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Abstract—Due to technology scaling, electromigration (EM)
signoff has become increasingly difficult, mainly due to the use
of inaccurate methods for EM assessment, such as the empirical
Black’s model. In this paper, we present a novel finite-difference-
based approach for power grid EM checking using physics-based
models, that can account for process, voltage, and temperature
variations across the die. Our main contribution is to extend
existing physical models for EM in metal branches to track
EM degradation in multibranch interconnect trees. The extended
model is represented as a homogeneous linear time invariant
system. We also detect early failures and account for their impact
on grid lifetime. We speed up our implementation by proposing
a macromodeling-based filtering scheme and a predictor-based
approach. Our results, for a number of IBM power grid bench-
marks, confirm that Black’s model is overly inaccurate. The
lifetimes found using our physics-based approach are on average
2.75× longer than those based on a (calibrated) Black’s model, as
extended to handle mesh power grids. With a maximum runtime
of 2.3 h among all the IBM benchmarks, our method appears to
be suitable for very large scale integration circuits.

Index Terms—Electromigration (EM), hydrostatic stress, linear
time invariant (LTI) systems, macromodeling, power grid,
reliability, verification.

I. INTRODUCTION

AS A RESULT of continued scaling of integrated cir-
cuits technology, electromigration (EM) has become a

major reliability concern for the design of on-die power grids
in large integrated circuits [1]. While signal and clock lines
also suffer from EM degradation, these lines carry bidirec-
tional current and so have longer lifetimes due to so-called
healing. In contrast, power grid lines carry mostly unidi-
rectional current with no benefit of healing and thus are
more susceptible to EM failure. Hence, our focus on EM in
power grids.

Today, it is becoming harder to sign off on chip designs
using state of the art EM checking tools, as there is very little
margin left between the predicted EM stress and that allowed
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by EM design rules [2]. This loss of safety margin can be
traced back to the inaccurate and oversimplified nature of EM
models used by existing tools. Standard practice in the indus-
try is to break up a grid into isolated metal branches, assess the
reliability of each branch separately using Black’s model [3]
and then use the series model (earliest branch failure time) to
determine the failure time for the whole grid. This approach
is highly inaccurate, for at least three reasons. First, the fitting
parameters obtained for Black’s model under accelerated test-
ing conditions are not valid at actual operating conditions, and
this leads to significant errors in lifetime extrapolation [4], [5].

Second, Black’s model ignores the material flow between
branches. In today’s mesh structured power grids, many
branches within the same layer are connected as part of what
is called an interconnect tree (defined later) and atomic flux
can flow freely between the branches of an interconnect tree.
As a result, if the individual branches happen to be short so
that they are deemed immortal due to the Blech effect [6],
then the tree would appear to be immortal, which is highly
optimistic and can be entirely misleading for design. In fact,
due to material flow across the tree, failures can and do happen
even if the branches are short. On the other hand, because the
assumption of no material flow between branches effectively
means that the reliability of nearby metal lines are indepen-
dent of each other, then the traditional approach can also be
highly pessimistic, as we will see in this paper. Indeed, two
identical connected lines that carry the same current density
can in practice have quite different values of mean time to fail-
ures (MTFs) [7], so that connected lines can influence each
other leading to different mean lifetimes.

Finally, the third problem lies with the series model assump-
tion. A series model is the case where a power grid is deemed
to have failed as soon as the first of its branches has failed,
typically due to an open circuit. However, modern power grids
use a mesh structure. As such, there are many paths for the
current to flow from the C4 bumps to the underlying logic,
a characteristic we refer to as redundancy. Mesh power grids
are in fact closer to (but not quite) a parallel system. As such,
it is highly pessimistic to assume that a single branch failure
will always cause the whole grid to fail.

Thus, there is a need to reconsider the traditional approaches
and develop efficient EM checking techniques that can accu-
rately assess EM degradation in large power grids.

Over the last few years, many approaches have been
proposed which overcome, to some extent, the aforementioned
shortcomings. Chatterjee et al. [8] proposed the mesh model
as an alternative to the series model. In the mesh model, a
grid is deemed to have failed, not when the first line fails,
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but when enough lines have failed so that the voltage drop at
some grid node(s) have exceeded some predefined threshold
(which would cause errors in underlying logic). However, [8]
still used Black’s model to compute the reliability of indi-
vidual branches, which as we saw before is inaccurate.
Huang et al. [9] proposed an adaptation of Korhonen’s phys-
ical EM model [10] for interconnect trees. Hau-Riege and
Thompson [11] used Korhonen’s model to develop a closed
form solution for stress evolution at a junction (a point where
multiple branches meet) by replacing its connected branches
with semi-infinite limbs, which was later used by Li et al. [12]
in their EM verification tool. Both works [9], [12] were later
extended in [13], [14] respectively to account for tempera-
ture variation as well. However, the approach in [9] is slow,
requiring up to 32 h to estimate the failure time of a 400 k
node grid. In [12], since the connected branches are replaced
by semi-infinite limbs, atomic flow across the whole tree
is not accounted for. Thus, there is a need for a new EM
checking approach that accurately models EM degradation
using physics-based models, combined with a mesh model
to account for redundancy, while being fast enough to be
practically useful.

In this paper, we propose such a technique, which is based
on a finite-difference-based physical EM checking approach
that accounts for process, voltage, and temperature variations
across the die. A preliminary version of this paper is available
in [15]. We start with Korhonen’s 1-D physical model [10],
and augment it: 1) by introducing boundary laws at junctions
to track the material flow and stress evolution in multibranch
interconnect trees (for arbitrary complex geometries) and
2) by accounting for thermal stresses generated by nonuni-
form temperature distribution across the grid. We refer to
this as the extended Korhonen’s Model. For each tree, the
extended model starts out as a system of partial differential
equations (PDEs) coupled by boundary laws which we then
discretize and scale to reduce it to a homogeneous linear time
invariant (LTI) system, where each state represents the stress
at a discretized point in the tree. We numerically solve this
system to track the stress evolution over time and find the
corresponding time of void nucleations, some of which might
cause early failures (EFs) by disconnecting a via. As we will
show later, the impact of EF on grid reliability is quite severe,
yet existing EM tools do not account for these failures.
We are not aware of any published full-chip EM checking
approach that can handle EFs. In this paper, we detect
EFs and update the state of the system accordingly.
We use the mesh model [8] to determine
grid failure.

The random nature of EM degradation, caused by process
variation, is taken care of by using a Monte Carlo method, in
which successive samples of the grid time to failure (TTF) are
found, until the estimate of the overall MTF has converged.
We improve our runtime by using a macromodeling-based fil-
tering scheme that estimates up-front the active set of trees that
are most-likely to impact the MTF assessment of the grid, a
scheme which we will show has minimal impact on accuracy.
We also propose a predictive scheme that allows for fast MTF
estimation based on extrapolation of the solution (stress curve)
obtained from a few time-points. Testing this approach on the

IBM grid benchmarks [16], with the largest grid up to 720 k
nodes, shows that the MTF estimated using our physics-based
approach are on average 2.75× longer than those based on a
(calibrated) Black’s model. This justifies the claim that Black’s
model can be overly inaccurate for modern power grids and
confirms the need for physical models. With a run-time of
2.3 h for the most difficult to solve grid and 26 min for the
largest (720 k) grid, this approach appears to be promising for
large VLSI circuits.

The remainder of this paper is organized as follows. In
Section II, we present some relevant background material
regarding EM, numerical methods for solving PDEs and statis-
tical methods which we will use later in this paper. Section III
develops the extended Korhonen’s model and Section IV
describes the LTI system formulation used for numerically
solving the extended model. Section V summarizes the
approach we use to determine the temperature distribution and
Section VI describes our overall power grid analysis approach.
Section VII outlines the implementation details and discusses
the experimental results. Finally, Section VIII concludes this
paper.

