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Transition Density: A New Measure of Activity in 
Digital Circuits 
Farid N.  Najm, Member, IEEE 

Abstract-Reliability assessment is an important part of the 
design process of digital integrated circuits. We observe that a 
common thread that runs through most causes of runtime fail- 
ure is the extent of circuit activity, i.e., the rate at which its 
nodes are switching. We propose a new measure of activity, 
called the transition density, which may be defined as the “av- 
erage switching rate” at a circuit node. Based on a stochastic 
model of logic signals, we also present an algorithm to propa- 
gate density values from the primary inputs to internal and out- 
put nodes. To illustrate the practical significance of this work, 
we demonstrate how the density values at internal nodes can be 
used to study circuit reliability by estimating 1) the average 
power and ground currents; 2) the average power dissipation; 
3) the susceptibility to electromigration failures; and 4) the ex- 
tent of hot-electron degradation. The density propagation al- 
gorithm has been implemented in a prototype density simulator. 
Using this, we present experimental results to assess the valid- 
ity and feasibility of the approach. In order to obtain the same 
circuit activity information by traditional means, the circuit 
would need to be simulated for thousands of input transitions. 
Thus this approach is very efficient, and makes possible the 
analysis of VLSI circuits, which are traditionally too big to sim- 
ulate for long input sequences. 

I.  INTRODUCTION 
MAJOR portion of the design time of digital inte- A grated circuits is dedicated to functional verification 

and reliability assessment. Of these two, reliability as- 
sessment is a more recent problem the severity of which 
has steadily increased in proportion to chip density. As a 
result, CAD tools that evaluate the susceptibility of a de- 
sign to runtime failures are becoming increasingly impor- 
tant. 

Chip runtime failures can occur due to a variety of rea- 
sons, such as excessive power dissipation, electromigra- 
tion, hot-electron degradation, voltage drop, aging, and 
others. In CMOS logic circuits, the rate at which node 
transitions occur is a good indicator of the circuit’s sus- 
ceptibility to runtime failures. For example, both power 
dissipation and electromigration in the power lines are di- 
rectly related to the power supply current, which, in 
CMOS is nonzero only during transitions. Hot-electron 
degradation is related to the MOSFET’s substrate current, 
which for CMOS is also significant only during transi- 
tions. Thus, the rate at which node transitions occur, i.e., 
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the extent of circuit activity, may be thought of as a mea- 
sure of a failure-causing stress. However, there has tra- 
ditionally been no way of quantifjing this activity because 
logic signals are, in general, nonperiodic and thus have 
no fixed switching frequency. 

This paper proposes a novel measure of activity that we 
call the transition density, along with a simulation tech- 
nique to compute the density at every circuit node. The 
transition density may be defined as the “average switch- 
ing rate”; a more rigorous definition will be given in Sec- 
tion 11. Preliminary results of this work have appeared in 
[ l l .  

To further motivate the notion of transition density, 
consider the problem of estimating the average power 
drawn by a CMOS gate. If the gate has output capacitance 
C and generates a simple clock signal with frequency f ,  
then the average power dissipated is CVi,f,  where V,, is 
the power supply voltage. In general, since logic signals 
may not be periodic, the notion of frequency cannot be 
used. Instead, one may compute the power as follows. If 
x ( t )  is the logic signal at the gate output and n , ( T )  is the 
number of transitions ofx(r) in the time interval ( - T / 2 ,  
+ T / 2 ] ,  then the average power is 

(1.1) 

In the next section we define the transition density to be 
the last (limit) term in (1.1). 

Naturally, one can approximate limT+ n, ( T )  / T by 
simulating the circuit for a “large enough” number of 
input transitions while monitoring n , ( T )  at every node. 
The ambiguity in the phrase “large enough” is precisely 
the problem with this traditional approach. It is impossi- 
ble to determine a priori how long the simulation should 
be. Furthermore, long simulations of large circuits are 
very expensive. However, we will show that if the tran- 
sition densities at the circuit primary inputs are given, they 
can be efficiently propagated into the circuit to give the 
transition density at every internal and output node. In 
other words, we use the limits limT+ n,  ( T )  / T at the cir- 
cuit inputs to directly compute the corresponding limits 
inside the circuit. 

The propagation algorithm involves a single pass over 
the circuit and computes the transition densities at all the 
nodes. It may be thought of as a simulation of the circuit 
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in which one studies the density of its internal signals that 
correspond to input signals with specified densities; it has 
been implemented in a prototype density simulator, called 
DENSIM. In order to obtain the same circuit activity in- 
formation by traditional means, the circuit must be sim- 
ulated for thousands of input transitions. Thus this ap- 
proach is very efficient and makes possible the analysis of 
VLSI circuits, which are traditionally too big to simulate 
for long input sequences. 

