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Abstract—Checking the power distribution network of an
integrated circuit must start early in the design process, when
changes to the grid can be more easily implemented. Vectorless
verification is a technique that achieves this goal by demand-
ing limited information about the currents drawn from the grid.
State of the art techniques that deal with RLC grids become pro-
hibitive even for medium size grids. In this paper, we propose a
novel technique that estimates the worst-case voltage fluctuations
for RLC grids by carefully selecting the time step, in a way that
significantly reduces the number of linear programs that need to
be solved, and eliminates the need for other expensive compu-
tations, like dense matrix–matrix multiplications. Results show
that our technique is accurate and scalable for large grids as it
achieves over 19× speedup over existing methods.

Index Terms—Linear programming, overshoot, power grid,
RLC, undershoot, verification.

I. INTRODUCTION

VERIFICATION of the on-die power grid has become a
critical step in modern VLSI design. Recent advances in

nanotechnology have led to a significant decrease in feature
size and voltage levels, as well as to an increase in operating
frequency, thus creating a substantial amount of IR drops and
Ldi/dt noise across the chip. This is worrying because large
voltage fluctuations can cause timing violations, and, in some
cases, may create logic hazards.

Typically, a power grid is modeled as a large passive net-
work of resistors, capacitors, and inductors. The topology of
this network and the values of its elements are usually deter-
mined based on the geometrical parameters of the on-die metal
lines and on the grid-package interconnections. When an RLC
model of the grid is assumed, both overshoots and undershoots
can arise at grid nodes. Thus, engineers must verify that fluc-
tuations in both directions are within a certain user-defined
safety threshold.

Today, most power grid verification tools are based on
simulation. These tools assume that the grid is loaded by
a certain set of transient current waveforms, and compute
the resulting voltage fluctuations using direct circuit solv-
ing techniques. One must repeat the process several times
for different sets of current traces until the grid is ensured
to be safe with a certain level of confidence. State of the
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Fig. 1. Small RLC power grid.

art simulation-based tools are very efficient and can handle
industrial level power girds. Traditional approaches use the
standard LU factorization, Cholesky factorization [1], or the
preconditioned conjugate gradient (CG) method [2]. Other
tools use random walks [3], [4] and multigrid techniques [5].
Hierarchical approaches are proposed in [6]. Also, and as part
of TAU 2012 power grid simulation contest, Yang et al. [7]
and Yu and Wong [8] have been proposed. Parallelization of
forward/backward substitution is proposed in [9]. A solution
utilizing the matrix exponential kernel is proposed in [10].
However, all these tools suffer from two main problems. First,
it is not practical to expect the user to provide the exact cur-
rents drawn by the underlying logic blocks, because these
currents depend on how the chip is being used and on which
blocks are in operation at every point in time. Covering all
possible scenarios is clearly impossible, and thus, the user can
only simulate the grid for few sets of current traces that are
deemed to be representative of worst-case behavior. This is a
difficult process that is prone to all kinds of uncertainties and
error. Second, verifying the grid must begin at early stages
of the design process where only limited information about
the logic circuitry is known, and where grid modifications
can be more easily incorporated. However, simulation-based
tools are not very useful early in the design flow because
specifying the current traces requires detailed information
about the position and the power dissipation of every logic
block.

The problems of simulation-based tools are amplified when
the inductance in the grid is considered because, when analyz-
ing RLC power grid, only certain temporal arrangements of
the loading currents may lead to an overshoot at certain nodes
in the grid. For example, consider the small RLC network
in Fig. 1. The circuit is simulated using HSPICE under two
different sets of current waveforms, and the resulting voltage
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Fig. 2. Current configuration resulting in a large overshoot.

Fig. 3. Current configuration resulting in a small overshoot.

waveforms at node n1 are shown in Figs. 2 and 3. In the first
experiment, we observe large overshoots where the node volt-
age rises almost 20 mV above Vdd. In the second experiment,
where the loading currents are only slightly modified, almost
no overshoot is observed. The point is that it is expensive for
the user to use trial and error to find out which situations lead
to critical overshoots in the grid. The process becomes very
complicated for grids with large numbers of current sources.

To overcome these problems, the constraint-based frame-
work for verification was first introduced in [11]. The main
advantage of this framework is that it allows for vectorless
power grid verification which can be done early in the design
process. As opposed to vector-based techniques, vectorless
verification requires only a limited amount of information
about the underlying logic circuit, in the form of current con-
straints. Given the the user-specified constraints, one can find
the worst-case voltage fluctuations at every node in the grid,
and compare them to the user-defined thresholds. Vectorless
verification is well established for R and RC grids, and sev-
eral approaches have been developed in the past few years
to make the process as efficient and as accurate as possible.
Approximate inverse techniques were used in [12] to reduce
the size of the linear program (LP) problem for each node,

and [13] developed a hierarchical matrix inverse algorithm
for the same purpose, while [14] proposed a dual algorithm
to speed-up the LP solution. Moreover, dominance relations
among node voltage drops were exploited in [15] to reduce
the number of LPs to be solved. To reduce the size of the grid,
several model order reduction approaches were suggested such
as in [16] and [17].

In the realm of RLC verification, Ghani and Najm [18]
developed a technique to compute the worst-case voltage fluc-
tuations using an iterative process that requires solving a large
number of LPs while stepping through time. Later, a more
efficient technique was developed in [19], which computes
bounds on the worst-case fluctuations and which was shown
to be more efficient than [18]. Xiong and Wang [20], [21] pro-
posed a vectorless framework for RLC grids under transient
constraints. Unfortunately, all the above approaches are highly
inefficient as they require several weeks to verify a moderate
size RLC grid.

In this paper, we improve upon the work of [19]. We show
how a careful choice of the time step �t leads to a new expres-
sion of the bounds that is much easier to compute and in fact
more accurate than that of [19]. Basically, we show how to
choose �t to guarantee that a certain parameter r from [19] is
equal to 1. This is very useful, as we will see later, because it
reduces the number of LPs to be solved to 2 per node or per
inductive branch. It also eliminates the need for the full inverse
(only a subset of the columns is now required), and for any
dense matrix–matrix multiplications. Moreover, the fact that r
is not varying anymore means that the behavior of the algo-
rithm is more predictable. This allowed us to obtain up to 32×
speed up over the algorithm of [19], with a bound that is less
than 1 mV away from the exact solution.

The rest of this paper is organized as follows.
Sections II and III provide some background material
and notation. Section IV presents the problem definition and
the exact solution of the vectorless RLC problem. Section V
derives the bounds on the exact solution while Section VI
shows how the time step must be chosen to guarantee r = 1.
Finally, implementation details and experimental results
and presented in Sections VII and VIII, while Section IX
concludes this paper.

II. BACKGROUND

A. Power Grid Model

The power grid is a large full-chip structure of connected
metal lines, across multiple layers interconnected through vias
and connected by C4 bumps to wiring in the package and on
the board. Typically, a power grid is modeled as a linear circuit
composed of a large number of lumped linear (RLC) elements.

