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Abstract

The probabilistic simulation approach [1] is extended to include the computation of the
variance waveform of the power/ground current, in addition to its expected waveform. To
provide the motivation for doing this, we focus on the problem of estimating the median time-
to-failure (MTF) due to electromigration in the power and ground busses of CMOS circuits.
New theoretical results are presented that quantify the relationship between the MTF and
the statistics of the stochastic current. This leads to a more accurate estimate of the MTF
that requires both the expected and variance waveforms. A novel technique is then presented
to compute the variance waveform for CMOS circuits, which has been incorporated into the
probabilistic simulator CREST [1]. We show results of this implementation, demonstrating
e�ciency and accuracy on a number of circuits. We also use these results to study the
importance of the variance waveform by estimating its contribution to the MTF relative to
that of the expected waveform.
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1. Introduction

Reliability, already a major concern in integrated circuit design, can only become more

important in the future. As higher levels of integration are used, metal line width and line

separation will continue to decrease, thereby increasing a chip's susceptibility to failures

resulting from line shorts or opens.

While the results to be presented can be used to study a variety of reliability problems,

we will illustrate their utility by focusing on the problem of electromigration [2, 3]. Electro-

migration (EM) is a major reliability problem caused by the transport of atoms in a metal

line due to the electron ow. Under persistent current stress, EM can cause deformations

of the metal lines which may result in shorts or open circuits. The failure rate due to EM

depends on the current density in the metal lines and is usually expressed as a median time-

to-failure (MTF). There is a need for CAD tools that can predict the susceptibility of a given

design to EM failures.

In [1] we presented a novel technique for MTF estimation based on a stochastic current

waveform model. The implementation of this technique in the program CREST (CuRrent

ESTimator) has proven to be very e�ective both in terms of accuracy and speed. In the

interest of clarity, we will review some of the basic concepts behind this approach. The

reader is referred to [1, 4] for a more detailed description.

We focus on the power and ground busses and derive currents for them to be used for

MTF estimation. The argument presented in [1] is that the desired current waveform in any

branch of the bus is one that combines the e�ects of all possible waveforms at the circuit

primary inputs. By considering the set of logical waveforms allowed at the circuit inputs as

a probability space [5], the current in any branch of the bus becomes a stochastic process.

CREST derives the expected (or mean) waveform (not a time-average) of this process, which

we call an expected current waveform, E[i(t)]. This is a waveform whose value at any given

time is the weighted average of all possible current values at that time. CREST uses statistical

information about the inputs to directly derive E[i(t)]. The resulting methodology is what

we call a probabilistic simulation of the circuit. In general, it can be slightly more time

consuming than a single timing simulation run, but it needs to be applied only once, resulting

in signi�cant speedup.
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While the feasibility of performing probabilistic simulation was established in [1], the

justi�cation for using E[i(t)] to estimate the MTF was based mainly on qualitative argu-

ments. In section 2 of this paper we quantify these arguments and present new theoretical

results that specify the relationship between the MTF and the statistics of the stochastic

current. This leads to an e�cient and more accurate technique for deriving the MTF which

requires the variance waveform, V [i(t)], of the stochastic current in addition to its expected

waveform. V [i(t)] is a waveform whose value at any given time is the variance of the current

values at that time, V [i(t)] = E
�
(i(t) � E[i(t)])2

�
. It is an indication of the spread of the

real current waveforms around their expected waveform.

In section 3 we present a novel technique for deriving the variances of the individual

gate currents in CMOS circuits. This has been implemented in the probabilistic simulator,

CREST [1]. Section 4 and the appendix contain a discussion of how the bus current variance

waveforms may be obtained from those of the individual gates. In section 5, we present

some results of our implementation, and use them to study the importance of the variance

waveform. This is done by estimating its contribution to the MTF relative to that of the

expected waveform. The appendix also presents several approximations that can be used

when handling large chips to simplify the variance computations, and thus make it possible

to handle VLSI circuits.