It turns out to be highly beneficial, in terms of the the- 
oretical results to be presented, to cast the problem in a 
stochastic (probability theory) setting. Thus, in the fol- 
lowing two sections we will start with definitions of 
“idealized logic signals” and then present a stochastic 
model of logic signals that is essential to the density prop- 
agation theorem. Based on these concepts, we then show 
in Section IV how the transition density can be efficiently 
propagated from inputs to outputs. In Section V, we study 
a number of practical applications of the density concept, 
namely, we demonstrate how the density values at inter- 
nal nodes can be used to estimate 1) the average power 
and ground currents; 2) the average power dissipation; 3) 
the susceptibility to electromigration failures; and 4) the 
extent of hot electron degradation. Experimental results 
are presented in Section VI and Section VI1 contains a 
summary and conclusions. 

Appendix A presents the existence proofs of the equi- 
librium probability and transition density. Appendix B 
presents a new application for binary decision diagrams 
(BDD’s) in computing the probability of a Boolean func- 
tion. 

11. IDEAL LOGIC SIGNALS 
Let x ( t ) ,  t E (-03, +a), be a function of time that 

takes the values 0 or 1. We use such time functions to 
model logic signals in digital circuits. This ideal model 
neglects waveform details such as the rise/fall times, 
glitches, overhnder-shoots, etc. 

Dejinition 1: The equilibrium probability of x ( t ) ,  to be 
denoted by P ( x ) ,  is defined as 

+ T I 2  

T-m T - T / 2  
P ( X )  A Iim - x ( t )  dt (2.1) 

The reason for the name “equilibrium probability” will 
become clear later on. It is easy to observe, however, that 
P ( x )  is the fraction of time that x ( t )  is in the 1 state. It is 
also the average value of x ( t ) ,  over all time. Thus, for 
instance, a 25% duty cycle clock signal, i.e., one that is 
high for 1/4th of its period, has P ( x )  = 0.25. The fol- 
lowing proposition guarantees that the equilibrium prob- 
ability is always well defined. 

Proposition 1: For a logic signal x ( t ) ,  the limit in (2.1) 
always exists. 

Proof: See Appendix A. 
The discontinuity points of x ( t )  represent transitions in 

the logic signal. Let n,(T) be the number of transitions of 
x (t)  in the time interval ( -  T/2, + T/2]. 

Dejinition 2: The transition density of a logic signal 
x ( t ) ,  t E (-00, +03), is defined as 

(2.2) nx (TI 
~ ( x )  h lim -. 

~ + m  T 

The reason for the name “transition density” will be- 
come clear later on. It should be clear, however, that D(x)  
is the average number of transitions per unit time. Thus, 
a 10-MHz clock signal has D ( x )  = 20 X lo6. The power 
of the P ( x )  and D ( x )  concepts is that they apply equally 
well to both periodic (clock) and nonperiodic signals. In 
the remainder of this section, we study the existence of 
the limit in (2.2). 

The time between two consecutive transitions of x ( t )  
will be referred to as an intertransition time. Let p be the 
average value of all the intertransition times of x ( t ) .  
Likewise, let p I  ( p o )  be the average of the high (low), i.e., 
corresponding to x ( t )  = l(O), intertransition times of x (f). 
It should be clear that p = (1/2)(p0 + p , ) .  In general, 
there is no guarantee of the existence of p ,  p o ,  and pI. If 
the number of transitions in positive time is jinite, then 
we say that there is an injinite intertransition time follow- 
ing the last transition, and p = 00. A similar convention 
is made for negative time. We define pf to be the average 
of all the jinite intertransition times of x ( t ) .  In general, 
there is also no guarantee of the existence of pf. 

Proposition 2: Two parts: 
i) If pfexists and is nonzero, then D ( x )  exists. 
ii) If po and p1 exist, and p # 0, then D ( x )  exists and 

we have 

(2.3a) Pl P(x)  = ~ 

cc0 + PI 

and 

(2.3b) 
2 

D ( x )  = ___ 
CL0 + PI 

Proof: See Appendix A. 
In order to guarantee that the density is always well 

defined, we make the following basic assumption about 
every logic signal x ( t ) :  

Basic Assumption: The average finite intertransition 
time pf exists and is nonzero. 

Logic signals for which this assumption does not hold 
are considered pathological, and are excluded from the 
analysis. It can be shown (see Appendix A) that another 
more stringent sufficient condition for the existence of 
(2.2) is that there be a nonzero lower bound (however 
small) on the intertransition times of x (t) .  This condition 
is easily satisfied in all practical cases, so that our basic 
assumption is very mild indeed. 