Consider an RLC grid in which there are three types of
nodes: 1) some nodes are connected to ideal current sources to
ground, in parallel with capacitors to ground; 2) some (most)
nodes are connected to resistors or inductors to other grid
nodes and capacitors to ground; and 3) some nodes are con-
nected to resistors or inductors to other grid nodes and ideal
voltage sources to ground. Fig. 1 shows examples of each type
of node. Note that in this paper, mutual inductances and branch
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capacitances are ignored. That is, only self inductances are
considered and all capacitances are assumed to be connected
to ground. The current sources (with their parallel capaci-
tors) represent the currents drawn by the logic circuits tied
to the grid at these nodes. The ideal voltage sources repre-
sent the external voltage supply, Vdd. Excluding the ground
node, let the power grid consist of nv+ q nodes, where nodes
{1, . . . , nv} are the nodes not connected to a voltage source,
while the remaining nodes (nv + 1), (nv + 2), . . . , (nv + q)

are the nodes where the q voltage sources are connected. Let
m be the number of current sources connected to the grid,
whose positive (reference) direction of current is from node-
to-ground, assumed to be connected at nodes 1, 2, . . . , m ≤ nv,
and let i(t) ≥ 0 be the m×1 vector of all source currents. Also,
let H be an nv × m matrix of 0 and 1 entries that identifies
(with a 1) which node is connected to which current source.
Finally, let nl be the number of inductors in the grid. It should
be noted that nl is typically much smaller than nv. The reason
is that Ldi/dt noise is mostly due to the inductance of inter-
connections between the grid and the package [22], and so,
the number of inductors in a typical RLC model of the grid is
in the order of the number of the C4 bumps, which is much
smaller than the total number of nodes in the grid. This fact
will become more apparent when we consider the IBM power
grid benchmarks [23] in the experimental results section.

As in modern circuit simulators, such as HSPICE [24], we
assume that the grid does not contain any purely inductive
loops. In other words, for any node k, there is no path in the
grid from k leading back to k that consists of only (ideal)
inductors.

B. Constraints-Based Framework

As was done in [19], we use current constraints to capture
the uncertainty about the circuit currents, arising from both
unknown circuit behaviors or unknown circuit details early in
the design flow. Two types of constraints are defined: 1) local
constraints and 2) global constraints. Local constraints are
upper and lower bounds on individual current sources, where
a current source can represent a single logic gate or cell, but
more typically might represent a larger block. They can be
expressed as

ilb ≤ i(t) ≤ iub, ∀t ∈ R (1)

where iub and ilb are m × 1 vectors of the maximum and
minimum values that the current sources can draw, respec-
tively. Global constraints represent the maximum and mini-
mum total power dissipation of a group of circuit cells or
blocks. Assuming we have a total of κ global constraints, they
can be expressed in matrix form as

ig ≤ Ui(t) ≤ iG, ∀t ∈ R (2)

where U is a κ×m matrix that consists only of 0s and 1s which
indicates (with a 1) which current sources are present in each
global constraint. Together, the local and global constraints
define a feasible space of currents, which we denote by F ,
so that i(t) ∈ F for every t ∈ R if and only if it satisfies
both (1) and (2).

III. NOTATION

We use the notation yi to denote the ith entry of any vector y
(unless defined otherwise) and Jij to denote the (i, j)th entry of
any matrix J. We will also use the notation J ≥ 0 to indicate
that Jij ≥ 0 for every i, j. Moreover, we will use the standard
“dot above the symbol” notation to denote the time derivative,
as in u̇(t), but we will also occasionally use i′(t) to denote the
derivative, whenever it helps maintain clarity of notation.

Given a vector x ∈ R
λ, the 1-norm and the infinity norm of

x are denoted as follows:

‖x‖1 �
∑λ

i=1|xi| and ‖x‖∞ � maxi∈{1,...,λ}|xi|.
We use the notation Iλ to denote the identity matrix of size
λ× λ, the notation 0λ×γ to denote the λ× γ matrix of zeroes

We also define some extreme-value operators to help express
the worst-case voltage variations on the grid, as follows.

Definition 1 (emax): Let f (x) : Rm 
→ R
n be a vector func-

tion whose components will be denoted f1(x), . . . , fn(x), and
let A ⊆ R

m. We define the operator emaxx∈A [ f (x)] as one
that provides the n× 1 vector y = emaxx∈A [ f (x)] such that,
for every j ∈ {1, 2, . . . , n}

yj = max
x∈A

[
fj(x)

]
. (3)

Thus, emax [ · ] performs element-wise maximization, and it
may be computed using n LPs when f (x) is linear and A is a
convex polytope. We similarly define another operator emin [·]
as follows.

Definition 2 (emin): Let f (x) : Rm 
→ R
n be a vector func-

tion whose components will be denoted f1(x), . . . , fn(x), and
let A ⊆ R

m. We define the operator eminx∈A [ f (x)] as one
that provides the n × 1 vector y = eminx∈A [ f (x)] such that,
for every j ∈ {1, 2, . . . , n}

yj = min
x∈A

[
fj(x)

]
. (4)

We also combine emax and emin in the single 2n× 1 vec-

tor eoptx∈A [ f (x)] =
[

emaxx∈A [ f (x)]
eminx∈A [ f (x)]

]

, which we define as

follows.
Definition 3 (eopt): Let f (x) : Rm 
→ R

n be a vector func-
tion whose components will be denoted f1(x), . . . , fn(x), and
let A ⊆ R

m. We define the operator eoptx∈A [ f (x)] as one that
provides the 2n × 1 vector y = eoptx∈A [ f (x)] such that, for
every j ∈ {1, 2, . . . , n}

yj = max
x∈A

[
fj(x)

]
(5)

yj+n = min
x∈A

[
fj(x)

]
. (6)

If A is empty, then eoptx∈A [ f (x)] is undefined.
Moreover, we denote by N the set of all nonnegative inte-

gers, and by Z the set of all signed integers. In other words,
N = {0, 1, 2, . . .}, and Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Also,
let C denote the set of complex numbers.

IV. PROBLEM DEFINITION

In this section, we derive the exact solution to the vec-
torless RLC problem based on nodal analysis and backward
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Euler (BE) discretization scheme. Aside from Lemma 1, the
content of this section is not novel, but gives notation, and
clearer and more compact description of the exact solution.

A. System Equations

Let G be the nv × nv conductance matrix [25] of the grid,
which is symmetric and diagonally dominant with positive
diagonal entries and nonpositive off-diagonal entries. If the
graph consisting of all the resistances of the grid is a con-
nected graph that contains at least all grid nodes 1, 2, . . . , nv,
and if it has at least one direct connection to a voltage source,
then G is known to be irreducibly diagonally dominant [25].
With this, it can be shown that G is an M-matrix, so that G−1

exists and is non-negative, G−1 ≥ 0, and all the eigenvalues
of G are real and positive [26]. If the resistive graph is not
connected or does not cover all nv nodes, or if there are no
direct resistive connections to any voltage source, then there
is an easy and practical “fix” that maintains all the above use-
ful properties of G, which is to attach a large resistance from
every grid node 1, 2, . . . , nv to ground. These large resistors
have a negligible effect on the circuit solution, but they have
the effect that G becomes strictly diagonally dominant, from
which all the above properties of G automatically follow [25].
In fact, these resistors can be useful to model the leakage
effects inside the chip.

Let M be an nv × nl incidence matrix consisting of ±1 or
0 elements only, such that

mjk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if node j is connected to inductor k and the
reference current direction in k is away from j

−1, if node j is connected to inductor k and the
reference current direction in k is toward j

0, otherwise.

Let u(t) be the vector of node voltages, relative to ground. By
superposition, u(t) may be found in three steps: 1) open-circuit
all the current sources and find the response, which would be
u(1)(t) = Vdd, 2) short-circuit all the voltage sources and find
the response u(2)(t), and 3) find u(t) = u(1) + u(2). To find
u(2)(t), Kirchhoff’s current law at every node k ∈ {1. . . . , nv}
provides

Gu(2)(t)+ Cu̇(2)(t)+Mil(t)+ Hi(t) = 0 (7)

where il(t) is the vector of all inductive branch currents and
C is an nv × nv diagonal matrix of node capacitances. We are
mainly interested in the voltage drop v(t) � Vdd − u(t) =
−u(2)(t), so that

Gv(t)+ Cv̇(t)−Mil(t) = Hi(t). (8)

In addition, and in order to take into account the relationship
between inductor currents and voltages, we have the familiar
inductor branch equation MTu(t) = Li′l(t), from which

MTv(t)+ Li′l(t) = 0 (9)

where L is an nl×nl diagonal matrix of inductance values. The
pair of equations (8) and (9) represent the complete behavior
of the power grid as a dynamical system.