II. BACKGROUND

A. Electromigration Basics

EM is the mass transport of metal atoms due to momentum
transfer between electrons (driven by an electric field) and
the atoms in a metal line. EM is highly dependent on the
specific microstructure of a given line. As such, due to random
manufacturing variations, the TTF due to EM is a random
variable (RV). The process of EM degradation can be divided
into two phases: 1) void nucleation and 2) void growth.

Under conditions of high current density, metal atoms are
pushed in the direction of the electron flow, which is opposite
to the direction of the applied electric field. The number of
atoms moving across a cross section of a line per second per
unit area is known as the atomic flux. If the in-flow of metal
atoms is equal to the out-flow at every point on the line seg-
ment, then clearly no deformation or failure will occur. On the
other hand, if the in-flow is not equal to the out-flow, atomic
flux divergence (AFD) is said to occur. AFD is a necessary
prerequisite for EM degradation and is typically observed in
locations with some kind of barrier to atomic movement, such
as at the end of a line, or due to a change in widths of con-
nected branches or due to change in diffusivity around grain
boundaries. Flux divergence at these locations generates points
of high tensile and compressive stresses within the segment.
The amount of compressive stress needed to cause a pile-up
of metal atoms (a hillock) leading to a short circuit is very
high in modern metal systems, hence failure due to a short
circuit is not usually observed. However, the build up of ten-
sile stress eventually leads to formation of a void when the
stress reaches a predetermined critical threshold. This phase
of EM degradation, when stress is increasing over time but no
voids have yet nucleated, is called the void nucleation phase.
In this phase, the resistance of a line remains roughly the same
as that of a fresh (undamaged) line.

Once a void nucleates, the void growth phase begins. In
some cases, depending on the geometry and the location of
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the void, nucleation by itself may be enough to cause failure
due to an open circuit (by disconnecting a via) [17]. These
failures are typically referred to as EFs and are often observed
in testing. In other cases, again depending on geometry, a line
may continue to conduct current after void nucleation. With
time, the void starts to grow in the direction of the electron
flow and the line resistance increases toward some steady-state
value. In testing of single isolated lines, failure is deemed to
happen when the increase in resistance reaches 10%–20% of
the initial resistance value.

B. Korhonen Model

Korhonen et al. [10] proposed a 1-D model to describe the
hydrostatic stress σ arising under the influence of EM. Here,
hydrostatic stress is the average of all normal components of
the full stress tensor, i.e., σ = (σxx + σyy + σzz)/3. Consider
a uniform metal line embedded in a rigid dielectric. We are
interested in the time-varying stress σ(x, t) at location x from
some reference point, and at time t. Korhonen’s model starts
with the following statement

�C(x, t)
/

C(x, t) = −�σ(x, t)
/

B (1)

where B is the bulk modulus and C is the number of metal
atoms per unit volume, called the concentration of atoms. In an
ideal lattice with zero stress, C = 1/�, where � is the atomic
volume. Following Korhonen’s formulation, σ is positive for
tensile stress and negative for compressive stress, and can be
obtained by solving the PDE

∂σ

∂t
= B�

kbTm

∂

∂x

{
Da

(
∂σ

∂x
− q∗ρ

�
j

)}
(2)

where j is the current density in the line, Da is the coefficient
of atomic diffusion, kb is the Boltzmann’s constant, Tm is the
temperature in Kelvin, q∗ is the absolute value of the effective
charge of the conductor, and ρ is the resistivity of the con-
ductor. The corresponding atomic flux Ja in the line can be
written as [10], [18]

Ja = DaC�

kbTm

(
∂σ

∂x
− q∗ρ

�
j

)
. (3)

Note that Ja can be positive or negative, depending on the ref-
erence direction chosen and the actual direction of the electric
current. A void nucleates in the line once the stress exceeds a
predefined threshold value σth > 0.

C. Diffusivity of Metal Lines

The atomic diffusion coefficient Da is usually expressed
using the Arrhenius law

Da = D0e−Q/(kbTm) (4)

where D0 is a constant and Q is the activation energy for
vacancy formation and diffusion. The randomness in TTF
due to EM is primarily accounted for by the correspond-
ing randomness in Da, which is lognormally distributed [19]
with mean Davg. Strictly speaking, Da also depends on the
stress value at a given point. However, it has been reported
that the numerical results with stress dependent Da are “not
too different” from constant Da [10]. Hence, as in many

Fig. 1. Cross sectional schematic of Cu dual damascene interconnects.

previous works [9], [12]–[14], we will assume that Da is
stress-independent.

D. Method of Lines

The method of lines (MoLs) is a special finite-difference
technique for solving PDEs [20]. The basic idea of MoL is to
discretize the PDE in all but one independent variable, so that
we are left with a set of ordinary differential equations (ODEs)
that approximate the PDE. We can then use well-established
methods to numerically solve the ODE.

Discretizing the PDE along any variable requires us to
approximate the partial derivatives. For a smooth function
f (xi, x2, . . . , xn), the partial derivative with respect to xi can
be approximated using a central difference formula [20]

∂f

∂xi
(x) ≈ f (x + ei�x) − f (x − ei�x)

2�x
(5)

∂2f

∂x2
i

(x) ≈ f (x + ei�x) + f (x − ei�x) − 2f (x)

(�x)2
(6)

where �x is a small positive scalar increment and ei is the ith
unit vector (a vector that has 1 in position i and 0 elsewhere).

E. Limited Distributions

Let Y be an RV with cumulative distribution function (cdf)
FY(t) and let l and u be two scalars with l < u and at least one
of them finite. Then, RV Y′ is called a limited RV between
limits l and u, with Y being the underlying RV, if it has the
following cdf [21]

FY ′(t) =
⎧
⎨

⎩

0, t < l
FY(t), l ≤ t < u
1, t ≥ u.

(7)

III. INTERCONNECT TREE EM ANALYSIS

Modern power grids are made of copper (Cu) and are fabri-
cated using a dual damascene process. In a dual-damascene
process, the metal line and via are formed simultaneously
using copper. A barrier metal liner (usually Tantalum) must
completely surround all Cu interconnects to prevent the cop-
per from diffusing into the surrounding dielectric. The cross
section of a typical metal via structure in a Cu dual dam-
ascene process is as shown in Fig. 1. Every metal layer of
the on-die power grid mostly consists of parallel stripes that
are connected by vias to other metal layers. Note that due to
the presence of the barrier metal liner around vias, Cu atoms
from one layer cannot diffuse to another layer. On every layer,
power and ground stripes are interspersed. As a result, the
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Fig. 2. Typical interconnect tree structure.

metal segments on every layer are mostly trees, i.e., they con-
tain no loops or cycles. Thus, all previous work in this area
assumes that the grid is made up of interconnect trees.

An interconnect tree is a continuously connected acyclic
structure of straight metal lines within one layer of met-
alization such that atomic flux can flow freely within it.
Fig. 2 shows a typical interconnect tree structure. Formally, an
interconnect tree is a graph T = (N ,B) with no cycles, where
N is a set of grid junctions and B is a set of resistive branches.
A branch is defined to be a continuous straight metal line of
uniform width. A junction is any point on the interconnect
tree where a branch ends or where a via is located. Usually,
but not always, current density around a junction is discontin-
uous. This discontinuity can be caused either by differences
in the widths of connected branches, or by a change in the
currents due to the presence of a via. We define the degree
of a junction to be the number of branches connected to it.
Note that a via does not contribute to the degree of a junction.
In this paper, a junction with degree 1 will be referred to as
a diffusion barrier, a junction with degree 2 will be referred
to as a dotted-I junction, a junction with degree 3 will be
referred to as a T junction and a junction with degree 4 will
be referred to as a plus junction. We treat corners in a tree as
dotted-I junctions. Junctions with degrees higher than 4 are
rarely found in practice.

