
The Complexity of Fault Detection

in MOS VLSI Circuits�

Farid N. Najmy and Ibrahim N. Hajj

Coordinated Science Laboratory and the
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract

This paper considers the fault detection problem for a single fault in a single MOS
channel-connected subcircuit. We identify the following three decision sub-problems : (i) de-
cide if a test vector exists; (ii) decide if an initializing vector exists; and (iii) decide if a test
pair is robust. We prove that each of these problems is NP � complete. More importantly,
we prove that the �rst two remain NP � complete for the simplest subcircuit design styles,
namely series/parallel nMOS or CMOS logic gates. The third subproblem is shown to be
of linear complexity for a CMOS logic gate with a stuck-open fault. We illustrate that a
test pair that is not robust may contain a robust sub-test pair, and give a necessary and
su�cient condition for this to happen in CMOS logic gates. This leads to a linear-time
algorithm for CMOS logic gates which tests for robustness and, if possible, derives a robust
test pair from a possibly non-robust pair. The implications of these complexity results on
practical transistor-level test generation tools are discussed.

� This work was supported by the Semiconductor Research Corporation under Contract
SRC RSCH 84-06-049.
y F. N. Najm is now with the Semiconductor Process and Design Center, Texas Instruments

Inc., P.O. Box 655621, MS 369, Dallas, Texas 75265

1 Introduction

The testing of VLSI circuits and systems is a major concern in the electronics industry. Ex-

tensive research has been done, and is still underway, in fault simulation and test generation

in order to ensure reliable fault-free products. Testing is becoming more critical with the

increase in the number of devices on a chip and the corresponding decrease in feature size.

Most test generation tools currently being used in the industry consider gate-level or

higher functional-level representation of the design. As a result, faults are restricted to

stuck-at fault models (a node shorted to power or ground is said to be stuck-at 1 or 0).

The advantage of such representation and fault modeling is that the testing task becomes

technology-independent and can be carried out during the system design phase before the

actual physical design is completed.

Although gate-level and functional-level testing may be acceptable for many applications,

it is not adequate for high performance circuits. Many faults are technology-dependent (they

occur at the transistor and layout levels) and should be tested during the physical design

phase. Some of these faults are hard, or even impossible, to model by stuck-at fault models

at the gate or functional levels [1, 2]. Thus, there is de�nitely a need to consider technology-

dependent and transistor-level representations in order to approach fault-free products.

In this paper we consider the problem of detecting permanent transistor-level faults in

MOS digital circuits. These faults are typically modeled as transistor stuck-open or closed

faults. They include failures in actual transistors, as well as bridging faults, which can

be modeled by inserting arti�cial transistors between nodes. We consider the circuit to

be partitioned into primitive modules consisting of nodes that are connected by transistor

channels, along with the transistors forming the connections [3]. Power supply, ground, and

primary input nodes always belong to the boundaries of modules. Such modules, which have

been called channel-connected subcircuits, static components [3], transistor groups, or circuit

blocks, are often simply the MOS implementations of logic gates. We will refer to them as

channel-connected subcircuits, or simply as subcircuits. In general, a subcircuit may contain

pass-transistors and its behavior cannot be easily predicted by simple boolean models. When

it does implement a logic gate, we will refer to a subcircuit as a logic gate, or simply a gate.

1

The problem of automatically generating tests to detect faults in VLSI circuits is natu-

rally divided into two stages, which take place at the local and global levels, as follows. At

the local level, the subcircuit in which the fault occurs is �rst identi�ed, and a local test(s)

is devised which, if applied at the inputs of that subcircuit, would produce a faulty value at

its output. At the global level, this test(s) is propagated backwards to the circuit primary

inputs, and the faulty subcircuit output value is propagated forward to the circuit primary

outputs. If these propagation steps are successful, then a test has been derived [4].