B. Time Discretization

One approach to solving the dynamic systems (8) and (9)
starts out by discretizing time and using a finite-difference
approximation of the derivatives, essentially a BE numerical
scheme v̇(t) = [v(t) − v(t −�t)]/�t and i′(t) = [i(t) − i(t −
�t)]/�t. Assuming that �t is small enough, we have

Av(t)−Mil(t) ≈ Bv(t −�t)+ Hi(t) (10)

MTv(t)+ Eil(t) ≈ Eil(t −�t) (11)

where B = C/�t, A = G + B, and E = L/�t. In what fol-
lows, we assume that �t is chosen such that (10) and (11)
are accurate. Multiplying (11) by E−1 to get an expression for
il(t)

il(t) = −E−1MTv(t)+ il(t −�t) (12)

and substituting that in (10) as was done in [27], gives

Dv(t) = Bv(t −�t)+Mil(t −�t)+ Hi(t) (13)

where

D = G+ C

�t
+M

(
L

�t

)−1

MT .

Lemma 1: The matrix D is a symmetric M-matrix.
Proof: Symmetry is easy to see as both G and C are symmet-

ric, and (ME−1MT)T = M(E−1)TMT = ME−1MT . It remains
to prove that D is an M-matrix. We do this by proving that D
has nonpositive off-diagonal entries and eigenvalues that have
positive real parts [26].

The matrices G and (C/�t) have nonpositive off-diagonal
entries by construction. We now show that the same is true
for ME−1MT . Notice that

(
E−1

)

ij
=

⎧
⎨

⎩

�t

Lii
if i = j

0 otherwise.

Therefore, if X = E−1MT , we have

Xij =∑nl
k=1

(
E−1

)
ik

(
MT

)
kj,

i = 1, . . . , nl

j = 1, . . . , nv

hence, Xij = (�t/Lii)Mji. Also, if W = ME−1MT , then

Wij =
nl∑

k=1

MikXkj =
nl∑

k=1

Mik
�t

Lkk
Mjk,

i = 1, . . . , nv

j = 1, . . . , nv.

By the definition, every column of the matrix M contains either
one nonzero entry, or two nonzero entries where one of them
is +1 and the other is −1. It follows that, for any i �= j, we
have MikMjk ≤ 0, for any k, so that Wij ≤ 0,∀i �= j, and the
matrix W = ME−1MT has nonpositive off-diagonal entries.
Therefore, D has nonpositive off-diagonal entries.

It remains to show that D has eigenvalues with positive
real parts. Notice that the symmetry of D implies that all the
eigenvalues of D are real, so, all we need to do is to show that
these eigenvalues are positive. We do this by showing that D
is positive definite. For all vectors z ∈ R

nv , z �= 0, we have

zTDz = zTGz+ zT C

�t
z+ zTME−1MTz. (14)
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We know that zTGz > 0 because G is an M-matrix, and hence
symmetric positive definite. Also, zTCz > 0 because C is a
positive invertible diagonal matrix. Finally, zTME−1MTz =
(MTz)TE−1(MTz) ≥ 0 because E−1 is also a positive invertible
diagonal matrix. Therefore, zTDz > 0 for all z ∈ R

nv , z �= 0,
so that D is a symmetric positive definite matrix. Accordingly,
D is a symmetric M-matrix.

It follows from Lemma 1 that D−1 exists and D−1 ≥ 0 [26].
Multiplying (13) by D−1 gives

v(t) = D−1Bv(t −�t)+ D−1Mil(t −�t)+ D−1Hi(t) (15)

then substituting this for v(t) in (12), we get

il(t) = −E−1MTD−1Bv(t −�t)− E−1MTD−1Hi(t)

+
(

Inl − E−1MTD−1M
)

il(t −�t). (16)

Combining (15) and (16) gives the system

x(t) = Fx(t −�t)+ RHi(t) (17)

where

x(t) =
[

v(t)
il(t)

]

, R =
[

D−1

−E−1MTD−1

]

F =
[

D−1B D−1M
−E−1MTD−1B

(
Inl − E−1MTD−1M

)
]

. (18)

Let n = nv + nl so that x(t) is n × 1, F is n × n, and R
is n× m.

C. Exact Solution

We are interested in the worst-case voltage drops (both
maximum and minimum) under all currents i(t) that satisfy
the current constraints, i.e., i(t) ∈ F , ∀t ∈ R. Applying (17)
at (t −�t) gives

x(t −�t) = Fx(t − 2�t)+ RHi(t −�t)

and, substituting this for x(t −�t) back in (17) gives

x(t) = F2x(t − 2�t)+ FRHi(t −�t)+ RHi(t)

and, in general, for any integer p ≥ 1, we can write

x(t) = Fpx(t − p�t)+
p−1∑

q=0

FqRHi(t − q�t). (19)

If the grid is initialized with some state x0 at some point in
time and all current sources are kept at zero for all future time,
then clearly the state would eventually go to x = 0, because the
grid is a passive and stable system. The BE time-discretized
model of the grid when x(t−p�t) = x0 and all current sources
are off provides, from the above, that x(t) = Fpx0. Because
BE is absolutely stable for any time-step �t [28], then the
solution of the time-discretized system would also die down
to zero eventually, for any initial state x0, which means that

lim
p→∞Fp = 0. (20)

Recall that the spectral radius of a matrix X, denoted ρ(X), is
the maximum of the absolute values of the eigenvalues of X.
According to [26], (20) is true if and only if

ρ(F) < 1. (21)

Taking the limit as p→∞, this allows us to write

x(t) =
∞∑

q=0

FqRHi(t − q�t). (22)

Using the emax and emin notation given earlier, we can
express the maximum and minimum worst-case voltage drops
and inductive branch currents at all nodes at time t as
emaxi∈F [x(t)] and emini∈F [x(t)], respectively. Here, the nota-
tion i ∈ F means that i(τ ) ∈ F , for any τ ∈ R. Thus, at time t,
the maximum voltage drop is available as the top (voltage) part
of emaxi∈F [x(t)], and the minimum voltage drop is available
as the top (voltage) part of emini∈F [x(t)]. We also combine
emaxi∈F [x(t)] and emini∈F [x(t)] in the single 2n× 1 vector

eopti∈F [x(t)] =
[

emaxi∈F [x(t)]
emini∈F [x(t)]

]

, which was defined earlier.

With this, we can now define the vector of worst-case
voltage drop and inductive branch current fluctuations, as was
done in [19], as follows:

x∗(t) � eopt
i∈F

[x(t)]. (23)

Although the currents and voltages vary with time, the con-
straints on i(t) do not depend on time. Hence, F is the same
for any time point t. Therefore, the result of the above applica-
tion of eopt must be time-independent. The optimization needs
to be performed at only one time point, any time point in fact,
and so we define the time-independent vector x∗

x∗ � eopt
i∈F

[x(t)] = eopt
i∈F

[∑∞
q=0 FqRHi(t − q�t)

]
. (24)

Because we are interested in the worst-case over all current
waveforms that satisfy i ∈ F , then the values of the source
currents i(·) at any two time points must be treated as inde-
pendent variables, and so we can “decouple” the components
of (24) to obtain

x∗ =
∞∑

q=0

eopt
i∈F

[
FqRHi(t − q�t)

]
(25)

which simplifies to

x∗ =
∞∑

q=0

eopt
i∈F

[
FqRHi

]
(26)

where we use the single vector variable i to denote the cur-
rent vector for the purpose of the eopt computation. This
expression (26) of x∗ is the exact solution in the RLC case.
It is an infinite sum whose every term requires the solution
of 2n LPs. Clearly, it is prohibitively expensive to use this
for computation. Instead, in the following, we give practical
ways to estimate x∗. The estimates we will derive are related
to the ones developed in [19]. Our contribution lies in care-
fully choosing the time step �t as to make the parameter r
in [19] always equal to 1. This has significant implications as
it reduces the number of LPs to be solved by a large factor,
and eliminates the need for the full inverse and for any dense
matrix–matrix multiplications. Experimental results will show
that the new choice of �t also leads to more accurate bounds.
Moreover, the fact that r = 1 and not varying means that our
algorithm behaves in a more predictable way.
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Fig. 4. Geometrical representation of extended vectors.

