraints. Because timing analysis
is preformed repeatedly at various steps of the design flow,
the runtime gains achieved by this extension can result in
a large overall speedup. For example, circuit timing/power
optimization is typically performed by iteratively introducing
changes to the circuit and then running static timing analysis.
In this case, one would be able to use the method as presented
in [6] sparingly and to rely more heavily on the extended
method presented here. Because of the runtime gains that this
would provide, the extension given in Sections VI and VII
makes this paper more practical and applicable in industry.

In addition to this extension, a different set of circuits was
used to generate the results of this paper than in [6]. This set
combines some of the circuits of the ISCAS-85 benchmark
suite used in [6] with other circuits from the more recent
ITC-99 benchmark circuits. These test circuits were mapped
using a different cell library and more heavily optimized using
commercial tools than were those in [6]. As a result, the
numbers of potentially critical paths (hyperplanes) reported for
the ISCAS-85 circuits are less than those seen for the same
circuits in [6]. This and other improvements in the code also
led to improved runtimes over those reported in [6].

II. Background

In this section, we first review some basic terminology
covering timing modeling and propagation. Then, we describe
the problem formulated by the authors of [5] and briefly review
their approach.

A. Modeling and Propagation

In block-based timing analysis, timing quantities are prop-
agated in the timing graph in topological order, through a
sequence of basic operations, such as add operations on input
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arrival times and arc delays, and max operations on the timing
quantities resulting from those additions. In this way, the
output arrival time is determined and is then propagated to
subsequent stages. This is shown in Fig. 1, which shows an
AND gate and its corresponding timing graph. The nets A, B,
and C are represented as nodes in the timing graph whereas
the timing arcs between the inputs of the gate and its output
are represented by edges with delays D1 and D2. Here, the
arrival time DC at the output of the AND gate is computed as
the max of the sums of arrival times and their corresponding
edge delays. In other words

DC = max (DA + D1, DB + D2) (1)

where DA and DB are the signal arrival times at the nodes A

and B, and D1 and D2 are the timing arc delays. This can be
easily generalized to gates with more than two inputs.

Since variability in the process and environmental (PVT)
parameters affects transistor performance, gate delays should
be represented in such a way to highlight their dependence on
these underlying parameters. First-order linear delay models
have been extensively used in the literature, and they generally
capture this dependence well. In this paper, we assume that
gate delay is a linear function of process and environmental
parameters, such as channel length L, threshold voltage Vt ,
supply voltage Vdd , and temperature T . These parameters are
assumed to vary in specified ranges; however, without loss of
generality, we can easily normalize these ranges to [−1, 1],
similarly to what was done in [4]. Hence, gate delay D can
be expressed as follows:

D = do +
p∑

i=1

diXi − 1 ≤ Xi ≤ 1 ∀i (2)

where do is the nominal delay, Xis are the normalized PVT
parameters, and dis are the delay sensitivities to these pa-
rameters. Since D is a linear function of p parameters, it is
referred to as a delay hyperplane. The linear dependence of
delays on process parameters is not too strong an assumption,
and it has been widely adopted in the context of SSTA (e.g.,
in [2]). Even if the dependence of gate delay on process
parameters is not strictly linear, one can still apply our method
by first constructing a linear expression that is an upper bound
on whatever nonlinear surface one may have for describing
the true dependence of delay on these parameters, and then
use that linear expression in place of the true delay in our
approach. The variables Xi in (2) can correspond to any mean-
ingful process parameters that one cares about. Some may
represent die-to-die variations while others might represent
within-die variations. In this paper, we will simply refer to
the Xis as process parameters, without regard to exactly what
type of parameters they are. However, in our results we only
include die-to-die variations. With-in die variations would be
handled by including a separate variable for each gate/region.
This may result in longer delay expressions (and a runtime
penalty), and the accuracy of the results depends on how these
variables are chosen by the user. More work is required to fully
apply our approach in that context, and this remains a possible
future application of our work.

Fig. 1. Propagation for a single gate.

The delay of a path is simply the sum of arc delays of
all gates on that path. Since arc delays are expressed as
hyperplanes, so will be the path delay; in the rest of this paper,
when we refer to the delay of a path, it is understood that we
mean path delay hyperplane. Although this is true for a path,
the arrival time at a node, which is the max of all path delay
hyperplanes in the fan-in cone of that node, is not necessarily
a hyperplane. This is shown in Fig. 2, where four paths, P1–
P4, converge at a node. The arrival time, A, at that node is
given by

A = max(P1, P2, P3, P4). (3)

Shown as the broken dashed line, A is a PWP surface
because either P1, P2, or P3 can become the maximum (or
dominant) hyperplane, depending on which region of the
parameter space is under consideration. Note that P4 is always
covered by another hyperplane, and therefore does not show up
in the PWP surface. Paths, such as P1–P3, which can become
dominant are referred to as potentially critical or nonredundant
paths, whereas paths, such as P4, which cannot become critical
are referred to as redundant or prunable paths. We will
formally define these terms in the next section. Ideally, during
analysis, only those potentially critical paths (or nonredundant
hyperplanes) must be propagated to subsequent stages, while
all other hyperplanes must be discarded or pruned.

B. Pruning Problem

Let Dj be the delay hyperplane of path j in a set of n paths
converging on a node, so that Dj is given by

Dj = aoj +
p∑

i=1

aijXi j = 1, . . . , n. (4)

The hyperplane Dj is said to be redundant or prunable if and
only if

max(D1, . . . , Dn) = max(D1, . . . , Dj−1, Dj+1, . . . , Dn).

∀Xi (5)

In this case, no matter where we are in the parameter space,
Dj will never show up as the maximum hyperplane, as other
hyperplanes will be dominating it. An example of this is path
P4 in Fig. 2; such a redundant hyperplane can be pruned
from the set without affecting the shape of the PWP surface
representing the max. On the other hand, if (5) is not satisfied,
then Dj is a nonredundant hyperplane and must be kept in the
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Fig. 2. MAX of path delay hyperplanes.

set. An example of this are paths P1–P3 that show up in the
PWP surface.

Formally, the pruning problem can be stated as follows.
Given a set P of n hyperplanes Dj , find the set Q ⊆ P , such
that Q is an irreducible set of m nonredundant hyperplanes
D̃j , where m ≤ n, and such that

max(D1, . . . , Dn) = max(D̃1, . . . , D̃m) ∀Xi. (6)

Only those m nonredundant hyperplanes are needed to
describe the shape of the PWP surface defined by the max.
This pruning problem was studied by the authors of [5], who
proposed two techniques for pruning. We now review these
techniques and describe some of their limitations.

