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Abstract—Due to continuing technology scaling, electromigra-
tion (EM) remains a prominent reliability concern in integrated
circuit design. Traditional empirical methods often result in
over-design in very large scale integration (VLSI) due to model
inaccuracy. Recently, researchers have focused on analyzing EM
susceptibility by tracking hydrostatic stress evolution in metal
lines, governed by computationally expensive partial differential
equations (PDEs). In this paper, we propose a partitioning-based
approach using neural networks to efficiently forecast the stress
evolution along interconnect trees during the void nucleation
and growth phases. This approach begins by decomposing the
interconnect tree into subcomponents, providing computationally
efficient analytical solutions for predicting stress evolution within
each subtree. Subsequently, we employ a lightweight neural
network to reassemble these components with their correspond-
ing solutions to the original structure, ensuring accurate stress
prediction. This divide-and-conquer strategy can accommodate
various tree structures, with offshoots at arbitrary junctions, and
holds substantial promise for using NN-based methods to solve
mesh-free stress evolution on much larger interconnect trees than
previously possible, with reduced computational overhead and
heightened accuracy. The proposed approach eliminates the need
for time discretization and grid meshing typically required in
numerical methods. Numerical results confirm its advantages in
accuracy and computational efficiency.

Index Terms—Electromigration, partitioning, interconnect
tree, machine learning.

I. INTRODUCTION

Electromigration (EM) remains a major circuit reliability
concern in advanced technology. This concern arises from the
reduced service lifetime of interconnects under high current
density, resulting in voids, a reduction of cross-sectional area,
and an increase in line resistance. Thus, EM verification is
crucial for chip signoff in very large scale integration (VLSI).

Traditional EM models have predominantly relied on em-
pirical approaches, which often lack the accuracy needed for
complex multi-line structures. Based on the well-known Blech
effect [1], a certain length-current density product can be used
to identify EM-robust interconnects, called “immortal” wires.
In additional, Black’s equation [2] provides an empirical model
for the mean-time-to-failure (MTF) of isolated metal lines, as
a relationship between EM failure time, current density, and
temperature. However, applying these methods to multi-line
metal structures implicitly assumes that individual lines may
be modelled as independent isolated lines, which is not true
and leads to inaccurate reliability evaluation when applied to
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Fig. 1. Example of an interconnect tree consisting of a long stripe (blue)
with occasional offshoots (grey) from certain junctions. Black blocks denote
junctions in the interconnect tree; yellow blocks indicate selectable joints in
the proposed approach.

on-chip circuits such as power grids [3]. As an alternative
physical model, and building on previous work in [4]–[6],
EM assessment based on Korhonen’s equation [7] effectively
captures the physical kinetics. This equation describes the
relationship between the current density-driven electron wind
force and the diffusion gradient-driven back stress force along
a wire, formulated as partial differential equations (PDEs).
According to this model, tree-level analysis for EM-induced
stress calculation has been proposed to consider the material
flow between adjacent segments confined by diffusion barriers,
rather than solely focusing on individual wires [8]–[10]. Solv-
ing the PDEs-governed physical model remains a challenge,
especially as interconnect tree sizes grow. Numerical methods,
such as the finite difference method (FDM) and finite element
method (FEM), are typically employed for stress analysis,
necessitating time discretization and mesh refinement [11],
[12]. Analytical methods, on the other hand, yield closed-
form solutions for hydrostatic stress via Laplace transfor-
mations [13]–[15], offering computational acceleration for
specific interconnect structures. Recently, machine learning
(ML) has emerged as a promising tool for modeling the
evolution of EM-induced stress governed by complex PDEs.

To address the scalability issues in large interconnect trees,
we partition the EM-induced stress problem and incorporate
sub-problems. Partitioning techniques have traditionally been
used in VLSI to accelerate the solution of large-scale problems
by leveraging circuit locality. A large circuit can be divided
into smaller sub-circuits connected at a few global boundaries.
This divide-and-conquer strategy reduces computational com-
plexity by manipulating the entire system into hierarchical tree
structures after optimization, scaling, relaxation, partitioning,
and assignment [16], [17].

This study focuses on EM assessment in power grids,
where metal lines mostly carry unidirectional currents and are
therefore susceptible to EM failure. Fig. 1 shows an example
of a typical interconnect tree in modern power grids, where the
tree consists of a long stripe (blue) with possibly occasional
offshoots (grey) from certain junctions. We introduce a novel
learning approach to calculate stress evolution along such
interconnect trees with offshoots. By utilizing the partitioning-
based method with neural networks and benefiting from the
locality property in EM-induced stress evolution, satisfactory
computational efficiency can be achieved without sacrificing
accuracy. Compared with numerical methods, the proposed
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model frees EM analysis from time discretization and grid
meshing. Compared with analytical methods that are typi-
cally limited to interconnect trees with simple structures, the
proposed method is applicable to more practical interconnect
tree structures and provides closed-form expressions for stress
evolution. Our main contributions include:

• We propose, for the first time, a fast partitioning-based
approach to predict mesh-free stress evolution along inter-
connect trees during both the void nucleation and growth
phases. The method is based on a neural network and re-
quires no prior knowledge of the stress solution. Designed
to align with EM analysis, the proposed framework
considers physical parameters like varying segment width
and random diffusivity, as well as operating conditions
like time-dependent temperature and dynamic current
densities caused by EM-induced metal line degradation.

• We introduce a novel divide-and-conquer strategy that
enables multiple partitioning approaches for the original
interconnect tree and derives computationally efficient
stress solutions for the subtrees. This approach results
in significant computational savings, with additional time
reduction achieved through parallelization.

• We develop a learning approach to combine the stress
solutions of the subtrees, leveraging the locality of EM
stress evolution, which reduces the number of constraint
conditions in the learning task compared with the existing
methods. The proposed approach is extended to substan-
tially improve the convergence speed by incorporating
random Fourier feature embeddings.

• The proposed approach is validated using the FEM tool
COMSOL, showing significant improvement in accu-
racy, performance, and scalability for EM assessment
compared with existing methods. Further advantages are
demonstrated by the numerical results.

The rest of the paper is structured as follows. Section II
provides a brief overview of the related works, EM physics,
and stress modeling, along with an introduction to spectral bias
and random Fourier features. Section III outlines the partition-
ing method and derives the brick-joint solution. Section IV
introduces the learning framework and extends it to solve
stress evolution under dynamic current densities. Section V
presents the results of the proposed method and compares its
performance against competing methods. Finally, Section VI
concludes the paper and the paper ends with an Appendix that
includes additional technical details.

II. PRELIMINARY

We will review several ML-based approaches for EM as-
sessment, along with key fundamentals and preliminaries for
modeling EM physics and establishing the neural network-
based framework.

A. Related work
ML has shown effectiveness in modeling various physical

systems, including capturing the evolution of EM-induced
hydrostatic stress [18]–[23]. Recently, physics-informed neural
networks (PINN) have been introduced to model physical
dynamics by encoding constraints via PDEs [24], providing
a novel approach to solving Korhonen’s equation. Studies
in [19], [20], [23] have shown promising results in ML-
aided EM analysis by employing a coordinate-based neural
representation to achieve stress evolution on interconnect trees
with multiple segments. However, these methods encounter
challenges as the number of segments increases and exhibit

heavy training overhead. To mitigate this issue, a customized
loss function has been proposed to accelerate training and en-
able stress analysis in larger-scale interconnect trees during the
void nucleation phase [21], which has been further developed
for the void growth phase in [22]. Although these methods can
solve Korhonen’s equation for interconnect trees, they remain
limited by the scale of the trees.

B. EM physics and stress modeling
EM occurs within metal wires carrying significant current

densities, where metal atoms are bombarded by the electron
flow. This resulting atomic flow increases compressive stress
at the anode and tensile stress at the cathode, presenting
an opposing driving force that impedes EM progress [1].
Voids may form when stress levels surpass critical thresholds,
potentially leading to circuit malfunction. The confinement of
metal lines in modern dual damascene technology leads to
void formation due to tensile stress, which is more likely than
hillock formation. In this subsection, we first introduce the
physics-based modeling describing the stress evolution and
then present the concept of stress flow [14], which is employed
to construct the analytical solution of stress evolution along
linear interconnect trees during the void nucleation phase.

1) Physics-based modeling: The evolution of EM-induced
stress can be characterized by the 1D Korhonen’s equation [7],
which combines the atomic flux equation tracking the atomic
mass transport, and the continuity equation enforcing the mass
balance. The atomic flux describing the migration of metal
atoms within the confined line can be expressed as:

ϕ(x) =
DC

kbT

(
Ω
∂σ

∂x
+ q∗ρj

)
, (1)

where j and x represent the current density and loca-
tion, respectively. The effective atomic diffusivity D =
D0 exp(−Ea/kbT ) depends on the activation energy Ea, the
self-diffusion coefficient D0, the Boltzmann constant kb and
the temperature T . The variables C, q∗, Ω, and ρ denote the
atomic concentration, effective charge, atomic lattice volume,
and metal resistivity, respectively. Furthermore, the continuity
equation, which accounts for the interplay between stress
evolution over time and material transport, yields the diffusion
equation:

∂σ(x, t)

∂t
=

∂

∂x

[
κ
(∂σ(x, t)

∂x
+G

)]
, (2)

where κ = DBΩ/kbT and G = q∗ρj/Ω. The notation B is
the effective bulk modulus associated with the line geometry,
especially width, aspect ratio and grain morphology [25], [26].

