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Generating Current Budgets to Guarantee
Power Grid Safety
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Abstract—Efficient and early verification of the chip power
distribution network is a critical step in modern chip design.
Vectorless verification, developed over the last decade as an
alternative to simulation-based methods, requires user-specified
current constraints (budgets) and checks if the corresponding
worst-case voltage drops at all grid nodes are below user-specified
thresholds. However, obtaining/specifying the current constraints
remains a burdensome task for users. In this paper, we define
and address the inverse problem: for a given grid, we would
like to generate circuit current constraints which, if adhered to
by the underlying logic, would guarantee grid safety. There are
many potential applications for this approach, including various
grid quality metrics, as well as voltage drop aware placement and
floorplanning. We give a rigorous problem definition and develop
some key theoretical results related to maximality of the current
space defined by the constraints. Based on this, we then develop
two algorithms for constraints generation that target the peak
total chip power that is allowed by the grid and the uniformity
of the temperature distribution. Finally, we develop a superior
algorithm which targets a combination of both quality metrics.

Index Terms—Current constraints, integrated circuits, opti-
mization, power grid, verification.

I. INTRODUCTION

AWELL-DESIGNED power/ground network of an inte-
grated circuit should deliver well-regulated voltages at

all supply nodes in order to guarantee correct logic functional-
ity at the intended design speed. However, with the continued
scaling of semiconductor technology, there has been a cor-
responding increase in chip power dissipation, along with a
reduction of the supply voltage. As a result, modern high-
performance integrated circuits often feature large switching
currents that flow in the power and ground networks, caus-
ing excessive supply voltage variations that put both circuit
performance and reliability at risk. Therefore, efficient verifi-
cation of power grids is a necessity in modern chip design.
We will use the term power grid to refer to either the power
or the ground distribution networks. In this paper, we focus
on RC power grids, but we are working to extend this to the
RLC case.
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Typically, power grid verification is done by simulation.
The grid is simulated to determine the voltage drop at every
node, given detailed information on the current sources tied
to the grid, which represent currents drawn by the underly-
ing circuitry. However, this method has the drawback that
it requires the simulation of an exhaustive set of current
waveforms in order to cover all possible scenarios and guar-
antee power integrity. A number of nonexhaustive methods
have been proposed which implement some type of search
in current space. For example, there are search techniques
that find vectors to maximize the current drawn from the
power network [1], as well as methods that use voltage
drop analysis based on current statistics [2]. However, search-
based methods are often not scalable to large designs, and
while stochastic methods offer some confidence, they do not
offer a guarantee that the design is safe from voltage-drop
violations.

An alternative power grid verification scheme was proposed
in [3] that is not simulation based. It does not require full
knowledge of the circuit currents, but relies on information
that may be available at an early stage of the design, in the
form of current budgets or current constraints. This offers the
added advantage that it is applicable very early in the design
flow, before full details of the circuitry under the grid is known.
This type of approach will hence be referred to as a vector-
less approach. Essentially, vectorless verification consists of
finding the worst-case voltage fluctuations achievable at all
nodes of the grid under all possible transient current wave-
forms that satisfy user-specified current constraints. The grid
is said to be safe if these fluctuations are below user-specified
thresholds at all grid nodes. These methods are solved as lin-
ear programs (LPs) that can become expensive if applied to
the whole grid.

Several improvements have been made to mitigate the
runtime complexity of vectorless verification. For exam-
ple, Ghani and Najm [4] proposed a sparse approximate
inverse (SPAI) technique to reduce the size of the LPs. As
well, dominance relations among voltage drops of grid nodes
were exploited in [5] to reduce the computational workload.
Recently, in [6], a restriction of the problem to a hierarchically
structured set of power constraints was considered, leading
to significant runtime improvement. Another interesting tech-
nique was proposed in [7] that verifies each subgrid of the
original network independently, imposing boundary conditions
on the neighboring nodes of that subgrid, i.e., without explic-
itly involving nodes that are not directly connected to the
subgrid.
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These methods have been fully developed over the last
decade [8], but a key question remains: how would one
obtain/specify the current constraints? In our work with indus-
try colleagues, this point always comes up and is a hurdle to
adoption of these methods! The constraints are meant to cap-
ture the peak power dissipation of circuit blocks. It is easy
to see how to get the constraints for a logic block that is
available (down to the cell level) and small enough to exhaus-
tively simulate, by using an “offline” characterization process.
Otherwise, if the block is unavailable or too large to simu-
late, one must rely on engineering judgment, and/or expertise
from previous design activities, which seems to place an
undue burden on users. This paper is aimed at addressing this
problem.

Instead of the traditional approach of expecting users to
provide current constraints that would be used to check if the
grid is safe (what one might call the forward problem), we
propose to solve the inverse problem: given a grid and the
allowed voltage drop thresholds at all grid nodes, we would
like to generate circuit current constraints which, if satisfied
by the underlying circuitry, would guarantee grid safety. This
is a significant departure from previous work and represents
the first time that this problem has been addressed.

We believe that these current constraints would encapsu-
late much useful information about the grid. First of all, the
availability of current constraints at an early stage of the
design flow provides a way to drive the rest of the design
process, because these are essentially power budgets for the
logic blocks under the grid. If all design teams respect these
budgets throughout the design flow, then the grid is safe by
construction at the end. If the constraints impose too severe
a budget on a certain block in some location on the die, then
one can address the problem early on by modifying the grid
while it is still easy to do so and/or by generating a fresh set
of constraints. Effectively, this would give a systematic auto-
mated process for reallocating the block power budgets across
the die, a rebudgeting process that is done mostly manually
today. Alternatively, the floorplan may need to be reconsidered
and, in fact, the constraints may be used to drive automated
floorplanning or placement, so that grid-aware placement may
become feasible, something that has never been done before.
In addition, during the late stages of the design, as low-level
blocks are being refined and optimized, if there is a need to
check the safety of certain circuit switching scenarios, this
may be done by simply rechecking the resulting current traces
against the current constraints, without having to resort to any
grid simulation.

Furthermore, as we will see below, this paper provides a
high-level and early way to qualify the candidate grid and
assess how good it is relative to various quality metrics. For
example, using our approach, one can check what maximum
level of peak power dissipation for the whole die (or for a
major part of the die) can be safely supported by the candi-
date power grid. If the design has a peak power budget of
100 W, for example, then the grid must be able to support
the corresponding level of peak current in the underlying cir-
cuit (without any voltage drop violations), and we will see
that we can verify that type of objective. Alternatively, one

may be interested in spreading the power dissipation across
the die in some uniform fashion, in order to avoid thermal hot
spots. We can target that objective by looking for constraints
that spread the circuit current budgets uniformly across the die
area. Modifications of the grid may be required to allow for
that, and our engine can identify whether these are needed,
very early in the design process.

A preliminary version of this paper has appeared in [9].
The rest of this paper is organized as follows. The next sec-
tion gives a brief overview of a special class of matrices and
describes the power grid model. In Section III, we give the
problem definition and review some key results from previ-
ous work. We then present the highly desirable property of
maximality of the current spaces, along with our main theo-
retical contribution, in Section IV. In Section V, we give three
algorithms for generating circuit current constraints that are
provably maximal. Section VI presents some test results from
our implementation of these methods and describes the trade-
offs among the three algorithms. Finally, Section VII gives
some concluding remarks.

II. BACKGROUND

We will review a few properties of a special class of matri-
ces that will be crucial to the analysis to follow and describe
the power grid model. Throughout this paper, we will use the
notation x ≤ y (or x < y), for any two vectors x and y, to
denote that xi ≤ yi (or xi < yi), ∀i, respectively. Similarly, we
will use the notation X ≥ 0 (or X > 0), for any matrix X, to
denote that Xij ≥ 0 (or Xij > 0), ∀i, j, respectively. We will
also use the notation R+ or R

n+ to denote the non-negative part
of the real space, i.e., R

n+ = {x ∈ R
n : x ≥ 0}. Whenever the

product of a number of matrices Ai by a vector v is followed
by the notation |i, as in A1A2 · · · Akv|i, the expression shall
denote the ith entry of the vector resulting from the product
A1A2 · · · Akv.