1) Pairwise Pruning: The first technique is based on
pairwise comparisons between hyperplanes, to check if any
hyperplane can prune another hyperplane, as follows. Let D1

and D2 be two hyperplanes

D1 = ao1 +
p∑

i=1

ai1Xi (7)

D2 = ao2 +
p∑

i=1

ai2Xi. (8)

If D1 − D2 ≤ 0 for all values of Xi, then D1 is pruned by
D2, denoted by D1 ≺ D2. Since −1 ≤ Xi ≤ 1, then D1 ≺ D2

if and only if

ao1 − ao2 +
p∑

i=1

|ai1 − ai2| ≤ 0 (9)

which can be easily checked.
The pairwise pruning procedure [5] is shown in Algo-

rithm 1, where we have preserved the same flow as in [5]
for clarity. It has two nested loops that cover all pairs of
hyperplanes, checking if Dj ≺ Di. Note that this algorithm
is only a sufficient condition for pruning and is not an exact
solution for the pruning problem. In fact, the resulting set Q
is not necessarily an irreducible set. Going back to Fig. 2,
PAIRWISE will fail to identify P4 as a redundant hyperplane
since P1, · · · , P4 are pairwise nonprunable. In addition, the
complexity of PAIRWISE is O(pn2), where p is the number
of PVT parameters and n is the number of hyperplanes. This
quadratic complexity can be problematic, particularly if a
large number of redundant hyperplanes, which are identified
as nonredundant by PAIRWISE, are propagated to subsequent

Algorithm 1 PAIRWISE

Input: P = {D1, . . . , Dn};
Output: Q ⊇ {D1, . . . , Dm};
1: Mark all hyperplanes in P as nonredundant;
2: for i = 1 : n do
3: if (Di is marked redundant) then
4: continue;
5: end if
6: for j = 1 : n do
7: if (Dj is marked redundant) then
8: continue;
9: end if
10: if (Dj ≺ Di) then
11: Mark Dj as redundant;
12: end if
13: end for
14: end for
15: Add all nonredundant hyperplanes to Q;

Algorithm 2 FEASCHK

Input: P = {D1, . . . , Dn};
Output: Q = {D1, . . . , Dm};
1: Mark all hyperplanes in P as nonredundant;
2: for j = 1 : n do
3: Formulate (10) for Dj excluding redundant hyperplanes;
4: if (feasible) then
5: Add Dj to Q;
6: else
7: Mark Dj as redundant;
8: end if
9: end for

stages, potentially causing a blowup in the number of hyper-
planes, as reported by [5] on one of the test circuits.

2) Feasibility Check: The second pruning technique is a
necessary and sufficient condition for pruning. It is therefore
an exact solution for the pruning problem, which guarantees
that the resulting set Q is an irreducible set of nonredundant
hyperplanes. The idea is to perform a feasibility check for
every hyperplane Dj by searching for a point in the space of
Xis where Dj is dominant over all other hyperplanes. If this is
feasible, then Dj is nonredundant, otherwise, Dj is redundant
and can be pruned from the set. Thus, Dj is nonredundant if
and only if the following system of inequalities has a feasible
solution:

Dj ≥ Dk k = 1, . . . , n, k �= j

−1 ≤ Xi ≤ 1 i = 1, . . . , p. (10)

Algorithm 2 describes FEASCHK, where a feasibility check
is formulated for every hyperplane in the starting set P (line
6). If there is a feasible solution, then the hyperplane is
nonredundant and is added to Q. Otherwise, it is marked as
redundant and is pruned from the set.

Note that the feasibility check in (10) consists of solving a
linear program (LP) with p variables and (n + p) constraints,
which has a complexity of O

(
p2(n + p)

)
, if an interior-
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point-based LP solver is used [7]. Therefore, the complexity
of FEASCHK, which requires n feasibility checks to de-
termine the irreducible set of nonredundant hyperplanes, is
O

(
p2(n + p)n

)
, which is O(p2n2) if p ≤ n that is usually the

case. Given that this pruning algorithm would potentially be
applied at every node in the timing graph, its O(n2) behavior
in the number of hyperplanes can be expensive.

In the following sections, we present a more efficient
method for solving the pruning problem. By transforming this
problem into a standard problem in computational geometry,
we present an exact pruning algorithm that is O(p2mn), where
n is the number of hyperplanes in the initial set P , and m is the
number of nonredundant hyperplanes in the final irreducible
set Q. We also propose a sufficient condition for pruning that
can be used as a pre-processing step, and which is O(pn).

III. Problem Transformation

In this section, we show how we map our parameterized
timing pruning problem into a standard problem in computa-
tional geometry.

A. From Computational Geometry

The field of computational geometry deals with the study of
algorithms to solve problems stated in terms of geometry. Typ-
ical problems include Convex Hull, Vertex/Facet enumeration,
and Voronoi diagrams, to name a few [8]. We have identified
two standard problems that can be related to the pruning
problem: enumeration of extreme points of a convex hull and
its equivalent (dual) problem of minimal representation of a
polytope. We first review these problems and show how the
pruning problem can be transformed into a standard problem.

1) Extreme Points Enumeration: To understand this prob-
lem, let us start by defining the following terms.

Definition 1 (Convex Hull): The convex hull of a set P of
n points, denoted as conv(P), is the smallest convex set that
contains these points.

Definition 2 (Extreme Points): Given a set P of n points in
d dimensions, the minimal subset E of P for which conv(P) =
conv(E) is called the set of extreme points. In other words, if
point e ∈ E, then conv(P \ {e}) �= conv(P).

The extreme points enumeration problem can be stated as
follows. Given a set P of n points, determine the minimal
subset E of m extreme points, where m ≤ n. This is shown
graphically in Fig. 3(a), where the shaded region is the convex
hull and points 1–4 are the set of extreme points. Note that
points 5 and 6 do not contribute to the convex hull and can
thus be removed.

2) Minimal Polytope Representation: We begin by defining
some terms that will help us introduce this standard problem.

Definition 3 (Hyperplane): It is the set {x | aT x = b}, where
a ∈ Rd , a �= 0 and b ∈ R. It is the solution set of a nontrivial
linear equation among the components of x. A hyperplane
divides Rd into two half-spaces.