As in most recent works on EM, we assume that diffu-
sivity Da is the same throughout a branch. As a result, the
AFD is higher at branch ends, i.e., junctions, as compared to
branch interior. Thus, in our work, voids will nucleate only at
junctions in a tree. This is a very mild assumption [12], [17]
because it is much more common in the field to find voids
at the end-points of branches. Also, it is worth noting that
interconnect trees are always terminated by diffusion barriers
and/or vias, hence the atoms cannot diffuse from one tree to
another, and that different branches within a tree are allowed
to have different widths.

A. Assigning Reference Directions

Before doing any analysis, we need to assign reference
directions to all branches. This is necessary in order to con-
sistently track the directions of branch currents and atomic
flux.

An interconnect tree is equivalent to a graph, with grid junc-
tions as vertices and branches as edges. Starting from any
diffusion barrier, we traverse the whole interconnect tree using

a breadth-first search on the graph. This creates predecessor–
successor relationships between the junctions. The reference
direction for each branch is then assigned from predecessor
to successor. The branch current (and atomic flux) is positive
if it flows in the reference direction, otherwise it is negative.
Likewise, the reference point for distance is the predecessor
junction, so that x = 0 is the predecessor and x = L (line
length) is the successor. In Fig. 2, if we choose to start from
the leftmost diffusion barrier (labeled as n1), then the refer-
ence directions for the branches would be as shown by the
dashed arrows.

B. Initial Conditions

Initial conditions determine the stresses in the interconnect
tree at t = 0, before the application of any electric current.
For on chip interconnects, the metal lines are embedded in a
rigid confinement. Because of the difference in the coefficients
of thermal expansion of the metal (Cu) am and confinement
(silicon) asi, stress is generated as the metal cools down after
deposition. This so called thermal stress can be expressed
as [22]

σT,k(t) = B(am − asi)(Tzs − Tm,k(t)) (8)

where σT,k is the thermal stress, Tm,k is the temperature of
branch bk, and Tzs is the stress free annealing temperature. In
this paper, we assume that the initial stress σk(xk, 0) in branch
bk is equal to its thermal stress at t = 0, so that

σk(xk, 0) = σT,k(0). (9)

C. Extending Korhonen’s Model to Trees

In order to find the level of EM degradation in an
interconnect tree, we will extend Korhonen’s model to account
for the coupling between the tree branches. For better under-
standing, we illustrate our approach with a simple example.
Consider a simple tree Td = (N ,B), with N = {n1, n2, n3}
and B = {b1, b2}, with reference directions as shown in Fig. 3.
Branch bk has dimensions Lk × wk × hk (length × width ×
height), carries a current density jk, has an atomic diffusivity
of Da,k and temperature Tm,k, where k is 1 or 2 in this case.
Note that x1 = L1 and x2 = 0 denote the same point: the
location of n2. We are interested in the stress as a function
of position and time, i.e., σ1(x1, t) and σ2(x2, t) for branches
b1 and b2, respectively. Once σ1 and σ2 are known, we can
easily determine the EM degradation in the branches.

Korhonen’s model (2) gives the time rate of change of stress
for a point within a branch, as follows:

∂σk

∂t
= B�Da,k

kbTm,k

∂

∂xk

(
∂σk

∂xk
− q∗ρ

�
jk

)
, xk ∈ (0, Lk). (10)

However, in order to solve the PDE for the whole tree, we
need to also state the boundary conditions at all end-points of
branches, i.e., at junctions. The boundary conditions describe
the behavior of atomic flux at the junctions. For the example
in Fig. 3, we will discuss the two cases of a diffusion barrier
and a dotted-I junction.
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Fig. 3. Simple 3-terminal tree Td .

1) Diffusion Barrier: Junctions n1 and n3 are diffusion
barriers, where the atomic flux is blocked. Considering the
nucleation phase first, Ja is zero at the barrier so that from (3)

Ja,1(0, t) = 0 =⇒ ∂σ1(0, t)

∂x1
= q∗ρ

�
j1 (11a)

Ja,2(L2, t) = 0 =⇒ ∂σ2(L2, t)

∂x2
= q∗ρ

�
j2. (11b)

We next move to the void growth phase. For a void to nucleate
at n1 (n3), we must have j1 < 0 (j2 > 0) so that the electron
flow pushes the metal atoms away from n1 (n3). Exactly what
happens around a void is somewhat complicated and cannot
be fully captured in a 1-D model. The recent work in [22]
provides an extension of the Korhonen 1-D model to describe
behavior of stress around a void. From this, stress falls to zero
at the void surface but remains at its original value a very short
distance δ ≈ 1 nm from the void surface. We refer to δ as the
thickness of the void interface. From [22], the stress gradients
at junctions n1 and n3 throughout the void growth phase are

∂σ1(0, t)

∂x1
= σ1(0, t)

δ
,

∂σ2(L2, t)

∂x2
= −σ2(L2, t)

δ
(12)

where σ1(0, t) = σ2(L2, t) = σth at the time of void nucleation.
2) Dotted-I Junction: The atomic flux interaction at

dotted-I junction n2 is the key to describing the coupling of
stresses in branches b1 and b2. Considering the nucleation
phase first, the stress is continuous across n2, which is the
same physical point of both b1 and b2, so that

σ1(L1, t) = σ2(0, t) (13)

and atomic flux can flow freely between b1 and b2 [11].
Because the material flow across an infinitesimal boundary
at n2 has to be continuous, we have

w1h1Ja,1(L1, t) = w2h2Ja,2(0, t). (14)

Next considering the void growth phase, once a void nucleates
at n2, it is shared by both branches b1 and b2. For our 1-D
model, we make the reasonable assumption that the void cov-
ers the entire cross sectional area of the junction. As a result,
there would be no flow of atomic flux between b1 and b2.
Hence, during the void growth phase, we effectively treat n2
as a diffusion barrier for both branches b1 and b2, so that

∂σ1(L1, t)

∂x1
= −σ1(L1, t)

δ
,

∂σ2(0, t)

∂x2
= σ2(0, t)

δ
. (15)

As we will see later in Section IV, combining the boundary
conditions obtained from (11)–(15) and the initial condition as
stated in (9) with (10), we can formulate an LTI system that
completely determines σ1 and σ2. We will next generalize the
above schemes for capturing flux interactions at junctions, into
a set of laws that forms the basis for our approach.

D. Boundary Laws for Junctions

Boundary laws govern the interaction of atomic flux at junc-
tions. Consider a junction np, and let Bp be the set of branches
connected to np. Let tf ,p be the time of void nucleation for this
junction. Then, the boundary laws (motivated mainly by the
law of conservation of mass) can be stated as follows.

Law 1: For t < tf ,p, the number of metal atoms flowing
into np per unit time is the same as the number of metal atoms
flowing out from it

∑

bk∈Bp,in

wkhkJa,k =
∑

bk∈Bp,out

wkhkJa,k (16)

where wk (hk) is the width (height) of the branch, Bp,in is the
set of branches for which the reference direction is going into
np, and Bp,out is the set of branches for which the reference
direction is going out from np.

Law 2: For t ≥ tf ,p, there is no flow of atomic flux between
the connected branches Bp. The stress gradient at the junction,
generalizing from (12) and (15), is

∂σk,p

∂xk
= ±σk,p

δ
(17)

where σk,p is the value of stress at end-point np of branch bk.
The sign is positive for bk ∈ Bp,out and negative for bk ∈ Bp,in.

Law 3: Until a void nucleates at np, the stress values in any
two branches where they meet at np are equal.

E. Handling Void Growth and Early Failures

Once the stress at any point in the tree reaches σth, a void
nucleates at that point. As noted before, in our EM model,
void nucleation occurs only at junctions and not within the
branches. We assume that once a void nucleates at a junction,
it is shared by all the branches connected to that junction.
Tracking void growth is useful in order to determine the
change in branch resistances and the corresponding current
densities. In addition, we also check for EFs depending on
the location of the void.