111. THE COMPANION PROCESS OF LOGIC SIGNALS 
We will use bold font to represent random quantities. 

We denote the probability of an event A by 6 { A }  and, if 
x is a random variable, we denote its mean (or expected 
value) by E [ x ]  and its distribution function by F,(a) A 
S { x  I a } .  
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Let x ( t ) ,  t E (-03, + m ) ,  be a stochastic process [2] 
that takes the values 0 or 1, transitioning between them 
at random transition times. Such a process is called a 0-1 
process ( [ 3 ,  pp. 38-39]). A logic signal x ( t )  can be 
thought of as a sample of a 0-1 stochastic process x ( t ) ,  
i.e., x ( t )  is one of an infinity of possible signals that com- 
prise the family x ( t ) .  

A stochastic process is said to be strict-sense stationary 
(SSS) if its statistical properties are invariant to a shift of 
the time origin [2] .  Among other things, the mean E [ ~ ( t ) ]  
of such a process is a constant, independent of time, and 
will be denoted by E [ x ] .  It will be shown below that a 
logic signal is always a sample of a SSS 0-1 process. 

Let n, ( T )  denote the (random) number of transitions of 
x ( t )  in ( - T / 2 ,  + T / 2 ] .  If x ( t )  is S S S ,  then E [ n , ( T ) ]  
depends only on T, and is independent of the location of 
the time origin. 

Proposition 3: If x ( t )  is SSS, then the mean 
E [ n , ( T ) / T ]  is a constant, independent of T. 

Proof: Let t l  < t2 < t3 be three arbitrary points 
along the time axis. Let n1 be the number of transitions 
in ( r l ,  t 2 ] ,  n2 be the number of transitions in ( t2 ,  t3] ,  and 
n3 be the number of transitions in ( t l ,  t3] .  Then n3 = n1 
+ n2,  and E[n3]  = E [ n l ]  + E [ n 2 ] .  Let TI  = t2 - t l  and 
T, = t3 - t2 .  Since x ( t )  is S S S ,  then E [ n l ]  = E[n , (T l ) ] ,  
E[n2]  = E[n, (T2)] ,  and E[n3]  = E[n,(Tl + T2)] .  Hence 
E[n,(Tl + T2)l = E[n, (T l )]  + E[n,(T,)]. Since this is 
true arbitrary TI  and T2, it means that, in general, 
E[n , (T ) ]  = kT, where k is a positive constant, which 
completes the proof. 

A constant-mean stochastic process x ( t )  is said to be 
mean-ergodic [2] if 

1 
~ - m  lim - T i+T/2 - T / 2  x ( t )  dt = E [ x ]  (3.1) 

where we have used the symbol “=” to denote conver- 
gence with probability I .  The reader is referred to [2 ,  pp. 
188- 19 11, for a discussion of the different stochastic con- 
vergence modes. We reserve the symbol “=”  to indicate 
convergence everywhere for random quantities. It will be 
shown below that a logic signal is always a sample of a 
SSS mean-ergodic 0-1 process. 

Let 7 E ( -  03, + 03) be a random variable with the prob- 
ability distribution function F,  ( t )  = 1 / 2  for any finite t ,  
and with F, ( -m)  = 0 & F, (+m)  = 1. If F,,(t) is the 
uniform distribution over [ - T / 2 ,  + T / 2 ] ,  then 
limT+ F,, = F,. Thus, one might say that 7 is uniformly 
distributed over the whole real line a. 

We now use 7 to build from x ( t )  an important 0-1 pro- 
cess x ( t ) ,  defined as follows. 

Dejnition 3: Given a logic signal x ( t )  and a random 
variable 7, uniformly distributed over (33, define a 0- 1 sto- 
chastic process x ( t ) ,  called the companion process o f x  ( t ) ,  
given by: 

1 

x ( t )  G x ( t  + 7). (3.2) 
For any given t = t l ,  x ( t l )  is the random variable x ( t l  

+ 7) - a function of 7. Thus the stochastic Drocess x(t’l 

is well defined. Intuitively, x ( t )  is a family of shifted cop- 
ies of x (t), each shifted by a value of the random variable 
7. Thus not only is x ( t )  a sample of x ( t ) ,  but we also have 
the following. 

Proposition 4: If x ( t )  is the companion process of a 
logic signal x ( t ) ,  then the following “convergence every- 
where” results are true: 

1 l -+T/2 

T-.m lim T 3 - T / 2  x ( t )  dt = P(x)  (3.3) 

(3.4) 
~ - m  I 

Proof: To prove (3.3),  we need to show that for any 

x ( t  + 71) dt - - s given finite 7 1  E a, the difference 
i T / 2  

T - T / 2  T - T / 2  
x(t)  dt Ap - 

tends to zero as T + 03. This can be written as 
i T / 2  

T - T / 2  
x ( t )  dt - - i x ( t )  dt ” = T - T / ~ ~ T I  

Sincex(t) E (0, I} ,  then lApl I 1711/Tmust go to 0 as 
T +  03. 