Definition 4 (Half-Space): It is the set {x | aT x ≤ b}, where
a ∈ Rd , a �= 0, and b ∈ R. It is the solution set of one nontrivial
linear inequality.

Definition 5 (Polyhedron/Polytope): A polyhedron is the set
P ⊆ Rd , such that

P = {x | aT
j x ≤ bj, j = 1, . . . , n}. (11)

It is, therefore, the intersection of a finite number of half-
spaces. A bounded polyhedron is called a polytope. A poly-
hedron/polytope can be written in matrix form as follows:

P = {x | Ax ≤ b} (12)

where A is an n × d matrix, and b ∈ Rn. Note that A is not
necessarily the minimal representation of P .

Definition 6 (Supporting Hyperplane): If one of the two
closed half-spaces of a hyperplane h contains a polytope P ,
then h is called a supporting hyperplane of P . Note that every
row in the matrix representation of the polytope P corresponds
to a supporting hyperplane.

For example, the shaded region in Fig. 3(b) is a polytope
defined as the intersection of six half-spaces, each bounded
by a hyperplane, and all six hyperplanes are supporting
hyperplanes.

Definition 7 (Bounding Hyperplane): A hyperplane that is
spanned by its intersection with a polytope P is called a bound-
ing hyperplane of P . Those rows in the matrix representation
of P , which can be satisfied with equality for some values of
x, correspond to bounding hyperplanes of P .

For example, in Fig. 3(b), only hyperplanes 1–4 are bound-
ing hyperplanes; they appear at the boundary of the polytope.

With the above definitions, the problem of minimal polytope
representation can be stated as follows. Given a polytope P

with n supporting hyperplanes, find all m bounding hyper-
planes of the polytope, where m ≤ n. This will correspond
to the minimal representation of P . In other words, if P is
defined as Ax ≤ b, where A is an n × d matrix, and b ∈ Rn,
find a reduced Ã and b̃ such that

P = {x | Ax ≤ b} = {x | Ãx ≤ b̃} (13)

where Ã and b̃ are the rows of A and b that correspond to the
m bounding hyperplanes of P . Referring again to the example
in Fig. 3(b), if hyperplanes 5 and 6 were removed, it would
not affect the shape of the polytope.

The above two problems have obvious similarities; in fact,
these two problems are equivalent, as one is the dual of the
other. This can be explained by the the point-hyperplane du-
ality in computational geometry [8]. Point-hyperplane duality
is a common transformation whereby a point p at distance r

from the origin O is associated with the hyperplane normal
to Op at distance 1/r from the origin. Under this transfor-
mation, extreme points enumeration and minimal polytope
representation are two equivalent problems. This is shown in
Fig. 3, where the extreme points 1–4 of the convex hull are
transformed to the bounding hyperplanes 1–4 of the polytope;
also, points 5 and 6 on the interior of the convex hull are
transformed to hyperplanes 5 and 6, which do not appear in the
minimal polytope representation. Therefore, an algorithm that
can solve one problem efficiently can also be used to solve the
other problem, and vice versa. We have identified an efficient
algorithm in [9], which solves extreme point enumeration.
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Fig. 3. (a) Extreme points of convex hull. (b) Minimal polytope representa-
tion (dual problem).

The same algorithm can be used to solve the dual problem
of minimal polytope representation. In the next section, we
show how the pruning problem, defined in Section II-B, can
be transformed to a minimal polytope representation problem.
Once this is established, we can adapt the algorithm in [9] to
solve the pruning problem efficiently.

B. To Parameterized Timing

Recall the pruning problem, where given a set of n delay
hyperplanes Dj , we want to determine every hyperplane that
can become the maximum hyperplane, for some setting of
the PVT parameters. These hyperplanes are referred to as
nonredundant, whereas other hyperplanes that cannot become
dominant are referred to as redundant hyperplanes, and should
be pruned. Let Dmax be the PWP maximum of all n hyper-
planes, i.e., Dmax = max(D1, · · · , Dn), ∀Xi, such as the broken
line in Fig. 2. As a result, the following condition holds:

Dmax ≥ Dj = aoj +
p∑

i=1

aijXi − 1 ≤ Xi ≤ 1 ∀i ∀j. (14)

Note that if Dj is a nonredundant hyperplane, then the above
inequality will be satisfied with equality, i.e., Dmax = Dj , when
Dj becomes the maximum hyperplane for some setting of Xis.
Otherwise, if Dj is redundant, then Dmax > Dj for all Xis.

By rearranging (14) so as to include Dmax in the parameters,
we get the following:

p∑
i=1

aijXi − Dmax ≤ −aoj j = 1, . . . , n. (15)

Let x = [X1 X2 · · · Xp Dmax]T , hj = [a1j a2j · · · apj − 1]T ,
and bj = −aoj . Then, we can write the above inequality as

hT
j x ≤ bj j = 1, . . . , n. (16)

Finally, if b = [b1 b2 · · · bn]T and H = [h1 h2 · · · hn]T .
Then, we can write the above inequalities in a matrix form

Hx ≤ b − 1 ≤ Xi ≤ 1. (17)

This defines a polytope H in p + 1 dimensions, where p is
the number of PVT parameters. Now if we were to find the
minimal representation of H, this would result in determining
all the rows that correspond to bounding hyperplanes, that is,

the rows that can be satisfied with equality, as explained in
Definition 7. If row j is a bounding hyperplane, then hT

j x = bj

is satisfied for some parameter setting. By rearranging this
equality in terms of Dmax, we get Dmax = Dj , which is the
condition for which a delay hyperplane is nonredundant in the
pruning problem, as observed above. Therefore, determining
the minimal representation of H would actually solve the
pruning problem and determine the set of nonredundant delay
hyperplanes.

IV. Pruning Algorithm

In this section, we present two pruning algorithms: 1) an
exact solution to the pruning problem, which is a modified
version of the algorithm in [9], and 2) a sufficient condition for
pruning that is linear in the number of hyperplanes, and which
can be used to speed up the pruning algorithm by reducing the
number of calls of the exact algorithm during propagation in
the timing graph.

A. Exact Algorithm

1) Description: In the minimal polytope representation
problem, one needs to identify which rows of the defining
polytope matrix correspond to bounding hyperplanes. Let H
be a polytope defined by the system of inequalities Hx ≤ b,
and let hT

j x ≤ bj be a row in that system. In order to test
whether hT

j x ≤ bj corresponds to a bounding hyperplane, we
need to check if hT

j x = bj is satisfied for some value of x; this
can be tested using the following LP:

maximize v = hT
j x (18)

suchthat Hx ≤ b.