V. PROPOSED SOLUTION

In this section, we derive conservative bounds on the exact
solution (26). These bounds are much easier to compute than
x∗ as they require a much smaller number of LPs.

A. Extended Vectors and Matrices

The purpose of this technical section is to develop
Theorems 1 and 2, which will be key to our proposed solution.

1) Extended Vectors: We give a few definitions and key
results, starting with the belong (∈) relation among vec-
tors. These will be used to express the bounds on the exact
solution (26).

Definition 4: If z is an n×1 vector, and b is a 2n×1 vector,
then we say that z ∈ b if, ∀j ∈ {1, . . . , n}

zj ≤ bj and zj ≥ bj+n.

Thus, z ∈ b means that z is upper-bounded (element-wise)
by the top half of b and likewise lower-bounded by the bottom
half of b. One can interpret this definition geometrically as
shown in Fig. 4 where n = 2. The point (z1, z2) lies inside
the rectangle defined by the two vertices (b1, b2) and (b3, b4),
and so

[
z1
z2

]

∈

⎡

⎢
⎢
⎣

b1
b2
b3
b4

⎤

⎥
⎥
⎦. (27)

We will refer to 2n × 1 vectors as extended vectors. We say
that b is an empty extended vector if there does not exist any
z for which z ∈ b. Note that b is nonempty if and only if
bj ≥ bj+n, ∀j ∈ {1, 2, . . . , n}. If f (i) : Rm 
→ R

n is a vector
function, and if b = eopti∈A [ f (i)], where A is a nonempty
set, then clearly b is a nonempty extended vector.

Lemma 2: If f (i) : Rm 
→ R
n and A is a nonempty subset

of Rm, then

f (z) ∈ eopt
i∈A

[
f (i)

]
, ∀z ∈ A. (28)

Proof: Let f1(i), . . . , fn(i) be the n components of f (i),
and y � eopti∈A [ f (i)]. Then, by the definition of eopt, we
have yj = maxi∈A [ fj(i)],∀j ∈ {1, 2, . . . , n}. This implies
fj(z) ≤ yj,∀j,∀z ∈ A. Similarly, yj+n = mini∈A [ fj(i)],∀j,
which implies fj(z) ≥ yj+n,∀j,∀z ∈ A. Therefore,
f (z) ∈ y.

We now introduce the subset (⊆) relation among vectors.

Definition 5: If b and c are 2n×1 vectors, then we say that
b ⊆ c if, ∀j ∈ {1, 2, . . . , n}

bj ≤ cj and bj+n ≥ cj+n.

The subset relation among vectors can also be interpreted
geometrically: back to Fig. 4, the rectangle defined by the ver-
tices (b1, b2) and (b3, b4) lies completely inside the rectangle
defined by the vertices (c1, c2) and (c3, c4), and so

⎡

⎢
⎢
⎣

b1
b2
b3
b4

⎤

⎥
⎥
⎦ ⊆

⎡

⎢
⎢
⎣

c1
c2
c3
c4

⎤

⎥
⎥
⎦. (29)

A few simple properties can be stated without proof. First,
it should be clear that, if b ⊆ c, then

∀z, z ∈ b =⇒ z ∈ c. (30)

The converse is true in the case where b is nonempty: if b is
nonempty and is such that ∀z, z ∈ b ⇒ z ∈ c, then b ⊆ c.
Second, it is clear that the subset relation is transitive

b ⊆ c and c ⊆ d =⇒ b ⊆ d. (31)

Third, it is also clear that subset relations may be combined
by summation

a ⊆ b and c ⊆ d =⇒ a+ c ⊆ b+ d. (32)

Lemma 3: Let f (i) : R
m 
→ R

n be a vector function, A
be a nonempty subset of R

m, and b be a 2n × 1 vector. if
f (i) ∈ b,∀i ∈ A, then eopti∈A [ f (i)] ⊆ b.

Proof: Let f (i) ∈ b,∀i ∈ A, and y = eopti∈A [ f (i)]. For
every j ∈ {1, 2, . . . , n}, we have yj = maxi∈A [ fj(i)], so that
yj ≤ bj, and yj+n = mini∈A [ fj(i)], so that yj+n ≥ bj+n. Then,
y ⊆ b and the proof is complete.

2) Subset-Preserving: Consider the class of 2n× 2n matri-
ces. They map extended vectors into other extended vectors as
follows: if b is an extended vector and N is a 2n× 2n matrix,
then N maps b to the extended vector Nb ∈ R

2n.
Definition 6: A 2n × 2n matrix N is said to be

subset-preserving if, for any two extended vectors b, c,
we have that

b ⊆ c⇒ Nb ⊆ Nc.

Lemma 4: If N1 and N2 are subset-preserving matrices, then
N1N2 and (N1 + N2) are also subset-preserving.

Proof: For any two extended vectors b and c such that b ⊆ c,
we have N1b ⊆ N1c and N2b ⊆ N2c, so that (N1 + N2)b =
N1b + N2b ⊆ N1c + N2c = (N1 + N2)c and so (N1 + N2) is
subset-preserving.

Also, because N2b ⊆ N2c, then N1(N2b)) ⊆ N1(N2c), so
that N1N2b ⊆ N1N2c and N1N2 is subset-preserving.

Lemma 5: If N is a subset-preserving matrix, then
limk→∞

∑k
j=0 Nj is subset-preserving, if it exists.

Proof: The results follows by repeated application of
Lemma 4.
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3) Extended Matrices: We define the concept of the exten-
sion of a matrix, first introduced, but without development of
its full potential, in [19].

Definition 7: Let J be an n × n matrix. We denote by |J|
the matrix consisting of the absolute values of the elements
of J. In other words

|J|ij =
∣
∣Jij

∣
∣, ∀i, j ∈ {1, . . . , n}. (33)

Definition 8: Let J be an n × n matrix, and let J+ =
(1/2)(J+|J|) and J− = (1/2)(J−|J|). We define the extension
of J as the 2n× 2n matrix J̃, given by

J̃ =
[

J+ J−
J− J+

]

. (34)

Notice that J+ ≥ 0 consists of only the positive or zero
elements of J while J− ≤ 0 consists of only the negative or
zero elements of J, so that we have

J+ij =
{

Jij, if Jij ≥ 0
0, otherwise.

J−ij =
{

Jij, if Jij ≤ 0
0, otherwise.

Note that if J ≥ 0 then J̃ =
[

J 0
0 J

]

, while if J ≤ 0, then J̃ =
[

0 J
J 0

]

. We will show shortly that J̃ is a subset-preserving

matrix, which will lead to one of our main results.
We first give the following significant result that contributes

to the solution.
Lemma 6: If J is an n× n matrix, z is an n× 1 vector, and

b is a 2n× 1 nonempty extended vector, then

eopt
z∈b

(Jz) = J̃b. (35)

Proof: Let c = Jz and d = J̃b. For any k ∈ {1, . . . , n},
we have

max
z∈b

[ck] = max
z∈b

⎡

⎣
n∑

j=1

Jkjzj

⎤

⎦ =
n∑

j=1

max
z∈b

[
Jkjzj

]

=
∑

Jkj≥0

Jkj max
z∈b

[
zj
]+

∑

Jkj≤0

Jkj min
z∈b

[
zj
]

=
n∑

j=1

J+kj bj +
n∑

j=1

J−kj bj+n = dk.