In classical gate-level test generation schemes, the local test(s) are often readily available

from the gate library, and the bottleneck becomes the two forward and backward propagation

steps. The classical test generation problem has been extensively studied, and has been

shown [5, 6] to be NP � hard. Recently, a number of test generation schemes have been

proposed for transistor-level faults [7]{[14]. Perhaps the most signi�cant di�erence between

these and previous, gate-level, test generation schemes is that local tests are no-longer easily

available, but must be derived as well.

It has been established [1, 2], and has been our experience [7, 8] that the problem of

deriving local tests for transistor-level faults is not trivial. The reason for this is mainly that

the circuit response to a transistor-level fault often depends on its electrical, rather than

simply logical, properties. This is especially true for faults that require two test vectors for

detection. Such faults occur frequently [1, 2, 7, 8, 15, 16] in MOS circuits. In such cases, the

�rst vector is used to set-up certain charges at some subcircuit nodes in preparation for the

second vector. We will refer to the second vector of a test pair as a test vector, represented as

t2, and to the �rst as an initializing vector, represented as t1. For uniformity of presentation,

a test vector will be called t2 even if it does not require initialization. A given two-vector

test sequence may be invalidated in practice due to signal skews at the subcircuit inputs [1,

11, 16]. A test pair that is valid irrespective of signal skews is said to be robust [15].

This paper investigates the complexity of the local test generation problem for faults at

the transistor-level, and shows that it is NP � hard. To do so, we identify the following

three decision sub-problems at the local level : (i) decide if a test vector exists; (ii) decide

if an initializing vector exists; and (iii) decide if a test pair is robust. We prove that each

of these problems is NP � complete. More importantly, we prove that the �rst two remain

NP � complete for the simplest subcircuit design styles, namely series/parallel nMOS or

2

CMOS logic gates. The third subproblem is shown to be of linear complexity for CMOS

logic gates with single stuck-open faults. We illustrate that a test pair that is not robust

may contain a robust sub-test pair, and give a necessary and su�cient condition for this to

happen in a CMOS logic gate. This leads to a linear-time algorithm for CMOS logic gates

which, if possible, derives a robust test pair from a possibly non-robust pair, or else declares

the test to be non-robust.

The remainder of this paper is divided into six sections. Section 2 considers the com-

plexity of �nding a single test vector, Section 3 deals with �nding an initializing vector,

and Section 4 examines the complexity of checking for robustness. Section 5 considers the

robustness problem in CMOS logic gates. Finally, Section 6 gives some concluding remarks

and discusses the practical implications of the results presented in this paper.

2 Complexity of Generating t2

This section is concerned with the complexity of deriving a single test vector t2. We begin

with some preliminaries from boolean algebra that will be needed in the proofs below.

A boolean expression is said to be satis�able if there exists an assignment of 0's and 1's to

its variables that gives it the value 1. We recall the satis�ability problem from mathematical

logic [17], to be abbreviated SAT, which is de�ned as follows. A boolean variable or its

complement is called a literal. Given a boolean expression in conjunctive normal form (CNF),

i.e., it is the product (logical and) of a set of sub-expressions called clauses where every clause

is the sum (logical or) of a number of literals. The problem is to decide whether or not the

expression is satis�able. It is well known [17, 18] that SAT is NP � complete.

A boolean expression is said to be in disjunctive normal form (DNF) if it is a sum (logical

or) of a set of clauses where each clause is the product (logical and) of a number of literals.

We will represent the fact that a problem P is transformable in polynomial time to a problem

P 0 by writing P / P 0.

De�nition 1. Problem P0 : Let g (h) be a boolean expression in CNF (DNF) with no

complemented literals, and let h be the complement of h. Is gh satis�able?

Lemma 1. P0 is NP � complete.

3

proof: By DeMorgan's Laws, h is a CNF with only complemented literals. Hence P0 is

an easy equivalent restatement of the satis�ability problem for unate CNF formulas : P0

is equivalent to the clause-monotone problem [6] (also MONOTONE 3SAT [17]) which are

NP � complete.