Recent work [22] shows that the initial void growth rate is
very high. Hence, as a conservative approximation, we assume
that once a void nucleates at any junction np, the void lengths
for all branches bk connected to np reach their steady state
values in a very short period of time. As a result, the line
resistance rises immediately to its steady state value for all
connected branches. The steady state void volume for branch
bk is

Vk,sat = Lkwkhk

(
σT,k

B
+ q∗ρ|jk|Lk

2B�

)
. (18)

Based on this, we iteratively find jk and Vk,sat using a mod-
ified Richardson iteration. We ignore void healing and void
migration.

Depending on its location and size, a void might lead to
an EF. Specifically, if a large enough void forms below a via,
it might in some cases cause an open circuit failure by dis-
connecting the via. This happens because the capping layer
is not conductive; hence if the void covers the entire cross
section of a via, there is no conductive path left between the
via and the tree below and the current in the via completely
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Fig. 4. EFs and conventional failures.

falls to 0, as shown in Fig. 4. On the other hand, voids that
form above the via generally happen at the top of the line
away from the via, and so take a long time to completely fill
the cross section, and even then do not translate to an open
circuit because the current can continue to flow through the
metal liner. Removal of a via, as it happens during the EFs, can
have a significant impact on grid reliability and thus should
be accounted for. In our model, once we have determined the
steady state void volume using (18), we check 1) if the void
is located below a via (this is determined based on geometry
of the grid) and 2) if the void is large enough to disconnect
the via. If both conditions are met, this void leads to an EF,
so that we remove the via from the power grid and update the
voltage drops and current density values.

IV. SOLVING THE EXTENDED MODEL

In this section, we will describe our approach for solving the
extended Korhonen’s model for trees. First, for points within
a branch, we will use the MoLs to convert the PDEs into a set
of ODEs. Then, using the laws proposed in Section III-D, we
will derive the boundary conditions at the junctions. Finally,
we merge the two and state the LTI system formulation that
describes the stress evolution for a given tree.

A. Scaling Korhonen’s Model

Korhonen’s model (2) is often scaled by introducing dimen-
sionless variants of stress, length, and time [18]. This leads to
stable PDEs that are easier to solve numerically. We define
the following scaling factors for any branch bk ∈ B:

τ

= B�

kbT	
m

D	
at

L2
c

, ηk

= �σk

kbT	
m

, ξk

= xk

Lk
(19)

where D	
a is the atomic diffusivity at some chosen nominal

temperature T	
m, Lc is some chosen characteristic length and

0 ≤ xk ≤ Lk. The new variables τ , η, and ξ are referred to
as reduced time, stress, and distance, respectively. Using (19)
in (2) and applying the chain-rule, we get

∂ηk

∂τ
= θk

∂

∂ξk

(
∂ηk

∂ξk
− αk

)
(20)

where θk = (L2
cDa,kT	

m/L2
kD	

aTm,k), αk = (q∗ρjkLk/kbT	
m), jk

is the current density, Tm,k is the temperature, and Da,k is the
diffusivity for bk. Since, for any given branch, αk is not a
function of distance ξk, then ∂αk/∂ξk = 0 and we get

∂ηk

∂τ
= θk

∂2ηk

∂ξ2
k

. (21)

For any branch bk, (21) constitutes the scaled PDE system to
be solved. Also, the atomic flux in bk can be restated in terms
of reduced variables

Ja,k = Da,kCT	
m

LkTm,k

(
∂ηk

∂ξk
− αk

)
. (22)

B. Discretization for Tree Branch

We uniformly discretize branch bk into N segments, where
N is the same for all branches [because we have scaled all
branch lengths to 1 as in (19)]. The reduced stress at each of
the N + 1 discrete spatial points {0, . . . N} is denoted by ηk,i
and the time rate of change of ηk,i is [from (21)]

∂ηk,i

∂τ
= θk

∂2ηk,i

∂ξ2
k

for i = 0, 1, . . . , N. (23)

Further, we approximate the partial derivatives with respect to
ξ using central difference approximation, so that (23) leads to

dηk,i

dτ
= θk

(
ηk,i+1 + ηk,i−1 − 2ηk,i

(�ξ)2

)
(24)

where �ξ = �ξk = 1/N, ∀k. The corresponding atomic flux
Ja,k,i at the ith point is

Ja,k,i = Da,kCT	
m

LkTm,k

(
ηk,i+1 − ηk,i−1

2�ξ
− αk

)
. (25)

Note that for each branch, the ODEs at junctions (i = {0, N})
require the values for ηk,−1 and ηk,N+1, which are not part of
the ξk domain. The values at these ghost points are obtained
by solving for the respective boundary condition(s), as we next
explain.

In order to simplify the presentation going forward, we
define the following for any two branches bi, bk ∈ B:

rik = Li/Lk, pik = Da,iTm,k/(Da,kTm,i)

wik = wi/wk, γik = rkiwikpik, ϒk = θk/(�ξ)2. (26)

C. Boundary Conditions at Diffusion Barrier

Consider a diffusion barrier np connected to branch bk. We
have two cases, one where np is at the predecessor junction
(ξk = 0, start of the branch) and one where it is at the successor
junction (ξk = 1, branch end). We first obtain the bound-
ary conditions for np at ξk = 0. Let τf be the time of void
nucleation at this barrier. Then, the corresponding boundary
condition is [using (16) and (17)]

∂ηk,0

∂ξk
=

{
αk τ < τf
ηk,0(Lk/δ) τ ≥ τf

(27)

where ηk,0 corresponds to σk,p in (17), with ηk,0 = ηth =
(�σth)/(kbT	

m) at τ = τf .
Using the central difference approximation, we get

ηk,−1 =
{

ηk,1 − 2�ξαk τ < τf
ηk,1 − 2�ξηk,0(Lk/δ) τ ≥ τf .

(28)

Similarly, for a diffusion barrier at ξk = 1, we get

ηk,N+1 =
{

ηk,N−1 + 2�ξαk τ < τf
ηk,N−1 − 2�ξηk,N(Lk/δ) τ ≥ τf .

(29)
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D. Boundary Conditions at Dotted-I Junction

Consider a dotted-I junction np. Without loss of generality,
we will assume that np is at the end of branch 1 and at the
beginning of branch 2. To solve the ODE at np, we need the
value of at least one of the ghost points (η1,N+1 or η2,−1).
Let τf be the time of void nucleation at this junction. Then,
using (16), we get (h1 = h2 within a metal layer)

w1Ja,1,N − w2Ja,2,0 = 0 for τ < τf . (30)

Also, from law 3, η1,N = η2,0 when τ < τf . Hence, the
time rate of change of stress should also be the same, so that
using (21)

∂η1,N

∂τ
= ∂η2,0

∂τ
=⇒ ∂2η1,N

∂ξ2
1

= θ2

θ1

∂2η2,0

∂ξ2
2

for τ < τf . (31)

Substituting the value of J from (25) to (30) and applying the
central difference formula in (31), we can obtain the value of
ghost points. Due to lack of space, we omit the full derivation
and only present the final value of η1,N+1

η1,N+1 = η1,N−1 + (r12u1 + w21u2)/(r12 + w21) (32)

where u2 = 2(r2
12p21η2,1 − η1,N−1 + (1 − r2

12p21)η1,N) and
u1 = 2�ξ(α1 − γ21α2).

Using law 2, np is treated as a diffusion barrier for both
branches during the void growth phase. Thus, for τ ≥ τf

η1,N+1 = η1,N−1 − 2�ξη1,N(L1/δ) (33a)

η2,−1 = η2,1 − 2�ξη2,0(L2/δ). (33b)

The corresponding boundary conditions for T and plus junc-
tions can be obtained by following the same procedure as done
for the dotted-I junction.