Fig. 2 illustrates interconnect trees featuring degree-1 to
4 junctions, where the degree indicates the number of lines
connecting to the junction (hollow squares). Boundary condi-
tions (BCs) for the junctions should be established in the EM
model. A preliminary step is to enforce the balance between
the outgoing and incoming atomic flux at junctions with a
degree greater than one (called interior junction), which we
refer to as flux balance:∑

i∈Sr

±Wi · κi

(∂σi(x, t)

∂x

∣∣∣
x=xr

+Gi

)
= 0, (3)

where the atomic flux term is positive in the incoming direc-
tion. Wi is the branch width of the i-th segment, Sr is the index
set of all the segments connected to the r-th interior junction
and Eq. (3) demonstrates the net atomic flux entering the r-
th interior junction is zero. Moreover, the stress continuity
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Fig. 2. The general straight multi-segment, T-shaped, and cross-shaped
interconnect trees. A straight multi-segment brick can be transformed by
folding the segments at the junctions. Notations Lk and ji represent the
location of the k-th node and the current density loaded within the i-th
segment. L0 is equal to zero. The hollow square represents the junction of
the interconnect tree. The yellow square indicates an optional intersection
junction within the partitions.

condition is enforced at the interior junctions, as the stress
evolution must remain continuous along the tree:

σSr [1](xr, t) = · · · = σSr [m](xr, t). (4)

BC at degree-1 junctions (called terminal junction) and the
initial condition for interconnect trees can be categorized into
two cases: a) void nucleation phase when no EM-induced
voiding occurs in metal lines and b) void growth phase when
voids are created and develop over time:

• void nucleation: before void occurs, the atomic flux ϕ at
the diffusion barrier equals zero. BC at terminals follows:

κt

(∂σn
t (x, t)

∂x

∣∣∣
x=xt

+Gt

)
= 0, (5)

where σn shows the stress evolution during the void
nucleation phase as indicated by the superscript n, and xt

denotes the location of the terminal. For each segment,
the initial condition can be written as:

σn
i (x, 0) = σT , (6)

where σT denotes the residual stress at the initial time,
which is uniform as a result of stress migration occurring
immediately after chip manufacturing.

• void growth: once a void occurs, typically after the stress
evolution reaches a critical level defined as σcrit (this mo-
ment is called the void nucleation time tnuc), the normal
component of stress at the void surface is constrained to
zero due to the absence of confinement at the surface.
However, the stress nearby cannot change immediately
and will gradually decrease over time. The infinitesimally
small distance between the zero stress and the remaining
stress is referred to as the effective thickness of the void
interface, denoted as δs. In [27], this value is set to
δs = 1nm. The tree is subsequently divided into several
subtrees based on the void formation location. Typically,
the voids will be situated at the terminal junctions of
the decomposed trees [10], [11], [28], as it is supported
by the observation that flux divergence is higher around
junctions and especially around vias. Assuming a linear
stress distribution across the void interface, the stress
gradient follows dσg

v(xv, t)/dx = ±σg
v(xv, t)/δs where

g denotes the void growth phase and xv is the location
of the void surface. For simplicity, we rewrite the BC at
the voided terminal as [15]:

σg
v(xv, t) = 0, (7)

where σg is the stress evolution during the void growth
phase. The initial stress along the interconnect tree,
excluding the void surface, remains the same as the stress
evolution at tnuc. Therefore, we have:

σg
i (x, 0) = σn

i (x, tnuc). (8)

2) Stress flows: For a straight multisegment interconnect,
stress flow components are introduced in [14] to demonstrate
the contribution of sources located at terminals and intersec-
tions of the interconnect trees to the stress at location x. These
stress flows are the fundamental terms to build up the series
in the stress solution, and the corresponding traveled distance,
defined as Xk

i (x), follows:

X0
i (x) =

{
iLN + x, i is even,
(i+ 1)LN − x, i is odd.

XN
i (x) =

{
(i+ 1)LN + x, i is even,
iLN − x, i is odd.

Xk
i (x) =


Lk + iLN − x, i is even, to the left,
Lk + (i− 1)LN + x, i is odd, to the left,
− Lk + iLN + x, i is even, to the right,
− Lk + (i+ 1)LN − x, i is odd, to the right.

(9)

where k represents the distance from the k-th junction to x
and satisfies k = 1, · · · , N − 1. The stress flow reflects at the
boundaries and i represents the i-th reflection. Left and right
flows are created for the source at interior junctions and travel
sideways from the source. The 0-th reflection distance from
the source of interior junctions called fundamental traveled
distances, are combined from the left and right sides at x = Lk

into the distance Xk
0 (x) = |Lk − x|. The stress flow decays

exponentially with distance traveled and is obtained by [29]:

g(x, t) = 2

√
κt

π
e−

x2

4κt − x× erfc{ x

2
√
κt

}, (10)

demonstrating the relationship between the stress flow, traveled
distance, and time. The notation erfc represents the comple-
mentary error function. Finally, the stress flow under the i-th
reflection is defined as ±Gkg(X

k
i (x), t) for k = 0, N , and

(Gk+1−Gk)g(X
k,l/r
i (x), t)/2 for 0 < k < N where Xk,l

i (x)
and Xk,r

i (x) are the left and right traveled distance in Xk
i (x).

C. Spectral Bias Analysis through Neural Tangent Kernel and
Random Fourier Feature Embedding

The recently developed neural tangent kernel (NTK) theory
[30], [31] bridges the spectral bias analysis with the training
behavior of fully-connected neural networks [32]. Given a
dataset consisting of input Xtrain = [x1, · · · ,xn] ∈ Rd×n

and expected output Ytrain = [y1, · · · , yn], and considering a
network f(·) with unknown weights θ trained by minimizing
the loss function MSE = ||f(θ;Xtrain)−Ytrain)||22, the entries
of NTK, the dot-product kernel, are given by [30], [33]:

Kij = K(xi,xj) = ⟨df(θ;xi)

dθ
,
df(θ;xj)

dθ
⟩, (11)

demonstrating the gradient descent dynamics under an in-
finitely small learning rate. The convergence rate of network
training is shown to be determined by the eigenvalues of the
kernel [31], [32]. It is suggested in [34] that a conventional
fully-connected neural network is incapable of learning high-
frequency tasks, where the eigenvalues of the kernel decrease
sharply and monotonically with increasing frequency of the
eigenvectors, a phenomenon termed “spectral bias”.

To overcome this problem, [35] and [32] introduce Random
Fourier Feature (RFF) embeddings into the neural network
framework, defined as:

γ(B,xxx) = [cos(Bxxx), sin(Bxxx)]T , (12)

where B = [b1, b2, · · · , bm]T ∈ Rm×d is sampled from
a Gaussian distribution N (0, ν2) and ν is a fixed hyper-
parameter. The inputs x are transformed through the Fourier
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mapping γ(·), followed by a fully connected neural network.
It has been demonstrated in [32] that the kernel of a two-
layer linear and bias-free neural network with RFF embed-
dings follows Kγ(x, x

′) = cos(b(x− x′)), featuring non-zero
eigenvalues λ = (1 ± sin b/b)/2 by setting B = b ∈ R
when d = m = 1. The corresponding eigenfunction is
g(x) = C1 cos(bx) + C2 sin(bx), where C1 and C2 are
constants. The finding illustrates that training behavior with
larger ν would yield higher-frequency eigenfunctions and
smaller eigenvalue gaps, potentially mitigating the spectral
bias issue and accelerating convergence speed.

III. NOVEL PARTITIONING-BASED APPROACH

Although previous work [21], [22] has successfully ap-
proximated stress evolution along interconnect trees using
neural networks, the performance degrades as the number
of segments increases, particularly in interconnect trees with
offshoots. This degradation can be explained as the reduced
approximation ability of neural networks in learning tasks
penalized by the increasingly complex physics-constraint loss
function. To address this issue, we propose a partitioning
method to simplify the loss function and capture stress along
larger-scale trees with improved accuracy and reduced com-
putational time. In this method, an interconnect tree is first
divided into several portions where the stress evolution on
each portion can be directly solved. Subsequently, a learning-
based method is employed to combine the stress on each
portion, providing accurate stress solutions across the entire
interconnect tree.

We start with a general interconnect tree with the goal
of selecting certain junction nodes to be removed, which
disconnects the tree, and refer to these nodes as “joints”. This
approach draws inspiration from node tearing technology [36].
For example, the yellow junctions in Fig. 1 can be selected
as joints. Having removed the joints, we duplicate them and
restore the edges of separated trees originally connected to
the joints. These duplicated joints are called “intersection
junctions”. The multiple generated subtrees are referred to as
“bricks” and specifically categorized as structures in Fig. 2.
Specifically, we refer to a brick with degree-2 junctions as
a straight multi-segment brick, a degree-3 junction as a T-
shaped brick, and a degree-4 junction as a cross-shaped brick.
A straight multi-segment brick can be transformed by folding
the segments at the junctions. In our work, the terminal
and interior junctions of straight multi-segment and T-shaped
bricks, and the terminal junctions of the cross-shaped brick,
as shown in the yellow squares from Fig. 2, can be treated as
intersection junctions.

