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Abstract—Electromigration (EM) in on-die metal lines is
becoming a significant problem in modern integrated circuits
technology. Due to the high levels of current density on the die,
the large number of metal lines, and the inherent conservatism
in classical full-chip EM models, designers are finding it very
hard to meet the area and design specs while guaranteeing EM
reliability. The EM problem is most significant in power grid
lines, because unlike signal and clock lines, they do not bene-
fit from healing due to their mostly unidirectional currents. In
this paper, we develop a new model, referred to as the mesh
model, for power grid EM checking which takes into account
the inherent redundancy of its mesh structure while determining
the reliability. To implement the mesh model, we also develop
a framework to estimate the change in statistics of an intercon-
nect as its effective-EM current varies. In order to overcome
the conservative assumptions that designers usually make about
chip workloads, we also propose a novel vectorless mesh model
technique to estimate the average minimum time-to-failure of a
power grid under workload uncertainties. The results indicate
that the series model, which is currently used in the industry,
gives a pessimistic estimate of power grid MTF and reliability
by a factor of 3–4. Finally, we exploit multithreading and grid
locality to speedup our implementation by almost 6×.

Index Terms—Electromigration (EM), optimization, power
grid, reliability, verification.

I. INTRODUCTION

POWER grid verification has become a crucial step in
modern integrated circuits (ICs) design, as the robustness

of a chip highly depends on the proper functionality of its
power grid. A reliable power grid is one that can deliver the
required voltage levels to every logic block in the underlying
circuit, and that can continue to do so for a certain number of
years before failing. Recently, electromigration (EM), a long-
term failure mechanism that affects metal lines, has reemerged
as a significant concern in very large-scale integration. What
is worrying is that the existing EM checking tools are pro-
ducing overly conservative results due to the series system
assumption they make about the grid, as we will explain later.
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Moreover, current densities are rising sharply due to the reduc-
tion in both supply voltage and width of metal lines [1],
causing a loss in the safety margins between the actual and the
predicted EM stress. Also, verifying today’s power grids has
become very expensive due to their large number of nodes.
As a result, engineers are forced to reconsider the traditional
approaches and to look for new techniques that will allow them
to predict the EM stress efficiently with lower conservatism.

Early approaches for EM verification compared worst-case
interconnect average current per unit width to a conserva-
tive fixed limit to determine whether a line is reliable or not.
Statistical electromigration budgeting (SEB) was later intro-
duced in [2] as a way to link the reliability of the metal
structure as a whole to the reliability of individual lines. In
SEB, the chip is treated as a series system, i.e., a system that
is deemed to have failed as soon as any of its components
fails. Under such model, and with some simplifying assump-
tions, the failure rate of a system is the sum of failure rates
of its individual components. SEB was first applied to the
Alpha 21164 microprocessor and became a standard technique
in many industrial Computer Aided Design (CAD) tools. SEB
was appealing because it is simple to use and allows some
components to have high failure rates as long as the overall
chip failure rate is acceptable.

Nevertheless, power grids in modern ICs have a mesh topol-
ogy rather than the traditional “comb” structure, in the sense
that they have many parallel paths between any two given
nodes. This implies some sort of redundancy in the design.
As a result, power grids are close to a parallel system, and so
have a longer lifetime, compared to a series system. In other
words, a grid is not necessarily failed if one of its metal lines
fails. In many cases, a grid can continue to deliver acceptable
voltage levels to every block in the underlying logic circuit
even when one or more of its metal lines fail. This observa-
tion has always been ignored in both academia and industry,
hence the existing EM checking tools do not recognize the
benefits of redundancy and always assume that a power grid
behaves as a series system. As our results will show, account-
ing for this redundancy increases the predicted lifetime of a
power grid significantly. In some cases, we notice that a grid
can tolerate up to 40 or more line failures before it truly fails.

On the other hand, EM degradation in any given metal
line depends on the current density through the line. Thus,
full-chip reliability depends on the patterns of current drawn
by the underlying logic circuitry. Generally, it is unrealistic
to expect the user to specify these patterns as this would
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require extensive simulation of the chip for millions of clocks
cycles at a low enough level of detail so as to produce exact
current waveforms. In addition, one might need to verify the
grid early in the design flow, when the full details of the under-
lying logic are not yet available. Ideally, and to overcome
the uncertainties about the currents, a vectorless approach is
needed, where only a minimal amount of information is known
about the current patterns such as bounds on their averages.

In this paper, we develop a new model referred to as the
mesh model, that intelligently takes into account the redundancy
in the power grid to compute its mean time-to-failure (MTF)
and its reliability. We propose a novel approach to estimate the
change in statistics of grid lines as their average current density
changes in time steps that are comparable to their lifetime. We
also develop an exact approach to update the voltage drops
in the grid as its metal lines start to fail. The mesh model
is then extended to a vectorless framework where the worst-
case reliability of the power grid is computed given a set of
local and global constraints on the currents drawn from grid.
Our data show an increase in the predicted lifetime of 3–4 ×
compared to the existing series system-based techniques. This
implies bigger margins between the predicted and the actual
EM stress, making it easier for the designers to sign off on
chip designs. Finally, we improve the run-time of the proposed
approaches by utilizing: 1) the locality of the power grids
and 2) the inherent parallelism present in our algorithms. On
an average, our final locality-based multithreaded approach is
6.1× faster than the original approach (which were proposed
in preliminary versions of this paper [3], [4]).

The remainder of this paper is organized as follows. In
Section II, we present background material on EM, the power
grid model, and the Monte Carlo random sampling approach.
Section III develops the mesh model and Section IV describes
the proposed approach for updating the time-to-failure (TTF)
statistics of a metal line in the scenario of changing cur-
rent densities. Section V describes the vectorless mesh model
framework, while Section VI discusses the implementation
details. Finally, Section VII shows our experimental results
and Section VIII concludes this paper.

II. BACKGROUND

A. Electromigration

EM is a long-term failure mechanism that affects metal
lines and vias under high current densities. The force exerted
by the flow of electrons can cause the movement of metal
atoms in the direction of electron flow. This causes the cre-
ation of voids and hillocks. A void is created due to depletion
while a hillock is created due to accumulation. Voids generally
lead to open circuits or unacceptable resistance increase in a
line, whereas protrusion of hillocks usually cause short-circuits
between adjacent lines and interlevel conductors at positions
where conductors cross over each other or in devices where
there are two spaced layers, such as a capacitor. Hillocks due to
EM can also result in thin dielectrics, which are further suscep-
tible to dielectric breakdown [5]. In this paper, we assume, for
simplicity, that all interconnect failure due to EM are caused
by nucleation and/or growth of voids.

Quantitatively, the failure time of a metal line due to EM
is usually modeled by a random variable (RV) T because
degradation rates depend on the microstructure of the wire
which varies due to random manufacturing variations. Several
models were developed to describe the behavior of T but the
simplest and most practical one was empirically developed by
Black [6]. According to Black, T follows a lognormal (LN)
distribution, i.e., its logarithm has a normal (Gaussian) distri-
bution. The MTF is given by Black’s equation [5], [6]

MTF = μ = a

A
J−η exp

(
Ea

kTk

)
(1)

where A is an experimental constant that depends on the phys-
ical properties of the metal line, a is the cross sectional area of
the line, J is the effective current density, η > 0 is the current
exponent that depends on the material of the wire and the fail-
ure stage, k is the Boltzmann’s constant, Tk is the temperature
in Kelvin, and Ea is the activation energy for EM. The stan-
dard deviation σln of ln T is usually determined experimentally
for a given metal technology. In this paper, we assume that
σln is the same for all conductors made of a given material.
We also assume that the value of Tk is known and is constant
across the grid.