E. LTI System Formulation

Consider a tree T = {N ,B} with |N | junctions and |B|
branches, with each branch discretized into N segments. Then,
there would be a total of q + 1 discretized points, where q =
N|B|. Note that two points are said to be adjacent to each other
if they are physically next to each other in the tree. Let each
discretized point be given a unique index i ∈ {0, 1, 2, . . . q} and
let xi represent the reduced stress at ith discretized point in
the tree. Then, the ODEs (24) for branches bk ∈ B, combined
with initial and boundary conditions can be represented as a
first-order ODE system consisting of q+1 equations and q+1
states, namely xi. The outputs of the system will be the states
at the junctions. Let Â = [âi,k] ∈ R

(q+1)×(q+1) be the system
matrix and B̂ = [b̂i,k] ∈ R

(q+1)×|N | be the input matrix for the
ODE system. Each state xi, depending on its location and the
phase of EM degradation, “contributes” some nonzero entries
to the ith row of Â and B̂, which we will refer to as a state
stamp. Due to space constraints, we will only present the state
stamps for Â before any void nucleation occurs.

1) Branch Interior: Consider state xi for a discretized point
within branch bk. Let i1 and i2 be the indices for the two
adjacent points. Then, the nonzero entries of the ith row are

âi,i = −2ϒk, âi,i1 = âi,i2 = ϒk. (34)

2) Diffusion Barrier: Consider state xi for a diffusion bar-
rier at the beginning or the end of branch bk. Let the index of

the (only) adjacent point be i1. Then, we have

âi,i = −2ϒk, âi,i1 = 2ϒk. (35)

3) Dotted-I Junction: Without loss of generality, we will
assume that the dotted-I junction with state xi is at the end of
branch 1 and at the beginning of branch 2. Further, the dotted-I
junction is adjacent to point i1 from branch 1 and point i2 from
branch 2. Then the corresponding nonzero entries will be

âi,i = −2�12ϒ1(γ11 + γ21),

âi,ik = 2�12ϒ1γk1, k = 1, 2 (36)

where �12 = r12/(r12 + w21).
4) T Junction: Similar to the dotted-I junction, we will

assume that the T junction with state xi is at the end of branch
1 and at the beginning of branches 2 and 3. The indices of
the adjacent points in branches 1, 2, and 3 are i1, i2, and i3,
respectively. Then the nonzero entries of the ith row are

âi,i = −2�13ϒ1(γ11 + γ21 + γ31),

âi,ik = 2�13ϒ1γk1, k = 1, 2, 3 (37)

where �13 = (r12r13)/(r12r13 + r13w21 + r12w31).
5) Plus Junction: For a plus junction with state xi, assum-

ing that it is at the end of branch 1 and at the beginning of
branches 2–4; the nonzero entries are

âi,i = −2�14ϒ1(γ11 + γ21 + γ31 + γ41),

âi,ik = 2�14ϒ1γk1, k = 1, 2, 3, 4 (38)

where i1, i2 i3, and i4 are the points adjacent to the ith point in
branches 1–4, respectively, and �14 = (r12r13r14)/(r12r13r14 +
r13r14w21 + r12r14w31 + r12r13w41).

From (34) to (38), it is clear that Â is diagonally dominant
with all row sums being 0 and all its diagonal entries are nega-
tive. Hence, by Gershgorin circle theorem [23], all eigenvalues
of Â must lie in the left half of the complex plane. Also, by
construction, we have Âz = 0 for z = [1 1 . . . 1]T or a
multiple thereof. Thus, Â has at least one 0 eigenvalue and is
a singular matrix. This happens because an interconnect tree
is a closed system, i.e., there is no exchange of atoms with the
other trees. This creates a dependency among the xi variables,
which we will now show.

By conservation of mass, the number of atoms in the tree
will remain the same at all times. From (1), we can write

C(x, t) = C0e−σ(x,t)/B (39)

where C(x, t) is the concentration of atoms and C0 is its equi-
librium value in the absence of stress. Then, the total number
of atoms Atot in the tree at any time t can be written as (h,
the height of the tree is same for all branches)

Atot = C0h
∑

bk∈B
wk

∫ Lk

0
e−σk(xk,t)/B dxk

≈ C0h
∑

bk∈B
wk

∫ Lk

0
(1 − σk(xk, t)/B) dxk

= C0h

B

⎛

⎝B
∑

bk∈B
wkLk −

∑

bk∈B
wk

∫ Lk

0
σk(xk, t) dxk

⎞

⎠ (40)
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where we used the approximation ex ≈ 1 + x for x � 1
because σk(xk, t) � B, ∀t. Clearly, only the stress values in
the second summation term in (40) change with time; every-
thing else remains constant. Therefore, the tensile/compressive
stresses generated by the movement of atoms can only vary
in a way that satisfies the conservation of mass. Define

β(τ) �
∑

bk∈B
wkLk

∫ 1

0
ηk(ξk, τ )dξk (41)

which is the second summation term in (40) rewritten in terms
of the reduced stress. Since the stress values for all points at
τ = 0 is known from initial conditions, β(0) = β0 is always a
known quantity. Then, in order to satisfy the conservation of
mass, we must have β(0) = β(τ) ∀τ . Evaluating the integral
in (41) using the trapezoidal rule, we can write

β0 =
q∑

i=0

cixi(τ ) (42)

where ci are the coefficients as determined by the trapezoidal
rule. This gives us a linear dependence between xi so that one
state can be eliminated. Without loss of generality, let x0 be
a nonoutput state to be eliminated. Define

x(τ ) �
[
x1(τ ) x2(τ ) . . . xq−1(τ ) xq(τ )

]T (43)

to be the state vector. Now, we can write

x0(τ ) = −cTx(τ ) + β0
/

c0 (44)

where c = c−1
0 [ c1 c2 . . . cq ]T ∈R

q. Using (44) and the
previous ODE formulation, we can eliminate x0 from the ODE
equations (thereby removing the eigenvalue at 0) so that the
stress evolution in a tree can be represented by an LTI system
with q ODE equations with q independent states:

ẋ(τ ) = Ax(τ ) + Bu (45a)

y(τ ) = Lx(τ ) (45b)

x(0) = [
ηT,1(0) ηT,2(0) . . . ηT,q(0)

]
(45c)

where ηT,i(0) is the reduced thermal stress at t = 0 at the ith
discretized point, u ∈ R

|N | is the input vector which depends
on the branch current densities, A ∈ R

q×q is the system matrix
and B ∈ R

q×|N | is the input matrix such that

A = −âqcT + Âq (46a)

B = B̂q + (β0/c0)âqūT , ū ∈ R
|N | and ūT · u = 1 (46b)

with âq = [âi,k] for 1 ≤ i ≤ q, k = 0, Âq = [âi,k] for
1 ≤ i, k ≤ q and B̂q = [b̂i,k] for 1 ≤ i ≤ q, 0 ≤ k ≤ |N | − 1.
The output y(τ ) ∈ R

|N | is the vector of stress values at the
junctions and L ∈ R

|N |×q is the output matrix.
Between any two void nucleations, A, B and input u are

constant. Hence, we can further simplify the LTI system
representation by applying the following change of variables:

x̂(τ ) = x(τ ) − xss (47)

where xss = −A−1Bu is the steady state stress of the tree for
the given input u. Finally, we can rewrite (45) as

˙̂x(τ ) = Ax̂(τ ) (48a)

(a) (b)

Fig. 5. For Td , (a) evolution of stress at junctions with time and (b) stress
profile with time. Here, L1 = L2 = 50 μm, and j1 = −j2 = 6e9 A/m2.

y(τ ) = L(x̂(τ ) + xss) (48b)

x̂(0) = x(0) − xss. (48c)

We solve this LTI system using adaptive step Runge–Kutta
methods, and the solution for Td of Fig. 3 is shown in Fig. 5.

F. Interconnect Tree Macromodeling

The full size (order) of the LTI system representation of a
tree is q = N|B|. As such, the resulting system may become
very large for finer discretizations or for large trees. Thus,
to reduce the computation time, we propose a model order
reduction technique based on the Arnoldi process [23] that
calculates the stress profile of a tree for any given time τ . We
will use this technique later in Sections VI-B and VI-C for
improving the performance of our power grid EM analysis.