In the following, Section III-A presents the analytical so-
lutions of stress evolution along different types of bricks as
shown in Fig.2. Section III-B proposes modifications to these
analytical solutions by considering the combination of stress
on bricks, the transition between EM phases in each brick, and
the impact of dynamic current density within each segment
and time-dependent temperature on stress evolution. Finally,
Section III-C concludes with the brick and joint solutions, and
provides truncation strategies for fast calculation.

A. Analytical stress solutions for individual bricks
Our first step is to customize the analytical stress solutions

for individual bricks. It should be noted that the stress solutions
during the void nucleation phase are, in this section, under
the assumption of zero initial stress. This will be extended to
the general case in the next section. The schematic of each

brick, introducing the notations Lk and ji, and the positive
current direction, is illustrated in Fig. 2. We denote the initial
time in each EM phase by t0, which is set to 0 during the
void nucleation phase and tnuc during the void growth phase.
The notation T = t − t0 is then introduced to represent the
evolution time, where t denotes the observation time instance.

1) Straight multi-segment brick: During the void nucleation
phase, [14] demonstrates that substituting Eqs. (9) and (10)
into:

gni,k(x, t)
△
=


g(Xk

i (x), t), k = 0, N,

g(Xk,l
i (x), t) + g(Xk,r

i (x), t)

2
, k = 1, · · · , N − 1,

(13)
where, as before, Xk,l

i (x) and Xk,r
i (x) are the left and right

traveled distances of Xk
i (x) from the k-th junction during

the i-th reflection, the analytical stress evolution on a straight
multi-segment brick follows:

σn
2,j(x, t) =

+∞∑
i=0

N∑
k=0

Akg
n
i,k(x, T ), Lj−1 ≤ x ≤ Lj , (14)

where the subscript 2, j represents the j-th segment of a
straight N -segment brick (in which the maximum degree of
a junction is ‘2’), while Ak equals G1 for k = 0, −GN for
k = N and (Gk+1 −Gk) for k = 1, · · · , N − 1.

During the void growth phase, for t > tnuc, since the
analytical solution has already been published in [15], we
summarize the solution below. Let fk(x) = σn

2,k(x, tnuc)
where x ∈ [Lk−1, Lk]. The influence of initial stress along
the k-th segment can be computed as [15]:

bk(m,x, t) =
1

LN
e−Mb

∫ Lk

Lk−1

fk(u) sin(zm(u− x))du, (15)

where zm = (m− 0.5)π/LN is the m-th zeros obtained from
the Residue Theorem and we have Mb = z2mκkt. Consistent
with a decay phenomenon, Eq. (15) is close to zero as time
increases to infinity. The overall impact of initial stress on
stress evolution along the j-th segment at t > tnuc follows:

Bg
2,j(x, t) =

+∞∑
m=0

(−1)m
{ N∑

k=1

bk(m,x−, T )

−
j−1∑
k=1

bk(m,−x−, T ) +

n∑
k=j

bk(m,x+, T )
}
,

(16)

where x+ = LN + x and x− = LN − x. Then we establish

ggi,k(x, t)
△
=



(−1)ig0, k = 0,

g0 − g(η
j−
N,k(i, x), t) + g(ξ

j+
N,k(i, x), t)

2× (−1)i
, 1 ≤ k < j,

g0 + g(η
j−
N,k(i, x), t)− g(ξ

j+
N,k(i, x), t)

2× (−1)i
, j ≤ k < N,

(17)

where g0 = −g(ξ
j−
N,k(i, x), t) + g(η

j+
N,k(i, x), t) and the de-

tailed notations η
j−
N,k, η

j+
N,k, ξ

j−
N,k, ξ

j+
N,k can be found in [15],

representing the traveled distances. Stress evolution along the
j-th segment of a straight interconnect tree satisfies [15]:

σ̂g
2,j(x, t)=σg

2,j(x, t)+B
g
2,j(x, t)=

+∞∑
i=0

N∑
k=0

Akg
g
i,k(x, T )+Bg

2,j(x, t),

(18)
where AN = 0 and the void formation is assumed at the right
terminal (x = LN ).
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2) T-shaped and cross-shaped bricks: In the following,
the Laplace transform is used to derive the analytical stress
solutions for bricks with a degree-M junction, where M = 3
for the T-shaped brick and M = 4 for the cross-shaped brick.
A detailed derivation process for stress evolution along a T-
shaped brick during the void nucleation phase is given in
Appendix A. In Algorithm 1 of Appendix A, we provide a
set of vectors including Li,M , HC and H∗, where i is a non-
negative integer related to the number of stress flow reflections.
We define HC △

= H(C) as a transformation that maps C, a
set of indices of segments, to a vector used for calculating
stress evolution. These vectors are then employed to obtain
the traveled distance:

ξj+p,q(i, x) = Li,M
p −H{j}

q − LΣ − Lj + x,

ξj−p,q(i, x) = Li,M
p −H{j}

q − LΣ + Lj − x,

ηj+
p,q,k(i, x) =

{
Li,M

p −H{j,k}
q − LΣ − Lj + x, j ̸= k,

Li,M
p +H∗

q − LΣ + x, j = k,

ηj−
p,q,k(i, x) =

{
Li,M

p −H{j,k}
q − LΣ + Lj − x, j ̸= k,

Li,M
p −H∗

q − LΣ − x, j = k,

(19)

where x ∈ [L0, Lj ], LΣ =
∑M

j=1 Lj , j ∈ [1,M ] and
k ∈ [0,M ]. The subscripts p and q are vector indices that
traverse the entire vectors. At location x on the j-th segment
of the brick, we employ Eq. (20) to calculate the stress flow
component from the source of the terminal junction on the
k-th segment:

g
n/g
i,j,k(x, t,M,n)=

∑
p,q K

i,M
p h

{j}
q

(
g(ξj+p,q(i, x), t) + n1g(ξ

j−
p,q(i, x), t)

)
M

,k = 0,∑
p,q K

i,M
p h∗

q(n2g(η
j+
p,q,j(i, x), t)+g(ηj−

p,q,j(i, x), t))

M
,k = j,

2
∑

p,qK
i,M
p h

{j,k}
q

(
g(ηj+

p,q,k(i, x), t)+n3g(η
j−
p,q,k(i, x), t)

)
M

,k ̸= 0, j,

(20)
where k = 0 corresponds to the degree-M interior junction.
The vectors Ki,M , h∗ and hC can be calculated through
Algorithm 1 of Appendix A where hC △

= h(C) represents a
transformation from the set C to a vector, and n = [n1, n2, n3]
varies from different EM phases. The stress evolution on the
j-th segment of the brick with a degree-M junction follows:

σ
n/g
M,j(x, t) =

+∞∑
i=0

M∑
k=0

Akg
n/g
i,j,k(x, T ,M,n), L0 ≤ x ≤ Lj , (21)

where Ak =
∑M

i=1 Gi for k = 0, and Ak = −Gk for k =
1, · · · ,M , and n = [1, 1, 1] when estimating σn

M,j(x, t) during
the void nucleation phase (cf. Appendix A).

During the void growth phase, we assume the void is created
at the terminal junction on the v-th segment. Let fk(x) =
σn
M,k(x, tnuc). By utilizing the Residue Theorem, the initial

unit function describing the influence of the initial stress along
the k-th segment on the stress along the j-th segment yields:
bj,k,M (m,x, t) =

4e−Mbβj(zmx)
∏M

i=1,
i̸=k,j

βi(zmLi)
∫ Lk
L0

fk(u)βk(zm(Lk−u))du

Z
, j ̸=k,

4e−Mbαj(zmx)
∫ Lk
L0

fk(u)βk(zm(Lk − u))du

Z
, j = k,

(22)
where αk(·) and βk(·) are cos(·) and sin(·) for k = v, and
sin(·) and cos(·) for k ̸= v. The notation zm is the m-th

zeros of pM (z) = M cos(LΣz)+ (M − 2)
(∑M

i=1,
i̸=v

cos((LΣ−
2Li)z)−cos((LΣ−2Lv)z)

)
. Due to the periodicity of pM (z),

the number of zeros is infinite. We have Z = −dp(z)/dz|z=zm
and Mb = z2mκkt. The overall impact on stress evolution along
the j-th segment takes the form:

Bg
M,j(x, t) =

+∞∑
m=0

{ M∑
k=1

[nkbj,j,M (m,xk, T ) + bj,j,M (m,x+, T )]

+2M−1
M∑

k=1,
k ̸=j

bj,k,M (m,Lj − x, T )
}
,

(23)
where x+ = x +

∑M
i=1,
i̸=j

Li. Notations xk and nk are x −∑M
i=1,
i̸=j

Li and 2 − M for k = v, and x+ − 2Lk and M − 2

for k ̸= v. Finally, during the void growth phase, the stress
evolution along the j-th segment can be obtained:

σ̂g
M,j(x, t) = σg

M,j(x, t) + Bg
M,j(x, t), (24)

where in Eq. (21) n = [−1, 0,−1] for j = v and n =
[1,−1, 1] for j ̸= v. It should be noted that Av in Eq. (21)
turns out to be zero. Furthermore, to solve for the stress
evolution along interconnect trees with multiple voids, the
interconnect tree can be partitioned into non-voided bricks and
bricks containing a single void.