A. Class of M-Matrices

We use standard definitions and results from [10] and [11].
Definition 1: A square matrix G is called an M-matrix if

gij ≤ 0, ∀i �= j and R(λi) > 0, ∀i (1)

where R(λi) is the real part of the eigenvalue λi of G.
Lemma 1 [10]: If G is an M-matrix, then G−1 exists and

all its entries are non-negative, i.e., G−1 ≥ 0.
An n × n matrix G can be used to construct a graph G

whose vertices are {1, 2, . . . , n} and whose directed edges are
(i, j) for every gij �= 0. If the graph is strongly connected
(i.e., if it has a directed path from every vertex to every other
vertex), then the matrix is said to be irreducible. A matrix
G is said to be diagonally dominant if |gii| ≥ ∑

j �=i |gij|, ∀i.
A square matrix G is said to be irreducibly diagonally dom-
inant if it is irreducible, it is diagonally dominant, and there
is an i ∈ {1, 2, . . . , n} for which |gii| >

∑
j �=i |gij|, i.e., it is

strictly diagonally dominant in at least one row.
Lemma 2 [11]: If G is irreducibly diagonally dominant

with gii > 0, ∀i, and gij ≤ 0,∀i �= j, then G is an M-matrix
and its inverse has strictly positive entries, i.e., G−1 > 0.
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B. Power Grid Model

Consider an RC model of the power grid, where every grid
metal branch is represented by a resistor, and where nodes are
used to represent either a via or a connection of more than
two branches on the same metal layer. We assume that there
exists a capacitor from every node to ground and we ignore
all line-to-line coupling capacitance. At its metal-1 terminals,
the grid is loaded by the circuit blocks, where nonlinearities
are encountered due to the circuit MOSFETs. It is practi-
cally impossible to jointly simulate or analyze both the full
nonlinear circuit and the large grid all at once, and common
practice is to decouple the two. This typically means that the
circuit blocks are represented by some suitable model, con-
sisting of a current source along with some parasitic network
to ground. However, for grid verification, these parasitics are
often neglected because of the larger impact that uncertainty
of the currents has on the grid response, and so the circuit cur-
rent sources are often assumed ideal—and this is what will be
assumed in this paper. However, this is not a limitation of this
paper. In fact, with the addition of RC parasitics to ground to
every current source, for example, the properties of the circuit
matrices would improve and they become a little bit easier to
solve, but for now we will keep current source parasitics out
of the picture for clarity of the presentation.

Therefore, in the power grid model used in this paper,
some nodes have ideal current sources (to ground) repre-
senting the currents drawn by the logic circuits tied to the
grid at these nodes, while other nodes may be connected to
ideal voltage sources representing the connection to the exter-
nal voltage supply Vdd. Excluding the ground node, let the
power grid consist of n + p nodes, where nodes 1, 2, . . . , n
are the nodes not connected to a voltage source, and the
remaining nodes (n + 1), (n + 2), . . . , (n + p) are the nodes
where the p voltage sources are connected. Let i(t) be the
non-negative vector of all the m current sources connected
to the grid, whose positive (reference) direction of current
is from node-to-ground. Without loss of generality, suppose
that nodes attached to current sources are numbered 1, . . . , m,
where m ≤ n. Let H = [

Im 0
]T be an n × m matrix where Im

is the m-dimensional identity matrix, and let is(t) = Hi(t).
Let v̂(t) be the vector of node voltages, relative to ground.

By superposition, v̂(t) may be found in three steps: 1) open-
circuit all the current sources and find the response, which
would obviously be v̂(1)(t) = Vdd in this case; 2) short-circuit
all the voltage sources and find the response v̂(2)(t), in this
case v̂(2)(t) ≤ 0; and 3) find v̂(t) = v̂(1)(t) + v̂(2)(t). To
find v̂(2)(t), KCL at every node easily provides, via nodal
analysis [12], that

Gv̂(2)(t) + Cv̂′(2)
(t) = −is(t)

where C is the n×n diagonal non-negative capacitance matrix,
which is nonsingular because every node is attached to a
capacitor; G is the n × n conductance matrix, which is known
to be symmetric and diagonally dominant with positive diag-
onal entries and nonpositive off-diagonal entries. Assuming
the graph consisting of all grid nodes 1, 2, · · · , n and all grid
resistances in between these nodes is a connected graph (so

that G is irreducible) and has at least one voltage source (so
that G is strictly diagonally dominant in at least one row), then
G is irreducibly diagonally dominant and, by Lemma 2, we
have that G is an M-matrix with G−1 > 0. We are mainly
interested in the voltage drop v(t) = Vdd−v̂(t) = −v̂(2)(t) ≥ 0,
rather than v̂(t), so that

Gv(t) + Cv̇(t) = is(t) (2)

where v(t) is the n × 1 vector of time-varying voltage drops
(difference between Vdd and true node voltages).

Using a finite-difference approximation for the derivative,
such as a Backward Euler numerical integration scheme v̇(t) ≈
(v(t) − v(t − �t))/�t, the grid system model (2) leads to

v(t) = A−1Bv(t − �t) + A−1is(t) (3)

where B = C/�t is an n × n diagonal matrix with bii > 0,
∀i, and A = G + B. Because G satisfies the conditions of
Lemma 2, then it is clear that A = G + B also satisfies the
same conditions, so that A is an M-matrix with A−1 > 0. Let
M = A−1 > 0 and define the n × m matrix M′ = MH > 0.
Furthermore, because B = A − G, then In + G−1B = In +
G−1(A − G) = G−1A, where In is the n × n identity matrix.
But In ≥ 0, G−1 > 0, and B ≥ 0 with bii > 0,∀i, so that

G−1A > 0. (4)

Finally, we assume that a certain number of grid nodes d ≤ n
are required to satisfy some user-provided voltage drop thresh-
old specifications, captured in the d × 1 vector Vth ≥ 0. These
would typically be nodes at the lower metal layers, where the
chip circuitry is connected. Let P be a d × n matrix consist-
ing of 0 and 1 elements only, specifying (with 1 entry) the
nodes that are subject to voltage threshold specification. Note
that P ≥ 0 and P have exactly one 1 entry in every row,
otherwise 0s, and that no column of P has more than one 1.

III. PROBLEM DEFINITION

We will introduce the notion of a container for a vector of
current waveforms, which will help us express constraints that
guarantee grid safety.

Definition 2 (Container): Let t ∈ R, let i(t) ∈ R
m be a

bounded function of time, and let F ⊂ R
m be a closed subset

of R
m. If i(t) ∈ F , ∀t ∈ R, then we say that F contains i(t),

represented by the shorthand i(t) ⊂ F , and we refer to F as
a container of i(t).

Fig. 1 illustrates the idea of a container for a simple case
of two current waveforms. Because i(t) = [i1(t) i2(t)]T ∈ F
for all time instants, we say that F contains i(t).

Definition 3 (Safe Grid): A grid is said to be safe for a
given i(t), defined ∀t ∈ R, if the resulting Pv(t) ≤ Vth, ∀t ∈ R.

To check if a power grid is safe, one would typically be
interested in the worst-case voltage drop at some grid node k,
at some time point τ ∈ R, over a wide range of possible
current waveforms. Using the above notation, and given a
container F that contains a wide range of current waveforms
that are of interest, we can express this as maxi(t)⊂F (vk(τ )).
Clearly, because F is the same irrespective of time and applies
at all time points t ∈ R, then this worst-case voltage drop
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Fig. 1. Example of a container F for i1(t) and i2(t).

must be time-invariant, independent of the chosen time point τ .
We now introduce the emax(·) notation, which is used to cap-
ture in a single vector of all the separate worst-case voltage
drop maximizations, as follows.

Definition 4 (Emax Operator): Let X be a bounded and
closed subset of R

n and let x ∈ R
n be an n×1 vector. If y ∈ R

n

is another n × 1 vector such that, for every i, yi = max
x∈X

[xi]

then we capture this with the shorthand notation

y = emax
x∈X

[x]. (5)

For example, if X = {x ∈ R
2 : x ≥ 0, x1 + 2x2 ≤ 2}, then

emax
x∈X

[x] =
[

2
1

]

. (6)

The name “emax” stands for element-wise maximization and
the notation will be used in other forms as well. For example,
if f (x) is a vector valued function of x, we may write

z = emax
x∈X

[
f (x)

]
. (7)

Definition 5 (Worst-Case Drop): For a given container F ,
and for an arbitrary τ ∈ R, define

v∗(F)
�= emax

i(t)⊂F
[v(τ )] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

max
i(t)⊂F

(v1(τ ))

max
i(t)⊂F

(v2(τ ))

...

max
i(t)⊂F

(vn(τ ))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

to be the n × 1 vector whose every entry is the worst-case
voltage drop at the corresponding node under all possible cur-
rent waveforms i(t) contained in F , with the convention that,
if F = φ, then emax

i(t)⊂F
[v(τ )] = 0.

The exact expression for v∗(F) was derived in [13] to be

v∗(F) =
∞∑

q=0

emax
I∈F

[(
A−1B

)q
M′I

]
(9)

where I ∈ R
m is a vector of artificial variables, with units

of current, that is used to carry out the emax(·) operation.
One way to check node safety is to compute (9), which would
then be compared against the threshold voltages Vth. However,
this would be prohibitively expensive. Instead, we will use an
upper-bound on v∗(F) based on the following.

Definition 6: For any F ⊂ R
m, define

v(F)
�= G−1A emax

I∈F
(
M′I

)
(10)

where I ∈ R
m is a vector of artificial variables, with units of

current, that is used to carry out the emax(·) operation, with
the convention that emaxI∈F (M′I) = 0, if F = φ.

Najm [8] and Ferzli et al. [13] derived the following upper-
bound1 on v∗(F), for any container F

v∗(F) ≤ v(F). (11)

Furthermore, Ferzli et al. [13] investigated the accuracy of this
upper-bound which was found to be quite good (recent tests
show a maximum error of 4 mV on a 5 K node grid).

Definition 7 (Safe Container): For a given container F , we
say that F is safe if Pv(F) ≤ Vth.