For sufficiently short lines, the back stress developed due to
accumulation of atoms at the ends of a line can overcome the
build up of the critical stress required for creation of a void in
the line. In other words, a reversed migration process can occur
due to the accumulation of atoms, and this reduces or even
compensates the effective material flow toward the anode [5].
For this reason, short lines generally have longer lifetimes and
in many cases can be considered immortal; this is called the
Blech effect [7]. The Blech effect is quantified is terms of a
critical value of the product of current density (J) and length
of a line (L), denoted by βc. This threshold value is useful in
circuit design as it determines whether a line is immortal or
not as follows: given a line � of length L�, subject to a current
density J�, then � is considered EM-immune (i.e., immortal)
if J�L� < βc and EM-susceptible if J�L� ≥ βc.

B. Power Grid Model

Because EM is a long-term cumulative failure mechanism,
the changes in the current waveforms on short time scales are
not very significant for EM degradation. In fact, the standard
approach to check for EM failure is to derive a constant effective-
EM current from the time varying current waveform [8]. The
value thus obtained represents the dc current that effectively
gives the same lifetime as the original waveform under iden-
tical conditions. Power grid lines mostly carry unidirectional
currents, for which effective-EM currents are the same as aver-
age branch currents. Also, a power grid is a linear system,
which means that the average branch currents can be found
by subjecting the grid to average source currents. Therefore,
in order to perform EM analysis, it is sufficient to consider a
dc model of the grid subject to average source currents.

Let the power grid consist of n + q nodes, where nodes
1 . . . n have no voltage sources attached, and the remaining
nodes connect to ideal voltage sources to represent the con-
nections to the external power supply, and let node 0 represent
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the ground node. Define I to be the n × 1 vector of all the
average source currents such that the entry corresponding to a
node with no current source attached is set to zero. Applying
modified nodal analysis to the grid leads to

G(t)V(t) = I (2)

where G(t) is the conductance matrix of the grid, and V(t) is
the vector of voltage drops. As long as the grid is connected,
the matrix G(t) is known to be a diagonally dominant sym-
metric positive definite M-matrix, so that G−1(t) exists and
G−1(t) ≥ 0 [9]. Let b be the number of branches in the grid,
Ib,l(t) represent the branch currents where l ∈ {1, . . . , b}, and
Ib(t) be the vector of all branch currents.

Relating all the branch currents to the voltage drops V(t)
across them we get

Ib(t) = −R(t)−1M(t)TV(t) = −R(t)−1M(t)TG−1(t)I (3)

where R(t) is a b × b diagonal matrix of the branch resistance
values and M(t) is an n × b incidence matrix whose elements
are ±1 or 0 such that the term ±1 occurs in location mkl of
the matrix where node k is connected to the lth branch, else a
0 occurs. The signs of the nonzero terms depend on the node
under consideration. If the reference direction for the current
is away from the node, then the sign is positive, else it is
negative. Please note that the time dependence in G(t), V(t),
Ib(t),R(t), and M(t) is solely introduced due to the change in
the conductance matrix, that varies over time as grid lines fail
due to EM.

C. Mean Estimation by Random Sampling

Consider a continuous RV x with a certain distribution whose
mean is to be estimated by random sampling. We will first discuss
the case where x is normally distributed, and then extend the
discussion to the case where x has an unknown distribution.

Suppose we are sampling from a normal distribution whose
variance is unknown. If the true mean of the distribution is
μ and its true variance is σ , and if the arithmetic mean of
the samples is x̄w after w iteration, then in order to ensure an
upper bound ε on the relative error between x̄w and μ with
a confidence of (1 − α) × 100%, the number of samples w
needed is given by [10]

w ≥
(

zα/2sw

|x̄w|ε/(1 − ε)

)2

(4)

where sw is the unbiased estimator of σ and zα/2 is the
(1 − α/2)-percentile of the RV [(x̄w − μ)/(σ/

√
w)] hav-

ing a standard normal distribution. The usage of sw instead
of σ (which is unknown) in (4), is acceptable when w
is large (w ≥ 30 as suggested in [10]) because the RV
[(x̄w − μ)/(sw/

√
w)] has the t-distribution which approaches

the standard normal for large w.
In the general case where the distribution is unknown

(not necessarily normal), the RV [(x̄w − μ)/(sw/
√

w)] has
been shown to have a distribution that is fairly close to a
t-distribution. As before, this t-distribution approaches the
standard normal for large w (w ≥ 30). With this, one can
compute the same stopping criterion in (4), which we use

throughout this paper as a stopping criterion for Monte Carlo
whenever needed.

III. VECTOR-BASED MESH MODEL

As mentioned earlier, traditional methods for EM reliability
estimation employ the series system model. A series system
is deemed to fail when any of its components fail, i.e., it is
only as strong as its weakest link. Given the mesh structure
of modern power grids, it is overly conservative to employ the
series system for EM checking. The mesh structure of the grid
allows multiple paths between any two nodes so that the power
grid is not necessarily failed if one of its metal lines fails. In
thissection,wedevelopthemeshmodelandoutline theprocedure
to estimate the MTF and the survival probability of a power
grid when the currents drawn from it are known exactly.

Circuit timing is tightly coupled to the node voltage
drops [11]. Thus, the integrity of the power grid is evaluated
based on how well the supply voltage vdd is conducted to the
grid nodes. In other words, for a grid to function as intended,
the voltage drop at each node should be smaller than a cer-
tain threshold; otherwise soft errors in the underlying logic
may occur. A node is said to be safe when its voltage drop
meets the corresponding threshold condition, and unsafe oth-
erwise. Let Vth be the vector of all the threshold values, which
is typically user specified. We assume that Vth > 0 to avoid
trivial cases.

We assume that at t = 0, the grid is connected, so that there
is a resistive path from any node to another that does not go
through a vdd or ground node. Also, we assume that the grid
is safe at t = 0, i.e., the voltage drops at all the nodes are
below their corresponding threshold: V(0) = G−1(0)I ≤ Vth.
Notice that if this assumption is not true, then the grid would
be unsafe at the production time.

As we move forward in time, the EM-susceptible lines start
to fail due to EM. Accordingly, the conductance matrix G(t) of
the grid changes and so does V(t). The grid is deemed to fail at
the earliest time for which the condition V(t) = G−1(t)I ≤ Vth
is no longer true, which happens when any node in the grid
nodes becomes unsafe. This new model is referred to as the
mesh model, and will be used to determine the failure time of
the grid.

In this paper, we assume that the resistance of a line
becomes infinite (an open circuit) when it fails, i.e., we assume
that the failure is not gradual but abrupt. This infinite resistance
model leads to a simpler and conservative analysis because in
reality, a line is said to have failed once its resistance has risen
above some threshold. Thus, lines continue to conduct current
even after failure, but with higher resistance. Hence, employ-
ing the infinite resistance model means we are assuming that
a failing line is more degraded than it actually is.

A. MTF and Survival Probability Estimation

Let Tm be the RV denoting the TTF of the grid according to
the mesh model. In order to estimate the MTF (E[Tm]) of the
power grid using the mesh model, we perform Monte Carlo
analysis. In every iteration, we generate one sample of the grid
TTF using the mesh model; we stop once the Monte Carlo
convergence criterion (4) is met.
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Because I is known, one can find the branch currents in the
grid using (3), and then find the JL-product of every line. This
allows filtering out the EM-immune lines. The MTF of all the
other lines can then be found using Black’s equation. For every
Monte Carlo iteration, we choose TTF samples for all the EM-
susceptible lines from their corresponding LN distributions.
We keep failing the resistors in increasing order of their TTF
samples until the condition V(t) ≤ Vth is no longer true. This
gives a single grid TTF sample.