Likewise

min
z∈b

[ck] =∑n
j=1 J−kj bj +∑n

j=1 J+kj bj+n = dk+n

which completes the proof.
Corollary 1: If J is an n × n matrix, z is an n × 1 vector,

and b is a 2n× 1 vector, then

z ∈ b =⇒ Jz ∈ J̃b.

Proof: Invoking Lemma 2, we have that Jz ∈ eoptz∈b(Jz),
which by Lemma 6 implies that Jz ∈ J̃b.

We now arrive at our first main result.
Theorem 1: Let f (i) : Rm 
→ R

n be a vector function and
A be a nonempty subset of Rm. Also, let J be an n×n matrix.
Then

eopt
i∈A

[
Jf (i)

] ⊆ J̃ eopt
i∈A

[
f (i)

]
. (36)

Proof: By Lemma 2, we have

f (i) ∈ eopt
i∈A

[
f (i)

]
, ∀i ∈ A.

Using the corollary to Lemma 6, we can write

Jf (i) ∈ J̃ eopt
i∈A

[
f (i)

]
, ∀i ∈ A.

Applying Lemma 3, we have that

eopt
i∈A

[
Jf (i)

] ⊆ J̃ eopt
i∈A

[
f (i)

]

which completes the proof.
We now derive our second main result.
Lemma 7: If J is an n × n matrix, then J̃ is subset-

preserving.
Proof: Let b and c be 2n× 1 vectors such that b ⊆ c, and

let b1 and b2 be the top and bottom halves of b, and c1 and
c2 be the top and bottom halves of c, respectively. Because
b1 ≤ c1, then J+b1 ≤ J+c1 and J−b1 ≥ J−c1. Likewise,
because b2 ≥ c2, then J+b2 ≥ J+c2 and J−b2 ≤ J−c2. Making
suitable additions, we have J+b1 + J−b2 ≤ J+c1 + J−c2 and
J−b1 + J+b2 ≥ J−c1 + J+c2, so that J̃b ⊆ J̃c, which means
that J̃ is subset-preserving.

Lemma 7 leads to our second main result.
Theorem 2: If ρ(J̃) < 1, then (I2n − J̃)−1 is subset-

preserving.
Proof: If ρ(J̃) < 1, then

∑∞
k=0 J̃k exists and (I2n − J̃) is

nonsingular with (I2n − J̃)−1 =∑∞
k=0 J̃k [26]. But, because J̃

is subset-preserving due to Lemma 7, then by Lemma 5 the
infinite sum

∑∞
k=0 J̃k is subset-preserving, which completes

the proof.
Theorems 1 and 2 are key results that will be used below

to derive the bounds on x∗.

B. Bounds

Given that the values of the source currents i(·) at any two
time points are independent variables, as in Section IV-C, we
can use (17) to write

x∗ = eopt
i(t)∈F

[x(t)] = eopt
i(t)∈F

[Fx(t −�t)]+ eopt
i(t)∈F

[RHi(t)] (37)

because x(t−�t) depends on past values of i(·) only. Applying
Theorem 1 with f (i) = x(t −�t) gives

x∗ ⊆ F̃ eopt
i(t)∈F

[x(t −�t)]+ eopt
i∈F

[RHi] (38)

where we have replaced i(t) by the dummy variable vector
i for purpose of the eopt optimization. Then, because x∗ is
time-independent, we have eopti(t)∈F [x(t)] = eopti(t)∈F [x(t−
�t)] = x∗, and

x∗ ⊆ F̃x∗ + eopt
i∈F

[RHi] (39)

so that
(
I2n − F̃

)
x∗ ⊆ eopt

i∈F
[RHi]. (40)
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Algorithm 1 FIND_RLC_BOUND
Input: RLC circuit matrices, F
Output: x̄

1: Find �t such that ρ(F̃(�t)) < 1.
2: Compute the required columns of D−1 and find RH.
3: Find z∗ = eopt

i∈F
[RHi].

4: Solve (I2n − F̃)x̄ = z∗ for x̄ using CG.
5: return x̄

If ρ(F̃) < 1, then Theorem 2 provides that (I2n − F̃)−1 is
subset-preserving, so that, using (40), we can write

(
I2n − F̃

)−1(
I2n − F̃

)
x∗ ⊆ (

I2n − F̃
)−1

eopt
i∈F

[RHi]. (41)

Let

x̄ �
[

xub

xlb

]

�
(
I2n − F̃

)−1
eopt
i∈F

[RHi] (42)

where xub and xlb are n × 1 vector. Hence, when ρ(F̃) < 1,
we have

x∗ ⊆ x̄. (43)

Note that xlb ≤ x∗ ≤ xub. It turns out that these bounds are
in fact accurate as will be shown in the experimental results
section. Thus, one can check the grid safety by comparing
xub and xlb to the upper and lower user-specified thresholds,
respectively.

Unfortunately, the spectral radius ρ(F̃) might be greater
than 1. One way of dealing with this is by using a differ-
ent form of (22) where every r consecutive terms are grouped
together. This leads to an expression of the bound that depends
on r and that is more complicated and harder to compute. This
approach is detailed in [19].

In the following, we propose a more efficient option that
benefits from a careful choice of �t that leads to ρ(F̃) < 1.
In contrast with [19], our approach requires a much smaller
number of LPs and matrix multiplications, and only needs
certain columns of D−1 instead of the full inverse.

Notice that F̃ is in fact a function of �t, and we will explic-
itly denote it by F̃(�t) in the rest of this paper. In Section VI
we will prove that there always exists a value for �t for which
ρ(F̃(�t)) < 1. We will also show how to find such a value
and demonstrate that it gives accurate results in Section VIII.

Once �t is chosen, the rest of the algorithm becomes rela-
tively simple. We first compute z∗ � eopti∈F [RHi] by solving
2n LPs, each having m variables. Then, we solve the system
(I2n − F̃)x̄ = z∗. We will show later how to do this iteratively
using the CG method [26]. The overall procedure for finding
x̄ is described in Algorithm 1.

VI. CHOICE OF THE TIME STEP

Because F depends on �t, the spectral radius of F̃ will also
depend on �t. In what follows, we will refer to F by F(�t)
and to F̃ by F̃(�t) to emphasize their dependence on �t.

A. Existence

In this section, we will prove an important result which will
help us deal with the fact that ρ(F̃(�t)) is not always smaller
than 1. We will prove that for every c ∈ (0, 1), there exists a
value of �t > 0 for which ρ(|F(�t)|) = c. We will then use
Lemma 8 below, proven in [19], to show that for this value of
�t, we have ρ(F̃(�t)) < 1.

Lemma 8 [19]: For any square matrix J, we have ρ(J̃) =
max(ρ(J), ρ(|J|)).

Several key results are needed before presenting and proving
the main theorem. We start by recalling an important result
from linear algebra.

Lemma 9 [29]: The eigenvalues of a matrix Q depend
continuously on the entries of Q.

Notice that, for any α, β ∈ R, we have |α| = |(α−β)+β| ≤
|α − β| + |β| so that

|α| − |β| ≤ |α − β|. (44)

This property will be useful for the proof of several of the
following results.

Lemma 10: The spectral radius of |F(�t)| is a continuous
function of �t for any �t > 0.