Thus, we are interested to discover a container F for which
Pv(F) ≤ Vth, so that Pv∗(F) ≤ Vth and the grid is safe.
We will see below that a safe container F can be expressed
as a set of constraints on the circuit currents that load the
grid, thereby providing a set of linear constraints that are suf-
ficient to guarantee grid safety. We will find, however, that the
choice of F is not unique. Indeed, there is an infinity of pos-
sible safe containers. In the following sections, we will first
characterize the most desirable safe containers, which we will
call maximal, and then develop algorithms to generate specific
types of maximal containers for specific objectives.

IV. MAXIMAL CONTAINERS

This section contains the bulk of the theoretical contribution
of this paper, culminating in the necessary and sufficient condi-
tions given in Theorem 1. It lays the foundation for subsequent
sections.

Let u ∈ R
n and define the sets U , F(u), and S as follows:

U �= {
u ∈ R

n : u ≥ 0, Pu ≤ Vth
}

(12)

F(u)
�= {

I ∈ R
m : I ≥ 0, M′I ≤ MGu

}
(13)

S �= {F(u) : u ∈ U} (14)

and notice that

MGu ≤ MGu′ =⇒ F(u) ⊆ F(u′), ∀u, u′ ∈ R
n. (15)

Notice that U is the set of all safe voltage drop assignments
and, as we will see below, S is the set of all safe containers.
We will see that it is enough to consider only containers of
the form (13). The first step toward this conclusion is due to
the following lemma.

Lemma 3: For any u ∈ R
n+, we have 0 ≤ v(F(u)) ≤ u.

Proof: For any u ∈ R
n+, if F(u) = φ then, from Definition 6,

0 = v(F(u)) ≤ u. Otherwise, if F(u) �= φ, then Definition 6
provides that v(F(u)) ≥ 0, due to (4) and the fact that I ≥ 0,
for all I ∈ F(u), by definition. Furthermore, from (13), we
have M′I ≤ MGu, ∀I ∈ F(u), so that

emax
I∈F(u)

(
M′I

) ≤ MGu. (16)

1In [13], the upper bound on the worst case voltage drop is in terms of
i(t) and M′, as in (10). In [8], the proof is presented in terms of is(t) = Hi(t)
and M, but it can be easily shown that the upper bound in [8] also implies (10).
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Multiplying both sides of (16) with G−1A ≥ 0, due to (4), we
get v(F(u)) ≤ u, which completes the proof.

Building on this and because i(t) ≥ 0 is already assumed
in our grid model, we are only interested in containers that
are subsets of R

m+, so that the next step that establishes the
importance of the type of containers in (13) is given by the
following necessary and sufficient condition.

Lemma 4: A container J ⊂ R
m+ is safe if and only if it is

a member of S or a subset of a member of S.
Proof: The proof is in two parts.
Proof of the “if Direction”: Let J ⊆ F(u) for some u ∈ U ,

it follows that emaxI∈J (M′I) ≤ emaxI∈F(u)(M′I), from which
v(J ) ≤ v(F(u)), due to (4). Using Lemma 3, we get v(J ) ≤ u
which, due to u ∈ U and P ≥ 0, gives Pv(J ) ≤ Vth.

Proof of the “Only if Direction”: Let J ⊂ R
m+ with

Pv(J ) ≤ Vth, and let u = v(J ), so that Pu ≤ Vth and

G−1A emax
I∈J

(
M′I

) = u. (17)

Because I ≥ 0 for any I ∈ J , and due to (4), we have u ≥ 0,
so that u ∈ U . Multiplying (17) with MG, we get

emax
I∈J

(
M′I

) = MGu (18)

so that, ∀I ∈ J , we have M′I ≤ MGu which coupled with
I ≥ 0 gives J ⊆ F(u).

Therefore: 1) F(u) is safe for any u ∈ U and 2) all inter-
esting safe containers J may be found as either specific F(u)

for some u ∈ U , or as subsets of such F(u). Note that, if
J ⊆ F(u), for some u ∈ U , with J �= F(u), then clearly
F(u) is a better choice than J . Choosing J would be unnec-
essarily limiting, while F(u) would allow more flexibility in
the circuit loading currents. Therefore, it is enough to consider
only containers of the form F(u) with u ∈ U . This is why the
definitions (12)–(14) are important!

Going further, if F(u1) ⊆ F(u2) with F(u1) �= F(u2), then
clearly F(u2) is a better choice than F(u1). Thus, in a sense,
the “larger” the container, the better. We capture this with the
notion of maximality, as follows.

Definition 8: Let E be a collection of subsets of R
m and let

X ∈ E . We say that X is maximal in E if there does not exist
another Y ∈ E , Y �= X , such that X ⊆ Y .

Maximality is a highly desirable property and so the purpose
of the rest of this section is to give necessary and sufficient
conditions for a container to be maximal in S. We will see
below that the maximality of F(u) depends on crucial proper-
ties of u. Note that first 0 ∈ U for any Vth ≥ 0, and F(0) = {0},
due to M′ > 0 combined with I ≥ 0, ∀I ∈ F(0). It fol-
lows that S always contains a nonempty set as a member, so
that F(u) = φ is never maximal in S—this will be useful as
follows.

A. Feasible

Definition 9: For any u ∈ R
n, u is said to be feasible if

F(u) is not empty, otherwise it is infeasible.
Because F(0) = {0}, then u = 0 is always feasible. In

general, we have the following lemma.
Lemma 5: For any u ∈ R

n, u is feasible if and only if
MGu ≥ 0.

Proof: To prove the if direction, let u ∈ R
n with MGu ≥ 0,

in which case clearly 0 ∈ F(u), so that F(u) is not empty
and u is feasible. To prove the only if direction, let u ∈ R

n be
feasible so that F(u) is not empty, and there exists an I ∈ R

m

such that I ≥ 0 and M′I ≤ MGu. Due to M′ ≥ 0 combined
with I ≥ 0, we have 0 ≤ M′I ≤ MGu, so that MGu ≥ 0.

Notice that if u ∈ R
n is feasible then multiplying both sides

of MGu ≥ 0 by G−1A ≥ 0 gives u ≥ 0, so that, u ∈ R
n+.

Notice also that, if Vth,k = 0, then for every u ∈ U we have
uk = 0. In this case, the only feasible u ∈ U is u = 0, because
otherwise MG = M(A−B) = In−MB, which leads to MGu|k =
uk − MBu|k = −MBu|k < 0.

B. Extremal

Definition 10: For any u ∈ U , we say that u is extremal in
U if ∃k ∈ {1, . . . , d} such that Pu|k = Vth,k.

Denote by m′
ij the (i, j)th element of M′ and by c′

j its jth
column.

Lemma 6: If F(u) is maximal in S then u is feasible and
extremal in U .

Proof: We will prove the contrapositive. Let u ∈ U be either
infeasible or not extremal in U ; we will prove that F(u) is
not maximal in S. If u is infeasible then F(u) = φ, which
we already know is not maximal in S. Now consider the case
when u is feasible but not extremal in U . In other words, we
have MGu ≥ 0, u ≥ 0, and Pu < Vth, so that ε

�= min∀i(Vth,i−
Pu|i) > 0. Let 1n be the n × 1 vector whose every entry is 1
and let u′ = u + ε1n ≥ 0. Because G is irreducibly diagonally
dominant with positive diagonal and nonpositive off-diagonal
entries, then G1n ≥ 0, with G1n �= 0. Let γ

�= G(u′ − u) =
εG1n, so that γ ≥ 0 with γ �= 0, then Mγ > 0 so that
MGu′ > MGu. Furthermore, considering u′ = u + ε1n, we
have Pu′ = Pu + εP1n. Because P has exactly one 1 in each
row, it follows that P1n = 1d, and Pu′ = Pu + ε1d, from
which Pu′ ≤ Vth due to the definition of ε, so that u′ ∈ U . We
have so far established that there exists u′ ∈ U with MGu <

MGu′, so that F(u) ⊆ F(u′), due to (15). It only remains
to prove that F(u) �= F(u′). For some i ∈ {1, . . . , m}, let
j = argmin∀k(MGu′|k/m′

ki), δ = (MGu′|j/m′
ji) ≥ 0, ei ∈ R

m

be the vector whose ith entry is 1 and all other entries are 0,
and I(i) = δei ≥ 0. Notice that, for any k, we have

M′I(i)
∣
∣
∣
k

= δ M′ei
∣
∣
k = δ c′

i

∣
∣
k = δm′

ki. (19)

Therefore, M′I(i)|j = δm′
ji = MGu′|j > MGu|j, so that I(i) �∈

F(u). By definition of δ, we have δ ≤ (MGu′|k/m′
ki), for every

k, meaning δm′
ki ≤ MGu′|k, for every k. Using (19), we then

have M′I(i)|k = δm′
ki ≤ MGu′|k, for every k, which leads to

I(i) ∈ F(u′), and the proof is complete.

C. Irreducible

Definition 11: We say that u ∈ R
n is reducible if there

exists u′ ≤ u, u′ �= u, with F(u′) = F(u); otherwise, u is said
to be irreducible.