Using (47) and (48), we can write

x(τ ) = eAτ x̂(0) + xss (49)

for which a direct analytical solution may be possible. But,
calculating the matrix exponential at any given time point for
the full order system is computationally expensive. However,
EM is a very slow process and its dynamics is dominated by
the smallest magnitude eigenvalues of A. In order to quickly
estimate x(τ ) using (49), we can use the Arnoldi process to
reduce the order of the system by capturing these dominant
modes. The Arnoldi process produces a smaller Hessenberg
matrix of a given size, say m, that approximates the extreme
(largest in magnitude) eigenvalues of the original system and
an orthonormal basis for projecting the original state vector on
to the reduced state vector and vice versa. In our case, we want
the reduced order system to approximate the smallest magni-
tude eigenvalues of A. As such, we apply the Arnoldi process
on A−1 because the smallest eigenvalues of A correspond to
the largest eigenvalues of A−1

VT
mA−1Vm = Hm (50a)

VT
mVm = Im (50b)

where Hm ∈ R
m×m is the Hessenberg matrix, Vm ∈ R

q×m is
the orthonormal basis that spans the order-m Krylov subspace
of A−1, and Im ∈ R

m×m is the identity matrix. Using this, we
can approximate (49) as [23]

x(τ ) ≈ ∥
∥x̂(0)

∥
∥

2VmeτH−1
m e1 + xss. (51)

From experiments, we found that m = 0.05q provides a
good accuracy versus speed tradeoff. The matrix exponential
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in (51) is calculated using the scaling and squaring
method [23]. In practice, this approximation can be computed
quickly because m � q, and thus can be used to obtain the
stress profile of a tree at any given time.

V. DETERMINING BRANCH TEMPERATURES

Accounting for the temperature distribution across the layers
while doing EM analysis is very important due to three rea-
sons. First, the initial residual stress at t = 0 for any given tree
is mainly due to the thermal stress, which is strongly depen-
dent on the initial temperature [see (9)]. Second, from (4),
the diffusivity of branch bk, which determines the time rate
of change of stress, depends on its temperature Tm,k. Finally,
the steady state void length depends on thermal stress: higher
thermal stress leads to larger voids. As such, to perform real-
istic EM checking, one needs to determine the temperature
distribution for different layers in the grid. We do this using
previous work [24], [25], which we will summarize briefly for
completeness.

A. Thermal Modeling

Each layer in the power grid is discretized into uniform vol-
ume elements called thermal blocks [24]. Each thermal block
represents an isothermal volume within a layer, and as such all
branches and junctions that reside within a thermal block have
the same temperature. For simplicity, we assume that a given
branch cannot span two thermal blocks, so that it has no tem-
perature gradient. For each block, we perform thermal analysis
using compact thermal modeling (CTM) [25] based on electro-
thermal equivalence. A CTM is a lumped thermal RC network,
with heat dissipation modeled as a current source. Specifically,
each thermal block is represented as a thermal node connected
to six resistors, a current source, and a capacitor. The resistors
model the heat conductivity to neighboring blocks and their
values are determined using thermal properties and geometry
of the thermal block

gE/W = 2k effbwbh/bl, gN/S = 2k effblbh/bw

gup/down = 2k effblbw/bh (52)

where k eff is the effective thermal conductivity and each
thermal block has dimension bl×bw×bh. The total power dis-
sipated in a thermal block can be written as P = Pself_heating +
Plogic, where Pself_heating is due to the average power dissi-
pated by joule heating of the metal branches within the thermal
block and Plogic is the average heat dissipated by the underly-
ing logic, due to active switching and leakage currents. Note
that Plogic contributes to power dissipation of thermal nodes
in the lowest layer only. In our case, we are only interested
in the steady state temperature distribution because transients
in temperature occur on a time scale that is small when com-
pared to the EM. Thus, we ignore the thermal capacitance and
use the steady state temperature distribution in our analysis.

The number of thermal blocks per layer is the same and
is decided based on the required resolution for temperature
distribution. In addition, we assume convective boundary con-
dition [24] at the top and insulated boundary conditions at the
four sides to model the heat transfer between the power grid
and the surroundings. The CTMs for thermal blocks, combined

with the boundary conditions, gives us a thermal grid that can
be solved for finding the temperature distribution of the power
grid. We generate the thermal grid at t = 0 and calculate the
initial temperature distribution to find the residual stress and
the branch diffusivities. After a void nucleates, the branch cur-
rents change. Hence, we update the Pself_heating for all thermal
nodes, find the new temperature distribution and update the
branch diffusivities.

VI. POWER GRID EM ANALYSIS

Because EM is a long-term failure mechanism, short-term
transients that may be typically experienced in chip work-
loads do not play a significant role in EM degradation. Hence,
and consistent with standard practice in the field, we use
an effective-current model [26], so that the grid currents are
assumed to be constant at some average (effective) value, at
least during the void nucleation phase. Once a void nucle-
ates, branch resistances change fairly quickly and the currents
change, also fairly quickly, to new effective values. Thus,
between any two successive void nucleations, the grid has
fixed currents, voltages, and conductances and so can be mod-
eled using a dc model. To denote the fact that conductances
(and the corresponding voltages) change from one nucleation
phase to the next, as in [8], we express the grid model as

G(t)v(t) = is (53)

where G(t) is the time-varying (but piecewise-constant) con-
ductance matrix, v(t) is the corresponding time-varying (but
piecewise constant) vector of node voltage drops, and is is the
vector of effective values of the current sources tied to the
grid.

A. Main Approach

As explained earlier, we use the mesh model to find the
MTF, in which the grid is deemed to fail not when the first
void has nucleated, but when enough voids have nucleated so
that the voltage drop specification has exceeded at some grid
node. As a byproduct, however, this process also produces the
time when the first void nucleates, which helps us generate
the MTF under a series model, in which a grid is deemed to
fail when the first void nucleates. We report the series model
MTF for comparison purposes.

We assume that the grid is undamaged (no voids) at t = 0.
A voltage-drop threshold value for every grid node (or a sub-
set of grid nodes) is given, which is captured in the vector
vth. Initially, all node voltage drops are less than vth, i.e.,
v(0) < vth. A power grid is a collection of interconnect trees.
As such, to estimate the EM degradation of the grid, we for-
mulate the LTI system for every tree as shown in Section IV-E
and numerically integrate it to obtain the stress as a function
of position and time. Every time a void nucleates at a junction
(i.e., the stress reaches σth), we pause the integration, calcu-
late the steady state volume of the void and update the branch
resistances and current density values. We then check to see
if this void leads to an EF, and if it does, we remove the cor-
responding via from the power grid and update the voltage
drops. Then, we determine the new temperature distribution
of the grid, update the corresponding boundary conditions and
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(a) (b)

Fig. 6. (a) Goodness-of-fit plot for normal distribution and (b) probability
distribution function (pdf) using 125 mesh TTF samples from ibmpg2 main
approach.

reformulate the LTI system for all trees using the new bound-
ary conditions. The time of first void nucleation gives the TTF
of the grid as per the series model. Due to increase in branch
resistances, the voltage drops in the grid continue to increase
as we move forward in time. Each time we update the voltage
drop, we check to see if a voltage drop violation has occurred
somewhere. The earliest time when the voltage drop at any
node exceeds vth is the TTF of the grid as per the mesh model.

To account for the random nature of EM degradation, we
perform Monte Carlo random sampling to estimate the MTF.
In each Monte Carlo iteration, we assign new randomly gener-
ated diffusivities to all the branches in the grid. This effectively
produces a new instance of the whole power grid, which we
refer to as a sample grid. Then, as stated above, we use the
LTI system formulation to generate a TTF value based on
the series model and another based on the mesh model. With
enough samples, we form two averages as our estimates of the
series MTF and the mesh MTF.