Proof: Clearly, B(�t) and E(�t) are continuous functions of
�t for �t ∈ (0,∞). Accordingly, E−1(�t) is also continuous
because the inverse operator is continuous on the set of invert-
ible matrices [29]. Therefore, D(�t) is continuous because
addition and multiplication are also continuous operators.
Following the same argument, we can conclude that D−1(�t),
D−1(�t)B(�t), D−1(�t)M, −E−1(�t)MTD−1(�t)B(�t), and
(Inl − E−1(�t)MTD−1(�t)M) are all continuous functions of
�t, which leads to F(�t), as well as |F(�t)|, being contin-
uous. Therefore, using Lemma 9, the eigenvalues of |F(�t)|
also depend continuously on �t. In other words, for every
�t0 ∈ (0,∞), and for every ε > 0, there exists δ > 0 such
that if |�t −�t0| < δ, then

λi ∈ Nε

(
λ0,i

) ∀i = 1, . . . , n (45)

where λ1, . . . , λn are the eigenvalues of |F(�t)|, λ0,1, . . . , λ0,n

are the eigenvalues of |F(�t0)|, and Nε(λ0,j) is the ε-
neighborhood of λ0,j defined as the set {λ ∈ C : |λ−λ0,i| < ε}.
Using (44), we have ∀i = 1, . . . , n

λi ∈ Nε

(
λ0,i

)⇒ |λi| −
∣
∣λ0,i

∣
∣ ≤ ∣

∣λi − λ0,i
∣
∣ < ε

⇒ |λi| <
∣
∣λ0,i

∣
∣+ ε

⇒ max
i=1,...,n

|λi| < max
i=1,...,n

(∣
∣λ0,i

∣
∣+ ε

)

= max
i=1,...,n

(∣
∣λ0,i

∣
∣
)+ ε

⇒ ρ(|F(�t)|) < ρ(|F(�t0)|)+ ε. (46)

In a similar fashion, we can show that

ρ(|F(�t0)|) < ρ(|F(�t)|)+ ε. (47)

Combining (46) and (47), we conclude that

ρ(|F(�t0|)− ε < ρ(|F(�t)|) < ρ(|F(�t0|)+ ε

meaning

|ρ(|F(�t|)− ρ(|F(�t0)|)| < ε.
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Fig. 5. Intermediate value theorem.

This being true for every ε and for every �t0 ∈ (0,∞),
we conclude that ρ(|F(�t)|) is a continuous function of �t
on (0,∞).

The following lemmas are also useful to understand the
behavior of ρ(|F(�t)|) for �t > 0.

Lemma 11: We have

lim
�t→∞ ρ(|F(�t)|) = 0 and lim

�t→0
ρ(|F(�t)|) = 1.

The proof of Lemma 11 is available in Appendix A.
We now present the main theorem of this section.
Theorem 3: For every c ∈ (0, 1), there exists �t > 0 such

that ρ(|F(�t)|) = c.
Proof: Define the function f : R+ 
→ R+ as follows:

f (�t) =
{

ρ(|F(�t)|) if �t > 0
1 if �t = 0.

(48)

Note that the function f is continuous on R+ due to
Lemmas 10 and 11. For any 0 < ε < c, and because
lim�t→∞ f (�t) = lim�t→∞ ρ(|F(�t)|) = 0 due to
Lemma 11, then ∃K > 0 such that if �t > K, then
| f (�t)| = f (�t) < ε. In other words there exists �t∗ > K
such that f (�t∗) < c. Knowing that f is continuous on the
closed interval [0,�t∗], and that f (�t∗) < c < 1 we conclude,
using the intermediate value theorem, that ∃�t ∈ (0,�t∗) such
that f (�t) = c (see Fig. 5), and hence the statement of the
theorem.

Corollary 2: There exists �t > 0 such that ρ(F̃(�t)) < 1.
Proof: Recall that ρ(F(�t)) < 1 for any �t > 0 by (21).

Therefore, if �t was found such that ρ(|F(�t)|) = c for some
c ∈ (0, 1) as per Theorem 3, then for that �t, and using
Lemma 8, we have ρ

(
F̃(�t)

) = max{ρ(F(�t)), c} < 1.
Of course, it is not enough for such a �t to exist, it must also

be small enough to allow for an accurate time-discretization
in (10) and (11). We will see in the results section that accuracy
is indeed preserved, with �t computed as we next describe.

B. Method

Now that we have proved that there exists a �t such that
0 < ρ(F̃(�t)) < 1, we need to show how such a �t can be
found. We propose an iterative method that solves the equation
ρ(|F(�t)|) = c for some c ∈ (0, 1). The method uses the
bisection method for root finding, and a variant of the power

Algorithm 2 FIND_TIME_STEP
Input: Interval [a, b], RLC circuit matrices
Output: �t

1: a1 = a, b1 = b, p0 = a, p1 = 0.5(a1 + b1), i = 1
2: while |pi − pi−1| > ξ or |g(pi)− c| > ξ do
3: if (g(pi)− c)(g(ai)− c) > 0 then
4: ai+1 = pi, bi+1 = bi

5: else
6: ai+1 = ai, bi+1 = pi

7: end if
8: pi+1 = 0.5(ai+1 + bi+1)

9: i = i+ 1
10: end while
11: return �t = g(pi)

method to find the spectral radius of |F(�t)| at every step of
the bisection method.

1) Bisection Method: For improved numerical perfor-
mance, we have found that scaling of the problem is useful.
So, let γ = log10(�t), and define g(γ ) = ρ(|F(10γ )|). We
want to solve g(γ ) = c, for some 0 < c < 1 A simple way
of doing this is by solving the equation g(γ ) − c = 0 using
the bisection method [30], which is a root-finding method that
takes as input the function g, an interval [a, b], and a toler-
ance ξ . It then keeps dividing the initial interval in halves in
a similar fashion to binary search. The process is shown in
Algorithm 2.

2) Variant of the Power Method: Algorithm 2 requires
evaluating the function g several times. This is equivalent to
finding the spectral radius of |F(�t)| for several values of �t.
Typically, finding the spectral radius of a matrix is done using
the power method [26] which finds the dominant eigenvalue
of a matrix. But because |F| is not symmetric, its eigenval-
ues might be complex, in which case the power method might
fail [31]. Alternatively, one can use a variant of the power
method that is based on the theorem below.

Theorem 4 [31]: Let Q ≥ 0 be an n× n irreducible matrix,
and q0 be an arbitrary positive n-dimensional vector. Defining
qν = Qqν−1 = · · · = Qνq0, ν ≥ 1, let

λν = min
1≤i≤n

q(i)
ν+1

q(i)
ν

and λν = max
1≤i≤n

q(i)
ν+1

q(i)
ν

(49)

where the superscript i represents the ith component of a
vector. Then, the spectral radius of Q satisfies

λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ ρ(Q) ≤ · · · λ2 ≤ λ1 ≤ λ0. (50)

One can use Theorem 4 to iteratively generate bounds on the
spectral radius of |F| until the difference between the upper
bound and the lower bound becomes less than some toler-
ance δ. To guarantee convergence, |F| must be irreducible and
primitive [31]. A non-negative square matrix X is said to be
primitive if Xk > 0 for some k ∈ N. A sufficient condition
for a matrix to be primitive is for the matrix to be non-
negative, irreducible, and have one strictly positive element on
the main diagonal. Unfortunately, |F| might not be irreducible.
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To overcome this problem, we let

P = |F| +

⎡

⎢
⎢
⎢
⎢
⎣

0 ε 0 . . . 0
... 0

. . . 0

0
. . . ε

ε 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎦
∈ R

n×n

for some small ε > 0. This ensures that P is irreducible [31].
Being irreducible, nonnegative, and having at least one strictly
positive diagonal entry (say from the diagonal of D−1B), P is
a primitive matrix [29]. Therefore, one can use the variant of
the power method presented above to find ρ(P), which is very
close to ρ(|F|) for practical purposes, if ε is small enough [31].

VII. IMPLEMENTATION

In this section, we present some details regarding the imple-
mentation of Algorithms 1 and 2. We provide these details
because it may not be clear from Algorithms 1 and 2 how
certain steps are to be done in a real implementation of our
method.

A. Computing the Matrix RH

Computing the matrix RH requires finding D−1H. We do
this using an LU factorization of D followed by a sequence
of forward/backward solves against the columns of H. Every
time a column of D−1H is generated, all the very small entries
are dropped in order to reduce the memory consumption. The
threshold that determines which entries to drop is found using
a separate engine which takes, as input, a user-defined thresh-
old (in mV) on the voltage fluctuations at every node. We skip
the details of this engine due to lack of space. Once D−1H is
computed, finding the rest of RH is a simple task because the
matrix −E−1MT is an extremely sparse matrix.