Several simplifying assumptions and/or approximations will be made in the following

sections to make the problem computationally tractable. Whenever possible, we will at-

tempt to justify these assumptions. However, for lack of space, this will not always be

possible, and the reader will be referred to appropriate references. Nevertheless, we will

o�er a veri�cation of the overall approach on a global scale, by comparing the end result

of the simulation (variance waveform) from CREST with that derived using SPICE. The

extended CREST program, with the variance computation built in, maintains its excellent

performance compared to traditional approaches : we demonstrate a speedup (over SPICE)

of over 11500X on a 648-transistor CMOS parallel multiplier circuit. Preliminary results of

this research have appeared in [6] and [7].
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2. Stochastic Current Waveforms and the MTF

Consider a metal line of uniform width and thickness carrying a constant current. Due to

electromigration (EM), the line will fail after a period of time. The time required for 50% of a

large population of such lines to fail is called the median-time-to-failure (MTF), also denoted

by t50. Due to the nature of the distribution (log-normal) of EM failure times, it turns out

that the MTF is also approximately equal to the mean-time-to-failure. The two names are

used interchangeably in the EM literature. The relationship between the MTF, t50, and

the current density j in the line has been extensively studied, and shown to be a complex

nonlinear function [8], as shown in Fig. 1. We will consider the MTF to be t50 / 1=f(j)

where j is in A=cm2, and f is the dimensionless nonlinear function shown in Fig. 2.

If a metal line carries a varying current, of density j(t), then the MTF is t50 / 1=Je� ,

where Je� depends both on f and on the waveform j(t). It has been suggested [9] that, if

the waveform is periodic, with period T , and if every period consists of a train of pulses

p = 1; : : : ;m of heights jp and duration tp, then Je� =
Pm

p=1

tp
T
~f(jp), where ~f(j) is chosen to

be one of the three dotted line approximations to f(j) in Fig. 2, depending on the value of jp,

as follows. If j � 105A=cm2 then ~f (j) = j, if 105A=cm2 � j � 106A=cm2 then ~f(j) / j3=2,

and if j � 106A=cm2 then ~f(j) / j2. A more accurate expression, however, can be written

in terms of f itself, as follows :

Je� =

mX
p=1

tp

T
f(jp): (2:1)

For a general periodic waveform, we take the summation to the limit and write :

Je� =
1

T

TZ
0

f(j)dt: (2:2)

If the current waveform is not periodic, then better estimates of Je� are obtained by

using larger values of T so that more features of the waveform are included. Therefore one

can write :

Je� = lim
T!1

1

T

TZ
0

f(j)dt: (2:3)
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Now suppose that the current waveform is stochastic, i.e., it is a stochastic process j(t),

that represents a family of deterministic (real) current waveforms jk(t), with associated

probabilities Pk, k = 1; : : : ; N , over the (�nite) interval [0; t0]. Based on this information, we

can build a (non-stochastic) current waveform j(t), over [0; T ] as T !1, that is indicative

of the current during typical operation as follows. Consider a random sequence of the

waveforms jk(t), each being shifted in time, spanning an interval of length t0, and occurring

with its assigned probability Pk, as shown in Fig. 3. Let nk(T ) be the (integer) number of

occurrences of the waveform jk(t) in [0; T ], and let nT = bT=t0c. If Jk, k = 1; : : : ; N are

de�ned as follows :

Jk
4
=

1

t0

t0Z
0

f(jk)dt; (2:4)

then :

Je� = lim
T!1

1

T

TZ
0

f(j)dt = lim
nT!1

NX
k=1

Jk
nk(T )

nT
=

NX
k=1

Jk lim
nT!1

hnk(T )
nT

i
: (2:5)

By the law of large numbers [5], limnT!1[nk(T )=nT ] = Pk, which leads to :

Je� =
NX
k=1

�
1

t0

t0Z
0

f(jk)dt

�
Pk =

1

t0

t0Z
0

h NX
k=1

f(jk)Pk

i
dt (2:6)

and, �nally :

Je� =
1

t0

t0Z
0

E
�
f(j)

�
dt (2:7)

where E[ ] denotes the expected value operator. Therefore, the MTF due to a stochastic

current depends only on the expected waveform of a nonlinear function of the current density.

Since f is nonlinear, E
�
f(j)

�
is not easy to evaluate. At low current density values,

where f is linear (Fig. 2), E
�
f(j)

�
= f(E[j]). In this case, the expected current waveform

E[j] derived in [1] is indeed the correct waveform for MTF estimation. In general, f is

nonlinear, and a generalized approach will be developed below.
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At any time t, the process j(t) is a random variable j with mean �j
4
= E[j], and variance

�2j
4
= E

�
(j � �j)2

�
. In general, the pth moment of j is �j;p

4
= E

�
(j � �j)p

�
. To estimate

E
�
f(j)

�
, a Taylor series expansion of f gives [5] :

E
�
f(j)

�
� f(�j) + f 00(�j)

�2j

2
+ � � �+ f (p)(�j)

�j;p

p!
: (2:8)

When f is linear, this reduces to :

E
�
f(j)