We will see that irreducibility of u is a crucial property that
is required for maximality of F(u).
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Lemma 7: For any feasible u ∈ R
n and any z ∈ R

n such
that 0 ≤ MGz ≤ MG(u − v(F(u))), let u′ = u − z, it follows
that F(u′) = F(u).

Proof: For any I ∈ F(u′), we have I ≥ 0 and M′I ≤ MGu′ =
MGu − MGz ≤ MGu, because MGz ≥ 0, so that I ∈ F(u). It
follows that F(u′) ⊆ F(u). In addition, for any I ∈ F(u), we
have I ≥ 0 and

M′I ≤ emax
I∈F(u)

(
M′I

) = MGv(F(u)). (20)

Notice that for any z with 0 ≤ MGz ≤ MG(u − v(F(u))),
we have MGu′ = MGu − MGz ≥ MGu − MG(u − v(F(u))) =
MGv(F(u)). Combining this with (20), we get M′I ≤ MGu′, so
that I ∈ F(u′). Therefore, F(u) ⊆ F(u′) from which F(u′) =
F(u), and the proof is complete.

Lemma 8: For any feasible u ∈ R
n, let u′ = v(F(u)), it

follows that F(u′) = F(u).
Proof: Let z = u − v(F(u)), so that MGz = MGu −

MGv(F(u)) = MGu − emaxI∈F(u)(M′I) ≥ 0, the last step due
to the definition of F(u). As a result, z satisfies the conditions
of Lemma 7. Let u′ = u − z = v(F(u)). Then, by Lemma 7,
F(u′) = F(u).

Lemma 9: For any u ∈ R
n+, u is irreducible if and only if

it is feasible and v(F(u)) = u.
Proof: The proof is in two parts.
Proof of the if Direction: The proof is by contradiction. Let

u be feasible with v(F(u)) = u and suppose that u is reducible
so that there exists u′ ≤ u, u′ �= u, with F(u′) = F(u). Notice
that F(u) is not empty, because u is feasible, so that F(u′) is
not empty and u′ is feasible. Therefore, we get

u′ − v
(F(

u′)) = u′ − v(F(u)) = u′ − u + u − v(F(u)).

Notice that, because u′ is feasible, we have MGu′ ≥ 0 from
which u′ ≥ 0, due to (4). Because v(F(u′)) ≤ u′, due to
Lemma 3, it follows that u′ − u + u − v(F(u)) ≥ 0, so that
u−v(F(u)) ≥ u−u′ ≥ 0. But u−u′ �= 0, so that v(F(u)) �= u
and we have a contradiction that completes the proof.

Proof of the Only if Direction: We will prove the contra-
positive. Let u be either infeasible or v(F(u)) �= u, and we
will prove that u is reducible. If u is infeasible then F(u) = φ

and u �= 0 (recall, u = 0 is always feasible), and it is easy
to find another infeasible u′ with u′ ≤ u and u′ �= u, as fol-
lows. Let u′ = (1/2)u, from which MGu′ = (1/2)MGu �≥ 0,
because u is infeasible, so that u′ is infeasible. Therefore, we
have found u′ ≤ u, u′ �= u, with F(u′) = F(u) = φ which
means u is reducible. If u is feasible and v(F(u)) �= u, let
u′ = v(F(u)) ∈ R

n+, due to Lemma 3, which also provides
that v(F(u)) ≤ u, so that u′ ≤ u, u′ �= u, with F(u′) = F(u)

due to Lemma 8, and u is reducible.
Note, if u is irreducible and extremal in U , then Pu|k = Vth,k

for some k, and Pv(F(u))|k = Vth,k.
Lemma 10: For any u ∈ R

n+, u is irreducible if and only if

MGu ≤ MGu′ ⇐⇒ F(u) ⊆ F(
u′), ∀u′ ∈ R

n. (21)

Proof: The proof is in two parts.
Proof of the if Direction: We give a proof by contradic-

tion. Given (21) and suppose u is reducible, so that it is
either infeasible or v(F(u)) �= u. If u is infeasible, then

F(u) = φ ⊆ F(u′), for any u′ ∈ R
n, so that MGu ≤ MGu′, for

any u′ ∈ R
n, due to (21). But this is impossible, because we

can always find a u′ ∈ R
n that violates MGu ≤ MGu′, as fol-

lows. Let 1n be the n×1 vector whose every entry is 1 and let
w = −G−1A1n so that MGw = −1n < 0, and let u′ = u + w
so that MGu′ − MGu = MGw < 0. Therefore, it must be
that u is feasible and v(F(u)) �= u. Let u′ = v(F(u)), so that
F(u′) = F(u) due to Lemma 8, with MGu′ = MGv(F(u)).
Recall that MGv(F(u)) = emaxI∈F(u)(M′I) ≤ MGu, and
MGv(F(u)) �= MGu due to v(F(u)) �= u, so that MGu′ ≤
MGu and MGu′ �= MGu. This means that we have F(u) ⊆
F(u′) while MGu �≤ MGu′, which contradicts (21), and the
proof is complete.

Proof of the Only if Direction: Let u be irreducible, so that
u is feasible with v(F(u)) = u. Due to (15), it only remains to
prove that ∀u′ ∈ R

n,F(u) ⊆ F(u′) =⇒ MGu ≤ MGu′. Notice
that F(u′) is nonempty, because F(u) �= φ and F(u) ⊆ F(u′),
from which u′ is feasible. Because u and u′ are feasible, and
using u = v(F(u)), notice that

MGu′ − MGu = MGu′ − MGv(F(u))

= MGu′ − emax
I∈F(u)

(
M′I

)

≥ MGu′ − emax
I∈F(u′)

(
M′I

) ≥ 0

where we used emaxI∈F(u′)(M′I) ≥ emaxI∈F(u)(M′I), because
F(u) ⊆ F(u′). Therefore, MGu′−MGu ≥ 0, so MGu ≤ MGu′
and the proof is complete.

D. Maximality

As pointed out earlier, we are interested in safe containers
that are maximal in S. We now present our main result that
gives the necessary and sufficient conditions for maximality.

Theorem 1: F(u) is maximal in S if and only if u is
irreducible and extremal in U .

Proof: The proof is in two parts.
Proof of the if Direction: We give a proof by contradiction.

Let u ∈ U be irreducible and extremal in U , but suppose
that F(u) is not maximal in S, so that ∃u′ ∈ U such that
F(u) ⊆ F(u′), with F(u) �= F(u′). Because F(u) �= F(u′),
then clearly MGu �= MGu′, and using Lemma 10, we have
MGu ≤ MGu′. Let δ = MGu′−MGu, so that δ ≥ 0 and δ �= 0.
Because G−1A > 0 from (4), then G−1Aδ = u′ − u > 0. Then
u < u′ and Pu < Pu′ ≤ Vth, due to P ≥ 0, P has no row with
all zeros, and u′ ∈ U , so that u is not extremal in U , and we
have a contradiction that completes the proof.

Proof of the Only if Direction: We give a proof by con-
tradiction. Given that F(u) is maximal in S, we know from
Lemma 6 that u is feasible and extremal in U . Suppose u
is reducible, so that v(F(u)) �= u, because we already have
that u is feasible. Recall that 0 ≤ v(F(u)) ≤ u, from which
Pv(F(u)) ≤ Pu, due to P ≥ 0. Let u′ �= v(F(u)) �= u, so
that u′ ∈ U and MGu′ = MGv(F(u)) = emaxI∈F(u)(M′I). Let
δ = MGu − MGu′ = MGu − emaxI∈F(u)(M′I), then we have
δ ≥ 0 and δ �= 0 (due to u′ �= u). Because G−1A > 0, then
G−1Aδ = u − u′ > 0. Consequently, we have u′ < u, so that
Pu′ < Pu ≤ Vth, due to P ≥ 0, P has no row with all zeros, and
u ∈ U , so that u′ is not extremal in U . Therefore, by Lemma 6,
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F(u′) is not maximal in S. However, F(u) = F(u′), due to
Lemma 8, so that F(u) is not maximal in S, a contradiction
that completes the proof.

This important theoretical result forms the basis for our
choice of practical constraints generation algorithms that are
guaranteed to give maximal containers, as we will see in the
next section. Recall that whenever u is irreducible and extremal
in U , then Pv(F(u))|k = Vth,k, for some k, so that the upper
bound on the voltage drop at the kth grid node would be equal
to its maximum allowable voltage drop. In other words, a
maximal container always causes some node(s) on the grid
to experience the maximum allowable voltage drop, at least
based on the v(·) upper bound.

E. Redundant Constraints

One concern with (13) is that the set of current constraints
M′I ≤ MGu can be very large for large grids. In this section,
we will show that, under certain conditions, some constraints
in (13) are redundant, i.e., they can be removed from the sys-
tem M′I ≤ MGu without altering the set F(u). Hence, these
constraints should be discarded, which reduces the number of
constraints without affecting the container F(u). We introduce
the following notation to express the familiar matrices G, A,
and M in block form:

A =
[

A1 A2

AT
2 A3

]

, M =
[

M1 M2

MT
2 M3

]

, G =
[

G1
G2

]

(22)

where A1 and M1 are m×m matrices; A2 and M2 are m×(n−m)

matrices; A3 and M3 are (n − m) × (n − m) matrices; and G1
and G2 are m × n and (n − m) × n matrices, respectively. Let
w

�= MGu = [w(1) w(2)]T such that w(1) and w(2) are m × 1
and (n − m) × 1, respectively.