If the solution is v∗ < bj , then the hyperplane hT
j x = bj is

not a bounding hyperplane and can be removed (pruned) from
the system; this means that other inequalities are acting in
such a way that hT

j x ≤ bj is never “pushed to its boundary.”
Otherwise, if the solution is v∗ = bj , then hT

j x = bj is a
bounding hyperplane of the polytope and should be kept in
the system.

The LP in (18) is formulated in Procedure 1,
Check−Redund(). This procedure takes as inputs a set
of delay hyperplanes B, and a hyperplane D ∈ B that we are
trying to prune. The delay hyperplanes are first transformed
from the parameterized timing domain to the computational
geometry domain, where a polytope Hx ≤ b is created. Then,
hT

j x ≤ bj is checked to see if it corresponds to a bounding
hyperplane of the polytope by formulating the LP in (18). If
so, then pruned=FALSE, and D is nonredundant, otherwise,
pruned=TRUE and D is redundant. The procedure also returns
x∗, which is a solution witness generated by the LP solver,
i.e., it is the value of x at which the LP maximum v∗ is found.
Recall that the complexity of an LP is linear in the number of
constraints [7]. Therefore, the complexity of Check−Redund()
is linear in the size of B; specifically, it is O(p2|B|).

Algorithm 3 describes the exact pruning algorithm PRUNE,
which uses Check−Redund(). PRUNE takes a set of delay
hyperplanes P and determines the set Q ⊆ P of nonredundant
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Procedure 1 Check−Redund(D,B)

Inputs: Hyperplane D, and a set of hyperplanes B including
D;
Outputs: pruned = {TRUE, FALSE}, x∗ solution witness;
1: D ⇒ hT

j x ≤ bj and B ⇒ Hx ≤ b; {transform inputs from
delay domain to polytope domain as described in
section III-B}

2: Formulate the LP in (18) and get x∗ as solution witness;
3: if (hT

j x∗ = bj then
4: pruned = FALSE;
5: else
6: pruned = TRUE;
7: end if
8: return (pruned, x∗)

Algorithm 3 PRUNE

Input: Set of hyperplanes P = {D1, . . . , Dn} of size
n;

Output: Set of all nonredundant hyperplanes Q of size
m ≤ n;

1: Q = Get−Initial−NR(P);
2: P ′ = P\Q;
3: repeat
4: Let D be the next hyperplane in P ′;
5: Remove D,P ′ = P ′\{D};
6: [pruned, x∗] = Check−Redund(D,Q∪{D});

{run a small LP}
7: if (pruned = TRUE) then
8: D is redundant and is not added to Q;
9: else
10: [pruned, x∗] = Check−Redund (D,Q ∪ P ′ ∪ {D});

{run a large LP}
11: if (pruned = FALSE) then
12: D is nonredundant;
13: Add it to set, Q, = Q ∪ {D};
14: else
15: D is redundant and is not added to Q;
16: Use witness x∗ to get a set W of nonredundant

hyperplanes containing x∗;
17: Add W to set, Q = Q ∪ W;
18: end if
19: end if
20: until P ′ = {}

hyperplanes. The algorithm starts by determining a small
subset of nonredundant hyperplanes by calling a procedure
Get−Initial−NR(), shown in Procedure 2. Get−Initial−NR()
probes the delay hyperplanes at a predefined set of points in
the parameter space Xi, in order to determine which delay
hyperplane is maximum at every point. Those hyperplanes that
show up as maximum hyperplanes are nonredundant, and are
therefore added to the initial set. In addition to the nominal
probing point, Xi = 0 ∀i, 2p probes are chosen such that
Xj = ±1, Xi = 0 ∀i �= j, j = 1, . . . , p, which makes
Get−Initial−NR() linear in the number of hyperplanes and the
number of probes; specifically, it is O(pn).

Procedure 2 Get−Initial−NR (P)

Input: Set of hyperplanes P = {D1, . . . , Dn};
Output: Subset Q of nonredundant hyperplanes;
1: Q = {};
2: Find Dj with maximum nominal delay aoj;
3: Q = Q ∪ {Dj};
4: Set Xi to 0, ∀i;
5: for i = 1:p do
6: Set Xi to 1;
7: Find Dj with maximum value at Xi;
8: Q = Q ∪ {Dj};
9: Set Xi to −1;
10: Find Dj with maximum value at Xi;
11: Q = Q ∪ {Dj};
11: Reset Xi to 0;
12: end for

Once this initial set of nonredundant hyperplanes is de-
termined, PRUNE creates the set of remaining hyperplanes
P ′ (line 2), and starts a loop until P ′ is empty (line 20).
In every run of the loop, a hyperplane D is removed from
P ′, and is first checked for redundancy against the set Q
of nonredundant hyperplanes that were discovered so far, by
calling Check−Redund() (line 6). If Q prunes D, then D

is definitely pruned by the bigger set P , and is therefore
discarded as a redundant hyperplane. Otherwise, if D is found
to be nonredundant against Q, then we cannot claim that
it is nonredundant in P . Hence, Check−Redund() is called
again (line 10) where D is checked against the bigger set
Q ∪ P ′ ∪ {D}. If D could not be pruned (line 11), then D

is a nonredundant hyperplane and is added to Q. Otherwise,
D is pruned and discarded as a redundant hyperplane. Recall
that Check−Redund() formulates the LP in (18) and returns
a solution witness x∗. Although D is identified as redundant
(line 15), the solution witness x∗ can be used to check which
constraints of the LP were satisfied with equality at x∗; those
satisfied would correspond to bounding hyperplanes of the
polytope. Hence a set W of nonredundant delay hyperplanes
can be identified (line 16), which are added to Q. The authors
of [9] proved that at least one new nonredundant hyperplane is
discovered in this step. The reader is referred to [9] for more
details about the proof of correctness of this algorithm.