�
= f(E[j]); (2:9)

as observed above. Therefore, using the expected current waveform for MTF estimation [1]

amounts to making a �rst-order approximation in (2.8). Naturally, higher order approxima-

tions would lead to better results. In particular, if f is approximated by a quadratic in the

neighborhood of �j, then :

E
�
f(j)

�
� f(�j) + f 00(�j)

�2j

2
: (2:10)

This approximation becomes exact if f(j) is represented by the straight lines correspond-

ing to j1 and j2 in Fig. 2. It is more accurate than (2.9) since it covers a wider range of

currents. As a result, equations (2.10) and (2.7) o�er a new, more accurate technique for

computing the MTF. In order to make use of this technique, we need to derive the variance of

the current waveform in addition to its expected value. As pointed out in the introduction,

the estimation of the expected current waveform has already been described in our previous

work [1]; the following sections discuss the derivation of the variance waveform.

3. Derivation of the Gate Variance Waveforms

We will briey review the probabilistic simulation approach [1], which follows an event-

driven simulation strategy. Probability waveforms, which represent a large number of logic

waveforms, are applied at the primary inputs and propagated through the circuit as a se-

quence of probabilistic events. A probabilistic event embodies a number of possible logical

transitions. Whenever a gate is simulated, the events at its inputs are used to derive an

event at its output and an expected current pulse E[i(t)], to be added to the global expected
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current waveform. This pulse is modeled as a triangular pulse that starts with a peak value

E[I] at the time of transition and decays linearly to zero after a time interval called the time

span. The variance waveform can be derived with little modi�cation to the overall simulation

strategy. Whenever an expected pulse is derived for a gate, a variance pulse will be derived

as well.

Figure 4 shows a generic CMOS gate. The p-block or p-part (n-block or n-part) of a gate

refers to the p (n)-channel transistor mesh between its output node and the power supply

(ground). A gate will be assumed to have independent inputs. While this may be true at the

primary circuit inputs, it is not true in general. However, the general case is handled using

the concept of a supergate [1], with the independent-inputs-gate-solver used as a subroutine.

As in [1], we only consider the charging component of the power supply or ground

currents. The output node capacitance is split into two lumped capacitors Cp to Vdd and Cn

to Vss. Similarly, each internal gate node ni has two capacitors Cin and Cip. Capacitance

values are derived from the circuit description and the transistor model parameters. On a

low-to-high transition, the currents owing through Cn and Cp at the output node are ip1

and ip2, respectively, as shown in the �gure. The corresponding in1 and in2 for a high-to-low

transition are also shown. The currents ip2 and in2 are discharging currents that redistribute

locally, and we are interested in i = ip1+ in1, which is the current associated with the output

node. The total gate current itot will be larger than i since it also contains the currents

needed to charge/discharge the Cin & Cip capacitors at the internal nodes. However, the

output current plays a central role in the derivation.

The variance waveforms for the gate total and output currents will be modeled by tri-

angular pulses V [itot(t)] and V [i(t)], respectively, with peak values of V [Itot] and V [I]. If

an event occurs at the gate input at time t, then we denote by t� and t+ the instances of

time immediately before and after the event, respectively. Focusing for now on the output

current pulse, its variance waveform starts with a peak of V [I] = V [i(t+)] at time t and de-

cays linearly to zero at time t+ � . Since V [I] = E[I2]�E[I]2 [5], and since CREST already

derives the expected pulse peak E[I], we will concentrate here on the derivation of E[I2].

Let ip = ip1 + ip2 and in = in1 + in2. It is easy to verify that ip1 = ip � Cn=(Cp + Cn),

and in1 = in �Cp=(Cp + Cn). Therefore :
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E[i2(t)] = E[ip
2(t)]

�
Cn

Cp + Cn

�2

+ E[in
2(t)]

�
Cp

Cp +Cn

�2

(3:1)

The term containing E[ip(t)in(t)] is omitted (it is zero) since at least one of the charging

currents is zero at any given time. In particular, the value at the peak is :

E[I2] = E[Ip
2]�

�
Cn

Cp + Cn

�2

+E[In
2]�

�
Cp

Cp + Cn

�2

(3:2)

The values of E[Ip
2] and E[In

2] are derived as follows. For E[Ip
2], consider the p-part of

the gate, and let every transistor Tk be represented by a switch of on-conductance gon;k [1].