Consider the following fault detection problem :

De�nition 2. Problem P1 : Let S be a series/parallel nMOS or CMOS logic gate with

either a transistor stuck-closed or stuck-open fault f, does there exist a test vector t2 for f?

Theorem 1. P1 is NP � complete.

proof: P1 is in NP. To complete the proof we will prove that P0 / P1. Let g and h be an

instance of P0. Construct, in linear time, a series/parallel realization of g and h using nMOS

transistors and build the nMOS gate shown in Fig. 1, where xf does not occur in g or h.

Let there be a fault f (either stuck-closed or stuck-open) at transistor Tf . This constitutes

an instance of P1. It is clear that a test vector t2 can be found if and only if gh is satis�able.

Therefore P0 / P1. The same result holds for CMOS by considering the gate in Fig. 2.

It is easy to prove, using similar arguments, that the single node stuck-at (0 or 1) fault

detection problem for nodes internal to the gate is also NP�complete (consider a stuck-at-0

fault at node Y in Fig. 3).

3 Complexity of Generating t1

Once a test vector t2 has been found, it may be necessary to derive an initializing vector

t1. We now examine the complexity of the problem of �nding t1.

To point out some of the issues involved in deriving t1, and to motivate the formal

de�nition of the problem as given below, consider the CMOS logic gate shown in Fig. 4,

where the nMOS transistor driven by input C is stuck-open. Suppose that the two nMOS

transistors tied to ground are wide enough so that the parasitic capacitances at X and Y are

comparable with that at Z. One possible test vector for this fault is t2 = 1010 (A = 1; B =

0; C = 1;D = 0). It works by trying to turn on the path \Z �X � ground00, while keeping

o� the path \Z � Y � ground00. It is clear that an initializing vector t1 must precharge Z

to 1. However, since t2 ties Z to X, which has comparable capacitance, and to guarantee

that the charge on Z is not lost due to charge sharing [1, 16], then t1 must also precharge

4

X to 1. Therefore, t1 = 1000 is the required initializing vector. Another valid test vector

is t2 = 1110, which ties Z to both X and Y . In this case t1 must precharge all three nodes

X;Y; & Z, hence t1 = 1100. Therefore, the initializing vector t1 depends not only on the

particular fault, but also on the choice of test vector t2.

Having made this introduction, we are now ready to de�ne the following initialization

problem :

De�nition 3. Problem P2 : Let S be an MOS subcircuit, with either a transistor stuck-

closed or stuck-open fault f, for which some test vector t2 is known to require initialization,

does there exist an initializing vector t1 for t2?

Theorem 2. If S is a series/parallel CMOS logic gate with a stuck-open fault f, then P2 is

NP � complete.

proof: The proof will be based on the need to avoid charge sharing between the output and

other gate nodes when the test vector t2 is applied.

It is clear that P2 is in NP, we will prove that P0 / P2. Using an instance of P0 build

(in linear time) the gate in Fig. 5 so that CY = CZ and all other internal node capacitances

are negligible. Let there be a stuck-open fault at nMOS transistor Tf .

Since any t2 must sensitize the output Z to the gate label of Tf then it must connect

Y and Z by at least one path in the g block. Since CY = CZ then an initializing vector

must initialize both Y and Z to 1 to avoid charge sharing when t2 is applied, no other nodes

need be initialized because they have negligible capacitances by construction. Therefore an

initializing vector t1 can be found if and only if gh is satis�able, and P0 / P2.

Before going on, we should make the following point. If one assumes that the output

node capacitance is always much higher than the capacitances at the internal nodes, then

charge sharing can be neglected, and the only node to be initialized is the output node. In

this case the initialization problem P2 becomes of linear complexity, since it can be solved

by simply �nding a path of transistors to be turned on in either the p- or n-block of the gate,

depending on the required initial value.