We also use Monte Carlo random sampling to estimate the
survival probability of a grid up to Y years, i.e., P{Tm > Y}.
For each Monte Carlo iteration, we obtain a grid TTF sample
using the procedure outlined in the previous paragraph, and
test whether the grid has survived up to t = Y or not. Because
this represents a Bernoulli trial, we use the bounds derived
in [12] to determine how many trials are needed to have an
error bound ε and a confidence level (1 − α) × 100%. If w
trials were needed, and if the grid was found to be safe at
t = Y in x of those trials, then P{Tm > Y} ≈ x/w.

B. Generating Time-to-Failure Samples

As mentioned before, branch currents are needed to discover
the EM-immune lines, and to find the MTF of all the other
lines using Black’s equation. Since the grid will be changing
over time due to the failure of its components, the branch
currents will also change. For now, we will focus on generating
TTF samples at t = 0. The issue of updating the TTF samples
with changing currents will be detailed in Section IV.

If G0 is the conductance matrix of the original grid [i.e.,
G0 = G(0)], then the vector of initial voltage drops can be
written as V0 = V(0) = G−1

0 I. This allows writing

Ib(0) = Ib = −R(0)−1M(0)TG−1
0 I. (5)

Consider a line l with cross sectional area al. At t = 0, let
Ib,l be the branch current flowing in it. Then, if line l is not
EM-immune, its MTF μl should be computed using Black’s
equation (1) and can be rewritten as

μl = aη+1
l

A
|Ib,l|−η exp

(
Ea

kTk

)
(6)

where we used Jl = |Ib,l|/al. We know that TTF of line l is
modeled by a LN RV Tl. However, for Monte Carlo analysis, a
TTF sample τl should be assigned to every EM-susceptible line
at the start of every iteration. This can be done by sampling a
real number ψl from the standard normal distribution N (0, 1),
and then applying the transformation below [10]

τl = μl exp
(
ψlσln − 0.5σ 2

ln

)
(7)

where σln is the standard deviation of ln Tl and is assumed
to be constant for a given material [3]. If γ T

l is the row of
−R(0)−1M(0)TG−1

0 that corresponds to line l, then Ib,l = γ T
l I

due to (5), and hence, given a sample ψl from the standard
normal distribution, we can find a sample TTF τl for every
line l, using (6) and (7) as follows:

τl = aη+1
l

A

∣∣γ T
l I
∣∣−η exp

(
Ea

kTk

)
exp

(
ψlσln − 0.5σ 2

ln

)
. (8)

C. Computing Voltage Drops

Checking if the grid has failed at a particular point in time
requires checking the condition V(t) ≤ Vth. Because the infi-
nite resistance model is used, V(t) changes only when a line
fails, and remains the same between any two consecutive line
failures. Therefore, V(t) should be recomputed every time a
line fails. One way of doing that is by updating G(t) fol-
lowed by its LU factorization and forward/backward solves
to obtain V(t) = G−1(t)I. Unfortunately, performing an LU
factorization, from scratch, every time a line fails is expen-
sive. However, since we are modeling the failure of every
line by an open circuit, we can write the change in G cor-
responding to the kth line failure as a rank-1 matrix −�Gk.
This corresponds to the removal of a conductance (connected
between nodes x and y with x > y) from the conductance
matrix by reversing the element stamping procedure for that
particular conductance. Accordingly, �Gk can be written as
�Gk = ukuT

k with

uk = √
gk
(
ex − ey

)
where eλ is a column vector of appropriate size containing
1 at the λth location and zeros at all other locations with e0
being a vector of all zeros and gk is the conductance of the
line that is being removed.

After the failure of k lines, let Uk be the n × k matrix
such that

Uk = [
u1 u2 . . . uk

]
.

Therefore, UkUT
k = ∑k

j=1 ujuT
j = ∑k

j=1�Gj. This means we
can write the vector of voltage drops Vk after the failure of k
lines as

Vk =
⎛
⎝G0 −

k∑
j=1

�Gj

⎞
⎠

−1

I = (
G0 − UkUT

k

)−1
I. (9)

1) Sherman–Morrison–Woodbury Formula: Given the
equation above and the initial vector of voltage drops
V0, it is possible to obtain Vk efficiently (i.e., with-
out computing the inverse of G0 − UkUT

k ) by using the
Sherman–Morrison–Woodbury formula [13]. In essence, the
formula asserts that the inverse of a rank-k correction of some
invertible matrix can be computed by doing a rank-k correc-
tion to the inverse of the original matrix. The formula is also
known as the matrix inversion lemma, and allows writing the
following:
(
G0− UkUT

k

)−1 = G−1
0 + G−1

0 Uk(Ik − UT
k G−1

0 Uk)
−1UT

k G−1
0

(10)

where Ik is the k × k identity matrix. This assumes that G0 is
nonsingular (which we know because the grid is assumed to
be connected and safe at t = 0), and that Wk � Ik −UT

k G−1
0 Uk

is also nonsingular. We will first handle the case where
Wk is nonsingular, and discuss the singularity case later on.
Using (9) and (10), we have

Vk = G−1
0 I +

[
G−1

0 Uk

(
Ik − UT

k G−1
0 Uk

)−1
UTG−1

0

]
I. (11)
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Define Zk = G−1
0 Uk = [G−1

0 u1 . . .G
−1
0 uk]. Because

G−1
0 I = V0, we can finally write

Vk = V0 + ZkW−1
k yk (12)

where yk = UT
k V0. The vector Vk must be computed using (12)

for every k ∈ {1, 2, . . .} until the condition Vk ≤ Vth is no
longer true. Computing V0 should be done only once by doing
an LU factorization of G0 and a forward/backward solve. For
every k, Zk must be updated by appending the column vector
G−1

0 uk, which can be easily computed using forward/backward
substitutions. Finally, the inverse of the dense k×k matrix Wk

must be computed. If k is small, we can factorize Wk for every
k in O(k3) time. However, k can be quite large for big grids,
and hence computing the LU factorization of Wk becomes
expensive as k increases. To overcome this limitation, we pro-
pose a further refinement based on the Banachiewicz–Schur
form so that the complexity of finding W−1

k is reduced to
O(k2).

2) Banachiewicz–Schur Form: Let dk = 1 − uT
k G−1

0 uk and
bk = [−uT

1 G−1
0 uk . . .−uT

k−1G−1
0 uk]T . One can prove, using the

Banachiewicz–Schur form [14], that W−1
k can be expressed it

terms of W−1
k−1 as follows:

W−1
k =

⎡
⎢⎢⎣

W−1
k−1 + W−1

k−1bkbT
k W−1

k−1

sk
−W−1

k−1bk

sk

−bT
k W−1

k−1

sk

1

sk

⎤
⎥⎥⎦ (13)

where sk � dk − bT
k W−1

k−1bk. Moreover, one can prove that, if
ak � (bT

k xk−1 + uT
k v0)/sk, then

xk =
[

xk−1 + akW−1
k−1bk

−ak

]
(14)

where xk � W−1
k yk and xk−1 � W−1

k−1yk−1. Details of deriv-
ing (13) and (14) can be found in [3]. We can use (13) and (14)
to directly update W−1

k and xk from their previous values.
Notice that W−1

k is required because, in the next iteration,
W−1

k bk+1 is needed to compute xk+1 using (14). The imple-
mentation requires a single matrix–vector product (O(k2)) and
O(k2) additions and divisions.

3) Case of Singularity: One can prove that G0 − UkUT
k is

invertible if and only if Wk is invertible [13], and that Wk is
invertible if and only if sk �= 0 [14]. Therefore, if for some k,
sk is found to be zero, then we know that Wk is singular and
hence G0 − UkUT

k is also singular. In this particular case, Vk

cannot be computed. Physically, a grid has a singular conduc-
tance matrix when a subset of its nodes becomes disconnected
from all the voltage sources. This could happen because we
are modeling the failure of a line by an open circuit. Overall,
the grid is deemed to fail at the earliest time for which the
condition V(t) ≤ Vth is no longer true or when sk = 0.