Based on this switch-network model of the p-block, let Gp(t) be the random conductance

between the output node and Vdd. Gp is a function of the individual transistor random

conductances gk, where gk is 0 if the transistor is o� and gon;k if it is on. If an event occurs

at a gate input at time t, then the value of Gp(t+) and the previous state of the output

node, Vo(t�), will determine Ip. Formally, we have E[Ip
2] = E[(Vdd�Vo(t�))2�Gp

2(t+)],

which becomes :

E[Ip
2] = V 2

dd � E[Gp
2(t+) j Gp(t

�) = 0]� P (Gp(t
�) = 0) (3:3)

where P (A) is the probability of the event A, and E[A j B] denotes the conditional expected

value [5] of A given B. The formula is correct because if Gp(t�) = 0 (6= 0) then Vo(t�) = 0

(Vdd). Similarly for the n-part of the gate, we get :

E[In
2] = V 2

dd � E[Gn
2(t+) j Gn(t

�) = 0]� P (Gn(t
�) = 0) (3:4)

To derive the conditional expectations, consider a graph representation of the p-block

(or n-block), where every edge in the graph is labeled with E[gk2(t+) j Gp(t�) = 0],

E[gk(t+) j Gp(t�) = 0], and the gate node probabilities of its corresponding transis-

tors. The details of how these quantities can be derived for every transistor can be found

in [4]. Then perform a graph reduction operation [1, 4], which, simply stated, involves

a number of series/parallel combinations and node eliminations that reduce the graph

to a single edge, whose labels are the required statistics E[Gp
2(t+) j Gp(t�) = 0] and
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E[Gp(t+) j Gp(t�) = 0]. Similar work can be done for the n-block. As a result, we have

the peak value, V [I] = E[I2]� E[I]2, of the output current variance pulse.

The time span � is found by �rst solving for the area under the V [i(t)] pulse. Notice

that, if i(t) is a triangular pulse of height I and area q, then :

Z 1

0

i2(t)dt =
2

3
Iq (3:5)

In this case, q is equal to the charge delivered to (or from) the output node capacitors.

From this it follows that :

Z 1

0

E[i2(t)]dt =
2

3
E[Iq]; and

Z 1

0

E[i(t)]2dt =
2

3
E[I]E[q]: (3:6)

The second equation follows since E[i(t)] is a triangular pulse of height E[I] and area

E[q]. Therefore, the variance pulse has an area :

V [I]� �

2
=

Z 1

0

V [i(t)]dt =
2

3

�
E[Iq]� E[I]E[q]

�
: (3:7)

The value of E[Iq] can be written as :

E[Iq] = E[(Ip1 + In1)� (qp1 + qn1)]: (3:8)

where Ip1 (In1) is the peak of ip1(t) (in1(t)), and qp1 (qn1) is the charge delivered by ip1(t)

(in1(t)). Since qp1 (qn1) is equal to VddCn (VddCp) if ip1(t) (in1(t)) is non-zero, and is

otherwise zero, then :

E[Iq] =
VddC

2
n

Cp +Cn

E[Ip] +
VddC

2
p

Cp + Cn

E[In]: (3:9)

The time span of the gate output current variance pulse is, therefore :

� =
4

3

�
E[Iq]� E[I]E[q]

V [I]

�
: (3:10)

An expression similar to (3.7) can be written for the gate total current, itot(t), as follows :

Z 1

0

V [itot(t)]dt =
2

3

�
E[Itotqtot]� E[Itot]E[qtot]

�
: (3:11)
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Unfortunately, E[Itotqtot] does not have as simple an expression as was found for E[Iq].

We have chosen to use a conservative estimate based on the following assumption : whenever

a node in the p-block (n-block) is charged to Vdd (Vss), then every other node in the p-block

(n-block) is also charged to Vdd (Vss). This assumption is true for simple gates, and may

over-estimate the current-charge product in more complex cases. Based on this assumption,

one can show [4] that :

E[Itotqtot] �
E[qp;tot]

E[qp]

QpCn

Cp + Cn

E[Ip] +
E[qn;tot]

E[qn]

QnCp

Cp + Cn

E[In]; (3:12)

where E[qp] and E[qn] are available as equations (3.12) & (3.13) in [1], E[qp;tot] and

E[qn;tot] are, respectively, the �rst and second summations in equation (3.10) in [1], and

Qp =
X

i2P block

VddCin; Qn =
X

i2N block

VddCip: (3:13)

As was assumed for the expected current pulse [1], we let the time span of the gate total

current variance pulse be equal to that derived for the gate output current. Therefore :

V [Itot] =

�
E[Itotqtot]� E[Itot]E[qtot]

E[Iq]� E[I]E[q]

�
� V [I]: (3:14)

4. Estimating the Variance Current Waveforms in the Bus

In the two previous sections, we presented the motivation for computing the variance wave-

form, and a procedure for computing the variance pulse for a CMOS gate. Ultimately, the

variance waveform (of the current density) in every branch of the power/ground bus is re-

quired. In this section we present a technique for deriving the bus variance waveforms from

those of the individual gates. Since the current density j(t) in any branch of the power or

ground bus is directly proportional to the current i(t) in that branch, we will discuss the

derivation of �2i (t) (i.e., V [i(t)]) rather than �2j (t) (i.e., V [j(t)]). Furthermore, we will only

discuss the power bus since the ground bus analysis is similar.