B. Matrix–Vector Multiplications in Theorem 4

The procedure of Theorem 4 requires successive matrix–
vector multiplications of the form Px = (|F| + E)x where

x ∈ R
n+. Let x =

[
x1
x2

]

where x1 ∈ R
nv+ and x2 ∈ R

nl+.

Let Y � D−1M. The matrix Y can be found relatively easily
because nl (which is the number of columns of M) is generally
much smaller than nv, and hence one can find the jth column
yj of Y by solving the system Dyj = mj for yj, where mj is
the jth column of M. Once Y is found explicitly, and because
D−1B ≥ 0, one can use (18) to write

Px =
[

D−1Bx1 + |Y|x2

|E−1YTB|x1+|Inl − E−1MTY|x2

]

+ Ex. (51)

To find z = D−1Bx1, one can quickly find Bx1 (because B
is a diagonal matrix), and then solve the system of equations
Dz = Bx1 for z.

C. Conjugate Gradient

The last step of Algorithm 1 requires solving the linear
system (I2n − F̃)x̄ = z∗ for x̄. We do this using the CG
method [26]. But, because CG requires the system matrix to

Algorithm 3 CONJUGATE_GRADIENT
Input: T , initial solution xb,0, ε

Output: x̄
1: Set r0 ← Txb,0 − e
2: Set p0 ←−r0, k← 0
3: while ‖rk‖∞ > ε do

4: αk = rT
k rk

pT
k Tpk

5: xb,k+1 ← xb,k + αkpk

6: rk+1 ← rk + αkTpk

7: βk+1 ←
rT

k+1rk+1

rT
k rk

8: pk+1 ←−rk+1 + βk+1pk

9: k← k + 1
10: end while
11: return xk

be positive definite, we will transform our system into one that
can be solved using CG, and which exhibits the same solution

(
I2n − F̃

)T(
I2n − F̃

)
x̄ = (

I2n − F̃
)T

z∗. (52)

The matrix (I2n − F̃)T(I2n − F̃) is clearly symmetric, and is
in fact positive definite. To see why this is true, notice that
for any vector y �= 0, yT(I2n − F̃)T(I2n − F̃)y = ((I2n −
F̃)y)T(I2n−F̃)y = ‖(I2n−F̃)y‖2 which is always non-negative.
But (I2n− F̃) has full rank because it is nonsingular when �t
is chosen as explained in Section VI. Hence, its null space
contains only the zero vector, so that (I2n − F̃)y �= 0 because
y �= 0. Consequently, ‖(I2n − F̃)y‖2 is in fact strictly posi-
tive. Let T = (I2n − F̃)T(I2n − F̃), and e = (I2n − F̃)Tz∗.
The CG algorithm is shown in Algorithm 3. The algorithm
requires, as input, a tolerance ε which specifies when CG
converges, and a nonzero initial solution xb,0, which can be
set to a vector of ones. The vector e and the matrix T are
also required in Algorithm 3. Unfortunately, F̃ is not available
explicitly because it depends on D−1 which we do not com-
pute. Therefore, finding e cannot be done directly, and T is not
available explicitly. Luckily, this problem can be easily solved
because T is only needed to perform matrix–vector multipli-
cations of the form Ty for some y ∈ R

2n. One can observe that
such multiplications, as well as finding e, require computing
products of the form F̃y or F̃Ty for some y ∈ R

2n. These prod-
ucts can be easily found because F̃ can be expressed in terms
of F and |F|. We already know how to compute products of
the form |F|x from Section VII-B. Products of the form |F|Tx,
Fx, and FTx can be done in a similar fashion.

D. Discussion

In this section, we compare the complexity of our approach
with the complexity of the approach of [19] to show why
our approach is superior. There are four steps in the algo-
rithm of [19] that dominate the total runtime: 1) computing
an approximate full matrix inverse; 2) a sequence of dense
matrix–matrix multiplications; 3) solving a sequence of LPs;
and 4) solving a dense linear system using LU. Our approach
presents a significant improvement over [19] in terms of speed
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because it refines each of the four steps above. First, our
approach does not require the full inverse. Instead, it only
computes m columns of the inverse (Recall that m is the num-
ber of current sources in the grid). If m is a small fraction
of nv, one could save a lot of resources by computing only a
portion of the inverse of D. Typically, m is a small fraction
of nv due to the fact that current sources are usually attached
only to the bottommost metal layer in the grid. Second, our
approach does not require any dense matrix–matrix multipli-
cations because the parameter r from [19] is always 1 in our
case due to our choice of �t. Third, our approach requires
solving only 2(nv+ nl) LPs instead to 2rnv LPs as in the case
of [19]. Because nl is much smaller than nv, and because r can
be as large as 10, we have 2(nv+ nl)� 2rnv. Finally, instead
of performing an LU factorization of a dense matrix as was
done in the last step of [19], we use the CG method while
taking advantage of the structure of the matrix F̃ as explained
in Section VII-C. One additional step that our algorithm per-
forms is finding the proper �t. As will see in the experimental
results section, this step is quite efficient.

VIII. EXPERIMENTAL RESULTS

Algorithms 1–3, have been implemented in C++ making use
of the Mosek optimization package [32] to solve the required
LPs. We carried out several experiments on a set of power
grids, using a 3.4 GHz Linux machine with 32 GB of memory.
Some of the grids were generated based on user specifications,
including grid dimensions, metal layers, pitch and width per
layer, and C4 and current source distribution. These C4s and
current sources were randomly placed on the grid. Moreover,
the circuits generated include user-defined RLC models for the
package-grid interconnections and all the experiments were
performed on grids with a 1.1 V supply voltage. The rest of
the grids tested were obtained by extracting the VDD subgrids
from the IBM power grid benchmarks [23].

To asses the quality of our results, we computed the max-
imum and minimum worst-case voltage fluctuations on the
grids using the exact summation (26) and using the proposed
bounds. Because the exact solution is an infinite summation, it
is impossible to compute it exactly. Thus, we use the following
approximation:

x∗ ≈ x̃∗ =
N∑

q=0

eopt
i∈F

[
FqRHi

]
(53)

for some large enough integer N. Notice that in this expres-
sion, and because this refers to the exact solution, we do not
use the value of �t generated using Algorithm 2. Instead,
we use a much smaller �t, namely �t = 100 fs, in order to
guarantee that the BE discretization used is as accurate as pos-
sible. Choosing such a small �t still allows (26) to converge
because, unlike the derived bounds, the convergence of (26)
depends on the spectral radius of F, which is always less than
1 as explained in Section IV-C.

Table I shows the time-steps found and the maximum abso-
lute error between the upper and lower bound vectors obtained
by our technique (using the �t that was generated to guaran-
tee ρ(F̃) < 1) and the vectors resulting from computing x̃∗

TABLE I
ACCURACY OF THE PROPOSED BOUND

TABLE II
PROPOSED APPROACH VERSUS APPROACH OF [19]

Fig. 6. Voltage drop waveform and bounds at node 4000 in the 4075-nodes
grid.

(using a much smaller �t). Because x̃∗ is very expensive to
compute, we were only able to test the accuracy of the bounds
for grids having at most 4075 nodes. For the grids tested, we
can clearly see that the error is below 1mV, which shows that
our approach is very accurate for all practical purposes. In fact,
our upper and lower bound errors are almost ten times smaller
than the errors reported in [19]. Fig. 6 shows an example of a
voltage drop waveform with peaks that are quite close to the
bounds generated by our algorithm. The figure corresponds to
node 4000 in the 4075-nodes grid and the loading currents are
chosen such that they satisfy the local and global constraints.
This particular simulation was done using HSPICE.