Let T be the RV that represents the statistics of the mesh
TTF for this approach, then the expected value of T, denoted
by E[T], is the mesh MTF of the grid. Using goodness of fit
methods, it was found that the normal distribution is a good
fit for T (see Fig. 6). Therefore, we can use standard statisti-
cal sampling (Monte Carlo) [27] to find the value of E[T] to
within a user-specified error tolerance. The number of samples
required for Monte Carlo to terminate is determined such that
we have (1 − λ)× 100% confidence (e.g., λ = 0.05 for 95%
confidence) that the relative error in MTF estimation is less
than a user-provided relative error threshold ε (e.g., ε = 0.1
for 10% relative error threshold).

Though this is the most accurate approach, numerically
solving all the trees in the power grid using the extended
Korhonen’s model can be computationally expensive. In this
paper, we use this approach only on smaller grids and we refer
to it as the main approach. The results from this approach
serve as a benchmark of comparison for more optimized
approaches.

B. Improved Performance With Filtering

We will now present a method that drastically reduces the
run-time with almost no impact on accuracy. We will refer this
as the Filtering approach. For each sample grid, solving all the
trees up to the time of grid failure yields a specific sequence
of void nucleation times in certain trees that are of interest.
In particular, all trees that nucleate their first void before the

Fig. 7. Idea for filtering scheme. The dotted lines show the would-be stress
evolution if the boundary conditions are not updated when stress reaches σth.
Junction 1 fails before t = tm, junction 2 fails after.

time of grid failure are of interest to us. All trees that nucle-
ate their first void after the grid failure are inconsequential
to us, and we would do well to not solve them in the first
place. Unfortunately, we do not know up-front which set of
trees should be solved, and which can be discarded. However,
we can devise an approximate filtering scheme that indicates
which subset of trees will most likely nucleate before all the
rest. We call this subset as the active set.

For a given sample grid, we restrict our attention to trees
whose estimated first void nucleation times are smaller than
some threshold t = tm. Note that we do not need to know
the exact time of void nucleation(s) for junctions in a tree,
rather we only need to know if the first void nucleates before
tm. Clearly, if the stress evolution at a junction is to cause
void nucleation before time tm, then that junction’s would-
be stress value at tm is higher than σth (see Fig. 7). Here,
the would-be stress value at tm denotes the hypothetical stress
value at a junction if the boundary conditions are not updated
at the time of void nucleation. We use the macromodeling-
based solution (51) to calculate the would-be stress profile
of every tree at t = tm, and any tree with junction stresses
greater than σth at t = tm is included in the active set.
We refer to tm as the active set cutoff threshold and it is a
part of the Monte Carlo process. We start with a sufficiently
high value for tm, that is reduced as more TTF samples are
obtained.

Trees that are likely to nucleate before tm, based on this
filtering scheme, are declared to be part of the active set and
are numerically solved. If the sample grid fails before tm, we
obtain a sample TTF. On the other hand, it might be the case
that the sample grid has not failed up to t = tm. In this case,
we set the TTF sample equal to tm, and such a sample is
called a limited sample. Thus, in our Monte Carlo approach,
we effectively sample from the RV T′ that has a limited normal
distribution (l = −∞ and u = tm) with the underlying normal
RV T. However, we can estimate the mean of the underlying
RV E[T] using the samples obtained from the limited RV T′,
as shown next.

Using the law of total expectation [28], we can write for T

E[T] = E[T|T ≤ tm]F(tm) + E[T|T > tm](1 − F(tm)) (54)

where F(t) is the cdf of the normal RV T. We can also express
E[T′] in similar terms. From the definition of a limited RV,
we have E[T′|T′ ≤ tm] = E[T|T ≤ tm], E[T′|T′ > tm] =
tm, and F′(tm) = F(tm), with F′(t) being the cdf of RV T′.
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Hence, we can write

E
[
T′] = E[T|T ≤ tm]F(tm) + tm(1 − F(tm)). (55)

Subtracting (55) from (54), we get

E[T] = E
[
T′] + (E[T|T > tm] − tm)(1 − F(tm))

= E
[
T′] + E[T − tm|T > tm](1 − F(tm)). (56)

The term E[T− tm|T > tm] is the mean residual life (MRL) of
the power grid at t = tm. Define μ � E[T], μ′ � E[T′], and
pf � F(tm). Since we know that T has a normal distribution,
the MRL of the power grid at t = tm can be expressed in terms
of μ and pf . From (56), after some algebraic manipulation, we
obtain

μ = μ′ + (κ − 1)tm
κ

(57)

where κ = pf + φ(�−1(pf ))/�−1(pf ), �(t) and φ(t) are,
respectively, the cdf and pdf of a standard normal distribution
N (0, 1). �−1 denotes the inverse cdf of N (0, 1) which can
be computed on most operating systems using the erfinv()
function. We estimate μ′ and pf from the statistical sampling
process. Let {T ′

1, T ′
2, . . . T ′

s} be s samples obtained from RV
T′ using a Monte Carlo process. Then, define

μ̂′ � 1

s

s∑

k=1

T ′
k, p̂f � 1 −

∣∣{T ′
k : T ′

k > tm
}∣∣

s
(58)

where μ̂′ is the estimated value of μ′ and p̂f is the estimated
value of pf . Thus, using μ̂′ and p̂f in (57) we can calculate
μ̂, the estimated value of μ. Note that μ′, pf , and μ are the
true values, so that lims→∞ μ̂′ = μ′, lims→∞ p̂f = pf , and
lims→∞ μ̂ = μ. Then, the error in estimation can be written
as: δμ = |μ̂ − μ|, δμ′ = |μ̂′ − μ′|, and δpf = |p̂f − pf |.

Similar to the main approach, we stop the Monte Carlo
process when we are (1−λ)×100% confident that the rela-
tive error in estimated MTF is less than some user provided
threshold ε. In other words, we stop if

δμλ

μ
≤ ε ⇐⇒ δμλ

μ̂
≤ ε

1 + ε
(59)

where δμλ is (1−λ) × 100% confidence bound on the esti-
mation error δμ. In other words, this means that the interval
[μ̂ − δμλ, μ̂ + δμλ] will contain μ (the true value) (1 − λ) ×
100% of the time. Using propagation of errors [29] in (57),
we get

δμλ =
√(

∂μ

∂μ′ δμ
′
λ

)2

+
(

∂μ

∂pf
δpf λ

)2

(60)

where δμ′
λ and δpf λ are the (1−λ)×100% confidence bounds

on μ′ and pf , respectively. δμ′
λ is obtained from simulation,

using the technique given in [21] and δpf λ can be calculated
from the TTF samples using [30]. For lack of space, we skip
the details and present the final expression

δμ2
λ = (δμ′

λ)
2

κ̂2

+ z2
λ/2(tm − μ̂′)2p̂f (1 − p̂f )

κ̂4s

[

1 +
(

1 + 1

y2

)2
]

(61)

TABLE I
COMPARISON OF POWER GRID MTF USING THE

MAIN APPROACH AND FILTERING APPROACH

where zλ/2 is the (1 − λ/2)-percentile of N (0, 1), κ̂ = p̂f +
φ(y)/y and y = �−1(p̂f ). We obtain at least 30 TTF samples
before starting to check the stopping criteria (59).

C. TTF Predictor Approach

We next describe a predictor-based approach to further
speed up the MTF computation. This approach is applied on
top of the filtering approach explained earlier and gives excel-
lent speed-ups. It makes use of the reduced-order model given
in Section IV-F earlier.

Once the stress profile of a tree is determined for a few
time-points using (51), it should be possible to extrapolate the
rest of the trend, with some suitably nonlinear fitting function.
The fitting function can thus be used as a TTF predictor, to
find a good estimate of the nucleation times for all junctions
within the tree. Parameters of the function can be found using
least-squares fitting, based on the points already solved. While
various exponential or log functions may be suitable, we have
found empirically that the following power function template
provides a very good fit:

f (t) = atb+c ln t (62)

where a, b, and c are parameters to be determined using regres-
sion analysis and least-squares fitting and f (t) is the stress
value at time t. Note that ln(f (t)) is a simple quadratic in ln t,
with ln a, b, and c as the three coefficients. Once we estimate
the time of void nucleations using (51) and the TTF predictor,
we can predict the time (and sequence) of void nucleations.
For each void nucleation, we update the corresponding branch
resistances and voltage drops until the grid fails.