We assume that gates are tied to the bus at certain points, called contacts. Several gates

may be tied to the same contact. The current in a branch of the bus, i(t), is a function of the
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currents being drawn o� the contacts, ij(t); j = 1; : : : ; n. Each of these is, in-turn, simply

the sum of the individual gate currents tied to that contact :

ij(t) = ij1(t) + � � �+ ijk(t): (4:1)

In the framework of our probabilistic simulation technique, the process of deriving the

variance waveforms consists of three steps :

-1- Using the probabilistic events at the inputs to each logic gate, derive its variance pulse.

-2- Combine the pulses at each contact point to derive the variances of the contact currents.

-3- Using the bus topology, and the variances of the contact currents, derive the variances

of the bus branch currents.

Step 1 has been described in section 3; the other two steps will be described below.

A critical issue in computing the variance is the correlation between the di�erent cur-

rent waveforms. Since such correlation is too expensive to derive for VLSI circuits, we will

occasionally be making conservative approximations to simplify the problem. Our experi-

ence with the probabilistic simulation approach [1] suggests that neglecting the correlation

between di�erent current waveforms gives good results in most cases, especially for large

circuits. In general, there will be cases where this becomes a poor assumption, as in clocked

circuits, for example, where di�erent parts of the circuit may switch in unison in response to

a central clock. However, since the variance is of secondary importance in (2.10), and since

keeping track of the correlation is too expensive for large VLSI circuits, we have opted to

make this accuracy-e�ciency trade-o�.

Based on this, we assume that the gate currents tied to the same contact are uncorrelated.

This immediately provides a simple solution for step 2, using (4.1), as follows :

�2ij
(t) = �2ij1

(t) + � � �+ �2ijk
(t): (4:2)

Thus, the variance pulses from the individual gates are simply added to provide the contact

current variance waveform (step 2). The implementation and results presented in the next

section are based on (4.2).

Step 3 is considerably more complex, and is left to the appendix, where a number of

approximations are also proposed to make possible an e�cient implementation. The present
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implementation of CREST provides the user with the expected and variance waveforms for

the contact currents (steps 2 and 3). The proper place for the implementation of step 3 is

in the SPIDER [10] program, which takes the currents generated by CREST and uses the

bus layout information to estimate the MTF.

5. Implementation and Results

The variance calculation technique outlined above has been implemented in CREST. We

present below the results of CREST runs on a variety of circuits, showing both waveform

comparisons and timing performance.

To assess the accuracy of the results, it is important to make a fair comparison with a

variance waveform derived using a valid simulation tool. To do so, we have generated the

variance waveform for a variety of examples by running SPICE for every set of input voltage

signals allowed by the probability vectors (see [1], section 2.1), deriving the expected current

waveform E[i(t)] by doing a time-point averaging of the results, and then using that to �nd

the variance as the time-point average of (i � E[i(t)])2. Since electromigration models for

non-dc waveforms are still controversial, it makes little sense to shoot for perfect accuracy in

the current waveforms. Furthermore, it is important to make a trade-o� between accuracy

and e�ciency to make possible the solution of large circuits. Hence, our objective has been

to derive, in a very short time, a waveform that matches reasonably well the peak and

general shape of the SPICE waveform. Since the number of required SPICE simulation runs

grows exponentially with the number of circuit inputs, the comparisons to be presented will

necessarily be limited to medium sized circuits. There is no reason to suspect, however, that

the accuracy observed on these circuits will deteriorate on larger ones.

Waveform comparisons are shown in Figs. 5 and 6 for a single nand gate and a complex

gate, respectively. The comparisons for two larger circuits are shown in Fig. 7 (for an

exclusive-or circuit) and Fig. 8 (for a 54-MOSFET 2-bit ripple adder circuit).

For our next example, we consider a 648-MOSFET 4-bit parallel multiplier. This cir-

cuit is too big to make the 216 required SPICE simulations. We will, therefore, show the

results of two di�erent CREST runs on this circuit. In Fig. 9 we compare a full accuracy

CREST run and a heuristic [1] CREST run in which all internal nodes of the multiplier
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were assumed independent (uncorrelated). The excellent agreement demonstrates that the

correlation between di�erent current pulses in large circuits may indeed be neglected.