2) Complexity: The execution time of PRUNE is
dominated by the time to solve the LPs formulated in
Check−Redund() at lines 6 and 10. Line 6 is called for
all hyperplanes in P ′, which is O(n) times. The LP in
line 6 has at most p variables and O(m) constraints, be-
cause m is the largest possible size of Q. So, in total, this
would take O(np2m). As for the second LP formulated by
Check−Redund() in line 10, notice that every time it is called,
a new nonredundant hyperplane is discovered, either explicitly
(as in lines 11 and 12), or through the use of the solution
witness x∗ (line 16). Therefore, this LP, which has at most p

variables and n constraints, is solved at most m times, which
is the total number of nonredundant hyperplanes so that its
complexity O(mp2n). And since Get−Initial−NR() is O(pn),
then the overall complexity of PRUNE is O(p2mn), which is
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Fig. 4. Bounding the max operation.

an improvement over the O(p2n2) approach of [5], particularly
when many hyperplanes are redundant, i.e., when m � n.

B. Sufficient Condition

Applying the exact algorithm at every node in the timing
graph can be expensive. Because we are only interested
in the nonredundant hyperplanes at the primary outputs, it
makes sense to use a faster sufficient condition for pruning
at the internal nodes, provided that the number of hyperplanes
remains under control. Once the primary outputs are reached,
the exact algorithm is applied to determine the nonredundant
hyperplanes, which correspond to the potentially critical paths
in the circuit. We propose a sufficient condition for pruning
based on the following idea. Recall that when a set of hy-
perplanes {D1, . . . , Dk} prunes a hyperplane D, the following
condition from (5) is satisfied:

max(D1, . . . , Dk, D) = max(D1, . . . , Dk), ∀Xi (19)

which can be written as

max(D1, . . . , Dk) ≥ D, ∀Xi (20)

and which can be checked using a LP.
Now assume one can find efficiently a hyperplane Dlb,

which acts as a lower bound on max(D1, . . . , Dk). Then a
sufficient condition for pruning D would be to check if Dlb

prunes D. If so, then max(D1, . . . , Dk) would also prune D,
because

max(D1, . . . , Dk) ≥ Dlb ≥ D ∀Xi. (21)

We show next, based on the work in [10], how we can deter-
mine a lower bound on the maximum of a set of hyperplanes.

1) Finding a Lower Bound: Let A and B be two delay
hyperplanes. Let C = max(A, B) be the maximum of A and
B, and assume that either hyperplane can become dominant.
We are interested in finding a hyperplane, Clb, that acts as a
lower bound on C. It turns out to be useful to explain the lower

bound by first describing a useful upper bound hyperplane Cub

on C, as follows. We can write C as follows:

C = max(A, B) = B + max([A − B], 0) (22)

= B + max(D, 0) = B + Y (23)

where D = A−B and Y = max(D, 0). Note that the difference
D is also a hyperplane, D = do +

∑
diXi, and assume that

Dmax and Dmin are the maximum and minimum values of D

over the space of variation, which can be determined easily.
Notice that Dmax ≥ 0 and Dmin ≤ 0 since either A or B can
become dominant.

Fig. 4 shows a broken solid line representing a plot of
Y = max(D, 0) between Dmin and Dmax, the extreme values of
D. We are interested in finding a linear function of D that is
guaranteed to upper bound Y ; unlike Y this linear function
of D would also be a hyperplane. The dashed-dotted line
represents an affine function of D which upper bounds Y and
is exact at Dmax and Dmin. The equation for Yub, the upper
bound on Y , can be expressed as follows:

Yub =
Dmax

Dmax − Dmin
(D − Dmin). (24)

By replacing Y with Yub in (22), we get an upper bound Cub

as follows:

Cub = B + Yub = B +
Dmax

Dmax − Dmin
([A − B] − Dmin)

=

(
Dmax

Dmax − Dmin

)
A −

(
Dmin

Dmax − Dmin

)
B (25)

− Dmax · Dmin

Dmax − Dmin
.

Note that, unlike C, Cub is a hyperplane since it is a linear
combination of A and B. To gain a more intuitive understand-
ing of the above relationship, let us define the following terms.

1) S = Dmax − Dmin to be the “spread” of D.
2) SA = Dmax to be the “strength” of A, i.e., the region

where A dominates B (D ≥ 0).
3) SB = −Dmin = |Dmin| to be the “strength” of B, i.e., the

region where B dominates A (D ≤ 0).
4) α = SA

S
is the fraction of space where A dominates B.

5) (1 − α) = 1 − SA

S
= SB

S
is the fraction of space where B

dominates A.

Then, using the above notations, we can rewrite Cub as follows:

Cub = αA + (1 − α)B + α(1 − α) · S (26)

where A and B are both weighted by their “extent of domi-
nance,” so to speak, and the last term accounts for the region
where both A and B are dominant, hence the product of α and
(1 − α).

Using the same analysis, we would like to find a lower
bound on Y in order to find a lower bound on C = max(A, B).
Looking back at Fig. 4, it is easy to see that any function in
the form Ylb = aD, where 0 ≤ a ≤ 1, is a valid lower bound
on Y = max(D, 0), and, unlike Y , is also a hyperplane since
D is a hyperplane. In practice, we have found that limiting
the choice of Ylb to one of three functions depending on the
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Algorithm 4 PRUNE−LB

Input: Set of hyperplanes P = {D1 . . . , Dn} of size n;
Output: Reduced set Q ⊆ P ;
1: Q = Get−Initial−NR(P);
2: Find a lower bound Dlb on the maximum of all

hyperplanes in Q;
3: P ′ = P\Q;
4: repeat
5: Choose an arbitrary D ∈ P ′ and remove it from P ′;
6: Check if Dlb prunes D, i.e. D ≺ Dib;
7: if (D ≺ Dlb) then
8: D is redundant in P {sufficient condition is able to

prune};
9: else
10: Add D to Q {sufficient condition fails, and D is

not pruned};
11: end if
12: until P ′ = {}

values of Dmin and Dmax is sufficient; Ylb is set to be one of
the following:

Ylb =

⎧⎪⎨
⎪⎩

D, if|Dmax| � |Dmin|
0, if|Dmax| � |Dmin|(

Dmax
Dmax−Dmin

)
D, otherwise

(27)

where the slope of Ylb in the third case is equal to that of the
upper bound Yub. Note that � means “much larger than,” and
it was set to be at least four times.

Replacing each case of the above in (22) gives us Clb, the
lower bound on C

Clb =

⎧⎨
⎩

A, if|Dmax| � |Dmin|
B, if|Dmax| � |Dmin|
αA + (1 − α)B, otherwise

(28)

where α is as defined in (26). Therefore, Clb is a hyperplane
since it is a linear combination of A and B in either of the
three cases.