B. Modified analytical stress solutions for bricks
In this section, we first expand the analytical solutions

to account for the combination of stress on different bricks,
satisfying the BCs at intersection junctions. The stress solution
is then modified to be constrained by the non-zero initial
condition during the void nucleation phase for the stress as-
sessment of each brick experiencing the transition between EM
phases. Consequently, stress prediction under time-dependent
current density within each segment and dynamic temperature
is proposed.

By utilizing a linear transformation, EM-induced stress
evolution, denoted by σ̂

n/g
M,j(x, t), can be converted to the sum

of two stress components satisfying Korhonen’s equation. For
example, during the void growth phase, the first component,
represented by σg

M,j(x, t) in Eqs. (18) and (24), describes the
stress evolution where the initial condition Eq. (8) is converted
to σg

M,j(x, tnuc) = 0, as the stress under zero initial condition.
The second component, represented by Bg

M,j(x, t) in Eqs. (16)
and (23), illustrates the stress evolution where Gi in Eq. (3)
is set to be zero when t > tnuc, characterizing the decay of
initial stress.

According to Eqs. (14), (18), (21) and (24), we summarize
the first stress component on individual N-segment bricks in
which the maximum degree is M (M = 2, 3, 4):

σ
n/g
M,j(x, t) =

∑
i,k

Âkg
n/g
i,k (x, t− t0), t > t0, (25)

where i ∈ [0,∞) and k ∈ [0, N ] are integers, gn/gi,k (·) follows
Eqs. (13), (17) and (20) for different M . Let Sk be a set of
indices of the segments connected to the k-th junction. The
BC of Eq. (25) regarding atomic flux at junctions is governed
by

∑
i∈Sk

±∂σ
n/g
M,i(x, t)/∂x|x=Lk

= Âk, where Âk represents
the sum of EM driving forces flowing toward the k-th junction.
The spatial derivative of stress at junctions, expressed as
∂σ(x, t)/∂x|x=Lk

, is defined as the stress gradient, the sum
of which can be computed by the flux balance condition Eq.
(3). We refer to the stress gradients in the same brick as local
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stress gradients. For bricks without intersection junctions, Âk

is consistent with Ak in Section III-A. As indicated in [15],
when Âk is time-dependent, Eq. (25) turns to:

σ
n/g
M,j(x, t) =

∑
i,k

{Âk(t0)gi,k(x, t− t0)+ Â′
k(t) ∗ gi,k(x, t− t0)}, (26)

where t > t0, and Â′
k(t) represents the time derivative of

Âk(t) and ∗ is the temporal convolution a(t) ∗ b(t − t0) =∫ t

t0
a(τ)b(t− t0 − τ)dτ .

1) Combination of stress on bricks: Assuming the l-th
junction is the intersection junction, the sum of local stress
gradients toward the junction cannot be directly calculated due
to the unknown stress and atomic flux from the neighboring
brick. In this work, we regard Âl as a certain time-dependent
variable that meets the physical constraints in Eqs. (3) and
(4) at the intersection junction, considering the interaction
between stress on adjacent bricks. Compared with our previous
work [21] that proposed a method to combine stress on
intersected single metal lines, we develop a novel approach
to enable the combination of stress on versatile interconnect
structures by introducing the well-tailored Âk(t):

Âk(t) =


Ak, t = 0, k ̸= l,

mc
NAWnκn +AkWκ

mnWn
√
κnκ+mcWκ

, t = 0, k = l,

Âk(0) +

∫ t

0

Â′
k(t)dt, t > 0,

(27)

where Ak is provided in Section III-A, the second term is
motivated by [21] and the third term presents a method to
compute Âk(t) when t is positive. Notations mc and mn

are the number of segments connected with the intersection
junction in the current and neighboring bricks. The notations
W , κ and Wn, κn are the width, diffusivity of the metal
branch of the current and neighboring brick, respectively. NA

equals the sum of EM driving forces toward the intersection
junction in the neighboring brick and for the current brick, the
temporal derivative term Â′

k(t) is zero when k ̸= l and the
current density within each brick is constant. However, the
derivative term Â′

l(t) remains unknown when t > 0, which
can be addressed using the powerful capabilities of neural
networks. Since the equivalent EM driving force at t > tnuc
in the second stress component, which represents the decay of
initial stress, is zero, the combination of stress will not affect
the value of Bn/g

M,j(x, t).
2) Transition between EM phases: Once an interconnect

tree turns into the void growth phase, not all of its bricks un-
dergo this phase simultaneously. Bricks that remain in the void
nucleation phase will exhibit the stress evolution at tnuc as the
initial condition. Since the stress evolution can be decomposed
into two components, the first stress component, with the
initial condition σg

M,j(x, tnuc) = 0 at the initial time t0 = tnuc
can be computed by Eq. (26). Furthermore, to estimate the
second stress component Bn

M,j(x, t), the term Âk(t) in the
void nucleation phase becomes Â−

k (t) = Âk(t)(1−u(t−tnuc))
where u(t) is the continuous-time unit step signal, used to set
Gk to zero after tnuc. In this EM phase, Â−′

l (t) is a determined
function learned from the simulation in the void nucleation
phase. Then the derivative term yields:

dÂ−
k (t)

dt
= Â−′

k (t)− Âk(tnuc)δ(t− tnuc), t > 0, (28)

where Â−′

k (t) = Â′
k(t)(1 − u(t − tnuc)). Substituting t0 = 0

into Eq. (26), and replacing Âk(t0) by Â−
k (t) applied at t = 0

and Â′
k(t) by the right-hand side of Eq. (28), the stress decay

Bn
M,j(x, t) can be obtained. This result is then added to the

first stress component, achieving stress evolution during the
void nucleation phase considering the initial stress at tnuc:

σ̂n
M,j(x, t) =

∑
k,i

{Â−
k (0)g

n
i,k(x, t) +

∫ t

0

Â−′

k (τ)gni,k(x, t− τ)dτ

+

∫ t

tnuc

Â′
k(τ)g

n
i,k(x, t− tnuc − τ)dτ}, t > tnuc,

(29)
where Â′

l(t) is unknown for t > tnuc. When the interconnect
tree is in the void nucleation phase, stress solution σ̂n

M,j(x, t)
can be obtained by substituting t0 = 0 into Eq. (26) where
Â′

l(t) remains unknown.
3) Stress solution under dynamic current density and tem-

perature: When the current density within each segment is not
constant, the dynamic EM driving force can be represented
by Gk(t) and used to calculate the time-dependent Ak. By
substituting Ak into Eq. (27), the influence of dynamic current
density can be considered where Â′

k(t) (k ̸= l) becomes non-
zero. The impact of time-dependent temperature on stress can
be addressed using the method in [15].

C. Bricks and joints building

1) Brick solution: We first employ Â+′

l (t) to represent the
undetermined temporal derivative of stress gradients in Eqs.
(26) and (29). Specifically, we set Â+′

l (t) = Â′
l(t) for t ≤ tnuc

and Â+′

l (t) = Â′
l(t)u(t− tnuc) for t > tnuc. For bricks in the

void nucleation phase, omitting Â+′

l in (26) and (29) results
in an approximation as the brick solution:

σn
M,j(x, t) =

+∞∑
i=0

{
N∑

k=0

[Âk(0)g
n
i,k(x,t)]+

N∑
k=0,
k ̸=l

[

∫ t

0
Â′

k(τ)g
n
i,k(x,t−τ)dτ]}, t≤ tnuc,

+∞∑
i=0

{
N∑

k=0

[Â−
k (0)gni,k(x, t)+

∫ t

0
Â−′

k (τ)gni,k(x, t−τ)dτ ]

+

N∑
k=0,
k ̸=l

[

∫ t

tnuc

Â′
k(τ)g

n
i,k(x,t−tnuc−τ)dτ ]}, t>tnuc,

(30)
where N is the number of segments in the brick.

For the void growth phase, we substitute t0 = tnuc into
Eq. (26) to compute σg

M,j(x, t) under dynamic current den-
sity within each segment. The result is then substituted into
Eqs. (18) and (24). By dropping the terms with Â+′

l (t), an
approximation of stress evolution yields:

σg
M,j(x, t) = Bg

M,j(x, t)+

+∞∑
i=0

{
N∑

k=0

[Âk(tnuc)g
g
i,k(x, t−tnuc)]

+
N∑

k=0,
k ̸=l

∫ t

tnuc

Â′
k(τ)g

g
i,k(x, t−tnuc−τ)dτ}.

(31)

The brick solutions in Eqs. (30) and (31) consist of terms that
can be precomputed before neural network training and treated
as constants, thereby reducing the computational overhead of
gradient computation during back-propagation. The terms with
Â+′

l (t) are used to construct the joint solutions.
Given the properties of the bricks, such as the current

density, topology of the interconnects, and the prior knowl-
edge Â−′

l (t) learned in previous simulation steps, Eqs. (30)
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Partition strategy
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…
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+ +

=

Fig. 3. Partitioning strategy in EM assessment.

and (31) can be easily calculated. This computation can be
parallelized, as the solution on distinct bricks and segments
can be independently solved.