The problem of initialization does not arise for a single nMOS gate. Furthermore, in the

case of a transistor stuck-closed fault, P2 does not arise for either nMOS or CMOS gates.

If, however, the design style is not constrained to be either nMOS or CMOS logic gates (in

5

which case we refer to it as an unconstrained design style) then initialization may be required

even for stuck-closed faults.

As an aside, we should point out that, by unconstrained design style, we do mean a

completely free style where any interconnection of P or N transistors is allowed. To a MOS

circuit designer, such a design style will seem useless, and hence the results in the next two

theorems may seem insigni�cant. However, a tool developer, writing a transistor-level test

generation program that accepts circuit descriptions in the form of transistors and nodes,

must decide whether to disallow certain strange subcircuit con�gurations, or else to decide

how to handle all con�gurations. It is with this second choice in mind that we include the

next two theorems, which are based on the two non-standard subcircuits in Figs. 6 and 8. If

nothing else, these two results establish that, if standard design practices are not followed,

then the problems are no longer of polynomial-time complexity.

Theorem 3. P2 is NP � complete for stuck-closed faults if an unconstrained design style

is allowed.

proof: As above, P2 is in NP and we will prove that P0 / P2. Construct a subcircuit in

polynomial time using nMOS transistor implementations of g and h as shown in Fig. 6. The

�gure also shows an assumed stuck-closed fault at one of the transistors with gate label xf .

It is easy to see that t2 must make xf = 0 and gh = 1, and requires that the output node Z

be initialized to 1. This constitutes an instance of P2. An initializing vector t1 can be found

if and only if gh is satis�able, therefore P0 / P2.

4 Complexity of Checking Robustness

Suppose a test vector t2 for a certain fault requires an initializing vector t1. The object of

t1 is to initialize certain internal nodes in the subcircuit to certain values. The success of

t2 depends on whether or not these values are still there when it is applied, we will refer to

these nodes as critical precharged nodes. For instance, in the example in Fig. 4, if the test

pair t1 = 1100; t2 = 1110 is used then X; Y; & Z are three critical precharged nodes.

Whether these charges are lost or not depends on the way the transition t1 ! t2 takes

place. Signal skews at the inputs to the subcircuit [1, 11, 16] can cause certain transistors

to switch before others, causing the values of these critical nodes to be changed before t2

6

is applied. As an example, consider the CMOS gate in Fig. 7, which has been borrowed

from [11], in which a stuck-open fault is assumed at the pMOS transistor driven by input

B. In this case, the test vector is t2 = 001, and requires output Z to be precharged to 0.

If this charge is lost during the transition then the test will be invalidated. Z is the only

critical precharged node in this case. A possible initializing vector is t1 = 100. If, however,

input A switches to 0 before C has switched to 1, then the intermediate state 000 will take

the output high and invalidate the test.

It is of interest, therefore, to devise test pairs (t1, t2) that cannot be invalidated no

matter how the subcircuit inputs switch; these tests are called robust [15]. It is helpful to

visualize t1 and t2 as cubes [4] in the boolean space. A robust test pair then becomes one

which cannot be invalidated no matter which path in the boolean space is actually taken to

go from t1 to t2.

De�ne the following robustness problem :

De�nition 4. Problem P3 : Given an MOS subcircuit S along with a test pair (t1; t2) for a

certain fault in S, is the test pair robust?

Theorem 4. P3 is NP � complete if an unconstrained design style is allowed.

proof: P3 is in NP, we still need to show that it is also NP � hard. To do so we will

show that a polynomial-time algorithm A for P3 can be used to construct a polynomial-

time algorithm for SAT. Let E(x1; : : : ; xn) be a boolean expression in CNF. The required

algorithm is simply as follows:

-1- If E(0; : : : ; 0) = 1, then E is satis�able.

-2- Else if E(1; : : : ; 1) = 1, then E is satis�able.