VII. EXPERIMENTAL RESULTS

All approaches have been implemented in C++ and tested
on a number of IBM power grid benchmarks [16], using
a quad-core 3.4 GHz Linux machine with 32GB of RAM.
The interconnect material is assumed to be copper, so that
the following parameters are used in our EM model: B =
1.35×1011 Pa, � = 1.66×10−29 m3, kb = 1.38×10−23 J/K,
q∗ = 8.0109 × 10−19 C, σth = 600 × 106 Pa [9], and
δ = 10−9 m. An ambient temperature of 300 K is used for
all simulations. Each branch is discretized into N = 16 seg-
ments. We use a relative tolerance of 10−3 and an absolute
tolerance of 10−6 for the ODE solver. For all grids, we used
λ = 0.05 (95% confidence bounds) and ε = 0.1 (maximum
relative error threshold of 10%). In our implementation, we
use a shared memory model to parallelize the computation.

Table I compares the accuracy and runtime of the main
approach versus the filtering approach. Since the main



1328 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 7, JULY 2018

TABLE II
COMPARISON OF POWER GRID MTF AS ESTIMATED USING BLACK’S MODEL AND EXTENDED KORHONEN’S MODEL

approach slows down considerably as the grid size increases,
we were able to test it only on the three smallest bench-
marks. μall

m (μall
s ) and μact

m (μact
s ) denote the estimated

mesh (series) MTF using the main approach and the filter-
ing approach, respectively. From Table I, it is clear that as
the grid size increases, the filtering approach leads to sig-
nificant speed-ups with negligible loss in accuracy. For the
largest grid we could test (ibmpg5 with 2002 trees), the fil-
tering approach obtained a speed-up of ∼ 60× over the main
approach with error in series MTF estimation being only 0.1%
and the error in mesh MTF being 0.46%. This shows the value
of the filtering approach.

Table II lists the MTFs estimated per the series and mesh
models using three approaches, based on: 1) Black’s model
(columns μblk

s and μblk
m ) implemented to give a mesh MTF

as in [8]; 2) our extended Korhonen’s model with the active set
filter (μact

s and μact
m ); and 3) our extended Korhonen’s model

with the active set filter and the TTF predictor (μpre
s and

μpre
m ). In order to give a fair comparison, we calibrate Black’s

model based on data obtained from Korhonen’s model. From
the table, we note that μact

s > μblk
s and μact

m > μblk
m for

all grids, except ibmpg1 for which the estimated series MTF
using Black’s model is longer than that estimated using our
approach. Overall, the mesh (series) MTF estimated using the
extended Korhonen’s model is 2.75× (2.27×) longer than that
found using Black’s model. Finally, in Table II we also report
the MTF values obtained using the TTF predictor approach.
As compared to the filter-only approach, the predictor-based
variation achieves an average speed-up of ∼11× for all
reported grids, with average error in the mesh (series) MTF
being 10% (1.8%).

In order to show the inaccuracy in Black’s model, we
present two scenarios, based on two interconnect trees T1 and
T2 taken from ibmpg2. Both trees are straight metal stripes
with 192 branches each. T1 has a high current density profile,
with maximum branch current density being 5.31 × 109 A/m2

[Fig. 8(a)]. In this case, Black’s model predicts the first failure
time of about 6.2 years, whereas the actual failure time found
using the extended Korhonen’s model is around 13.2 years,
which is ∼2× longer. T2 has a low current density profile,
with maximum branch current density being 1.44 × 109 A/m2

[Fig. 9(a)]. Here, due to the Blech effect, Black’s model

(a)

(b)

(c)

(d)

Fig. 8. (a) Current density profile for T1 and MTFs estimated using
(b) extended Korhonen’s model (MTFekm), (c) Black’s model (MTFblk), and
(d) MTFblk − MTFekm.

predicts that no failure would occur. However, accounting
for the material flow between the branches and temperature
gradients, we found that the first failure would occur around
2.44 years. Thus, Black’s model was pessimistic in the first
scenario and highly optimistic in the second one. This shows
that lifetime estimates using the Black’s model can be highly
inaccurate.

We also explore the effect of temperature on the lifetimes
estimated using the extended Korhonen’s model. For this com-
parison, we use T1. We first estimate the MTFs using the actual
temperature distribution, as shown in Fig. 11(a). For this case,
the first failure happens around 13.2 years. Now, we artificially
assume a constant temperature of 325 K throughout the tree.
Note that 325 K is the average of the actual branch tempera-
tures. In this case, the first failure happens around 20.26 years.
A higher nominal temperature would result in a lower failure
time and vice versa. Hence, temperature distribution plays a
very important role and should be taken into account while
doing EM analysis.

In order to assess the impact of EFs on the grid lifetime,
we present a case study using the ibmpg2 grid; we estimate
its mesh MTF under two settings, one where EF detection
is on and the other where EF detection is turned off. As
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(a)

(b)

(c)

(d)

Fig. 9. (a) Current density profile for T2 and MTFs estimated using
(b) extended Korhonen’s model (MTFekm), (c) Black’s model (MTFblk), and
(d) MTFblk − MTFekm.

(a) (b)

Fig. 10. Impact of EF on (a) voltage drops (shown for one sample
grid) and (b) estimated mesh MTF for ibmpg2. Maximum voltage drop at
t = 0 is 3.8%vdd , and vth = 5%vdd .

can be seen from Fig. 10(b), turning off EFs gives an opti-
mistic MTF estimate which is 34% longer than the actual
MTF. Thus, if the target product lifetime is set as 15 years,
this grid will fail EM sign off due to the impact of EFs,
but would erroneously succeed if EFs are ignored. The dif-
ference in MTFs stems from the influence of EFs on node
voltage drops. In Fig. 10(a), we show how the maximum
node voltage drop changes with time as voids nucleate due
to EM. Since EFs lead to an open circuit, their impact on
voltage drops is more severe, which leads to shorter life-
times. In general, the effect of EFs gets more pronounced as
the difference between the maximum initial voltage drop and
vth increases.

Statistical analysis of EM failures in copper interconnects
often shows bimodal distributions due to the presence of
EFs [31]. A similar bimodal distribution can be observed in
the statistics for mesh TTF samples obtained using our power
grid EM analysis. Consider the following two failure modes
for a given sample grid: Mode A, in which all junction failures
that lead to grid failure are EFs and Mode B, where at least
one junction failure is a conventional failure. Fig. 12(a) and (b)
show, respectively, the probability plot the empirical pdf for
the two failure modes obtained using 2500 mesh TTF samples

(a)

(b)

(c)

(d)

Fig. 11. (a) Actual temperature profile and the assumed nominal tempera-
ture distribution. MTFs estimated with (b) actual temperature profile (MTFT ),
(c) assuming Tm = 325K for all branches (MTFT ), and (d) MTFT − MTFT .

(a) (b)

Fig. 12. (a) Probability plot and (b) empirical pdf obtained using 2500
mesh TTF samples of ibmpg2 grid shows an underlying bimodal distribution
for different modes of grid failure. MTFA = 6.67 yrs, MTFB = 7.99 yrs,
MTFall = 7.66 yrs.

from ibmpg2. Since the pdf for failure modes A and B have
a lot of overlap, the overall distribution is almost normal.

VIII. CONCLUSION

We proposed a physics-based EM checking approach for
on-die power grids that removes the unrealistic assump-
tions inherent in traditional industrial tools. Our approach
accounts for process and cross die temperature variations
and detects EFs. Computational speed is improved using a
macromodeling-based filtering scheme and a fast predictor-
based approach, with minimal impact on accuracy. The
MTFs estimated using our physics-based approach were
2.75× longer on average than those based on a (calibrated)
Black’s model. The method is quite fast and is suitable
for very large power grids.
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