Lemma 11: For any u ∈ R
n, if A−1

3 G2u ≥ 0, then, ∀x ∈ R
m+

M1x ≤ w(1) ⇐⇒ M′x ≤ w. (23)

Proof: Clearly, if M′x ≤ w, then M1x ≤ w(1). To prove that
M1x ≤ w(1) =⇒ M′x ≤ w, consider the following:

AM =
[

A1 A2

AT
2 A3

][
M1 M2

MT
2 M3

]

=
[

Im 0
0 In−m

]

(24)

where Im and In−m are identity square matrices of sizes m×m
and (n − m) × (n − m), respectively. Using (24), we have

AT
2 M1 + A3MT

2 = 0 (25)

AT
2 M2 + A3M3 = In−m (26)

or equivalently

AT
2 M1 = −A3MT

2 (27)

AT
2 M2 = In−m − A3M3. (28)

Assume that M1x ≤ w(1), that is

M1x ≤ w(1) = M1G1u + M2G2u. (29)

Because AT
2 ≤ 0, multiplying (29) by AT

2 we get

AT
2 M1x ≥ AT

2 M1G1u + AT
2 M2G2u. (30)

Using (27) and (30), we get

−A3MT
2 x ≥ −A3MT

2 G1u + AT
2 M2G2u. (31)

Because A3 is a principal submatrix of A, then A3 is a non-
singular M-matrix [14], so that A−1

3 exists and A−1
3 ≥ 0, due

to Lemma 1. Therefore, we can multiply (31) by −A−1
3 to get

MT
2 x ≤ MT

2 G1u − A−1
3 AT

2 M2G2u. (32)

Now, using (28) and (32), we get

MT
2 x ≤ MT

2 G1u − A−1
3 (In−m − A3M3)G2u

= MT
2 G1u + M3G2u − A−1

3 G2u

≤ MT
2 G1u + M3G2u = w(2)

where we used the fact that A−1
3 G2u ≥ 0. Therefore, M′x ≤ w

and the proof is complete.
In other words, if A−1

3 G2u ≥ 0, then the system of inequal-
ities M′I ≤ MGu can be reduced from n to m, where m is the
number of current sources attached to the grid.

Corollary 1: For any u ∈ R
n, if Gu ≥ 0, then

M1x ≤ w(1) ⇐⇒ M′x ≤ w. (33)

Proof: Clearly, if M′x ≤ w, then M1x ≤ w(1). We now
prove that M1x ≤ w(1) =⇒ M′x ≤ w. Let u ∈ R

n be such
that Gu ≥ 0, so that G2u ≥ 0. Recall that A3 is a principal
submatrix of A, so that A−1

3 exists and A−1
3 ≥ 0, it follows

that A−1
3 G2u ≥ 0. Benefiting from Lemma 11, it follows that

M1x ≤ w(1) =⇒ MT
2 x ≤ w(2), which gives M′x ≤ w.

The above corollary provides a sufficient algebraic condition
under which some constraints in (13) are redundant. This will
be useful in the following section.

V. APPLICATIONS

So far, we have shown that a container F(u) is maximal
in S if and only if u satisfies the conditions of Theorem 1.
In this section, we will describe some design objectives and
corresponding algorithms for finding specific maximal safe
containers F(u). These algorithms will each be formulated
as a maximization of a certain design objective g(u), over all
u ∈ U . Lemma 16 in the Appendix establishes a sufficient
condition on g(·) for which the algorithms proposed below
will be shown to produce maximal containers.

A. Peak Power Dissipation

An interesting quality metric for a power grid is the
peak total power dissipation that it can safely support in
the underlying circuit. We refer here to the instantaneous
power dissipation, which is conservatively approximated by
Vdd

∑m
j=1 ij(t). Thus, we are interested in a safe container that

is maximal in S and that allows the highest possible
∑

∀j Ij.
Generally, one might be interested in the highest weighted
sum of the individual currents, i.e.,

∑
∀j qjIj, where qj > 0

is a user-specified weight on the jth current source. This will
allow certain areas of the die to support larger power dissipa-
tion than other areas. However, in this paper we assume that
all current sources have equal weights and, hence, we will be
finding the peak total power dissipation that the grid can safely
support.
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For any u ∈ U , we define σ(u) to be the largest sum of
current source values allowed under F(u)

σ (u)
�= max

I∈F(u)

(∑m
j=1 Ij

)
(34)

and we define σ ∗ to be the largest σ(u) achievable over all
possible u ∈ U , that is

σ ∗ �= max
u∈U

(σ (u)). (35)

Let up ∈ U be such that σ(up) = σ ∗, and I∗ ∈ F(up)

be such that
∑m

j=1 I∗
j = σ ∗. In general, up and I∗ may

not be unique. Based on (12) and (13), we can express the
combined (34) and (35) as the following LP:

σ ∗ = Max
m∑

j=1

Ij

subject to
M′I ≤ MGu, Pu ≤ Vth

I ≥ 0, u ≥ 0.
(36)

Let D be the feasible region of the LP (36)

D �= {
(I, u) : I ≥ 0, u ≥ 0, M′I ≤ MGu, Pu ≤ Vth

}
(37)

so that, from the above, we have

σ ∗ = max
(I,u)∈D

(∑m
j=1 Ij

)
. (38)

Notice that, (0, 0) ∈ D so that D is not empty and all of
σ ∗, up, and I∗ are well-defined. Also, for every (I, u) ∈ D, we
have M′I ≤ MGu and I ≥ 0 which, because M′ ≥ 0, gives 0 ≤
M′I ≤ MGu so that u is feasible, due to Lemma 5. Therefore,
up is feasible and the container F(up) = {I ∈ R

m : I ≥ 0,
M′I ≤ MGup} �= φ provides the desired current constraints

i(t) ≥ 0, ∀t ∈ R

M′i(t) ≤ MGup, ∀t ∈ R.

The following lemma establishes the maximality of F(up),
based on Theorem 1. Denote by cj the jth column of M, and
notice that c′

j = cj, for every j ∈ {1, 2, . . . , m}. Also, denote

by mij the (i, j)th element of M.
Lemma 12: F(up) is maximal in S.
Proof: Recall that I∗ and up are well-defined and

(I∗, up) ∈ D, so that M′I∗ ≤ MGup and I∗ ≥ 0 which, because
M′ ≥ 0, gives 0 ≤ M′I∗ ≤ MGup and so up is feasible
due to Lemma 5. We will prove that σ(·) satisfies the con-
ditions of Lemma 16, from which F(up) is maximal in S.
First, notice that for any u, u′ ∈ U , if F(u′) = F(u), it fol-
lows that σ(u′) = σ(u), due to (34). It remains to prove that
for any u, u′ ∈ U , if MGu′ > MGu, then σ(u′) > σ(u).

For any u ∈ U , there must exist a vector I ∈ F(u) such that
σ(u) = ∑m

j=1 Ij. Let λ = min∀i(MGu′|i−MGu|i)/max∀i,j(mij).
Because MGu′ > MGu and M > 0, it follows that λ > 0.
Also, let e1 ∈ R

m be the vector whose first entry is 1 and
all other entries are 0 and let I′ = I + λe1. Because λ > 0,
we have λe1 ≥ 0, λe1 �= 0, I′ ≥ I ≥ 0, and I′ �= I, so that∑m

j=1 I′
j >

∑m
j=1 Ij. Furthermore, we have I′ ∈ F(u′), because

M′I′ = M′I + λM′e1 = M′I + λc′
1 (39)

= M′I + min∀i
(
MGu′|i − MGu|i

)

max∀i,j
(
mij

) c1 (40)

≤ MGu + min∀i

(
MGu′|i − MGu|i

)
1n (41)

≤ MGu′ (42)

where in (41) we used I ∈ F(u) and c1/max∀i,j(mij) ≤ 1n.
Therefore, we have σ(u′) ≥ ∑m

j=1 I′
j >

∑m
j=1 Ij = σ(u), so

that σ(·) satisfies the conditions of Lemma 16 and F(up) is
maximal in S.

Maximality is an all-important property, and is guaranteed
by the above lemma. However, we also want to ensure good
computational performance, and the next lemma will help
achieve that. In fact, the importance of the following lemma
is twofold. First, it simplifies the LP (36) into (48) achiev-
ing a huge speedup, as we will see in Section VI. Second, it
shows that, after solving for up, the resulting F(up) can be
represented using only m rows of M′I ≤ MGup.

Lemma 13: Let u∗ = G−1HI∗, then u∗ ∈ U and
σ(u∗) = σ ∗.