To further demonstrate the accuracy of our approach, Fig. 7
shows a scatter plot of the relative error, in percent, versus the
maximum worst-case voltage fluctuations on the 4075-node
grid. The figure also shows the curve that corresponds to an
absolute error of 1 mV. Every point below the curve corre-
sponds to a node where the bound is less than 1 mV away
from the exact worst-case voltage fluctuation. From the scat-
ter plot, it is clear that the absolute errors arising from the
bounds are very small.

In terms of speed, Table II shows the speed-up of our
approach over the approach of [19] for grids PG1-PG4. The
data is obtained by running both engines on the same Linux
machine. We can see that our approach can achieve up to
32.33× speed-up Also, to show its scalability, we run our
engine on larger power grids (PG5-PG7) generated using the
same user specification, as well as on the IBM power grid
benchmarks. We report the resulting runtime in Table III.
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TABLE III
RUNTIME OF THE PROPOSED APPROACH

Fig. 7. Accuracy of the proposed approach (4075-node grid).

We can see that our approach computes the bounds in less
than 1 day for largest power grid generated (PG7 with around
one million nodes), and in around 3.62 days for the largest
IBM grid tested.

By examining the runtime breakdown in Table III, one can
notice that the slowest steps in the method (for most of the
grids) are computing the matrix RH and performing the eopt
operation. Luckily, these two steps are highly parallelizable.
Computing RH requires finding columns of D−1H, where
each column can be computed independently as described in
Section VII-A. Similarly, the eopt operation is an element-wise
optimization where each element can be computed separately.
By observing that these two steps combined take up to 80% of
the total runtime, and given a cluster of multicore machines,
the total runtime of our algorithm can be reduced by a large
factor once properly parallelized.

IX. CONCLUSION

We described an early power grid verification approach
under an RLC model using the constraint-based framework.
RLC vectorless verification has always been a challenging
problem because it generally requires solving a large num-
ber of optimization problems. We proposed a technique that
carefully selects a time step �t, and then computes estimates
of the worst-case voltage fluctuations using that time step.
Our choice of the time step is made in a way to ensure the

parameter r from [19] always equal to 1. This has signifi-
cant implications on the amount of work required to compute
the solution. As compared to [19], our approach requires a
much smaller number of LPs, and eliminates the need for any
dense matrix–matrix multiplications and full matrix inverse
computation. Experimentally, our approach is very accurate
when compared to the exact solution, as the error is consis-
tently under 1 mV. Moreover, we showed a speed-up of up to
32× over previous work. The technique was also shown to be
much more scalable as we were able to verify grids having up
to 1 million nodes.

APPENDIX A

PROOF OF LEMMA 11

We will prove that lim�t→∞ |F(�t)| = 0n×n. The proof of
the second identity is quite similar and is omitted. We will use
the following, easy to derive, facts:

lim
�t→∞B = 0nv×nv , lim

�t→∞A−1 = G−1, lim
�t→∞E = 0nl×nl .

Using (54) from Lemma 13, and because MTG−1M is invert-
ible by Lemma 12 (see Appendix B), we have

lim
�t→∞D−1B

= lim
�t→∞A−1

(

Inv −M
(

E +MTA−1M
)−1

MTA−1
)

B

= G−1
(

Inv −M
(

MTG−1M
)−1

MTG−1
)

0nv×nv = 0nv×nv .

Also, by (54), we can write

lim
�t→∞−E−1MTD−1B = lim

�t→∞−�tL−1MTD−1 C

�t

= lim
�t→∞L−1MTA−1

(

Inv −M
(

E +MTA−1M
)−1

MTA−1
)

C

= L−1MTG−1
(

Inv −M
(

MTG−1M
)−1

MTG−1
)

C

= L−1
(

MTG−1 −MTG−1
)

C = 0nl×nv .

Moreover, using (55) from Lemma 13

lim
�t→∞D−1M = lim

�t→∞A−1M
(

E +MTA−1M
)−1

E

= G−1M
(

MTG−1M
)−1 × 0nl×nl = 0nv×nl .
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And finally, lim�t→∞(Inl − E−1MTD−1M)

= lim
�t→∞

(

Inl −�tL−1MTA−1M
(

E +MTA−1M
)−1 L

�t

)

= Inl − L−1MTG−1M
(

MTG−1M
)−1

L = Inl − Inl = 0nl×nl .

Therefore, considering the structure of F in (18), we have
lim�t→∞ F(�t) = 0n×n.

By continuity of the function x 
→ |x|, we will show that
lim�t→∞ |F(�t)| = 0n×n as well. Because lim�t→∞ F(�t) =
0n×n, then for every ε > 0, there exists K > 0 such that if
�t > K, |F(�t)| < εQ where Q is a matrix that has 1 at every
entry. Accordingly, we have ||F(�t)|−0n×n| < εQ. This being
true for every ε, we conclude that lim�t→∞ |F(�t)| = 0n×n.

By continuity of the eigenvalues of |F(�t)|, we know that
for every ε, there exists a K > 0 such that if �t > K then
|λi| < ε for every eigenvalue λi of |F(�t)|. This is due
to that fact that all eigenvalues of 0n×n are 0. This implies
that ρ(|F(�t)|) < ε. This, being true for every ε, leads to
lim�t→∞ ρ(|F(�t)|) = 0.

APPENDIX B

LEMMAS 12 AND 13

Here we present and prove Lemmas 12 and 13 used in the
proof of Lemma 11.

Lemma 12: The matrix MTG−1M is invertible.
Proof: Recall that M is the incidence matrix that specifies

the locations of the inductors in the grid.
Let G(V, E) be a directed graph whose vertex set V con-

tains all the nodes in the grid including the ground node, and
whose edge set E is constructed as follows: for every inductor
in the grid, an edge is added between the two nodes that are
connected to the inductor; the direction of the edge is the same
as the reference the direction of current through the inductor.
Because we assume that no purely inductive loop exists in
the grid, we can deduce that G is acyclic. Accordingly, G is
a directed acyclic graph. Let MG be the incidence matrix of
G, and M′G be the matrix obtained by deleting the row corre-
sponding to the ground node in the matrix MG . It is known
that the columns of M′G are linearly independent [33]. One can
verify that M and M′G have the same set of columns (possibly
in a different order), so that the columns of M are linearly
independent, meaning M has a full rank. Now, consider the
matrix

S =
[

G M
MT 0

]

.

Because M has full rank, and because G is invertible, we con-
clude, from [34], that S is invertible. But S is invertible if and
only if its Schur complement −MTG−1M is invertible [26].
Knowing that S is invertible, it directly follows that MTG−1M
is invertible.

Lemma 13: We have

D−1 = A−1
(

Inv −M
(

E +MTA−1M
)−1

MTA−1
)

(54)

D−1M = A−1M
(

E +MTA−1M
)−1

E. (55)

Proof: Notice that D = A + ME−1MT so that D−1 is the
inverse of a sum of matrices. In [35], the authors showed that
such a sum can be expressed as follows:

D−1 = A−1 − A−1M
(

E +MTA−1M
)−1

MTA−1

which leads directly to (54). Moreover, notice that

D−1M =
(

A+ME−1MT
)−1

M

=
[(

I +ME−1MTA−1
)

A
]−1

M

= A−1
(

I +ME−1MTA−1
)−1

M

= A−1
(

I +ME−1MTA−1
)−1

M

×
(

I + E−1MTA−1M
)(

I + E−1MTA−1M
)−1

= A−1
(

I +ME−1MTA−1
)−1

×
(

M +ME−1MTA−1M
)(

I + E−1MTA−1M
)−1

= A−1
(

I +ME−1MTA−1
)−1

×
(

I +ME−1MTA−1
)

M
(

I + E−1MTA−1M
)−1

= A−1M
(

I + E−1MTA−1M
)−1

E−1E

= A−1M
(

E
(

I + E−1MTA−1M
))−1

E

= A−1M
(

E +MTA−1M
)−1

E

as required in (55).
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