IV. ACCOUNTING FOR CHANGES IN BRANCH CURRENTS

An interconnect failure in the power grid changes the cur-
rents through all the surviving interconnects and hence affects
their residual lifetime. Because we have adopted an abrupt
model of line failure, the currents will experience step changes

(a) (c)

(b) (d)

Fig. 1. Proposed approach for single-step case. Current density profile for
(a) S and (b) Ŝ. (c) What is the CDF of S for t > t1. (d) Proposed solution.

over time, which we assume remain uni-directional. We now
describe a novel approach to estimate the change in failure
statistics of an interconnect when its effective current density
changes over time.

A. Motivation—The Single Step Case

Consider a thought experiment in which a large set S of
N isolated conductors are tested for their failure times. The
testing starts at t = 0. Let the current densities through all
the conductors be identical and given by the following step
function:

J(t) =
{

J0, 0 ≤ t ≤ t1
J1, t1 < t < ∞ (15)

where J0 �= J1 and t1 is large, such that many conductors may
have failed before t1. This current profile is shown in Fig. 1(a).
The population S is fresh at t = 0, but as time progresses, it
suffers damage due to EM and conductors start failing. We
are interested in determining the distribution of the RV that
describes the statistics of the TTFs of the population.

Unfortunately, the effective-EM current model [8] is not
applicable to this case because it implicitly assumes that the
resulting effective-EM current density is applied to all the
conductors throughout their lifetime. It is meant to handle
current waveforms that change on a much smaller time scale
as compared to the lifetime of the conductors; whereas in
our experiment the current changes on a time scale that is
comparable to the TTFs of the conductors. Hence, many con-
ductors might have failed exclusively due to J0. This motivates
the need for a new approach to estimate the statistics of the
surviving subpopulation.

To motivate such an approach, consider another set Ŝ of N
conductors identical to those in S. Suppose Ŝ is subjected to
a current density of J1 for all t ≥ 0, as shown in Fig. 1(b).
Let F(t) be the cumulative distribution function (CDF) of the
population S and F̂(t) be the CDF of Ŝ. Clearly, F̂(t) is known
to be LN. Define t̂1 to be such that F̂(t̂1) = F(t1) as shown
in Fig. 1(c). The difference δ = t1 − t̂1 is easy to compute,
as we will demonstrate later. For now, we focus on the key
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question: “what is the failure distribution of S after t1?” As
already pointed out, traditional EM work is not helpful here.
We now provide a proposal for answering this question.

Considering the two populations: 1) S at time t1 and 2) Ŝ at
time t̂1, notice the following.

1) The two populations started out fresh with the same
number of conductors, and the expected number of sur-
viving members of the two populations are exactly the
same, due to the fact that F̂(t̂1) = F(t1). Therefore, the
two populations have experienced an identical level of
deterioration.

2) The two populations are subjected to exactly the same
current stress J1, as they move forward in time, i.e., t1+x
and t̂1 + x, with x ≥ 0 for S and Ŝ, respectively.

Therefore, we expect that, going forward in time, both
populations will see the same instantaneous failure rate,
i.e., λ(t1 + x) = λ̂(t̂1 + x),∀x ≥ 0, or

λ(t) = λ̂(t − δ) ∀t ≥ t1. (16)

Since λ̂(t) is the failure rate of a LN distribution, it follows
that the failure rate of the surviving subpopulation of S, i.e.,
λ(t1 + x), is that of a LN. Thus, we propose that the statistics
of the surviving population of S for t > t1 be obtained by
shifting the origin of the LN that gives rise to λ̂(t) by δ so
that the continuity of F(t) at t = t1 is maintained, as shown
in Fig. 1(d). The mean of the shifted LN distribution is equal
to the mean of the LN that gave rise to λ̂(t). This proposal
can be generalized as follows. At any time t > 0, the TTF
statistics for the surviving population of S is described by
a (section of) a shifted LN distribution, the mean of which
(relative to its start time) is given by Black’s equation, with
J being the current density at time t. As we will see later,
this generalization allows us to calculate TTF statistics for
multiple current changes. Also, if there are no current changes,
the proposed approach gracefully falls back to the use of a
single LN.

1) Determining F(t) and δ: We define two RVs T0 and T1,
where T0 describes the TTF distribution of S when it is sub-
jected to J0 ∀t ≥ 0, and T1 describes the TTF distribution
when S is subjected to zero current density for t ≤ δ and J1
for t > δ. Clearly, the CDFs FT0(t) and FT1(t − δ) of T0 and
T1 are known to be LN. Note that the LN distribution of T1
is shifted and originates at t = δ. Following the arguments of
the previous paragraph, we propose that the CDF of S can be
written as:

F(t) =
{

FT0(t), 0 ≤ t ≤ t1
FT1(t − δ), t1 < t < ∞ (17)

where the time shift δ ∈ (−∞, t1) is found using the continuity
constraint FT1(t1 − δ) = FT0(t1) or

�

[
ln(t1 − δ)− μln,1

σln,1
√

2

]
= �

[
ln t1 − μln,0

σln,0
√

2

]
(18)

where � the is standard normal CDF, μln,k = E[ln Tk], and
σ 2

ln,k = Var(ln Tk). Also, define μT,k = E[Tk]. Using the

properties of LN distribution, we can write the following
relation:

μln,k = ln(μT,k)− 0.5σ 2
ln,k. (19)

Since � is monotonic, we equate the terms in the brackets
of (18) and use (19) to obtain

ln

(
t1 − δ

μT,1

)
= σln,1

σln,0
ln

(
t1
μT,0

)
+ 0.5σln,1(σln,0 − σln,1).

(20)

If the dependence of σln with regard to the damage accumu-
lated due to EM is empirically known beforehand, we could
have used it to solve (20) for δ. However, since we are not
aware of any such relationship, we assume that the value of
σln for S at time t is the same as that of the fresh population
at t = 0 (i.e., σln,0 = σln,1). Also, from Black’s equation, we
know that (μT,1/μT,0) = (J0/J1)

η, and hence the relative time
shift δ between T1 and T0 is

δ = t1

[
1 −

(
J0

J1

)η]
. (21)

We next obtain the CDF in the general case of multiple change
in currents.

B. Case of Multiple Change in Currents

Consider a second thought experiment with S in which the
current density profile is given as

J(t) = Jk, tk < t ≤ tk+1, k = 0, 1 . . . n (22)

where Jk−1 �= Jk ∀k > 0, t0 = 0, and tn+1 = ∞. It is interest-
ing to note that (22) is the typical current density profile of a
surviving interconnect in the power grid, where the kth failing
interconnect has TTF τ = tk.

As per the previous discussion, for each time span tk <
t ≤ tk+1, the statistics is described by a RV Tk that has a LN
distribution originating at some t = �k. The mean μT,k, for
each time span tk < t ≤ tk+1, is given by Black’s equation
with J = Jk. In order to satisfy the continuity constraint, each
RV Tk has a time shift of δk with respect to Tk−1, with T0
having a shift of δ0 = 0. This implies that the distribution for
Tk originates at �k = ∑k

i=0 δi, with �0 = δ0 = 0. The CDF
of S can now be written as

F(t) = FTk(t −�k), tk < t ≤ tk+1, k = 0, 1 . . . n. (23)

The time shift δk between Tk and Tk−1 can be found using
the continuity constraint

�

[
ln(tk −�k)− μln,k

σln,k
√

2

]
= �

[
ln(tk −�k−1)− μln,k−1

σln,k−1
√

2

]
.

Using �k = �k−1 + δk, (19) and the assumption that σln
does not change when the current changes (i.e., σln,0 = . . . =
σln,n = σln), we have

ln

(
tk −�k−1 − δk

μT,k

)
= ln

(
tk −�k−1

μT,k−1

)
.
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(a)

(b)

Fig. 2. Proposed approach for multi-step case, with EM-immune time spans
in between. (a) CDF plot for a conductor undergoing current changes, with
EM-immune time spans in between. (b) Current density profile through the
conductor.