Although the above analysis is restricted to finding a lower
bound on the maximum of two hyperplanes, it can be recur-
sively applied to find a lower bound on the maximum of n ≥ 2
hyperplanes. It is easy to show that the complexity of doing
this for n hyperplanes is O(pn).

2) Algorithm Description: Algorithm 4 describes our lower
bound based sufficient condition for pruning, PRUNE−LB.
It takes as input a set P of n hyperplanes and returns a
reduced set Q ⊆ P . Similarly to PRUNE, PRUNE−LB starts
by determining an initial set of nonredundant hyperplanes by
calling Get−Initial−NR(), which takes O(pn) time. Next, a
lower bound Dlb on the maximum of all hyperplanes in this
set is determined as shown in the previous section. This takes
O(p2) time since the size of the initial set is O(p). Then,
for every hyperplane D in the remaining set P ′, the lower
bound is used to test whether D is prunable or not. If so, then
D is redundant in P , otherwise, D is added to Q; the cost
of this loop is O(np). Thus, the runtime of PRUNE−LB is
O(p(p + n)), which in practice is really O(pn) because one

expects that it is always the case that p < n. This represents
an improvement over the O(pn2) sufficient condition of [5].

V. Results

In order to verify the accuracy and speed of our pruning
techniques, we have tested this approach on a number of
circuits from the ISCAS-85 and ITC-99 benchmark suites,
mapped to a commercial 90 nm library. The timing engine
was implemented in C++, with an interface to the commercial
optimization package MOSEK [11], which was used to solve
the LPs in PRUNE and FEASCHK algorithms. In our tests,
the cell library was not characterized for sensitivities to any
specific process parameters. Instead, and in order to allow
us to test the approach under some extreme conditions, we
have assumed that cell delay depends on a set of ten arbitrary
parameters that are normalized to vary in [−1, 1] as per PSTA
timing models. In addition, the delay sensitivities to these pa-
rameters were generated randomly such that every cell exhibits
a total of ±20% deviation in its nominal delay as a result of
parameter variability. As to the signs of these sensitivities, they
were set at random, again in order to better test the limits of
our approach (as the sensitivity signs are made less correlated,
one would expect to see more nonredundant hyperplanes).

We test our approach using the following flow: run
PRUNE−LB on every node in the timing graph and then apply
PRUNE at the primary output to determine the exact number
of nonredundant hyperplanes. For comparison, we also test
the equivalent flow from [5]: run PAIRWISE on all nodes and
then apply FEASCHK at the primary output. Table I shows the
results, where we report the number of hyperplanes reported
at the primary output by the sufficient condition (PRUNE−LB
and PAIRWISE), the number of nonredundant hyperplanes
found at the primary outputs after exact pruning (PRUNE and
FEASCHK), and the total runtimes. For example, for circuit
c432, the number of hyperplanes propagated by PRUNE−LB
to the primary output is 122, from which 93 hyperplanes are
found to be nonredundant by PRUNE. The overall runtime is
found to be 0.23 s.

We can draw several conclusions from Table I. First, it is
clear that the proposed approach is practical and offers the
hope that the timing of the circuit across the whole PVT space
can be provided for use by downstream tools. Second, note
that what determines whether a circuit is harder or easier
to analyze is not necessarily the number of gates in the
design, but the number of hyperplanes that are nonredundant,
i.e., the number of potentially critical paths; this depends on
circuit topology. While c7552 is larger than c6288, we find
that the latter takes more time to analyze as the resulting
number of nonredundant hyperplanes is much larger. Notice
that even under the extreme sensitivity settings, described
above, most circuits have a reasonably small number of
nonredundant hyperplanes at their outputs, which is in-line
with the observations in [5] where the number of potentially
critical paths was shown to be manageable for most circuits.
For easy circuits, the performance of our method is comparable
to [5], while for harder circuits, such as c6288 and I99C1, our
approach becomes faster.
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TABLE I

Summary of Hyperplanes at Primary Output and Runtimes for: 1) PRUNE−LB + PRUNE, and 2) PAIRWISE + FEASCHK

Circuit PAIRWISE FEASCHK Runtime PRUNE−LB PRUNE Runtime
Result Result (s) Result Result (s)

c432 116 93 0.24 122 93 0.23
c2670 86 81 0.34 91 81 0.29
c5315 526 441 1.3 535 441 1.29
c6288 5238 2353 194.56 15 404 2353 108.77
c7552 319 241 0.93 299 241 0.89
b01 13 11 0.05 13 11 0.04
b05 665 456 2.63 671 456 2
b14 2003 1703 6.19 1962 1703 6.23
b17 28 346 20 662 111.48 32 355 20 662 95.88
I99C1 4450 1045 118.79 9426 1045 59.41

Fig. 5. Comparison of PRUNE−LB and PAIRWISE algorithms.

Another metric to look at is the quality of pruning by the
sufficient condition PRUNE−LB, and a comparison of that to
PAIRWISE of [5]. As explained earlier, both algorithms are ap-
plied on every node in the test circuits until the primary outputs
are reached. Table I shows a comparison of the two pruning
techniques in terms of how many hyperplanes they report at the
primary outputs, as shown in the second and fifth columns. For
example, PAIRWISE and PRUNE−LB report 4450 and 9426
nonredundant hyperplanes at the primary output of circuit
I99C1, respectively, while the exact number of nonredundant
hyperplanes is 1045. Notice that the PAIRWISE algorithm
typically yields results that are closer to the exact solution.
However, this advantage of PAIRWISE comes at a runtime
disadvantage when compared to PRUNE−LB, as can be seen
for our larger circuits shown in Fig. 5. This is particularly true
for c6288 and I99C1, which are harder circuits compared to
the rest of the test circuits. For example, although the number
of hyperplanes reported by PRUNE−LB for circuit c6288 is
almost three times larger than that reported by PAIRWISE, the
speed up is 7.5×. On the other hand, the performance of the
two methods, in terms of both runtime and quality of pruning,
is comparable for other cases where the number of hyperplanes
seen at the output is smaller (e.g., as shown for c7552).

VI. Partial Critical Surfaces

Finding the complete critical PWP surface at an output
node of the timing graph allows one to study this surface

at any point in the PVT space. However, designers would
typically be interested in looking at areas of this surface
where timing failures occur or are within some margin of
occurring. This can be used to achieve runtime improvements
by finding partial critical surfaces that are accurate in all areas
where the complete critical surface is within some margin
of violating timing constraints. Such a partial surface can be
found by propagating only potentially critical paths that are
also potentially failing. Here, we give a formal definition of
potentially failing paths and present an overview of how they
can be used to improve runtimes.