2) Joint solution: Fig. 3 presents several partitioning strate-
gies and two detailed scenarios for calculating stress evolution
along a cross-shaped interconnect tree. In these scenarios,
the partitioning-based approach divides the interconnect tree
into two bricks. Specifically, one configuration consists of
two folded straight multi-segment bricks, while the other
comprises a straight single-segment brick and a T-shaped
brick. The resulting bricks are referred to as the predecessor
and successor bricks, with their respective stress distributions
subsequently integrated. In the original interconnect tree, the
bricks are connected at a joint, which is duplicated to produce
the intersection junctions on the adjacent bricks, thereby
exhibiting impacts on the stress of both bricks. This influence
is controlled by Âl(t) and Â′

l(t), and we further denote the
undetermined term Â+′

l (t) as Â+′

j,p(t) and Â+′

j,s(t) correspond-
ing to the intersection junctions duplicated from the j-th
joint, on the predecessor and successor bricks, respectively.
Subsequently, we introduce a compact Multilayer Perception
(MLP) with RFF embedding γ(·) in Eq. (12), expressed as
y = f(γ(B,x); θ), where x and θ are the inputs and trainable
weights in the neural network f(·). The output y varies from
the different locations of joints and time instances, and thus
can be rewritten as yj,t to illustrate the approximation of
Â+′

j,p/s(t) for the j-th joint at time t. Based on Eq. (3), we
have:

Â+′

j,p/s(t) = n⃗j,p/s · yj,t, (32)

where n⃗j,p = −1/(Wκ) and n⃗j,s = 1/(Wκ). The impact
of the j-th joint on stress along each brick during the void
nucleation and growth phases, defined as “joint solution”, is
constructed based on Eq. (26):

Jj,p/s(x, t) =

+∞∑
i=0

∫ t

t0

Â+′

j,p/s(τ)gi,j,p/s(x, t− t0 − τ)dτ, (33)

where t0 is set to 0 for interconnect trees in the void nu-
cleation phase and tnuc in the void growth phase. Eq. (33)
illustrates the locality property of EM-induced stress, where
the solution reaches its maximum magnitude at the joint and
rapidly decreases along both sides. This phenomenon will be
discussed in Section V-A2. As demonstrated in Fig. 3, during
the void nucleation phase and along the whole interconnect
tree, the stress evolution of the original tree at t = ti follows
σ̂(x, ti) = σ1(x, ti)+J1,p(x, ti)+J1,s(x, ti)+σ2(x, ti) where
σ1(x, t) and σ2(x, t) are solutions of brick 1 and brick 2. The
spatial coordinates x are first converted to relative coordinates
within the bricks, as the inputs for brick and joint solutions.
The solutions are then restored to their locations in the original

Stress solution Loss (𝐄𝐄[𝜽𝜽])
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Fig. 4. Framework of the proposed method.

interconnect tree, as illustrated by the stress curves plotted in
Fig. 3. Finally, for a general interconnect tree broken into Nb

bricks by Nj joints, the stress evolution follows:

σ̂(x, t) =

Nb∑
i=1

σi(x, t) +

Nj∑
j=1

(
Jj,p(x, t) + Jj,s(x, t)

)
, (34)

where σi(x, t) is the i-th brick solution.
3) Compact solution: To facilitate EM-induced stress cal-

culation, a truncation strategy is required since the stress evolu-
tion solutions comprise an infinite number of terms. According
to the decay property of g(x, t), the value diminishes quickly
when the traveled distance increases. As a result, we establish
a distance threshold xcrit = 4

√
κt, beyond which the value of

g(x, t) can be disregarded. Additionally, the convergence of
Bg
M,j(x, t) has been proven in [15] and the series bk(·) and

bj,k,M (·) can be truncated following the criteria configured
as Mb = 3. For the temporal convolution operation in Eqs.
(30), (31) and (33), we employ an eight-point Gauss–Legendre
quadrature technology, enhancing computational efficiency
while keeping promising accuracy.

IV. PROPOSED LEARNING FRAMEWORK

The general framework of the proposed method is shown in
Fig. 4 consisting of the learning framework and a two-stage
evaluation.

A. Learning framework
1) Preparation: Given an interconnect tree with applied

current sources at varying junctions, we first calculate the node
voltages and current within each segment using modified nodal
analysis (MNA). Based on the brick types outlined in Fig. 2,
we partition the interconnect tree into individual bricks and
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compute the current density within each segment based on the
results obtained through MNA.

The neural network input is structured as a collection
x = {xj , Gj,p, Gj,s, ti} and the corresponding output yj,ti
is employed to approximate Â+′

j,p/s in Eq. (32). Here, we
define xj as the location of the j-th joint in the original
interconnect tree, and Gj,p and Gj,s as the average incoming
EM driving forces toward the j-th joint on the predecessor
and successor bricks, respectively. These forces can be cal-
culated by

∑
G/mc, where mc and

∑
G are the number

of segments connected to the junction and the sum of EM
driving forces on adjacent segments toward the junction. The
temporal instances ti are randomly sampled within the appro-
priate range using Latin hypercube sampling and logarithmic
equidistant sampling strategies as described in [23], with the
number of sampling points defined as Nt. The location, EM
driving force, time instance, diffusion coefficient and stress
are normalized to regular magnitudes following [15], where
x = 105xo, t = 10−8to, κ = 1018κo, G = 10−14Go and
σ = 10−9σo. The network input is subsequently normalized
to the range [−1, 1]. Furthermore, before training, the brick
solutions in Eqs. (30) and (31) can be precomputed for each
location and time, and treated as constants to alleviate the
computational burden during the training process.

2) Training and inference: During the training process,
following the preparation step, the RFF embedding, as defined
in Eq. (12), is applied to the inputs before passing them into
a compact MLP, as illustrated on the right side of Fig. 4. The
matrix B is randomly sampled from a Gaussian distribution
and remains fixed throughout the training process. The output
yj,ti , corresponding to different joint locations and Nt time
instances, can be regarded as a stress source at the j-th joint.
The parameters in the MLP with RFF framework are shared
when predicting different yj,ti , enabling efficient mapping
from the various joint locations (xj), time instances (ti), and
EM driving forces (Gj,p, Gj,s) to the corresponding yj,ti .
This output is then propagated outward from the joint and
decays over distance. We quantify this propagation as the joint
solution, where the resulting Â+′

j,p/s is continuously adjusted
by the neural network to build the stress evolution along each
brick respecting Korhonen’s physical constraints. Substituting
the brick solutions and joint solutions into Eq. (34), the loss
function can be established:

E[θ] =
1

NtNj

Nt∑
i=1

Nj∑
j=1

|σ̂j,p(xj , ti)− σ̂j,s(xj , ti)|2, (35)

where σ̂j,p(x, t) and σ̂j,s(x, t) are the stress solutions in the
predecessor and successor bricks connected with the j-th
joint located at xj , respectively. Equation (35) is minimized
to penalize the deviations of Eq. (4) to approximate joint
solutions in Eq. (33). Thanks to the well-tailored analytical
solutions in Eqs. (30), (31) and (33) that meet constraints
in Eqs. (2)-(3) and Eqs. (5)-(8), the optimization goal of the
neural network is simplified to the stress continuity condi-
tion at certain junctions, eliminating the need for derivative
operations and resulting in significant computational savings
compared with traditional PINNs. Furthermore, compared with
the methods proposed in [21], [22] which divide N-segment
interconnect trees into N partitions, our approach notably
reduces the number of neural network outputs, especially at
intersection junctions with degrees greater than two, and the
number of terms in Eq. (35). This reduction is achieved by
utilizing a diverse set of brick structures as partitioning units,

therefore leveraging a more compact representation of the
interconnect structure.

After convergence, the proposed model can achieve the
accurate approximations of Â+′

j,p/s. The location xi within the
interconnect tree and the observation time instance ti in the
training range are then substituted into Eq. (34) to obtain the
stress solution. Finally, the magnitude scaling is restored to
achieve the unnormalized stress evolution.

B. Two-stage EM evaluation
The proposed two-stage stress evolution in Fig. 4 is divided

by the switching of the EM phase. Initially, all the bricks
partitioned from the interconnect tree are in the void nucleation
phase and the temporal inputs of the learning framework
are obtained through random sampling within the time range
[t0, t1]. After convergence of the learning framework, if the
stress evolution exceeds the critical level at t1, the void nucle-
ation time tnuc ∈ [t0, t1] becomes a trainable parameter. The
objective is to adjust this parameter so that the maximum stress
at the junctions equals the critical level. In this evaluation,
voids are assumed to occur at junctions, as no pre-existing
voids and internal voids are considered in the stress model-
ing [10]. Once the interconnect tree enters the void growth
phase, the second stage configures the training time range as
[tnuc, t2]. To compute the brick solutions Eqs. (30) and (31) in
this stage, we load the previous learning model to determine
the coefficient Â−′

l through outputs at different locations and
specific time instances, and Bg

M,j through the approximated
stress evolution at tnuc. Following a training process similar
to that of the first stage, the learning framework can provide
the post-voiding stress evolution during the inference phase.