Proof: Recall that M′ = MH ≥ 0 and I∗ ≥ 0, so that
M′I∗ ≥ 0. Moreover, because I∗ ∈ F(up), we have

0 ≤ M′I∗ = MHI∗ ≤ MGup. (43)

Multiplying (43) with G−1A ≥ 0, from (4), we get

0 ≤ G−1HI∗ ≤ up. (44)

Therefore, we have 0 ≤ u∗ = G−1HI∗ ≤ up, so that Pu∗ ≤
Pup ≤ Vth, the final step is due to up ∈ U . It follows that
u∗ ∈ U . Moreover, we have that MGu∗ = MHI∗ = M′I∗, from
which I∗ ∈ F(u∗), so that σ(u∗) = σ ∗, due to (34), and the
proof is complete.

Recall that up is defined to be any vector u ∈ U such that
σ(u) = σ ∗. Therefore, using Lemma 13, we can let up =
G−1HI∗. Define the set D′ as follows:

D′ �=
{
(I, u) : I ≥ 0, u ≥ 0, Pu ≤ Vth, u = G−1HI

}
. (45)

Notice that, for any (I, u) ∈ D′, we have u = G−1HI, so that
MGu = MHI = M′I which, combined with I ≥ 0, u ≥ 0, and
Pu ≤ Vth, gives (I, u) ∈ D. Therefore, we have D′ ⊆ D. Also,
because (I∗, up) ∈ D′, then σ ∗ = max

(I,u)∈D′(
∑m

j=1 Ij), which can

be found using the LP

σ ∗ = Max
m∑

j=1

Ij

subject to
u = G−1HI, Pu ≤ Vth

I ≥ 0, u ≥ 0.
(46)

Recall that H = [Im 0]T , so that for every (I, u) ∈ D′, we have

Gu =
[

G1u
G2u

]

= HI =
[

Im

0

]

I =
[

I
0

]

(47)

from which G1u = I and G2u = 0. Using (47), we can
rewrite (46) as

σ ∗ = Max1T
mG1u

subject to
G1u ≥ 0, G2u = 0
Pu ≤ Vth, u ≥ 0

(48)
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Fig. 2. Example of a power grid with four nodes, two current sources, and
Vth = [110 100 95 105]T (units of mV).

Fig. 3. Example of F(up), F(us), and F(uc).

where 1m is an m × 1 vector whose every entry is 1. The
LP in (48) has a remarkable simplification over (36) for two
reasons: 1) it has only n variables and 2n constraints compared
to n + m variables and 2n + m constraints and 2) In − MB =
In −M(A−G) = MG which means that MG is a dense matrix,
because In and B are diagonal matrices and M is a dense
matrix, so that the constraints of (36) are dense whereas the
constraints of (48) are sparse.

Furthermore, because up = G−1HI∗, then
Gup = [I∗ 0]T ≥ 0. Hence, using the corollary to Lemma 11
and for w = MGup, it follows that M1I ≤ w(1) ⇐⇒ M′I ≤ w,
i.e., r′

jI ≤ rjGup is redundant, ∀j ∈ {m + 1, . . . , n}, where
r′

j denotes the jth row of M′. This being said, the container
F(up) can be expressed as F(up) = {I ∈ R

m : I ≥ 0, r′
jI ≤

rjGup, ∀j ∈ {1, . . . , m}} which provides the desired current
constraints

i(t) ≥ 0, ∀t ∈ R

r′
ji(t) ≤ rjGup, ∀j ∈ {1, . . . , m}, ∀t ∈ R.

As an example, the LP (48) is run on the small grid in
Fig. 2 and the resulting container is shown in Fig. 3, where
up = [89 100 95 98]T (units of mV). Notice that this method,
in order to allow the maximum peak power, may generate a
container that is skewed in a way that imposes a tight con-
straint on current in certain locations of the die [such as at
i2(t)] while allowing larger current in other locations [such as
at i1(t)]. Other approaches are possible to avoid this skew and
even out the current budgets, as we will see next.

Fig. 4. Illustration of perpendicular distances to hyperplanes.

B. Uniform Current Distribution

The design team may be interested in a grid that safely
supports a uniform current distribution across the die, so as to
allow a placement that provides a uniform temperature distri-
bution. We can generate constraints that allow that objective
by searching for a safe maximal container F(u) that contains
the hypersphere in current space that has the largest volume,
or the largest radius θ . In other words, this method aims to
“raise the minimum” and avoid the skew indicated above. We
will develop a method (54) which, when applied to the sim-
ple grid in Fig. 2, generates the container F(us) as shown in
Fig. 3, where us = [83 91 95 92]T (units of mV).

Let S(θ) ⊂ R
m denote the hypersphere with radius θ ,

centered at the origin and let S+(θ) = S(θ) ∩ R
m+ be the

part of that hypersphere that is in the first quadrant of R
m.

Denote by ri the ith row of M. For any u ∈ U , define
Hi = {I ∈ R

m : I ≥ 0, r′
iI = riGu} to be the hyperplane

that constitutes the ith outer boundary of F(u), as in the 2-D
example in Fig. 4. Define Di to be the distance from the origin
to Hi which, according to [15], can be expressed as

Di = |riGu|
di

where di =
√∑m

j=1 m2
ij > 0. As we are interested in a

nonempty F(u), we will enforce that θ ≥ 0 and u is feasible,
i.e., riGu ≥ 0, ∀i, so that

Di = riGu

di
. (49)

In order to have S+(θ) ⊆ F(u), we will require that

θ ≤ Di, ∀i ∈ {1, . . . , n} (50)

which can be expressed compactly as

θd ≤ MGu (51)

where d = [d1 · · · dn]T . For any u ∈ U , we define ρ(u) to be
the largest θ ≥ 0 for which S+(θ) ⊆ F(u), or equivalently,
for which (51) is satisfied, so that

ρ(u)
�= max

S+(θ)⊆F(u)
(θ) = max

0≤θd≤MGu
(θ) (52)

and we define ρ∗ to be the largest ρ(u) achievable over all
possible u ∈ U , that is

ρ∗ �= max
u∈U

(ρ(u)). (53)
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Let us be a vector at which the above maximization attains
its maximum. In other words, us ∈ U is such that ρ(us) = ρ∗
and S+(ρ∗) ⊆ F(us). In general, us may not be unique. We
can express the combined (52) and (53) as the following LP:

ρ∗ = Maxθ

subject to
θd ≤ MGu, Pu ≤ Vth

θ ≥ 0, u ≥ 0.
(54)

Let R be the feasible region of the LP (54)

R �= {(θ, u) : θ ≥ 0, u ≥ 0, θd ≤ MGu, Pu ≤ Vth} (55)

so that, from the above, we have

ρ∗ = max
(θ,u)∈R

(θ). (56)

Notice that, (0, 0) ∈ R so that R is not empty and ρ∗ and us

are well-defined. Also, for every (θ, u) ∈ R, we have θd ≤
MGu and θ ≥ 0. Because d ≥ 0, it follows that 0 ≤ θd ≤ MGu
so that u is feasible, due to Lemma 5. Therefore, us is feasible
and the container F(us) = {I ∈ R

m : I ≥ 0, M′I ≤ MGus} �= φ

provides the desired current constraints

i(t) ≥ 0, ∀t ∈ R

M′i(t) ≤ MGus, ∀t ∈ R.

Lemma 17 in the Appendix, based on Theorem 1, establishes
the maximality of F(us).

Another way to write the LP (54) is as follows:

ρ∗ = Maxθ

subject to
θd ≤ w, Aw = Gu

Pu ≤ Vth, θ, u ≥ 0.
(57)

Although the LP (57) has larger number of variables com-
pared to the LP (54), a huge runtime advantage is attained
by solving (57) for two reasons: 1) computing all columns of
M = A−1 is not required in (57), where only m columns of
M are sufficient to compute d and 2) notice that In − MB =
In −M(A−G) = MG which means that MG is a dense matrix,
because In and B are diagonal matrices and M is a dense
matrix, so that the constraints of (54) are dense whereas the
constraints of (57) are sparse. This being said, we will use the
LP (57) to find F(us).

C. Combined Objective

Thus far, we have presented two algorithms for current con-
straints generation. The first algorithm aims to maximize the
peak power dissipation that the grid can safely support in the
underlying circuit; however, it generates a skewed container
in a way that imposes a tight constraint on the currents in
certain locations of the die. The second algorithm aims to uni-
formly distribute power budgets across the circuit by raising
the minimum; but this approach does not necessarily allow
for a large peak total power dissipation. One may be inter-
ested in a middle scenario; a container that is maximal in S,
maximizes the peak power dissipation that the grid can safely
support, and supports a uniform current distribution across
the die. In this section, we will develop a constraints gen-
eration algorithm, essentially a combination of (38) and (56),

that allows this type of design objective. The algorithm will
generate a container such as the one shown in Fig. 3, where
uc = [83.6 91.4 95 92.8]T (units of mV).