By equating the terms in brackets, this can be simplified to

δk = (tk −�k−1)(1 − rk) =
(

tk −
k−1∑
i=1

δi

)
(1 − rk) (24)

where rk = (μT,k/μT,k−1) = (Jk−1/Jk)
η.

C. Incorporating Blech Effect

The previous analysis assumed JkL > βc ∀k. However, due
to change in current density, we might have EM-immune and
EM-susceptible time spans interspersed with each other. Let
M and B be the set of integers k, where k denotes the time
span tk < t ≤ tk+1, so that M = {k : JkL ≤ βc} and B =
{k : JkL > βc}. Clearly, M ∩ B = ∅ and M ∪ B is the entire
time period.

The extension of the above framework to incorporate the
Blech effect is primarily based on the observation that a sur-
viving conductor cannot fail for k ∈ M. Accordingly, the
corresponding probability of failure is zero and the associated
CDF is a constant function, as shown in Fig. 2. The RV Tk,
that has a shifted LN distribution originating at t = �k, exists
only for k ∈ B.

The definitions of δk and �k are altered slightly to account
for Blech effect. Consider a general scenario in which (p − 1)
consecutive EM-immune time spans are sandwiched between
two EM-susceptible time spans. To be precise, k − p, k ∈ B
and k − p + 1, . . . k − 1 ∈ M. Then, δk is time shift of Tk

relative to Tk−p needed to maintain the continuity constraint
if the in-between EM-immune time spans are removed

δk = (tk−p+1 −�k−p)

(
1 −

(
Jk−p

Jk

)η)
. (25)

Note that (25) reduces to (24) for p = 1. Also

�k = �(tk)+
k∑

i=0,i∈B

δi (26)

where �(tk) is sum of all EM-immune time spans up to tk.

D. Updating TTF Sample

Consider a conductor C of the set S subjected to the current
density profile (22). Clearly, the TTF of C changes because the
RV describing the statistics of the population changes for each
time span. Assume, for the sake of argument, that C survives
for t > tk and 0, k ∈ B. At t0(= 0), C has a TTF given by
[using (7)]

τ0 = μT,0. exp
(
ψσln − 0.5σ 2

ln

)
(27)

where the symbols are as defined before. At t = tk, when the
kth current change occurs, the TTF of C is updated using the
following relation:

τk = �k + μT,k exp
(
ψσln − 0.5σ 2

ln

)
(28)

where ψ is the same sample value from � as used in (27).
The offset �k is added so that τk is referred from t = 0. For
k ∈ M, τk is defined to be ∞.

Theorem 1: Consider a conductor having the current den-
sity profile of (22). Let k−p, k ∈ B, and k−p+1, . . . k−1 ∈ M.
Then, if (25) and (28) are used to find the offset (δk) and TTF
(τk) for the conductor, we always have

τk = tk + (τk−p − tk−p+1)

(
Jk−p

Jk

)η
(29)

so that τk > tk.
The proof of this result can be found in [3].

E. Selective Updates

In estimating the MTF and survival probability using the
mesh model, a bulk of the computation effort (nearly 50%) is
spent on updating the TTFs of the surviving lines. Completely
removing TTF updates from the mesh model in order to
speedup computation is not a feasible solution as: 1) it results
in significant errors (up to 40%) and 2) the average speedup
obtained is only about 1.2× due to slower Monte Carlo con-
vergence [15]. In this section, we present an approach that is
aimed at reducing the CPU time spent in updating the TTFs
in a way that minimally affects the Monte Carlo convergence.
Another advantage of this approach is that it gives us a knob
to trade-off accuracy for speed, if required.

For any given line, let Vb,k represent its line voltage drop
after the kth current change. We can rewrite (29) in terms of
line voltage drops as (for simplicity, we use p = 1)

τk = tk + (τk−1 − tk)
(
Vb,k−1/Vb,k

)η
= tk + (τk−1 − tk)

(
(Vb,k −�Vb,k)/Vb,k

)η (30)

where �Vb,k is the change in line voltage drop, i.e., Vb,k =
Vb,k−1 + �Vb,k. Clearly, �Vb,k → 0 =⇒ τk → τk−1.
Hence, we can choose not to update the TTF for lines where
change in the line voltage drop is less than some user-specified
threshold �V�b . This qualitatively gives us a knob to trade-off
accuracy for speed. Also, it was observed that a smaller value
of �V�b gives better Monte Carlo convergence, with �V�b = 0
being the same as the original approach. Let π(R) represent
the set of grid lines that should be updated (i.e., those lines
where the change in line voltage drop is greater than �V�b )
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after failure of some interconnect R. Determining π(R) exactly
is still a CPU intensive task. Instead, we now propose a simple
heuristic that conservatively estimates π(R).

When an interconnect in the power grid fails, not all the
nodes are equally impacted. In fact, only a subset of the nodes
(and the associated lines), in the immediate vicinity of the
failing line R are significantly impacted. This locality can be
exploited to estimate π(R). Let N = {1, 2, . . . , n} denote the
set of all the nodes in the power grid. Also, let ∂V[k]/∂R
denote the change in the voltage drop of node k with respect
to the failure of interconnect R. Define the set NR as follows:

NR =
{

k ∈ N :
∂V[k]

∂R
>
�V�b

2

}
. (31)

Finding NR can be swiftly done by checking which nodes in
the grid presented a change in their voltage drop larger than
�V�b/2 after the failure of R. As a conservative approximation,
we consider any line connected to a node k ∈ NR to be in the
set π(R). As we will see later, using selective updates gives
huge speedups with minimal loss in accuracy.

V. VECTORLESS MESH MODEL

The analysis in the previous sections assumed that the
currents drawn from the power grid are known exactly.
Unfortunately, as we mentioned earlier, it is not always real-
istic to expect users to specify precise values of the current
sources or the power dissipation of each block in the under-
lying circuit. These values change depending on the activity
of the blocks, thus producing a large variety of possible cur-
rent waveforms that can be drawn from the grid. In addition,
grid design and verification cannot wait until the chip design
is complete, and is typically done early in the design flow
where the details of the different blocks are not fully known.
Therefore, a vectorless approach is needed to capture the
uncertainty about the current waveforms and to assess the
reliability of the grid over all the different operation scenar-
ios in the underlying circuit. In this section, we show how
to extend the vector-based mesh model to a constraints-based
framework that only requires limited information about the
underlying logic.

A. Modal Probabilities

Modern ICs have complex multimodal behavior, where
major blocks of the chip have different modes of opera-
tion (such as stand-by, low power, high performance, etc.).
Specifying the block power dissipation requires knowledge of
how often these modes are exercised. For every circuit block j,
let k ∈ {1, . . . , r} enumerate the different modes of operation
and Ijk denote the block average supply current in that mode.
The overall average supply current of that block is given by
Ij = ∑r

k=1 αjkIjk, where 0 ≤ αjk ≤ 1 represent the prob-
ability of being in different modes with the constraint that∑r

k=1 αjk = 1. We propose that it is reasonable to expect
the user to specify the currents Ijk using the average power
dissipation of each block in every power mode. The mode
probabilities αjk are generally harder to assess, but users are
expected to be able to specify values for some of them, or

narrow ranges for others. If α denotes the nr × 1 vector of all
the mode probabilities (considering all the n blocks connected
to the n grid nodes, having r modes of operation each), then
we can write

αmin ≤ α ≤ αmax (32)

where αmin and αmax have entries between 0 and 1, and con-
tain any information the user may have about the modes of
operation.

The user can also specify bounds on the average current
of every block, if available. This allows us to infer other
constraints on α in the form

I�,min ≤ Lα ≤ I�,max (33)

where L is an n × nr matrix such that I = Lα. The matrix L
contains information about the currents drawn by the circuit
blocks in each power mode.