V. EXPERIMENTAL RESULTS

In this section, we present the stress evolution results ob-
tained using the proposed approach during the void nucleation
and void growth phases. Firstly, we validate the accuracy
of the brick solution across various interconnect shapes, and
provide a detailed procedure for partitioning an interconnect
tree and combining stress solutions along the subcomponents.
The stress prediction on interconnect trees is extended to
consider varying physical parameters and operating condi-
tions. We then evaluate the training acceleration achieved by
incorporating RFF embeddings into a fully connected neural
network, compared with utilizing a single MLP as described in
[21], [22]. The neural network structure is customized through
a detailed accuracy analysis under different numbers of layers
and neurons per layer. Finally, we demonstrate the scalability
of the proposed approach and the performance enhancements
over existing methods. The proposed model and the stress
model in [21] are carried out in Python 3.9.5 using PyTorch
1.12 and Tensorflow 1.14, respectively. The competing semi-
analytical method in [37] is implemented in MATLAB. The
experiments are conducted on a Linux machine equipped with
an Intel Core i5-10505 CPU with 16GB of RAM, and an
Nvidia RTX 3090 GPU with a 24GB buffer. The reference
solution is obtained from FEM simulations conducted by the
COMSOL Multiphysics software [38].

In the experiments, the RFF embedding (m = 30, ν = 3) is
followed by a fully connected MLP with three 60-neuron hid-
den layers. We utilize the Adam optimizer for neural network
training and implement an early stopping mechanism when
the loss drops below 5× 10−6. Xavier initialization is used to
initialize the parameters of the MLP. The activation function is
tanh, and the training batch size is configured to Nt = 1, 000.
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Fig. 5. a) Configuration of segment lengths and current densities on different
single bricks, and the comparison of stress evolution on a b) straight 9-segment
line, c) T-shaped, d) cross-shaped brick at t = 108s in the void nucleation
(VN) and void growth (VG) phase.

Partitioning cPartitioning b

Partitioning a

x

y

Fig. 6. Three partitioning methods for the 14-segment interconnect tree.

The values of parameters in the physical model are k =
1.3806× 10−23J/K, e = 1.609× 10−19C, Z∗ = 10, Ea =
1.1eV, B = 1 × 1011Pa, D0 = 7.5 × 10−5m2/s, ρ =
2.2× 10−8Ω ·m, Ω = 8.78× 10−30m3, T = 350K, σcrit =
5 × 108Pa. Interconnect trees with the number of offshoots
exceeding 10% of the total number of segments are tested in
the experiments.

A. Accuracy Analysis
1) Single brick solution: Considering a single brick as a

complete interconnect tree, we calculate the current distribu-
tion based on the configured current/voltage sources. Fig. 5(a)
provides the length and current density configuration in the
straight 9-segment line, T-shaped, and cross-shaped intercon-
nect trees. Along interconnect trees with varying structures, the
comparison of stress solutions obtained using brick solutions
and COMSOL simulations are shown in Figs. 5(b)-5(d), show-
ing agreement between the stress curves. The stress evaluation
encompasses both the void nucleation (VN) and void growth
(VG) phases, presenting the stress evolution at 108s from the
beginning of each EM phase. With a computation time of
less than 0.013s, the relative errors of stress along a straight
nine-segment, T-shaped and cross-shaped interconnect trees
are 0.03%, 0.34%, 0.89% during the void nucleation phase,
and 0.21%, 0.19%, 0.88% during the void growth phase. The
stress evolution along the straight nine-segment interconnect
tree is divided into two single brick solutions by the void
located at the interior junction during the void growth phase.

2) Brick-joint solution: Given a 14-segment interconnect
tree with three offshoots, Fig. 6 lists three strategies for
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Fig. 7. Stress evolution on a 14-segment interconnect tree at t = 108s under
partitioning method a in Fig. 6: a) single brick solutions, b) brick solutions,
c) joint solutions, d) the summation of b) and c) yields the overall brick-joint
solution. To enhance the visualization, each 2-D spatial coordinate (xi, yi)
located in the interconnect tree is transformed into a 1-D coordinate xi + yi.

partitioning the interconnect tree into a) three straight multi-
segment bricks, b) three straight multi-segment bricks and one
T-shaped brick, c) three straight multi-segment and one cross-
shaped brick. This partitioning is achieved by dividing the
interconnect tree into bricks with specific structures.

As illustrated in the first partitioning method, we utilize the
proposed brick-joint method to compute the stress evolution
at t = 108s during the void nucleation phase. To enhance
the visualization and facilitate a more straightforward com-
parison of stress curves derived from varying approaches,
we convert the 2-D coordinates of the interconnect trees
into a 1-D representation, which has been used in [39].
Specifically, each spatial coordinate (xi, yi) is transformed
into a single coordinate xi + yi. Initially, we present the
single brick solutions in Fig. 7(a), demonstrating that although
Korhonen’s diffusion kinetics are observed in the individual
stress curves, no constraints are enforced at the intersection
junctions. Moreover, to modify the stress solution, Âk(t) at
intersection junctions is fine-tuned according to Eq. (27),
resulting in brick solutions as depicted in Fig. 7(b), where
a reduction in bias between stress solutions at intersection
junctions across different connecting bricks can be observed.
The stress solutions in Fig. 7(b) show compatibility with the
flux balance constraint in Eq. (3), yet further enhancements
are required to fully satisfy the stress continuity condition
in Eq. (4). Compared with the single brick solution, the
complete brick solution shows progress toward approximating
the desired stress curves. Neural network training on joint
solutions is then conducted, as plotted in Fig. 7(c), illustrating
the influence of the combination operation on stress evolution
near the joints. This influence reaches maximum magnitude at
intersection junctions, and decreases along both sides, thereby
demonstrating the locality property of stress evolution in the
partition strategy. Finally, the prediction obtained by the brick-
joint solution is shown in Fig. 7(d), accompanied by the
overlapping stress solution calculated from COMSOL.

The performance of the proposed method is reported in Ta-
ble I where tpre, ttra are the preparation time for dataset gen-
eration and brick solution calculation, and the training time,
respectively. The notations ttot, tinf correspond to the total
time required to achieve a prediction model satisfying ttot =
tpre+ ttra and the inference time for stress assessment. Errors
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TABLE I
PERFORMANCE OF THE PROPOSED METHOD UTILIZING PARTITIONING METHODS IN FIG. 6 DURING THE VOID NUCLEATION AND VOID GROWTH PHASES.

Method
Void Nucleation Void Growth

Training Inference Error Training Inference Error
tpre
(s)

ttra
(s)

ttot
(s)

tinf
(s)

δrel
(%)

δmax
(%)

tpre
(s)

ttra
(s)

ttot
(s)

tinf
(s)

δrel
(%)

δmax
(%)

a 0.61 0.21 0.82 0.009 0.17 0.16 0.18 0.28 0.46 0.016 0.54 0.22
b 0.63 0.41 1.04 0.012 0.18 0.15 0.49 0.44 0.93 0.026 0.34 0.17
c 0.65 0.66 1.31 0.012 0.18 0.12 0.56 0.96 1.52 0.028 0.32 0.16
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Fig. 8. Comparison of stress evolution on a 14-segment interconnect tree
during a) void nucleation phase, b) void growth phase where we employ three
different partitioning methods shown in Fig. 6. Pi represents the proposed
brick-joint solution on the i-th brick.

δrel, δmax are the relative errors between the approximations
and results from COMSOL, and the maximum relative errors
calculated as max |σProposed − σCOMSOL|/max |σCOMSOL|.
The errors are computed based on the stress evolution along
the interconnect tree at 10 equidistantly sampled time points
within the time range [106s, 108s]. Three different partitioning
methods shown in Fig. 6 are conducted for the performance
evaluation, indicating that higher accuracy can be attained
by utilizing brick types with a higher junction degree, albeit
with an increase in computation time. The stress prediction at
5× 107s, 5× 108s, and 109s are plotted in Fig. 8, which are
consistent with the results from COMSOL.

3) Physical parameters and operating conditions: In this
section, we configure a 40-segment interconnect tree to an-
alyze the impact of varying physical parameters, such as
segment width (W ) and effective atomic diffusivity (D), as
well as operating conditions, including dynamic temperature
(T ) and current density (j), on EM-induced stress evolution.
Figs. 9(a)-9(b) depict stress evolution curves at t = 108s,
obtained after assigning different values of W and D to spe-
cific partitions. The widths of the partitions are set to 0.2µm,
0.1µm, 0.15µm, and 0.1µm, with corresponding effective
atomic diffusivity of 9.24× 10−21m2/s, 7.43× 10−21m2/s,
9.28×10−21m2/s, and 9.90×10−21m2/s. The relative errors
of stress results within t = 108s, as obtained by the proposed
approach, are 0.17% and 0.14%, respectively. Additionally,
the stress evolution under constant width (W = 0.1µm) and
constant effective atomic diffusivity (D = 9.24×10−21m2/s)
is included in the figures to highlight the significance of
incorporating variability in interconnect width and diffusivity
driven by stochastic effects in EM assessments. In practical
applications, a Monte Carlo (MC) simulation loop is employed
to generate random effective atomic diffusivity, introducing the
key stochastic parameter κ. A subsequent MC simulation is
performed to model the randomness of critical stress levels,
which govern transitions between distinct EM phases.