A failing path is defined as a path that fails a setup or a
hold timing constraint of the circuit. Consider the hyperplane
delay Dj of a path terminating at an output node z. Assume
that the launch register for hyperplane Dj has a clock-to-q
time τcq, and that its capture register has a required setup time
τs, and hold time, τh. If the clock signal arrival times at the
input and output registers are ain and aout, respectively, then
the path delay Dj has to satisfy

ain + τcq + Dj + τs − aout ≤ T

ain + τcq + Dj − τh − aout ≥ 0 (29)

where T is the required clock period for this circuit. Assuming
that τcq, τs, τh, ain, and aout are also hyperplanes, we can
write (29) as

R′
z ≤ Dj ≤ Rz (30)

where R′
z and Rz are the hold and setup required arrival times,

respectively. These required arrival times are hyperplanes in
the process parameters Xj , 1 ≤ j ≤ p because they are found
by taking the sums and differences of such hyperplanes. We
say that the path corresponding to Dj is potentially failing if
the constraints in (30) are violated for some process setting.
That is, the path corresponding to Dj is a potentially failing
path if, and only if

min
X

(Rz − Dj) < 0

max
X

(R′
z − Dj) > 0. (31)

Since both Rz − Dj and R′
z − Dj are hyperplanes, deter-

mining their minimum and maximum values over the process
space is a simple operation. Therefore, given R′

z and Rz, check-
ing if Dj is a potentially failing hyperplane is straightforward.
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Fig. 6. Potentially failing paths.

It is important to note that potentially critical paths are not
always potentially failing. For example, consider the set of
potentially critical hyperplane delays {d1, d2, d3} in Fig. 6,
which also shows the setup required arrival time R. Note
that although d2 is potentially critical it does not fail the
setup timing constraint. On the other hand, d1 and d3 are
potentially failing and together they form a partial surface
of potentially critical paths that are also potentially failing.
This partial surface is accurate in areas of the PVT space
where timing failures occur; however, its accuracy is not
guaranteed in “safe” areas. Because we are mainly interested
in identifying and fixing timing failures, this represents an
opportunity to reduce the computational load of our method.
That can be done by propagating partial surfaces that consist
of failing critical paths only through the timing graph, instead
of complete critical surfaces. In this way, we can reduce the
number of hyperplanes carried forward and the sizes of LPs
required in the exact pruning methods. This can be used to fix
all timing failures, and after that, one can perform a timing run
that propagates complete critical surfaces to compute accurate
robustness measures or to perform further optimizations.

VII. Partial Surface Propagation

Finding partial critical surfaces can be done as follows. First,
required arrival times are propagated backward in the timing
graph to find required arrival times at all internal nodes of the
timing graph. Then, the same forward propagation used for
complete critical surfaces is applied, albeit with an additional
processing step. At each node, all propagated hyperplanes are
first compared to the required arrival time to determine the
potentially failing paths. All “safe” paths, i.e., paths that pass
the required arrival time are removed and our earlier pruning
methods are then applied on the remaining potentially failing
paths to find the partial critical surface of these. This reduces
the number of candidate paths at each circuit node and allows
us to find critical delay surfaces faster. However, these surfaces
will include only potentially failing paths.

A. Propagating Required Arrival Times

Typically, required arrival times will be available at the
outputs of a timing graph. However, it is also possible to
perform a backward propagation that will give required arrival
times at all the internal nodes of the timing graph. We will

Fig. 7. Cross-section of a timing graph showing an arbitrary node.

restrict our discussion to required arrival times for satisfying
setup timing constraints, i.e., longest path delay constraints.
However, with minor changes, all arguments are applicable to
required arrival times for hold timing constraints.

The required arrival time Sv at node n, shown in Fig. 7,
can be written in terms of the required arrival times Syq

of its
output nodes yi, 1 ≤ i ≤ q, and the delays dvyi

, 1 ≤ i ≤ q, as
follows:

Sv = min
(
Sy1 − dmax

vy1
, . . . , Syq

− dmax
vyq

)
. (32)

This means that the required arrival time at the internal
nodes of a timing graph can be found through a backward
propagation of required arrival times starting at the outputs
of the timing graph. Required arrival times at the outputs
of the timing graph will be hyperplanes, and as a result,
internal required arrival times will be the minimum surfaces
of a set of hyperplanes. In general, these minimum surfaces
will be PWP surfaces. However, finding these surfaces would
be too expensive and would offset any runtime gains we are
hoping to achieve. Instead, we find conservative hyperplane
estimates of required arrival times that are much cheaper to
compute and propagate. Because these hyperplane required
arrival times are conservative, they can be safely used to prune
signal arrival time hyperplanes in the forward propagation.
That is, paths delay hyperplanes that satisfy the conservative
required arrival times are guaranteed to satisfy the “exact”
required arrival times and can be pruned. The authors of [4]
presented a method max−hp where given a set of hyperplanes,
a conservative hyperplane estimate of their maximum can be
found in time linear in the number of hyperplanes. The time
complexity of max−hp is O(np) where n is the number of
hyperplanes and p is the number of process parameters. This
method can be easily adapted to write a method min−hp,
which finds a conservative hyperplane minimum of a set of
hyperplanes as follows:

dmin = min−hp
(
d1, . . . , dq

)
= −max−hp

(−d1, . . . ,−dq

)
.

(33)
Our backward propagation uses this method to find hyper-

plane required arrival times at internal nodes as follows. For
a node v shown in Fig. 7, hyperplane required signal arrival
times Ŝyi

will be available at each of its output nodes yi. Then,
given the hyperplane delays dmax

vyi
of the edges between v and
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TABLE II

Summary of Hyperplanes at Primary Output and Runtimes for CRITICAL and Critical−RAT

Circuit CRITICAL Runtime CRITICAL−RAT Runtime CRITICAL−RAT Runtime CRITICAL−RAT Runtime
Result (s) M = 0% s M = 5% (s) M = 10% (s)

c432 93 0.23 32 0.12 49 0.15 64 0.19
c2670 81 0.29 3 0.12 3 0.12 6 0.14
c5315 441 1.29 33 0.32 58 0.4 95 0.51
c6288 2353 108.77 252 14.15 564 34.23 905 55.82
c7522 241 0.89 14 0.37 22 0.4 37 0.44
b01 11 0.04 2 0.01 3 0.03 3 0.03
b05 456 2 80 0.57 133 0.89 214 1.27
b14 1703 6.23 12 1.61 27 1.84 285 2.47
b17 20 662 95.88 65 9.83 288 10.92 999 14.65
I99C1 1045 59.41 283 14.57 471 36.27 476 41.45

its output nodes, the hyperplane required arrival time Ŝv can
be found by writing

Ŝv = min−hp
(
Ŝy1 − dmax

vy1
, Ŝy2 − dmax

vy2
, . . . , Ŝyq

− dmax
vyq

)
.