-3- Else construct in linear time a switching function realization of E using nMOS transistors

for non-complemented literals and pMOS transistors for complemented ones. Use this

to build the subcircuit shown in Fig. 8. Let there be a transistor stuck-open fault at the

nMOS transistor driven by x1 shown in the �gure. The only possible test pair is one that

sets xi = 0 in t1 and xi = 1 in t2 for all i = 1; : : : ; n, so that Z is initialized to 1 by t1 and

then (possibly) discharged to 0 by t2. Since E(0; : : : ; 0) = 0 and E(1; : : : ; 1) = 0, then

the E block is o� when either t1 or t2 is applied, and therefore (t1; t2) is a valid test pair.

This constitutes an instance of P3, and A can be used to solve it in polynomial-time.

7

Notice that the set of possible intermediate states in the transition is the whole boolean

space and that E should be 0 at each of these states to preserve the charge at the output

node Z. Therefore the test pair is robust if and only if E is not satis�able.

We will show in the next section that this problem becomes of linear complexity for the

special case of a CMOS logic gate.

5 Robustness in CMOS logic gates

We will now study the complexity of P3 for the case of a single CMOS logic gate (not

necessarily series/parallel) with a transistor stuck-open fault. Some remarks are necessary

at �rst to set the stage for the remainder of this section.

A compact representation of t1 or t2 is a row-vector, or cube, of n entries xi 2 f0;X; 1g,

where X means that the value at the corresponding gate input is irrelevant to the test. A

cube t0 is a subset of a cube t if and only if t0 can be obtained from t by replacing some or all

of the X entries in t by 0s or 1s. We will use � to represent the subset (inclusion) relation

between two cubes. We also denote by \ ([) the bit-wise and (or) operation between two

cubes using ternary logic.

Consider again the example in Fig. 7. As described above, the test pair t1 = 100; t2 = 001

was found to be non-robust because both A and C are supposed to switch, causing a race-

hazard situation which can invalidate the test if the state 000 is obtained. In fact, a more

e�cient description of this initializing vector would be t1 = 1XX, signifying the fact that

as long as A is high to drive Z low, the other values at B and C are irrelevant. Of course

this t1 still su�ers from the same race-hazard problem. However, if the subcube t0
1
= 1X1

is chosen, then C no longer has to switch, and the race-hazard is removed, resulting in

a robust test pair (1X1; 001). However, if a glitch occurs on C, then the state 000 can

occur and invalidate the test, this is called a static hazard problem. Therefore, an exact

description of this robust test pair should carry with it the requirement that C should be

static-hazard-free, to be abbreviated shf, during the transition. In general, a robust test pair

comes with shf requirements for one or more input nodes; it will be written as a robust test

triplet (t1; Shf ; t2), where Shf is the set of inputs that need to be shf.

8

Notice that, as in the above example, a non-robust test pair (t1; t2) may be made robust

by selecting some subcube of each of t1 and t2, t
0

1
and t0

2
, and requiring that some inputs

that do not change in the transition t0
1
! t0

2
be free of glitches (ie, static-hazard-free). The

choice of t0
1
, t0

2
, and Shf is not unique. This process of extracting a robust test pair from a

non-robust one will be referred to as re�nement : (t1; t2) is re�ned to produce (t0
1
; Shf ; t

0

2
).

In the remainder of this section we derive a necessary and su�cient condition for a test pair

in a CMOS logic gate to either be robust or to contain a robust sub-test pair. This leads to

a linear-time algorithm that either re�nes a given test pair to make it robust, or else declares

it as non-robust. This essentially proves that P3 becomes of linear complexity for CMOS

logic gates.

Given a CMOS logic gate S with a stuck-open fault at a transistor Tf whose gate label

is xf . Given also a test pair (t1, t2), not necessarily robust, which detects this fault. Let

the gate output node be Z. We make the reasonable assumption that the capacitance of Z

is not negligible compared to other internal nodes of S; therefore, it is one of the critical

precharged nodes. We also assume, without loss of generality, that Tf is in the n-part of the

gate. This means that t1 joins Z as well as all other critical precharged nodes to Vdd, and t2

attempts to join Z to Vss along a path that goes through Tf .