Recall that (34) maximizes the sum of the m current sources
attached to the grid, whereas (52) maximizes the current radius
for which the part of the hypersphere in the first quadrant is
contained in F(u). Therefore, there is a clear disproportional-
ity between the dimensions of both objective functions which
motivates the following. For any u ∈ U , we define ξ(u) to be
the largest value of the following combined objective allowed
under F(u):

ξ(u)
�= max

I∈F(u)

S+(θ)⊆F(u)

⎡

⎣

⎛

⎝
m∑

j=1

Ij

⎞

⎠ + mθ

⎤

⎦ (58)

= max
M′I≤MGu
θd≤MGu

I,θ≥0

⎡

⎣

⎛

⎝
m∑

j=1

Ij

⎞

⎠ + mθ

⎤

⎦ (59)

and we define ξ∗ to be the largest ξ(u) achievable under all
possible u ∈ U , so that

ξ∗ �= max
u∈U

(ξ(u)). (60)

Let uc be a vector at which the above maximization attains its
maximum. In other words, uc ∈ U is such that ξ(uc) = ξ∗.
Also, let ζ and ω be such that (

∑m
j=1 ζj) + mω = ξ∗, where

ζ ∈ F(uc) and 0 ≤ ωd ≤ MGuc. In general, uc, ζ , and ω may
not be unique. Based on (12) and (13), we can express the
combined (58) and (60) as the following LP:

ξ(u) = Max

⎛

⎝
m∑

j=1

Ij

⎞

⎠ + mθ

subject to
M′I ≤ MGu, θd ≤ MGu

Pu ≤ Vth, I, θ, u ≥ 0.
(61)

Let C be the feasible region of the LP (61)

C �=
{

(I, θ, u) : 0 ≤ θd ≤ MGu, M′I ≤ MGu,

I ≥ 0, u ≥ 0, Pu ≤ Vth

}

so that, from the above, we have

ξ∗ = max
(I,θ,u)∈C

⎡

⎣

⎛

⎝
m∑

j=1

Ij

⎞

⎠ + mθ

⎤

⎦. (62)

Notice that, (0, 0, 0) ∈ C so that C is not empty, and
all of ξ∗, uc, ζ , and ω are well-defined. Also, for every
(I, θ, u) ∈ C, we have M′I ≤ MGu and I ≥ 0 which,
because M′ ≥ 0, gives 0 ≤ M′I ≤ MGu so that u is feasible,
due to Lemma 5. Therefore, uc is feasible and the container
F(uc) = {I ∈ R

m : I ≥ 0, M′I ≤ MGuc} provides the desired
current constraints

i(t) ≥ 0, ∀t ∈ R

M′i(t) ≤ MGuc, ∀t ∈ R.

Lemma 18 in the Appendix establishes the maximality of
F(uc), based on Theorem 1.
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TABLE I
COMPARISON OF THE THREE APPROACHES

TABLE II
RUNTIME BREAKDOWN OF THE THREE APPROACHES

As we have transformed (54) into (57), one can write the
LP (61) as follows:

ξ∗ = Max

⎛

⎝
m∑

j=1

Ij

⎞

⎠ + mθ

subject to
y ≤ w, θd ≤ w

Ay = HI, Aw = Gu
Pu ≤ Vth, I, θ, u ≥ 0.

(63)

The LP (63) has more variables and constraints; however, it
has more sparse constraints and it only requires m columns of
M = A−1.

VI. RESULTS

The above three algorithms (48), (57), and (63) have been
implemented using C++. Algorithms (57) and (63) require the
computation of m columns of the inverse of A (to compute d),
where m is the number of current sources attached to the grid,
which was performed using the SPAI technique, as was done
in [4]. The maximizations were performed using the Mosek
optimization package [16]. We conducted tests on a set of
power grids with a 1.1 V supply voltage that were generated
based on user specifications, including grid dimensions, metal
layers, pitch and width per layer, and C4 and current source
distributions, consistent with 65 nm technology. All results
were obtained using a 3.4 GHz Linux machine with 32 GB
of RAM.

The number of variables in (48) is n, the number of vari-
ables in (57) is 2n + 1, and the number of variables in (63) is
3n + m + 1, where n is the total number of nodes. The CPU

times for solving (48), (57), and (63) are given in columns
5, 7, and 9 of Table II, respectively. Note that these CPU
times do not include the time for computing the approxi-
mate inverse, which is reported separately in column 4. The
total CPU time for solving the three approaches is reported
in columns 6, 8, and 10 of Table II, respectively. To study
runtime efficiency of (48) and (57) compared to the algo-
rithms in [9], the algorithms in [9] were implemented on
the machine described above. On average, (48) achieves 43×
speedup and (57) achieves 48× speedup, compared to the cor-
responding algorithms in [9]. For example, on a 310 k nodes
grid, the peak power dissipation algorithm in [9] took 13.35 h
in total, whereas (48) took 22.47 min, and the uniform current
distribution algorithm in [9] took 15.34 h in total, whereas (57)
took 22.67 min. The only source of error is the SPAI of A−1,
which is controlled by enforcing an error tolerance of 10−4

between every entry of the exact inverse and the corresponding
entry of the approximate inverse. This error will only affect
the computation of d in (57) and (63).

In Table I, we present the results of the three LPs in
columns 2–7. Denote by P(u)

�= Vdd × σ(u) the peak
power dissipation allowed under F(u). To study the difference
between the containers generated using (48), (57), and (63),
we used two methods. First, we computed the peak power
dissipation achievable under all containers, which are P(up),
P(us), and P(uc), and the largest current radius for which
the part of the hypersphere in the first quadrant is contained
in all containers, which are ρ(up), ρ(us), and ρ(uc). For
instance, on a 449 189 node grid, the peak power dissipa-
tion achievable under F(up), F(us), and F(uc) is 85.23 mW,
50.1 mW, and 83.46 mW, respectively, and the largest current
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Fig. 5. Contour plots for peak power density across the layout and the corresponding histograms. The color bar units are mA/cm2. Using (a) F(up),
(b) F(us), and (c) F(uc).

radius for which the part of the hypersphere in the first quad-
rant is contained in F(up), F(us), and F(uc) is 0.61 μA,
1.61 μA, and 1.60 μA, respectively. The results show that
P(us) � P(up) and ρ(up) � ρ(us) on all grids. In fact, the
peak power dissipation achievable under F(us) is at most 59%
of that achievable under F(up). Also, the largest current radius
for which the part of the hypersphere in the first quadrant
is contained in F(up) is at most 50% of that contained in
F(us). Thus, both F(up) and F(us) provide a distinct trade-
off for the chip design team. Moreover, the results show that
P(uc) ≈ P(up) and ρ(uc) ≈ ρ(us). In fact, P(uc) is at most
9% less than P(up) and ρ(uc) is at most 7% less than ρ(us).
Therefore, the combined objective approach gives the best fea-
tures of the peak power dissipation and the uniform current
distribution approaches.

Another way to compare the three approaches (48),
(57), and (63), is to look at the power density, i.e., the power
dissipation per unit area of the die, allowed by the three result-
ing containers. To assess this, we maximize the allowed power
(current) within a small window of the die surface, and we do
this for every position of that window across the die. We divide
the die area into κ × κ of these windows and compute the
peak power density inside each, as allowed by F(up), F(us),
or F(uc). In Fig. 5(a)–(c), we present contour plots for κ = 35
for the peak power densities under F(up), F(us), and F(uc),
respectively, on a 50 k node grid. Note that the current con-
straints based on F(up) not only allow higher current densities
at certain spots but also include some spots with very small and
restricted current density budgets. This large spread in power
densities can lead to thermal hotspots. This may be avoided by
using F(us) which, as expected and as seen in the figure, pro-
vides a uniform distribution of power densities across the die

area compared to F(up), which is reflected in a smaller stan-
dard deviation. Of course, F(up) supports a larger overall peak
power dissipation than F(us), which is reflected in a larger
mean. The current constraints based on F(uc) provide a power
density distribution over a smaller range compared to F(up)

and allows for larger power dissipation compared to F(us).
Clearly, F(uc) is superior to F(up) and F(us) providing the
best features in those containers.

VII. CONCLUSION

Early power grid verification is a key step in modern chip
design. Traditionally, it has been performed either by simula-
tion or by vectorless verification, both of which have serious
shortcomings. We propose a novel method to solve the inverse
problem of vectorless verification, by generating circuit current
constraints that ensure power grid safety. We develop some
key theoretical results to allow the generation of constraints
that correspond to maximal current spaces. We then apply
these results to provide two constraints generation algorithms
that target key quality metrics of the grid: 1) the maximum
power dissipation the grid can safely support and 2) the uni-
formity of the power spread across the die. Finally, we provide
a constraints generation algorithm that targets a combination
of those quality metrics—this algorithm gives the best features
of those two algorithms.

APPENDIX

Lemma 14: For any feasible u ∈ R
n+, let u′ = v(F(u)), it

follows that u′ is irreducible.
Proof: For any u ∈ R

n+, let u′ = v(F(u)). Notice that
MGu′ = MGv(F(u)) = emaxI∈F(u)(M′I) ≥ 0 due to M′ ≥ 0
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and I ≥ 0 for any I ∈ F(u), so that u′ is feasible, due to
Lemma 5. Because u′ = v(F(u)), it follows from Lemma 8
that F(u′) = F(u), from which v(F(u′)) = v(F(u)). With
this, notice that u′ −v(F(u′)) = u′ −v(F(u)) = 0, from which
v(F(u′)) = u′. Using Lemma 9, it follows that u′ is irreducible,
and the proof is complete.