By setting the dynamic temperature as T = 350+30 sin(2×
10−8πt) K, the stress evolution at t = 108s during the void
nucleation phase is plotted in Fig. 9(c), with a relative error of
0.21%. Moreover, the figure includes stress evolution under a
constant temperature of 350 K, highlighting the acceleration
and deceleration effects of temperature fluctuations on stress
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Fig. 9. Comparison of stress evolution on a 40-segment interconnect tree at
t = 108s considering a) varying segment width, b) different effective atomic
diffusivity D and c) dynamic temperature during the void nucleation phase,
and d) dynamic current density during the void growth phase.

build-up. Subsequently, a linear current density is configured
for each segment during the void growth phase and the EM
driving force is set as G(t) = G0(1 + 5 × 105t)A/m2,
where G0 represents the initial EM driving force varying from
segments. The stress comparison shown in Fig. 9(d) illustrates
the capability of the proposed approach in addressing EM-
induced stress considering dynamic current conditions, with a
relative error of 0.22%. Stress evolution at 108s under constant
j is plotted in Fig. 9(d). This highlights the potential for the
partitioning-based method to assess EM failure in the void
growth phase, considering dynamic current densities due to
global effects such as the dynamic IR drop in EM degradation.

B. Performance Analysis
MLP architectures are commonly used in tasks associated

with solving EM-induced stress evolution due to their sim-
plicity and lightweight nature [21], [22]. These approaches
draw inspiration from PINN, which initially employed MLPs
as network structures. In this study, an RFF embedding is
introduced before passing inputs into a conventional fully
connected MLP, resulting in a notable improvement in training
speed. Fig. 10 shows the training performance on a 300-
segment interconnect tree, reporting the loss and relative error
over iterations for a conventional MLP and an MLP with
RFF embeddings (ν = 1 ∼ 7). Both models are fully
connected networks with three hidden layers of 60 neurons
each. In the conventional MLP, the weights from the input
layer to the first hidden layer are undefined, while in the
MLP with RFF embeddings, the mapping follows Eq. (12).
As shown in Fig. 10, incorporating RFF embeddings (dotted
lines) accelerates the decline in loss and relative error during
training compared with the conventional MLP (solid lines).

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3567885

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Farid Najm. Downloaded on May 09,2025 at 12:14:58 UTC from IEEE Xplore.  Restrictions apply. 



11

10
2

10
3

Iteration

10
-5

10
-4

10
-3

L
o
s
s

MLP

RFF: =1

RFF: =2

RFF: =3

RFF: =4

RFF: =5

RFF: =6

RFF: =7

(a)

10
2

10
3

Iteration

0

0.01

0.02

0.03

0.04

R
e
la

ti
v
e
 E

rr
o
r

MLP

RFF: =1

RFF: =2

RFF: =3

RFF: =4

RFF: =5

RFF: =6

RFF: =7

150 200 250

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

10
-3

(b)

10
2

10
3

Iteration

10
-5

10
-4

L
o
s
s

MLP

RFF: =1

RFF: =2

RFF: =3

RFF: =4

RFF: =5

RFF: =6

RFF: =7

(c)

10
2

Iteration

6

8

10

12

R
e
la

ti
v
e
 E

rr
o
r

10
-3

MLP

RFF: =1

RFF: =2

RFF: =3

RFF: =4

RFF: =5

RFF: =6

RFF: =7

50 100 150 200

4.8

5

5.2

5.4

5.6

5.8

6
10

-3

(d)

Fig. 10. Loss and relative error versus iterations by employing a conventional
MLP [21], [22] and an MLP with RFF embeddings under different ν during
a) and b) void nucleation phase, and c) and d) void growth phase. Training
is early stopped when the loss reaches 5× 10−6.

The RFF embedding serves as a simple nonlinear transfor-
mation for the input, leading to negligible additional training
burden. As illustrated in Eq. (12), the preferred learning
frequency of an RFF-enhanced MLP is controlled by the
hyperparameter ν, demonstrated through seven ablation ex-
periments under ν = 1 ∼ 7. Fig. 10(a) shows that increasing
ν reduces the training iterations required for the loss to reach
5 × 10−6 during the void nucleation phase. While a general
improvement in convergence speed is noted as ν increases
from 3 to 7, this gain comes at the expense of accuracy in
the predicted stress solutions. One potential explanation for
the reduction in accuracy is that the neural network tends to
interpolate the training data with higher frequency oscillations
than those present in the target solution [32]. This trend is also
noted during the void growth phase. Across both EM phases,
the model with ν = 6 demonstrates the fastest convergence
to the loss threshold. However, achieving the same loss level,
the models with ν = 3 and ν = 4 exhibit the highest accuracy
in stress predictions during the void nucleation and the void
growth phases, respectively. In subsequent experiments, ν = 3
is selected for the RFF embedding. To further accelerate
convergence as the number of partitions increases, ν can be
adjusted to higher values but should be bounded to avoid
frequency mismatches between the network and the target
solution. In this study, the upper bound for ν is set to 7.

Moreover, we investigate the influence of network structure
on training efficiency. Specifically, we set the length of RFF
embedding output, defined as 2m in Eq. (12), equal to the
number of neurons per layer in the cascaded MLP. Table II pro-
vides the number of training iterations and the corresponding
training time required for achieving a loss of 5× 10−6 under
varying widths and depths of the MLP, and different lengths
of the RFF embedding output in the learning framework. As
the neural network structure expands, the number of iterations
decreases, with a rising training overhead per iteration. This
trend remains consistent across various lengths of RFF embed-
ding outputs. The neural network structure should be tailored,
considering the trade-off between the number of iterations and
the training time per iteration. In the following experiments,
with a sufficient number of neurons in the model, we utilize
an RFF embedding configured with m = 30, connected to a
3-hidden-layer MLP with 60 neurons per layer.

TABLE II
NUMBER OF TRAINING ITERATIONS/TRAINING TIME (S) TO ACHIEVE THE
LOSS OF 5× 10−6 UNDER DIFFERENT NUMBERS OF HIDDEN LAYERS AND
NEURONS PER LAYER IN THE LEARNING FRAMEWORK DURING THE VOID

NUCLEATION PHASE. THE LENGTH OF THE RFF EMBEDDING OUTPUT
EQUALS THE NUMBER OF NEURONS PER LAYER.

Layers
Neurons 20 40 60 80

1 2765/7.20 1057/3.54 733/3.03 488/3.94
2 1715/5.21 660/2.78 441/2.42 278/2.86
3 1228/4.34 465/2.35 352/2.73 241/3.02
4 618/5.74 381/4.07 253/3.26 206/3.07
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Fig. 11. Stress evolution along a 300-segment interconnect tree at 108s and
109s during a) the void nucleation phase, b) the void growth phase. Stress
solutions obtained from different bricks are represented in various colors.

C. Scalability Analysis

In this section, we evaluate the scalability of the proposed
method on interconnect trees with increasing numbers of
segments. Fig. 11 illustrates the stress evolution along a 300-
segment interconnect tree at t = 108s and t = 109s obtained
from the proposed model and COMSOL. The brick-joint
solutions of different bricks are depicted in various colors. The
stress curves at the same time instances are indistinguishably
overlapped, indicating promising stress predictions in the
proposed model. Additionally, the position of void generation
is shown in Fig. 11(b).

Table III presents the performance comparison between the
proposed approach and COMSOL for interconnect trees with
junctions of degree 2-4. In COMSOL simulations, the Finer
mesh setting is utilized, with memory consumption ranging
from 1.2 to 4.0 GB of RAM, and the runtime required to
calculate stress solutions in each EM phase is defined as tcom.
With early stopping, the proposed method takes 33.04s to train
a model approximating stress evolution along a 1000-segment
interconnect tree, with relative errors of less than 0.94%, where
the scale of interconnect trees that can be solved exceeds those
mentioned in [21], [22]. The relative errors of stress solutions
within 108s are below 1.08% in all test cases and the total
training overhead illustrates speedups ranging from 35× to
132× over COMSOL. The memory usage of the proposed
approach is O(n), and the training time grows as O(βNj),
where β and Nj denote the number of training iterations
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TABLE III
SCALABILITY PERFORMANCE COMPARISON BETWEEN COMSOL AND THE PROPOSED METHOD ON INCREASING N-SEGMENTED INTERCONNECT TREES

DURING THE VOID NUCLEATION AND THE VOID GROWTH PHASE.

n-segment
COMSOL Void Nucleation Void Growth

tcom
(s)

Training Speedup
vs

COMSOL

Inference Error Training Speedup
vs

COMSOL

Inference Error
tpre
(s)

ttra
(s)

ttot
(s)

tinf
(s)

δ
(%)

tpre
(s)

ttra
(s)

ttot
(s)

tinf
(s)

δ
(%)

50 56 0.74 0.88 1.62 35× 0.01 0.54 0.28 1.32 1.60 35× 0.02 0.38
100 113 1.00 0.55 1.55 73× 0.03 0.44 0.75 1.57 2.32 49× 0.04 0.54
200 229 1.15 1.13 2.28 100× 0.09 0.71 0.66 1.08 1.74 132× 0.09 0.80
400 604 2.06 3.29 5.35 113× 0.16 0.43 1.59 4.82 6.41 94× 0.16 1.08
600 754 2.87 3.67 6.54 115× 0.23 0.54 2.24 4.20 6.44 117× 0.25 0.84
800 1027 4.25 15.60 19.85 52× 0.25 0.59 3.83 15.61 19.44 53× 0.33 0.96
900 1263 4.38 15.56 19.94 63× 0.31 0.57 3.88 19.34 23.22 54× 0.35 0.43

1000 1456 4.52 20.95 25.47 57× 0.34 0.60 4.15 28.89 33.04 44× 0.42 0.94

and the number of joints. During the inference phase, the
proposed approach can be viewed as a closed-form expression
for stress solutions and demonstrates satisfactory computation
speed, requiring less than 0.42s to achieve stress distribution
at 20 equivalent sampled locations per segment. For stress
assessment on interconnect trees with 2,000, 4,000, and 6,000
segments, the proposed method requires 57s, 198s, and 485s
to converge to a loss of 5×10−6, demonstrating scalability for
large-scale interconnects. In these experiments, ν is gradually
increased to 6, and the neural network is expanded to 80
neurons per layer, with an RFF embedding size of m = 40.