These results can be used to assess the signi�cance of the contribution of the variance

waveform to the MTF, i.e., to see whether the gain in accuracy is worth the e�ort. Recall

that the expected and variance waveforms combine to provide a Je� e�ective current density

value for MTF estimation, according to (2.10) and (2.7). We have measured the variance

contribution as the increase in Je� due to the variance waveform, divided by Je� using only

the expected waveform, as follows :

�Je�
Je�

4
=

Je�(using E[j] & V [j])� Je�(using only E[j])

Je� (using only E[j])
=

R t0
0

f 00
(E[j])

2
V [j]dtR t0

0
f(E[j])dt

(5:1)

This expression depends on current density and not simply on current. Consequently, the

expected and variance waveforms have to be augmented with metal line width information

in order to evaluate (5.1). Table 1 shows the results for all the test cases presented above,

for di�erent values of line width, with a line thickness of 0:3�m throughout. Note that (5.1)

has been tabulated as a percentage.

Table 1. Variance contribution (with rele-
vant line width). Size refers to the number
of transistors. � stands for micro-meter.

Circuit Size �Je�=Je� (width)

Nand 4 110% (.067�) 0.00% (1.0�)

Complex 6 185% (.033�) 0.00% (1.0�)

Xor 16 236% (.067�) 0.00% (1.0�)

Adder 54 107% (0.17�) 0.43% (1.0�)

Multiplier 648 219% (0.25�) 3.70% (1.0�)

Multiplier* 648 200% (0.25�) 3.40% (1.0�)
*Heuristic CREST run, all others are full accuracy CREST.
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For a given circuit, the variance contribution increases with a decrease in line width. The

two width values used in the table for each circuit are meant to demonstrate that the variance

contribution to the MTF can vary from insigni�cant to very important. For the types of

circuits, and technology, that we have examined, it seems that one can use a practical lower

limit of 1� on line width, and do without a variance waveform. However, in cases where such

limits cannot be guaranteed (as in manual layout with unlimited designer freedom) and/or

where the circuit and metal technologies involve high enough current density, the variance

waveform can be as important (or more) than the expected waveform.

In any case, and regardless of the signi�cance of its contribution to the MTF, the variance

waveform is important in its own right. Its relevance for studying other reliability problems

will be briey discussed in the next section.

Finally, we illustrate the speed performance of CREST with the variance estimation

built in. Table 2 shows the speed comparisons between CREST and SPICE for all the

examples presented above. The speedup is excellent, and becomes much better for larger

circuits (1529X for the adder and 11595X for the multiplier). In fact, the speedup grows

exponentially, because an exponential number of deterministic simulation runs are replaced

by a single probabilistic simulation run. We point out the case of the multiplier circuit

(the largest circuit in the table) with the heuristic CREST run (last row in Table 2). The

excellent waveform comparison in Fig. 9, along with the speedup of 11595X and execution

time of 1 minute in Table 2, establish the feasibility of solving large VLSI chips.

6. Summary and Conclusions

We have extended the probabilistic simulation approach [1] to include the computation of

the variance of the power/ground current waveform, in addition to its expected waveform.

To provide the motivation for this, we have focused on the problem of estimating the median

time-to-failure (MTF) due to electromigration in the power and ground busses of CMOS

circuits. This requires knowledge of the current density in these busses.

In previous work [1], we presented a novel technique for MTF estimation based on a

stochastic current waveform model. We derived the expected waveform of this current model

and gave a qualitative argument suggesting that it is the appropriate waveform to be used

13



Table 2. Execution time comparisons. Time is
in CPU seconds on a VAX-11/780; size refers to
the number of transistors.

Circuit Size SPICE CREST Speedup

Nand 4 41.75 0.90 46X

Complex 6 244.15 1.09 224X

Xor 16 456.00 3.13 146X

Adder 54 32620.42 21.33 1529X

Multiplier 648 697530.88y 1871.99 373X

Multiplier* 648 697530.88y 60.16 11595X
*Heuristic CREST run, all others are full accuracy CREST.
yEstimated (28 times the cost of a typical SPICE run).

for MTF estimation. In this paper, we have quanti�ed that argument by presenting new

theoretical results which show the exact relationship between the MTF and the statistics

of the current. Equation (2.7) relates Je� , required for estimating the MTF, to the mean

waveform of a nonlinear function of the stochastic current. Coupled with (2.10), it provides

an e�cient and more accurate technique for computing the MTF, which requires both the

expected and variance waveforms. A novel technique was then presented to compute the

variance waveform for CMOS circuits, which has been incorporated into the probabilistic

simulator CREST [1].