The following lemma provides a necessary algebraic con-
dition for u to be irreducible, which becomes a necessary and
sufficient condition in the case m = n, i.e., when every grid
node is connected to a current source.

Lemma 15: For any u ∈ R
n, let w

�= MGu, then we have
the following.

1) If u is irreducible then
wi

mii
≤ wj

mji
, ∀i, j ∈ {1, . . . , n}. (64)

2) In the case m = n, if (64) holds then u is irreducible.
Proof: The proof is in two parts.
Proof of 1: Let u ∈ R

n+ be irreducible, so that v(F(u)) =
G−1A emaxI∈F(u)(M′I) = u. Multiplying both sides by MG,
we get emaxI∈F(u)(M′I) = w. Then, for every i ∈ {1, . . . , n},
there exists a y(i) ≥ 0, M′y(i) ≤ w, and M′y(i)

∣
∣
i = wi, from

which

r′
jy

(i) ≤ wj, ∀j ∈ {1, . . . , n} (65)

r′
iy

(i) = wi. (66)

After expanding the dot products, we get

wj ≥
m∑

k=1

mjky(i)
k , ∀j ∈ {1, . . . , n} (67)

wi =
m∑

k=1

miky(i)
k . (68)

For every j, multiply (67) by mii and (68) by mji, then subtract
the second equation from the first, to get

miiwj − mjiwi ≥
m∑

k=1

(
miimjk − mjimik

)
y(i)

k (69)

M being the inverse of an M-matrix, the path product con-
dition holds [17], so miimjk ≥ mjimik, ∀i, j, k, and so the
right-hand side of (69) is non-negative. In turn, this means
that the left-hand side is non-negative, which leads directly
to (64) and completes the proof.

Proof of 2: For any i ∈ {1, 2, . . . , n}, let ei ∈ R
n be the

vector whose ith entry is 1 and all other entries are 0, and let
x(i) = (wi/mii)ei ≥ 0. Then

Mx(i) = wi

mii
Mei = [ wi

mii
m1i · · · wi

mii
mni

]T ≤ w (70)

where the final inequality is due to (64). Hence, x(i) ∈ F(u).
With Mx(i)

∣
∣
i = wimii/mii = wi due to (70), it follows

that emaxI∈F(u)(MI) = w = MGu, so that v(F(u)) =
G−1A emaxI∈F(u)(MI) = u and u is irreducible.

Lemma 16: Given a real-valued function g(·) : R
n → R

such that, for any u, u′ ∈ U , we have the following.
1) g(u′) = g(u) if F(u′) = F(u).
2) g(u′) > g(u) if MGu′ > MGu.

Furthermore, let

g∗ �= max
u∈U

[
g(u)

]
(71)

and let u∗ ∈ U be feasible with g(u∗) = g∗. It follows that
F(u∗) is maximal in S.

Proof: We will prove that u∗ is irreducible and extremal
in U , so that F(u∗) is maximal in S, due to Theorem 1. The
proof is in two parts.

First, we will prove that u∗ is extremal in U ; the proof will
be by contradiction. Let u ∈ U be feasible with g(u) = g∗
and suppose that u is not extremal in U , so that u ≥ 0 and
Pu < Vth. Let ε

�= min∀k
(Vth,k − Pu|k) > 0, let 1n be the n × 1

vector whose every entry is 1, and let u′ = u + ε1n ≥ 0.
Because P has exactly one 1 in every row, it follows that
P1n = 1d, and Pu′ = Pu+εP1n = Pu+ε1d ≤ Vth due to the
definition of ε, from which u′ ∈ U . Note that MGu′ = MGu+
εMG1n and, because G is irreducibly diagonally dominant
with positive diagonal and nonpositive off-diagonal entries,
from which G1n ≥ 0, with G1n �= 0, then εMG1n > 0 due
to εM > 0, and so MGu′ > MGu. It follows that g(u′) >

g(u) = g∗ with u′ �= u, which contradicts (71). Therefore, u is
extremal in U , so that u∗ is extremal in U , which completes
the first part of the proof.

Next, we will prove that u∗ is irreducible; the proof will be
by contradiction. Let u ∈ U be feasible with g(u) = g∗ and
suppose that u is reducible, then by Lemma 9 we must have
v(F(u)) �= u. Let u′ = v(F(u)), so that F(u′) = F(u) due to
Lemma 8. Because 0 ≤ u′ ≤ u due to Lemma 3, from which
Pu′ ≤ Pu due to P ≥ 0, so that u′ ∈ U , the conditions of the
lemma provide that g(u′) = g(u) = g∗. Let δ = MGu−MGu′.
Note that MGu′ = MGv(F(u)) = emaxI∈F(u)(M′I) ≤ MGu,
due to (13), and MGu �= MGv(F(u)), due to v(F(u)) �= u,
from which δ ≥ 0 and δ �= 0. Combining this with
G−1A > 0, from (4), we have 0 < G−1Aδ = u − u′.
Consequently, we have 0 ≤ u′ < u, so that Pu′ < Pu ≤ Vth,
the final step due to P ≥ 0, P has no row with all zeros, and
u ∈ U , so that u′ is not extremal in U . But this contradicts the
first part of the proof. It follows that u is irreducible, so that
u∗ is irreducible. Therefore, F(u∗) is maximal in S.

Lemma 17: F(us) is maximal in S.
Proof: Recall that ρ∗ and us are well-defined and

(ρ∗, us) ∈ R, so that ρ∗d ≤ MGus and ρ∗ ≥ 0 which, because
d ≥ 0, gives 0 ≤ ρ∗d ≤ MGus and so us is feasible due to
Lemma 5. We will prove that ρ(·) satisfies the conditions of
Lemma 16, from which F(us) is maximal in S. First, notice
that for any u, u′ ∈ U , if F(u′) = F(u), it follows that
ρ(u′) = ρ(u), due to (52). It remains to prove that for any
u, u′ ∈ U , if MGu′ > MGu, then ρ(u′) > ρ(u).

Let λ = min∀i(MGu′|i − MGu|i)/max∀i(di) and let θ ′ =
ρ(u) + λ. Because MGu′ > MGu and M > 0, it follows that
λ > 0 and θ ′ > ρ(u). Furthermore, we have (θ ′, u′) ∈ R,
because u′ ∈ U and

θ ′d = ρ(u)d + min∀i
(
MGu′|i − MGu|i

)

max∀i(di)
d (72)

≤ MGu + min∀i

(
MGu′|i − MGu|i

)
1n (73)

≤ MGu′ (74)
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where in (73) we used (ρ(u), u) ∈ R and d/max∀i(di) ≤ 1n.
Therefore, we have ρ(u′) ≥ θ ′ > ρ(u), so that ρ(·) satisfies
the conditions of Lemma 16 and F(us) is maximal in S.

Lemma 18: F(uc) is maximal in S.
Proof: Recall that ζ , ω, and uc are well-defined and

(ζ, ω, uc) ∈ C, so that M′ζ ≤ MGuc and ζ ≥ 0 which,
because M′ ≥ 0, gives 0 ≤ M′ζ ≤ MGuc and so uc is feasible
due to Lemma 5. We will prove that ξ(·) satisfies the condi-
tions of Lemma 16, from which F(uc) is maximal in S. First,
notice that for any u, u′ ∈ U , if F(u′) = F(u), it follows that
ξ(u′) = ξ(u), due to (58). It remains to prove that for any
u, u′ ∈ U , if MGu′ > MGu, then ξ(u′) > ξ(u).

For any u ∈ U , there must exist a vector I ∈ F(u) and θ ,
where 0 ≤ θd ≤ MGu, such that

∑m
j=1 Ij + mθ = ξ(u). Let

λ = min∀i(MGu′|i − MGu|i)/max∀i,j(mij). Because MGu′ >

MGu and M > 0, it follows that λ > 0. Also, let e1 ∈ R
m be

the vector whose first entry is 1 and all other entries are 0 and
let I′ = I + λe1. Because λ > 0, we have λe1 ≥ 0, λe1 �= 0,
I′ ≥ I ≥ 0, and I′ �= I, so that

∑m
j=1 I′

j +mθ >
∑m

j=1 Ij +mθ =
ξ∗. Furthermore, we have I′ ∈ F(u′), because

M′I′ = M′I + λM′e1 = M′I + λc′
1 (75)

= M′I + min∀i
(
MGu′|i − MGu|i

)

max∀i,j
(
mij

) c1 (76)

≤ MGu + min∀i

(
MGu′|i − MGu|i

)
1n (77)

≤ MGu′ (78)

where in (77) we used I ∈ F(u) and c1/max∀i,j(mij) ≤ 1n.
Also, we have 0 ≤ θd ≤ MGu < MGu′. Therefore, we have
I′ ∈ F(u′), and θ satisfying 0 ≤ θd ≤ MGu′, with ξ(u′) ≥∑m

j=1 I′
j + mθ > ξ(u), so that ξ(·) satisfies the conditions of

Lemma 16 and F(uc) is maximal in S.
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