During the void nucleation phase, the relative errors of the
model proposed by [21] for solving stress evolution along the
50, 100, and 200-segment interconnect trees, as depicted in Ta-
ble III, are 1.61%, 18.82%, and 3.99% after total training times
of 77.41s, 124.44s, and 400.71s, respectively. The method in
[21] employs an MLP to approximate stress dynamics at all
junctions. In the 100-segment interconnect tree test case, the
stress distributions at all junctions exhibit the highest variance
among the three cases, and thus cannot be accurately captured.
Furthermore, in the proposed partitioning-based approach,
degree-i (i = 3, 4) junctions are more likely to be regarded as
joints, which exhibit a narrower stress distribution compared
with junctions of i = 1, 2. Thereby, in addition to benefiting
from the reduction in the size of the training dataset induced
by partitioning, the proposed method further enhances its
approximation ability by narrowing the distribution of desired
outputs, achieved by focusing on stress at degree-i (i = 3, 4)
junctions. The proposed approach demonstrates a speedup of
up to 87× over the model from [21] in the three test cases, with
higher accuracy in stress analysis. Furthermore, we compare
the proposed approach with the semi-analytical method [37] on
100- and 500-segment interconnect trees. The semi-analytical
method requires 1.38s and 67s to calculate the EM-induced
stress during the void nucleation phase, whereas the proposed
approach requires 0s, 0.27s, and 0.39s for training the stress
model after dividing the interconnect trees into 1, 2, and 3
partitions in the 100-segment case, and 0s, 0.28s, and 0.41s
in the 500-segment case. It should be noted that in cases
where partitioning the interconnect tree is unnecessary, the
proposed method is reduced to analytical expressions. The
corresponding inference times are 0.002s, 0.006s, and 0.008s
for the 100-segment case and 0.002s, 0.007s, and 0.009s
for the 500-segment case, respectively, increasing with the
number of partitions and showing a more significant impact
on runtime than the segment scale. The proposed approach
achieves runtime reductions in both training and inference
phases compared with the semi-analytical method.

VI. CONCLUSION

This work introduces a novel partitioning-based approach
to predict stress evolution along interconnect trees during the
void nucleation and void growth phases, utilizing a lightweight
neural network. Initially, we present a partitioning strategy
to divide a complex interconnect tree into individual bricks
through specific joints and derive analytical solutions for each
brick. The learning framework is then employed to fine-
tune the solutions along bricks, particularly at the intersection
junctions connected with neighboring bricks. By simplifying
the physics-based constraints through partitioning, the required
amount of training data for the learning task is significantly
reduced. Moreover, we incorporate random Fourier features
before passing inputs to a multilayer perceptron to enhance
the capacity of the neural network to learn features under
customized frequencies. The proposed method can be extended
to account for the influence of varying physical parameters and
operating conditions on stress evolution during EM phases.
Experimental results indicate significant computational savings
while maintaining competitive accuracy compared with the
existing methods. The proposed approach captures continuous
multi-order stress while considering dynamic current den-
sity, offering a practical alternative to discretization-dominant
numerical methods. Although current density simulation is
not included here, the promising characteristics of the pro-
posed approach suggest potential expansion for comprehensive
electromigration assessments, including void event prediction
related to IR drop.

APPENDIX

A. Derivation of Stress Evolution along T-shaped Bricks
In this section, we derive the analytical solution of stress

evolution along the T-shaped interconnect trees during the
void nucleation phase. Based on Eq. (2), we establish the trial
solution for the j-th segment in the Laplace domain:

σj(x, s) = Aje
mx +Bje

−mx, (36)

where m =
√
s/κ and κ1 = κ2 = κ3 = κ. We establish the

following BCs for a T-shaped interconnect tree

κ
(∂σ1(x, s)

∂x
|x=L0 +G1

)
+ κ

(∂σ2(x, s)

∂x
|x=L0 +G2

)
+ κ

(∂σ3(x, s)

∂x
|x=L0 +G3

)
= 0,

(37)

σ1(x, s)|x=L0 = σ2(x, s)|x=L0 = σ3(x, s)|x=L0 , t > 0, (38)

κ
(∂σ1(x, s)

∂x
|x=L1 +G1

)
= 0,

κ
(∂σ2(x, s)

∂x
|x=L2 +G2

)
= 0,

κ
(∂σ3(x, s)

∂x
|x=L3 +G3

)
= 0,

(39)
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Algorithm 1 Vectors used for stress evolution assessment.
Input: Max iteration number imax, index of segment j, index

of junction where void occurs v (v = NA during void
nucleation phase), number of segments M , length of the
i-th segment Li, a set of indices of segments C;

Output: Vectors HC , H∗, hC , h∗, Ki,M , Li,M .
Initialize empty HC = [ ], hC = [ ].
Initialize L0,M = [0], L1,M = [2

∑M
i=1 Li],

K0,M = [1] and H∗ = [
∑M

i=1,
i̸=j

Li,−
∑M

i=1,
i̸=j

Li].
if v == NA then
K1,M = [1], h∗ = [M,−⌊M/2⌋],

else
K1,M = [−1], h∗ = [M, ⌊M/2⌋],

end if
for c = 1 → M do

if c /∈ C then
HC = F((HC)T + [c,−c]),
if c == v then
hC = F((hC)T · [1,−1]),

else
hC = F((hC)T · [1, 1]),

end if
end if
if c ̸= j then
H∗ = H∗∥ − 2Lc +

∑M
i=1,
i̸=j

Li,

if c == v then
h∗ = h∗∥ − ⌊M/2⌋,

else
h∗ = h∗∥⌊M/2⌋,

end if
end if
L1,M = L1,M∥2Lc∥2

∑M
i=1,
i̸=n

Li,

if v == NA then
K1,M = K1,M∥ 2−M

M ∥M−2
M ,

else if c == v then
K1,M = K1,M∥M−2

M ∥M−2
M ,

else
K1,M = K1,M∥ 2−M

M ∥ 2−M
M ,

end if
end for
for i = 2 → imax do

Li,M = F((L1,M )T + Li−1,M ),
Ki,M = F((K1,M )T ·Ki−1,M ).

end for

according to constraints in Eqs. (3), (4) and (5), respectively.
Substituting Eq. (36) into Eqs. (37)-(39), we then obtain a
linear matrix equation E · α = β, where E is a 6 × 6
matrix, α = [A1, B1, A2, B2, A3, B3]

T describing unknown
coefficients, β = [−G1,−G2,−G3, 0,−GΣ]

T , and GΣ =∑3
i=1 Gi. Solving this equation gives Aj and Bj as follows:

Aj =

−Gj
∑

q{h
∗
qe

mH∗
q }−2

∑3
k=1,
k ̸=j

{Gk

∑
q H−

q,k}+GΣ
∑

q H−
q

3m(1 −
∑

p K1,3
p e−mL

1,3
p )e−m

∑3
i=1

Li

,

Bj =

−Gj
∑

q{h
∗
qe

−mH∗
q }−2

∑3
k=1,
k ̸=j

{Gk

∑
q H+

q,k}+GΣ
∑

q H+
q

3m(1 −
∑

p K1,3
p e−mL

1,3
p )e−m

∑3
i=1

Li

,

(40)

where

H−
q,k = h{j,k}

q em(H{j,k}
q −Lj), H+

q,k = h{j,k}
q em(H{j,k}

q +Lj),

H−
q = h{j}

q em(H{j}
q −Lj), H+

q = h{j}
q em(H{j}

q +Lj),
(41)

and using Algorithm 1 we determine the vectors
L1,3, K1,3, HC , H∗, hC and h∗, where q and p are
indices that traverse the entire vectors. HC △

= H(C) and
hC △

= h(C) are transformations mapping C, a set of indices
of segments, to vectors in Eq. (41). In Algorithm 1, ⌊x⌋
represents the greatest integer less than or equal to x. The
calculation operator Al×1 + / · B1×l represents the sum/dot
product of two matrices Al×l and Bl×l, where the vectors are
converted to matrices of uniform size by duplicating specified
dimensions of the input vectors. The reshape transform F
follows F(X) : X ∈ Rl×p → X ∈ R1×lp. The operator
a∥b represents the concatenation of a vector a ∈ Rn and an
element b ∈ R, resulting in a new vector c ∈ Rn+1.

The coefficients Aj and Bj can be converted into infinite
Taylor series, resulting in the infinite terms in Eq. (21). Using
Eqs. (36) and (40), the stress evolution can be obtained
through the inverse Laplace transform, by introducing the basic
function (10). This ends the derivation of stress evolution along
a T-shaped interconnect tree during the void nucleation phase.
The derivation of stress evolution along bricks with a degree-4
junction follows a process similar to that used for a degree-
3 junction. Stress analysis during the void growth phase can
be conducted following the method in [15] which utilizes the
Residue Theorem.
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