Since chip components rarely draw their maximum currents
simultaneously, global constraints are also used. For instance,
if a certain limit is specified on the average power dissipation
of the chip, then one may say that the sum of all the current
sources is no more than a certain upper bound. In general,
the same concept can be applied for groups of current sources
forming functional blocks with known upper and lower bounds
on their average power [16]. If m is the total number of global
constraints, then we can write

Ig,min ≤ SLα ≤ Ig,max (34)

where S is an m × n matrix that only contains 0s and 1s and
indicates which current sources are present in each global con-
straint. The matrix contains a 1 at the kth entry of the ith row
if the kth circuit block (current sources) is present in the ith
global constraint.

One last set of constraints should be added to guarantee that∑r
k=1 αjk = 1 for every block j

Bα = 1n (35)

where B is an n×nr matrix containing only 1s and 0s such that
the vector Bα contains the sum of mode probabilities per block
in each of its entries, and 1n is a vector of size n containing
only 1s. Together, all the constraints presented above define
a feasible space of mode probabilities, denoted by Fα , such
that α ∈ Fα if and only if, α satisfies (32)–(35).

For example, consider a circuit having three blocks with two
modes of operation each: high performance and low power.
Assume that the blocks draw, respectively, 0.2, 0.3, and 0.25 A
on average in high performance mode, and 0.1, 0.2, and 0.15 A
in low power mode. Also, let α11, α21, and α31 denote the
probabilities of the blocks being in high performance mode,
and α12, α22, and α32 the probabilities of being in low power
mode. If the average currents of the blocks are I1, I2, and I3,

and if I = [
I1 I2 I3

]T and α = [
α11 α12 α21 α22 α31 α32

]T

then we can write

I = Lα =
⎡
⎣0.2 0.1 0 0 0 0

0 0 0.3 0.2 0 0
0 0 0 0 0.25 0.15

⎤
⎦α.
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The following is a possible set of constraints that a user can
specify:⎡

⎢⎢⎢⎢⎢⎢⎣

0.1
0.2
0.2
0.3
0.6
0.1

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ α ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

0.7
0.6
0.5
0.9
0.9
0.9

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣0.11

0.21
0.17

⎤
⎦ ≤ Lα ≤

⎡
⎣0.18

0.29
0.24

⎤
⎦

[
0.35
0.4

]
≤ SLα =

[
1 1 0
0 1 1

]
Lα ≤

[
0.41
0.48

]

Bα =
⎡
⎣1 1 0 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1

⎤
⎦α =

⎡
⎣1

1
1

⎤
⎦.

For every feasible setting of α, the overall block average
currents are different, and the reliability of the power grid is
correspondingly different. Our goal is to look for the worst-
case reliability of the power grid given all the possible feasible
combinations of α.

B. Current Feasible Space

As a first step toward evaluating the worst-case reliability
of the grid, we transform the feasible space Fα to the current
domain. This helps reduce the number of variables from nr
to n, as well as the number of constraints. It is easy to see
that replacing Lα by I in (33) and (34) results in the first set
of constraints defining the feasible space of currents

I�,min ≤ I ≤ I�,max (36)

Ig,min ≤ SI ≤ Ig,max. (37)

On the other hand, given the constraints on the individual
α’s for every current source, we can find lower and upper
bounds for all the sources, as follows. Recall that every current
source Ij can be written as Ij = ∑r

k=1 αjkIjk, and let αj denote
the vector of size r of all the mode probabilities corresponding
to Ij, then due to (32) we can write

αj,min ≤ αj ≤ αj,max

where αj,min and αj,max contain the upper and lower bounds
on the entries of αj as specified in (32). Due to (35), we can
write:

∑r
k=1 αjk = 1, and hence, we can find bounds Ij,min and

Ij,max on Ij by solving the following two linear programs (LP):

Min/Max
r∑

k=1

αjkIjk

subject to αj,min ≤ αj ≤ αj,max
r∑

k=1

αjk = 1. (38)

The LPs above should be solved for every current source
in the power grid. If any of the LPs turns out to be infeasible,
then the user specifications are not consistent. Notice that due
to the structure of the LPs above, we do not need to use any of
the classical LP solving methods (simplex or interior point). In
fact, the two claims below show how to compute the solutions
directly. Assume, without loss of generality, that the modes of

operation of block j are sorted in decreasing order of their
power consumption, i.e., Ij1 ≥ Ij2 ≥ . . . ≥ Ijr. Also, call
αjk,min and αjk,max, k ∈ {1, . . . , r}, the entries of the vectors
αj,min and αj,max, respectively.

Claim 1: Consider the largest h ≤ r for which∑h−1
k=1 αjk,max ≤ 1. Then, the solution to the maximization

problem in (38) is

αjk =
⎧⎨
⎩
αjk,max for k = 1, . . . , h − 1
1 −∑h−1

k=1 αjk for k = h
αjk,min for k = h + 1, . . . , r.

Proof: To see why this works, notice that the problem
is infeasible if

∑r
k=1 αjk,min > 1 or

∑r
k=1 αjk,max < 1.

Assuming that the problem is feasible, we notice that we can
replace the last equality constraint by the inequality constraint∑r

k=1 αjk ≤ 1 without changing the optimal solution. The rea-
son is that if we were able to fit all the α’s without reaching
equality, then

∑r
k=1 αjk,max < 1, making the original problem

infeasible, which contradicts our assumption. Accordingly, we
want to show that the greedy approach explained above solves
the problem below

Maximize
r∑

k=1

αjkIjk

subject to αj,min ≤ αj ≤ αj,max
r∑

k=1

αjk ≤ 1.

Consider the following change of variables ∀k ∈ {1, . . . , r}:

wk = αjk − αjk,min

αjk,max − αjk,min
.

In the space of w, and ∀k ∈ {1, . . . , r}, the problem becomes

Maximize
r∑

k=1

ckwk +
r∑

k=1

Ijkαjk,min

subject to 0 ≤ wk ≤ 1
r∑

k=1

bkwk ≤ d (39)

where ck = Ijk(αjk,max −αjk,min), bk = (αjk,max −αjk,min), and
d = 1−∑r

k=1 αjk,min. Because the original problem is assumed
to be feasible, we have d ≥ 0. Also, we notice that ck ≥ 0 and
bk ≥ 0 for every k. Ignoring the constant term

∑r
k=1 Ijkαjk,min

in the objective function, (39) becomes an LP relaxation of the
well known 0-1 Knapsack problem [17] for which the optimal
solution can be found using a greedy approach. If c1/b1 ≥
c2/b2 ≥ . . . ≥ cr/br (which is true because ck/bk = Ijk

and the Ijk’s are assumed to be sorted in this order), then the
optimal solution can be found as follows: set w1 = w2 = . . . =
wh−1 = 1, wh = d − ∑h−1

k=1 bk, and wh+2 = . . . = wr = 0,
where h ≤ r is the largest possible such that

∑h−1
k=1 wk ≤ d.

Transforming this solution back into the α space gives the
solution described earlier.

Claim 2: Consider the smallest g ≥ 1 for which∑r
k=g+1 αjk,max ≤ 1. Then, the solution to the minimization
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problem in (38) is

αjk =
⎧⎨
⎩
αjk,max for k = g + 1, . . . , r
1 −∑r

k=g+1 αjk for k = g
αjk,min for k = 1, . . . , g − 1.

The proof the claim 2 is almost identical to the proof of
claim 1, and is omitted.

Ultimately if all the LPs turn out to be feasible, we
obtain a lower and an upper bound on every current source.
However, (36) also provides similar bounds, hence, all the
bounds should be combined to obtain

Imin ≤ I ≤ Imax. (40)

Overall, we obtain a new feasible space of currents, that we
call F , such that I ∈ F if and only if, I satisfies (40) and (37).