We will now focus on the n-part of the gate and treat it as a graph G where every gate

node (transistor) translates to a graph node (edge) of G, however, no edge is inserted in G

for the faulty transistor Tf . If t is an input vector to S at a particular time involving no X

entries, de�ne G[t] as the subgraph of G induced by the edges turned \on" by t. We will

call this subgraph of G the conduction subgraph associated with t. It is clear (since Tf =2 G)

that if for some intermediate t in the transition the resulting G[t] joins one of the critical

precharged nodes to Vss, or to some other discharged node with high enough capacitance

to cause charge sharing, then the charges will be lost and the test invalidated. If this is

not the case for a certain G[t], then it will be called charge-preserving. We will assume,

that, knowing the node capacitances, it is possible to check in linear time whether a certain

subgraph G[t] is charge-preserving or not.

Let t0
1
(t0
2
) be obtained from t1 (t2) by replacing the X's in its row vector representation

by 0's. G[t0
1
] contains all the critical precharged nodes in the n-part of S, and therefore

contains the output node Z in particular. In fact G[t0
1
] joins the output node Z to every

9

other critical precharged node of G. As for G[t0
2
] it contains both Z and Vss, but does not

actually join them by a path because Tf was not included in G. De�ne G[ti] [G[tj] to be

the graph with node (edge) set equal to the union of the two node (edge) sets of G[ti] and

G[tj]. We will also say G[ti] � G[tj] if G[ti] is a subgraph of G[tj].

Let t12 = t1 [t2 and t0
12

= t0
1
[t0

2
; it is easy to see that G[t0

12
] = G[t0

1
] [G[t0

2
], and

therefore contains all the critical precharged nodes in the n-part including the output node

Z, as well as Vss.

Lemma 2. The pair (t1, t2) can be made robust by re�nement if and only if G[t0
12
] is

charge-preserving.

proof: Two parts :

(i) only if part : By contradiction. Suppose G[t0
12
] is not charge-preserving. Notice that if

t � t12 has no X entries, then G[t0
12
] � G[t]. Suppose certain t0

1
, t0

2
, and shf requirements,

Shf , have been chosen. Let s0
12

be the cube consisting of all the possible states in the

t0
1
! t0

2
transitions obeying the shf requirements. Therefore t0

1
� s0

12
and t0

2
� s0

12
. Any

non-X entries of s0
12
are shf and must be the same as their corresponding entries in t0

1
and

t0
2
, and must, therefore, be subsets of their corresponding entries in t1 and t2. Therefore

t12 \ s0
12
6= �. Now let t � t12 \ s0

12
have no X entries, then t is a possible intermediate

state and G[t0
12
] � G[t], since t � t12. Therefore whatever shf requirement are made for

the t0
1
! t0

2
transition, Z and all other critical precharged nodes in the n-part will lose

their charges for some intermediate vector t. So the test cannot be made robust.

(ii) if part : Constructive. Suppose G[t0
12
] is charge-preserving. The 0's in t0

12
correspond

to either X's or 0's in t1 and t2. Set all these X's to 0's to get t0
1
and t0

2
(ie, t0

1
= t1 \ t

0

12

and t0
2
= t2 \ t0

12
), and specify that all the entries corresponding to the 0's of t0

12
be

0-static-hazard-free in the transition t0
1
! t0

2
. Therefore if t is any intermediate state in

the transition, G[t] � G[t0
12
], and the test is robust.