The results of several CREST runs were presented, demonstrating good waveform agree-

ment with SPICE, as well as excellent speedups over traditional approaches : a speedup of

over 11500X was demonstrated on a 648-transistor circuit.

Using these results, we have studied the signi�cance of the variance waveform by evalu-

ating its contribution to the MTF, �Je�=Je� . We have found this to be highly dependent

on whether a minimummetal line width can be guaranteed, in which case, this contribution

may be neglected. Otherwise, and/or if a high current density technology is used, then the

variance contribution can be as important (or more) than the expected waveform.

In any case, and regardless of the signi�cance of its contribution to the MTF, the vari-

ance waveform is important in its own right as a measure of the spread of the real current

waveforms. Such information may be useful for studying voltage drop (glitches) on the

14



power/ground lines. If stochastic techniques are to be used for this purpose, then it seems

de�nite that the expected current by itself will not be su�cient.
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Appendix

In this appendix, we are concerned with the problem of deriving the variance waveforms in

the power/ground bus branches given those at the bus contacts. The bus can be modeled

as a linear-time-invariant (LTI) system with inputs xj and outputs yi. The inputs xj(t),

j = 1; : : : ; n represent the contact currents, and carry the stochastic processes ij(t) of known

variance waveforms �2ij(t). The outputs yi(t), i = 1; : : : ;m represent the bus branch currents

at which the variance waveforms, �2
yi
(t), are required. Let hij(t) be the impulse response

function relating yi(t) to xj(t) :

yi(t) =
nX

j=1

hij(t) � xj(t); i = 1; : : : ;m (A:1)

where \�" denotes the convolution operation.

It is well known (see [5], page 209) that the variances of the system inputs are not enough

to derive the variances of its outputs. The auto-correlation of each input, Rxjxj (t1; t2)
4
=

E
�
xj(t1)xj(t2)

�
, is also required. Since the input processes are not wide-sense stationary [5],

an exact analytical solution can be quite complex, even if the auto-correlations were known.

Therefore, as is often necessary, we will make certain simplifying assumptions about the

structure of Rxjxj .

We assume that the correlation between xj(t) and xj(t+ � ) goes to zero as � ! 1. In

terms of the auto-covariance, Cxjxj(t1; t2)
4
= Rxjxj (t1; t2) � �xj (t1)�xj(t2), where �xj(t)

4
=

E[xj(t)], this is formulated as :

Cxjxj (t1; t1) = �2
xj
(t1); and Cxjxj(t1; t2) = 0 for jt1 � t2j � T; (A:2)

where T is a (typically small) time interval.

Consider the discrete time system obtained by sampling, with period T , the continuous

time system de�ned by (A.1). If xj[k]
4
= xj(kT ) are the discrete processes at the inputs, and

yi[k]
4
= yi(kT ) are the discrete output processes, then :

yi[k] =
nX

j=1

h
(d)
ij [k] � xj[k]; i = 1; : : : ;m (A:3)
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where h
(d)
ij [k] is the discrete impulse response function relating yi[k] to xj[k]. As shown

below, the discretized output variance waveforms can be derived irrespective of the shape

of Cxjxj (t1; t2) for jt1 � t2j < T . The continuous variance waveforms can then be obtained

by interpolation. Strictly speaking, therefore, the sampling period T should be small : 1=T

should be larger than the largest frequency component of the inputs. However, since �ne

waveform details are not of paramount importance in this work, we need only restrict T to

be small enough so that waveform features in that small an interval are inconsequential.

To simplify the notation, de�ne yij[k]
4
= h

(d)
ij [k] � xj[k]. Furthermore, as pointed out

above, we will neglect the correlation between the contact currents. Hence the xj inputs are

uncorrelated, and :

�2
yi
[k] =

nX
j=1

�2
yij
[k]; i = 1; : : : ;m: (A:4)

We have thus reduced the problem to analyzing a single-input single-output discrete LTI

system :

yij[k] = h
(d)
ij [k] � xj[k] =

1X
�=0

h
(d)
ij [�]xj[k � �]: (A:5)

Let ~xj[k]
4
= xj[k] � �xj [k] and ~yij[k]

4
= yij[k] � �yij [k]. Then �2yij

[k] = E[~yij[k]2] and

~yij[k] = h
(d)
ij [k] � ~xj[k], hence :