Back to the example in the previous section, the resulting
reduced set of constraints in the current domain would be⎡

⎣0.14
0.22
0.21

⎤
⎦ ≤ I ≤

⎡
⎣0.17

0.25
0.24

⎤
⎦

[
0.35
0.4

]
≤ SI =

[
1 1 0
0 1 1

]
I ≤

[
0.41
0.48

]
.

Now, our goal becomes to look for the worst-case relia-
bility of the grid given all the possible feasible combinations
of I. For that, we find the average minimum TTF of the grid
subject to I ∈ F . We do that by performing a Monte Carlo
analysis as before. In every iteration, we choose a sample from
the standard normal distribution for every line in the grid, and
we find the smallest grid TTF that can be obtained using the
mesh model given any I ∈ F , and the set of samples chosen
for the lines. Recall that these samples are used to sample
failure times for the lines using (8) which, in this case, yields
an expression for every TTF since I is not fixed. An exact
solution to this problem was proposed in [4], but it was com-
putationally very expensive. Here, we propose an approximate
solution that is based on simulated annealing (SA) and is very
fast in practice (∼100× faster for a 586 node grid [4]). It uses
the TTF estimator developed in Section IV.

C. Overview of Simulated Annealing

SA is a random search global optimization techniques that
occasionally allows uphill movements. SA has been used to
solve both discrete and continuous optimization problems. In
this paper, we are concerned with continuous optimization
since our feasible space is a convex polytope of currents, i.e.,
we are concerned with problems of the form

f ∗ = min
x∈X

f (x) (41)

where X ⊆ R
n is a continuous compact domain. SA randomly

generates a candidate point at every iteration and decides
whether to move to it through a random mechanism based
on a parameter called temperature. In order to define a com-
plete SA algorithm, one should appropriately define how to
select the next candidate point, how and when to accept the
next candidate point, how to update the temperature, and when
to converge.

Accepting the next candidate point is typically done ran-
domly based on an acceptance function A. Here, we use the
Metropolis function, the most widely used acceptance function

A(xk, yk+1,Tk) = min

{
1, exp

(
− f (yk+1)− f (xk)

Tk

)}

where xk is the current point, yk+1 is the candidate point, and
Tk is the current temperature. The acceptance function always
returns a number between 0 and 1 denoting the probability of
accepting the point yk+1. In practice, this is done by sampling
a number q between 0 and 1 from the uniform distribution
and then choosing the next current point xk+1 as follows:

xk+1 =
{

yk+1 if q ≤ A(xk, yk+1,Tk)

xk otherwise.
(42)

Notice that, if f (yk+1) ≤ f (xk), then the acceptance function
returns 1, and hence the new current point is xk+1 = yk+1
(accepted with a probability equal to 1). Otherwise, yk+1 is
accepted with a probability that depends on Tk and how large
is the gap | f (xk)− f (yk+1)|. A large gap or a low temperature
results in a low acceptance probability. Accepting an ascent
step from f (xk) to f (yk+1) is sometimes necessary to avoid
being trapped at a local minimum, and is called hill climbing.

Updating the temperature is done based on a cooling
schedule U . Here, we use

Tk = U(T0, k) = a

⌊
k
M

⌋
T0 (43)

where k is the SA iteration index, T0 is the starting tempera-
ture, a is a constant between 0.8 and 0.99, and M is an integer.
Notice that this allows the temperature to decrease by the fac-
tor a after each group of M iterations. Convergence occurs
when the temperature becomes less than some small positive
number Tε .

What remains is discussing how the next candidate point
inside the feasible space is found. Notice that choosing a start-
ing point x0 can be done by solving a feasibility problem in X,
which in our case can be done using a LP because our feasible
space is a convex polytope. Finding the next candidate point
yk+1 can be done by uniformly generating a random direction
θ in space such that ‖θ‖2 = 1, and then computing the set �
defined as follows:

� = �(xk, θ) = {λ ∈ R : xk + λθ ∈ F}.
Finding � can be done easily when X is convex. In fact, it
can be shown that, if xk ∈ X, then the set � can be written as

� = {λ ∈ R : λmin ≤ λ ≤ λmax}
where λmin ≤ 0 and λmax ≥ 0. To choose a new random point,
it is enough to uniformly sample a value for λ from the set �,
and compute the new point accordingly: yk+1 = xk +λθ . More
details about how to choose the next candidate point can be
found in [18].

VI. IMPLEMENTATION

The overall flow for estimating the MTF of a power grid
using the vector-based mesh model is given in the flow chart
of Fig. 3. Note that the TTF of the first failing resistor for any
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Fig. 3. MTF estimation using vector-based mesh model.

Monte Carlo iteration gives us the grid TTF as per the series
model. Estimating the average minimum TTF of a power grid
using the vectorless mesh model is as shown in Fig. 4. Given
the structure of the sequential algorithms, it can be easily seen
that the Monte Carlo iterations within them can be parallelized.
At the beginning of the execution, we use the main thread
for initializing the shared power grid data: computing V0 and
finding the MTF of all the EM-susceptible lines at t = 0. At the
end of the initialization phase, the main thread creates p child
threads and goes into a waiting state. Each child thread starts
executing one Monte Carlo iteration. Every time a child thread
completes an iteration and generates a new grid TTF sample, it
updates the shared average and standard deviation and the total
number of iterations completed so far. At this point, it checks
condition (4) to see if the stopping criteria has been satisfied.
If not, it picks up a new set of TTF samples for the metal lines
and starts another Monte Carlo iteration. On the other hand, if
the stopping criteria is met, the child thread returns. After all
the child threads have returned, the control passes back to the
main thread which then cleans up the memory and prints the
results. The locking scheme and memory management aspects
of the parallelization are omitted due to lack of space.

VII. EXPERIMENTAL RESULTS

The algorithms presented in Figs. 3 and 4 were implemented
in C++. We used boost::threads for parallelization.

Fig. 4. Average minimum grid TTF estimation using vectorless mesh model.

Two types of test grids were used for running the experiments:
1) internal and 2) external. Internal grids were synthesized
as per user specifications, including grid dimensions, metal
layers, pitch, and width per layer. The supply voltages and
current sources were randomly placed on the grid. The tech-
nology specifications were consistent with 1.1V 65 nm CMOS
technology. The grids named DC1-DC9 are internal grids. The
external grids are part of IBM power grid benchmarks [19].
These grids are dual grids, but we used only the vdd part of
the grids. The voltage drop threshold Vth was defined to be
10% of vdd for all nodes in a grid. The interconnect mate-
rial was assumed to be aluminum. As for the EM model
employed, we use the Blacks model with an activation energy
of 0.9 eV, a current exponent η = 1 (we assume that the life-
time is dominated by the time taken for the void to grow), a
nominal temperature Tk = 373 K (the user can provide any
temperature profile for the grid lines; we use Tk = 373 K
as an average temperature throughout the chip), and a critical
Blech product βc = 3000 A/cm. All the experiments were car-
ried out on a 3.4 GHz Linux machine with 32 GB of RAM.
The Monte Carlo constants we used for our simulations were
α = 0.05 for which zα/2 = 1.96, ε = 0.05 for the algorithm
in Fig. 3, and ε = 0.1 for the algorithm in Fig. 4.

To assess the reduction in pessimism as a result of using the
mesh model, we compare: 1) the power grid MTF (μs and μm)
and 2) the survival probability (Ps and Pm) as estimated using
the series and the mesh model, respectively. Table I compares
μm and μs using a gain ratio (μm/μs). The gain ratio is depen-
dent on � = max(V0); as � decreases, the gain ratio increases.
If � is close to Vth, the mesh model degenerates to the series
model. Given a reasonable difference between Vth and V0, the
gain ratio is 3–4 for all the grids, with the average gain ratio
for the reported grids being 3.83. We also observe that for
each Monte Carlo iteration, the largest grid (DC9) requires an
average of 125 lines to fail before the grid fails, which shows
the inherent redundancy in the grid.