Theorem 5. If S is a CMOS logic gate with a transistor stuck-open fault, then there exists

a linear-time algorithm for P3.

proof: The proof is constructive and gives a linear time algorithm that either decides that a

test cannot be made robust, or else re�nes it to make it robust. Simply stated, the algorithm

10

follows the proof of Lemma 2 : given t1 and t2, form t0
12

and check if G[t0
12
] is charge-

preserving. If not then the test cannot be made robust, otherwise form t0
1
= t1 \ t0

12
and

t0
2
= t2 \ t0

12
, and specify that all the entries corresponding to the 0's of t0

12
be 0-static-

hazard-free in the transition t0
1
! t0

2
. All the operations described can be easily done in

linear time.

Even though the algorithm given above is very e�cient, it may give shf requirements

that are an overkill; ie, it may be possible to make the test pair robust using less stringent

shf requirements. This may be done by posing the problem as a network ow problem [19]

and looking for minimum (or minimal) cuts in the resulting network.

6 Conclusion

This paper considers the fault detection problem for a single fault in a single MOS channel-

connected subcircuit. We identify the following three decision sub-problems : (i) decide if a

test vector exists; (ii) decide if an initializing vector exists; and (iii) decide if a test pair is

robust. We prove that each of these problems is NP�complete. More importantly, we prove

that the �rst two remain NP � complete for the simplest subcircuit design styles, namely

series/parallel nMOS or CMOS logic gates. The third subproblem is shown to be of linear

complexity for a CMOS logic gate with a stuck-open fault. We illustrate that a test pair

that is not robust may contain a robust sub-test pair, and give a necessary and su�cient

condition for this to happen in a CMOS logic gate. This leads to a linear-time algorithm

for CMOS logic gates that, if possible, derives a robust test pair from a possibly non-robust

pair, or else declares the test to be non-robust.

The signi�cance of these results is that it is very unlikely that a polynomial-time al-

gorithm for local test generation in general MOS circuits will be found. We should make

the point, however, that our results all refer to the asymptotic complexity of this problem.

Since \practical" MOS gates have a constant (O(1)) upper limit on their number of tran-

sistors, then exponential or exhaustive algorithms may be acceptable for them. Therefore,

the formal results derived above may have limited practical importance. Nevertheless, it

is important to know whether polynomial-time algorithms for these problems, for general

MOS circuits, exist or not. Furthermore, test generation tools that work at the switch or

11

transistor levels need to be able to handle not just implementations of logic gates, but also

many other con�gurations, such as pass-transistors in multiplexors, shifters, or data-paths.

These subcircuits can grow very large in size, e.g. up to 5000 transistors [3], which gives our

asymptotic complexity results signi�cant practical importance in these cases.

Therefore, a transistor-level test generation algorithm should use heuristics or approxima-

tions in order to perform reasonably on very large subcircuits. Furthermore, it is important

to look for certain restricted design styles and fault types for which e�cient, special purpose,

polynomial time algorithms exist. In view of this, it is signi�cant that the fault detection

problem remains NP � complete for the special case of a series/parallel nMOS or CMOS

logic gate.

Another way around the hardness of this problem may be to preprocess and precharac-

terize the subcircuits so that tests for them would be readily available for the test generator.

Certain design styles, such as standard cells, are especially attractive in this respect because

the capacitance at internal nodes, which is crucial to the success of transistor-level tests,

is predetermined, and does not depend on the �nal layout of the whole chip. In previous

work [7, 8], the authors describe their implementation of a transistor-level test generation

tool, called ITEST, which takes into account the e�ects of charge-sharing, voltage division,

and race and static hazards, and guarantees robust test pairs. It is based on a switch-level

model of MOS circuits, and has been used to characterize a variety of MOS subcircuits,

ranging from simple gates to more complex circuits with pass-transistors and transmission

gates.

References

[1] J. A. Abraham and H-C. Shih, \Testing of MOS VLSI circuits," International Symposium
on Circuits and Systems, Kyoto, Japan, June 5{7, 1985.

[2] R. L. Wadsack, \Fault modeling and logic simulation of CMOS and MOS integrated
circuits,", The Bell System Technical Journal, vol. 57, no. 5, pp. 1449{1474, May{June
1978.