(34)
This method is applied in a backward traversal that visits all

the nodes of the timing graph in reverse topological order until
the inputs are reached and all internal required arrival times
are found. However, from (32) we can see that this requires
the availability of maximum edge delays. These delays are
functions of the incoming signal transition times, and are
known exactly only when these transition times are available.
This means that in order to find required arrival times at
internal nodes, one has to first find edge delays using a forward
propagation.

B. Finding Edge Delays

Consider the node v, shown in Fig. 7. In order to compute
the maximum edge delays dmax

vyi
, 1 ≤ i ≤ q, it is required to

have the maximum signal transition time tmax
v at node n. In

this paper, we use a forward propagation of maximum signal
transition times to find an upper bound on the signal slew
of each node in the timing graph. The nodes are visited in
topological order, and at each node v, this transition time can
be computed using the maximum signal transition times of its
input nodes as follows. Let each of the nodes wi, 1 ≤ i ≤ k,
have a maximum signal transition time tmax

wi
. The output slew

twin of each of the edges wiv, 1 ≤ i ≤ k, is a function of its
input slew and its output capacitance. Therefore, the maximum
output slew tmax

win
of each of the edges win can be written as

twiv(tmax
wi

) and an upper bound tmax
v on tv can be found as

tmax
v = max(tmax

w1v
, . . . , tmax

wkv
). (35)

This bound can then be similarly propagated to yi, 1 ≤
i ≤ q. After this forward propagation of maximum slews in
the timing graph is done, it becomes possible to use these
slew values to compute conservative hyperplane delays for all
timing graph edges. These edge delays can now be used to
find conservative internal required arrival times through the
backward propagation described earlier.

C. Modified Propagation

After computing hyperlane required arrival times at all the
internal nodes of the timing graph using the forward slew
propagation and the backward propagation of required arrival
times, it becomes possible to propagate partial critical surfaces
through the timing graph. This is done by propagating hyper-
planes as in the case of complete critical surfaces; however,
this propagation includes an additional pruning step at each
node. Given the required arrival time Ŝv at a given node
v, each hyperplane Dj in the propagated set of arrival time
hyperplanes Dv is pruned if it satisfies the following constraint:

min
X

(Ŝv − Dj) > 0. (36)

Because the internal required arrival time Ŝv is conservative,
all such hyperplanes in D will satisfy required arrival times
at the outputs and are pruned to get the set D′. After that, we
apply any of our pruning algorithms (PRUNE or PRUNE−LB)
to D′ to find and propagate the critical surface of this set.

D. Results

We test our approach using the following flow, which we
refer to as CRITICAL−RAT: find internal required arrival
times at all internal nodes of the circuit, and then run a
forward propagation where at every node of the timing graph
required arrival time pruning is used to prune “safe” hyper-
planes and PRUNE−LB on the remaining hyperplanes to find
partial critical surfaces. In addition, for the primary outputs
of the timing graph, PRUNE is applied after PRUNE−LB
to find exact partial surfaces for these nodes. We compare
this flow to our standard flow that applies PRUNE−LB for
all nodes and PRUNE for outputs without using required
arrival time pruning. This flow is referred to as CRITICAL.
Note that in CRITICAL−RAT one could manipulate the
required arrival times at the output nodes before these are
propagated backward to make internal required arrival times
more stringent. This means that potentially critical hyperplanes
that are “close” to failing are also propagated forward, and
that the partial surfaces propagated forward become accurate
where timing failures occur or are “close” to occurring. This
allows designers to account for any unmodeled physical or
dynamic effects that might exist on silicon. So, in our tests,
we ran CRITICAL−RAT with output required arrival times
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reduced by a margin M of 0%, 5%, and 10%. Table II
shows the results, where we show the number of nonredundant
hyperplanes reported at the primary outputs by CRITICAL and
CRITICAL−RAT, in addition to the total runtimes of each. The
results for CRITICAL−RAT are presented for the three differ-
ent margins applied to required arrival times at the outputs.

Let us first consider the case of M = 0% in Table II. It is
clear that CRITICAL−RAT results in a much smaller number
of nonredundant hyperplanes at the outputs. This is the result
of pruning hyperplanes that satisfy internal required arrival
times, which also results in less hyperplanes carried forward
and in much smaller runtimes. The circuits that show the
greatest speedup are those where a large number of hyper-
planes were being propagated forward. In particular, we see
that circuits c6288, b17, and I99C1 now have a much smaller
number of hyperplanes at the outputs and that the speedup
achieved is very large. On the other hand, for circuits where
the number of nonredundant hyperplanes was small to begin
with, such as c432 and b01, the speedup is not as large. Now,
let us consider what happens when we start using a margin
with the output required arrival times (i.e., making them more
stringent before backward propagation). In the case of M = 5%
we start to see that the number of nonredundant hyperplanes
and runtimes start to increase. When we get to M = 10%, we
see further increases in these; however, the runtime gain for
all the circuits is still significant. Moreover, this partial loss of
runtime gains allows us to focus timing failures and identifies
paths that are close to failing, thus requiring attention.

VIII. Conclusion

In this paper, we proposed an efficient block-based param-
eterized timing analysis technique that can accurately capture
circuit delay at every point in the parameter space, by reporting
all paths that can become critical. Using efficient pruning
algorithms, only those potentially critical paths are carried
forward, while all other paths are pruned during propagation.
After giving a formal definition of this problem, we proposed:
1) an exact algorithm for pruning; and 2) a fast sufficient
condition for pruning, that improve on the state of the art, both
in terms of theoretical computational complexity and in terms
of runtime on various test circuits. In addition, we presented
a method where internal required arrival times are used to
prune “safe” potentially critical paths, thus achieving further
speedup for our method.
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