Table I also shows the speedup and accuracy of the selective
updates approach, with �V�b = 10−3V . The maximum error
as compared to the original approach (in which the TTF of
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TABLE I
COMPARISON OF POWER GRID MTF ESTIMATED AND CPU TIME USING THE SERIES MODEL,

THE MESH MODEL, AND THE MESH MODEL WITH SELECTIVE UPDATES

TABLE II
SURVIVAL PROBABILITY ESTIMATION

all surviving interconnects are updated after each failure) is
1.07%, and we obtain significant speedups ranging between
2.5–5×. This alone shows the effectiveness of the single-
threaded selective updates approach. The run-time is further
improved by using four threads to parallelize Monte Carlo
iterations. As seen in Table I, by using a multithreaded selec-
tive updates approach, the time required to predict MTF for
the 1.8 M node grid is brought down from 8 to 1.46 h (5.48×
speedup), while the error in estimation is only 0.05%. Overall,
for all the reported grids, the multithreaded selective updates
approach achieves an average speedup of 6.07× over the
single-threaded original approach, with the average error being
only 0.30%.

Fig. 5(a) plots run-time versus number of nodes for the vector-
based MTF estimation engine. Although we obtain significant
speedups, the scalability of the selective updates approach
degrades when compared to the original approach. For the
multithreaded selective updates approach, the total time taken
to estimate the MTF scales as ∼O(n1.35), whereas the original
approach scales as ∼O(n1.32). The increase in complexity is
primarily attributed to weak metal lines which fail in almost
all Monte Carlo iterations. This leads to a lot of data sharing
between threads running parallel Monte Carlo iterations and
hence results in higher complexity than expected.

Table II compares the survival probability estimated as
per the series and the mesh model based on user-specified
values for Y . By choosing ε = α = 0.05, and by using
the bounds derived in [12], the total number of iterations
required is 489. The multithreaded variant used four threads
for parallelization. From Table II, we can clearly see that by

(a)

(b)

Fig. 5. Run-time analysis of the proposed approaches. (a) Mesh model with
known source currents. (b) SA-based vectorless mesh model.

taking redundancies into account, the mesh model consistently
predicts a higher survival probability as compared to the series
model. Also, it is quite fast, with the multithreaded version
requiring only 40 min to estimate the survival probability for
the largest grid. The multithreaded approach in each case has
only upto 2× speedup, mainly due to the high memory access
to computation ratio for sparse matrix operations.

Reliability of a power grid is essentially its survival proba-
bility at different points in time. Hence, if the TTF statistics
of the power grid following the mesh and series model is
described by the RVs Tm and Ts, then we can empirically
determine their probability distribution function (PDF) and
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TABLE III
COMPARISON OF POWER GRID AVERAGE MINIMUM TTF AND CPU TIME USING THE VECTORLESS MESH MODEL

AND THE VECTORLESS MESH MODEL WITH SELECTIVE UPDATES

(a) (b)

(c) (d)

Fig. 6. Complete statistics for IBMPG5 grid (vector-based). (a) Goodness-
of-fit. (b) PDF. (c) Reliability. (d) Failure rate.

their reliability by calculating the survival probabilities for
different values of Y . Following the above idea, a complete
statistical analysis was done for the IBMPG5 grid to estimate
its RVs Tm and Ts. A total of 489 grid TTF samples were
obtained for each model. Using the goodness-of-fit methods,
it was found that the samples could be fitted well by a normal
distribution [Fig. 6(a)], which means that the distributions of
Tm and Ts are close to normal. This is further verified by the
plots in Fig. 6(b)–(d) which show a good agreement between
the empirical PDF, reliability and the failure rate functions and
the actual curves plotted with the parameters obtained from the
goodness-of-fit plot. Fig. 6 again shows that the series model
is highly pessimistic. Also, note that since Tm and Ts are
now shown to have a normal distribution, the use of (4) as a
stopping criterion to estimate MTF is also verified.

On the other hand, Table III shows the average minimum
grid TTF estimated and the required run-time using the vec-
torless mesh model algorithm of Fig. 4. It also shows that
the vectorless approach benefits by incorporating the selective
updates heuristic. This is evident from the fact that the maxi-
mum error as compared to the original approach is found to be
1.17%, whereas the speedup obtained ranges between 2.4 and
3.4×. Moreover, Table III also shows the speedup obtained
by using the multithreaded vectorless approach (using four
threads) with selective updates. For the largest grid having
201 K nodes, the total estimation time was reduced from 22.36
to 4.10 h (5.45× speedup), while the error in the estimation is

(a) (b)

(c) (d)

Fig. 7. Statistics for DC3 grid (vectorless). (a) Goodness-of-fit. (b) PDF.
(c) Reliability. (d) Failure rate.

only 0.01%. Overall, we notice an average speedup of 6.11×
over the single-threaded original vectorless approach, and an
average error of 0.61%.

Fig. 5(b) shows the plot of run-time versus number of nodes
for the vectorless EM checking engine. As before, we observe
that, although we obtain significant speedups, the scalability
of the original version is better than the multithreaded ver-
sion. The total time taken by the multithreaded vectorless
approach scales as ∼O(n1.79), whereas the original approach
scales as ∼O(n1.72).

We did a complete statistical analysis for the DC3 grid to
estimate the distribution of its worst-case TTF. A total of 489
minimum grid TTF samples were obtained using the vectorless
approach and it was found that the samples could be fitted well
by a normal distribution [Fig. 7(a)]. This is further validated by
the extremely good agreement shown between the empirical
and actual theoretical curves for PDF, reliability and failure
rate functions [Fig. 7(b)–(d)]. Therefore, the use of (4) as a
stopping criterion to estimate the average minimum grid TTF
is also verified for the vectorless engine.

Moreover, our results show that there is a large separation
between the average minimum and the average maximum TTF
of the grid. The separation was found to vary between 10 and
25 years. This implies that the MTF of the grid is highly
sensitive to the change in currents and that it is not enough to
compute the TTF of the grid at an arbitrary feasible point.
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Lastly, to check how sensitive SA is to the random seed used
to travel the feasible space, we minimized the TTF of grid DC6
(using SA with selective updates) 50× while keeping the same
TTF samples for the grid lines and while changing the random
seed that controls how the next candidate points are being
chosen. We obtained 50 different minimums having a mean
of 10.65 years and a standard deviation of 0.68 years, leading
to a mean to standard deviation ratio of 0.064. This shows that
SA is not very sensitive to any change in the random seed,
and hence, the result of SA is, up to certain extent, a good
estimate of the minimum grid TTF.

VIII. CONCLUSION

With the latest technology scaling and high demand for low
voltage designs, EM is becoming increasingly problematic in
power grids. We introduced two fast and efficient redundancy-
aware early verification techniques for EM checking. The
first approach is vector-based and assumes full knowledge of
the loading currents while the second approach relaxes this
assumptions and follows a constraint-based framework at the
cost of a higher run-time. We showed that the mesh model
we proposed reduces the pessimism that arises in the state of
the art EM checking tools. To make the estimation more effi-
cient, we explored locality within the grid to selectively update
the TTF samples of the surviving interconnects whenever an
interconnect fails, and we also implemented a multithreaded
version of each algorithm. One might argue that the grids
above are small (especially the ones used to find the average
worst-case TTF) when compared to full-chip grids containing
millions of nodes. However, our methods can be applied to the
top-level main feeder network of the grid that is not very large
and that should be tested early in the design flow, or to small
parts of the grid using the proper macromodeling techniques.
Collectively, we believe that the techniques presented can fill
real and diverse design needs.
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