[3] R. E. Bryant, \A survey of switch-level algorithms," IEEE Design and Test of Computers,
vol. 4, no. 4, pp. 26{40, August 1987.

[4] J. P. Roth, Computer logic, testing, and veri�cation. Potomac, MD: Computer Science
Press, Inc., 1980.

[5] O. H. Ibarra and S. K. Sahni, \Polynomially complete fault detection problems," IEEE
Transactions on Computers, vol. C-24, no. 3, pp. 242{249, March 1975.

12

[6] H. Fujiwara and S. Toida, \The complexity of fault detection problems for combinational
Logic circuits", IEEE Transactions on Computers, vol. C-31, no. 6, pp. 555{560, June
1982.

[7] F. N. Najm, \Switch-level test generation for MOS VLSI circuits," Report # UILU-ENG-
86-2223, Coordinated Science Lab., Univ. of Illinois at Urbana-Champaign, August 1986.

[8] I. N. Hajj and F. N. Najm, \Test generation for physical faults in MOS VLSI circuits,"
IEEE Comp-Euro Conference, Hamburg, West Germany, pp. 386{389, May 11{15, 1987.

[9] M. R. Lightner and G. D. Hachtel, \Implication algorithms for MOS switch-level func-
tional macromodeling, implication and testing," IEEE 19th Design Automation Confer-
ence, Las Vegas, NV, pp. 691{698, June 1982.

[10] P. Agrawal, \Test generation at switch-level," IEEE International Conference on
Computer-Aided Design, Santa Clara, CA, pp. 128{130, Nov. 12{15, 1984.

[11] S. K. Jain and V. D. Agrawal, \Test generation for MOS circuits using D-algorithm,"
IEEE 20th Design Automation Conference, Miami Beach, FL, pp. 64{70, June 27{29,
1983.

[12] M. K. Reddy, S. M. Reddy, and P. Agrawal, \Transistor level test generation for MOS
circuits," IEEE 22nd Design Automation Conference, pp. 825{828, 1985.

[13] H. H. Chen, R. G. Mathews, and J. A. Newkirk, \An algorithm to generate tests for
MOS circuits at the switch level," IEEE 1985 International Test Conference, pp. 304{
312, 1985.

[14] H-C. Shih and J. A. Abraham, \Transistor-level test generation for physical failures in
CMOS circuits," IEEE 23rd Design Automation Conference, pp. 243{249, 1986.

[15] S. M. Reddy, M. K. Reddy, and V. D. Agrawal, \Robust tests for stuck-open faults
in CMOS combinational logic circuits," IEEE 14th International Symposium on Fault
Tolerant Computing, Kissimee, FL, pp. 44{49, June 20{22, 1984.

[16] S. M. Reddy and M. K. Reddy, \Testable realizations for FET stuck-open faults in
CMOS combinational logic circuits," IEEE Transactions on Computers, vol. C-35, no. 8,
pp. 742{754, August 1986.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman, San Francisco, CA, 1979.

[18] S. A. Cook, \The complexity of theorem-proving procedures," The 3rd Annual ACM
Symposium on Theory of Computing, Shaker Heights, OH, pp. 151{158, May 3{5, 1971.

[19] S. Even, Graph algorithms. Rockville, MD: Computer Science Press, Inc., 1979.

13

Figure Captions

Figure 1: An nMOS gate, used to study the complexity of generating t2.

Figure 2: A CMOS gate, used to study the complexity of generating t2.

Figure 3: An nMOS gate.

Figure 4: A CMOS gate, used to illustrate the problems of charge sharing and charge loss.

Figure 5: A CMOS gate, used to study the complexity of generating t1.

Figure 6: An MOS subcircuit with a transistor stuck-closed fault.

Figure 7: A CMOS gate with a transistor stuck-open fault.

Figure 8: An MOS subcircuit with a transistor stuck-open fault.

14