�2yij
[k] = E

�� 1X
�=0

h
(d)
ij [�]~xj[k � �]

�2�
=

1X
�1=0

h
(d)
ij [�1]

1X
�2=0

h
(d)
ij [�2]E

h
~xj[k � �1]~xj[k � �2]

i
:

(A:6)

Furthermore, it is easy to see that E
�
~xj[k1]~xj[k2]

�
= Cxjxj(k1; k2), which, using (A.2),

gives :

�2
yij
[k] =

1X
�=0

���h(d)ij [�]
���2�2xj [k � �] =

���h(d)ij [k]
���2 � �2xj [k]: (A:7)

And, �nally, the variance waveforms for the system outputs are, using (A.4) :

�2
yi
[k] =

nX
j=1

���h(d)ij [k]
���2 � �2xj [k]; i = 1; : : : ;m: (A:8)
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In other words, the variances of the system outputs (bus branch currents) can be obtained

from the convolution of the variances of its inputs (contact currents) with the squares of its

discrete impulse response functions. This discrete convolution can be easily performed once

the discrete impulse response functions are found. Of course the summation need not be

taken to in�nity, and may be conveniently truncated after
���h(d)ij [�]

��� is less than some small

value. To obtain the discrete impulse response functions, note that if a unit-step input

current is applied at contact j, with all other contact currents held at zero, and if the

resulting outputs yi(t) are monitored, then :

h
(d)
ij [k] = yi(kT )� yi

�
(k � 1)T

�
=

Z kT

(k�1)T

hij(� )d�; i = 1; : : : ;m: (A:9)

This suggests two methods for deriving h
(d)
ij [k]. The �rst uses a simulation program

such as SPICE to simulate the bus with unit-step input currents applied at each contact

(one at a time), while monitoring the bus branch currents. This gives the mn functions

h
(d)
ij [k] using (A.9). Another (approximate) method would be to make use of the second

equality in (A.9) : if the continuous impulse response functions are approximated using

some RC time-constant analysis of the bus, then the discrete impulse response functions can

be obtained from them.

For very large chips, it may be prohibitively expensive to perform the required convo-

lutions. One can simplify the calculations by making an additional assumption as follows.

If the bus is known to be \fast", i.e., if h
(d)
ij [k] dies down faster than changes in �2

xj
[k],

then (A.7) reduces to :

�2yij
[k] � �2xj

[k]

1X
�=0

���h(d)ij [�]
���2: (A:10)

So the convolutions in (A.8) can be replaced by simple multiplications, and the constantsP1

�=0

���h(d)ij [�]
���2 can be derived in a pre-processing step from the impulse response functions

and stored in a single m� n constant matrix.

If the chip is too big to even derive h
(d)
ij [k], then one further simpli�cation can be made

as follows. If h
(d)
ij [k] dies down faster than changes in xj[k] then (A.5) reduces to yij[k] =

xj[k]
P1

�=0
h
(d)
ij [�], and so :
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�2yij
[k] � �2xj

[k]
� 1X
�=0

h
(d)
ij [�]

�2
: (A:11)

The constants
�P1

�=0
h
(d)
ij [�]

�2
can be very easily obtained as follows. Notice thatP1

�=0
h
(d)
ij [�] is the steady state current in branch i in response to a unit-step input cur-

rent at contact j, with all other contact currents held at zero. If the bus is modeled as a

resistive network, then the steady state node voltages in response to such inputs are the

entries of the driving point impedance matrix. So if the node-admittance matrix is built

by simple inspection of the bus and then inverted to produce the driving point impedance

matrix, the steady state currents are immediately available.
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Figure Captions

Figure 1: The dependence of MTF on current
density, reproduced for convenience from [8]. The
dashed lines show the results of the approximation
t50 / j�n for n = 1; 3=2; and 2.

Figure 2: A plot of f(j), obtained from Fig. 1 by
inverting and appropriately scaling the ordinate
axis.

Figure 3: A (non-stochastic) current waveform,
j(t), built as a sequence of the waveforms jk(t),
each occurring with its assigned probability Pk.

Figure 4: A generic CMOS gate structure.

Figure 5: CREST variance pulse result for a 2-
input CMOS nand gate, compared to SPICE.

Figure 6: Variance results for a 3-input CMOS
complex gate (inset).

Figure 7: Variance results for a 16-MOSFET
exclusive-or (xor) CMOS circuit.

Figure 8: Variance results for a 54-MOSFET 2-
bit ripple adder CMOS circuit.

Figure 9: Variance results for a 648-MOSFET
4-bit parallel multiplier CMOS circuit.
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