Likewise, to prove (3.4) we must show that the differ- 
ence A, & 1 / T  { “the number of transitions in (( - T / 2 )  
+ T ~ ,  ( + T / 2 )  + T ~ ]  - “that in ( - T / 2 ,  + T / 2 ] ” } ,  goes 
to 0 as T + 03. Note that 

n,(T - 21711) n,(T) 
T T 

Ifx(t) has a finite number of transitions, then limT+ n ,  ( T  
t- 2 1 ~ ~ 1 )  = limT+mrzt(T) < 03, and limT+mAD = 0. 
Otherwise, notice that 1 / D ( x )  = l i m T + m ( T  k 2 1 ~ , 1 ) /  
n,(T k 2 1 ~ 1 )  = lim,,,T/n,(Tf 2 1 ~ ~ 1 ) .  Rewriting this 
as lim,,,n,(T k 2 1 ~ ~ ( ) / T  = D ( x )  shows that A, must 
g o t o o a s  T +  03. 

Since this is true for any T~ E (33, then the convergence 
is everywhere, in the sense that every value of 7 will lead 
to convergence. 

Theorem I: The companion process x ( t )  of a logic sig- 
nal x ( t )  is SSS and mean-ergodic with E [ x ]  = 6 { x ( t )  = 
l }  = P(x)and 

El?] = D(x)  (3.7) 

Proof: At t = 0, we have E[x(O)]  = E [ ~ ( T ) ] .  An 
interesting property of 7 is that if a is a constant then a + 
7 has the same distribution as 7. Indeed, if Fa + , ( t )  is the 
distribution function of a + 7, then F, +,(t) = 6 { a  + 7 
I t} = 6 (7 I t - a }  = 1 / 2  = F,(t). Therefore, since 

, , t + 7 and 7 are identically distributed, we have E [ x ( t  + 

1 
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T ) ]  = E [x (T)] , which means that x ( t )  is a constant-mean 
process with 

(3.8) E [ x ( t ) ]  = E[x(O)] = E [ ~ ( T ) ]  for any time t .  

Let CRa be a subset of the real line CR defined by @io 
{ t  E 63: x ( t )  = 1, x ( t  + a )  = I}.  It is clear that 6 { x ( T )  

= 1 ,  X ( T  + a )  = l }  = S { T  E R U } .  Likewise, 6 { x ( t  + 
T ) =  l , x ( t + ~ + a ) =  1) = @ { t + ~ ~ C R ~ } . H o w e v e r ,  
since T and t + T are identically distributed, the two prob- 
abilities 6 {T E C R a }  and 6 { t  + T E C R u }  must be equal, 
which leads to: 

S { x ( t )  = 1, x(1  + a) = 13 

= S{x(O) = 1, x ( a )  = l }  

= 6 {T E C R a }  for any time t .  (3.9) 

Consequently, the joint distribution of x ( t )  and x ( t  + a ) ,  
i .e.,  Fx(r,,xi, + a ) ( x I ,  x2), is independent of t ,  and depends 
only on a ,  which makes x ( t )  wide-sense stationary (WSS) 
[2] .  By extending this argument to a , ,  . . , a,, it follows 
that Fxir,.xir + . . . .x(I + a,r) ( X I ,  . . , x,,) is independent of 
t ,  and x ( t )  is strict-sense stationary (SSS). 

To prove mean-ergodicity, and in view of (3 .3) ,  it suf- 
fices to show that E [ x ]  = P(x ) .  Consider the random 
variable 

* T / 2  

T - ~ / 2  
r]T ’ 1 x ( t )  dt. 

From (3.3) we have limT+ qT = P ( x ) ,  where this is con- 
vergence everywhere. Therefore limT+ m E [ r ] T ]  = p ( x ) .  
By linearity of the expected value operator, this can be 
rewritten 

lim 1 1 E[x( t ) ]  dt = P(x ) .  (3.10) 

But E[x( r ) ]  is a constant. Therefore, the left-hand side of 
(3.10) is simply E [ x ] ,  and mean-ergodicity follows, with 
E [ x ]  = 6 { x ( t )  = I}  = P(x ) .  

To complete the proof, we will prove (3.7) by repeating 
the argument used for qr.  By (3.4),  the random variable 
nx ( T )  / T converges everywhere to D (x). Therefore, its 
mean must also converge to D ( x ) .  Since, by Proposition 
3 its mean is a constant, independent of T ,  then (3.7) 
follows. U 

We are now in a position to comment on the names 
“equilibrium probability” for P ( x )  and “transition den- 
sity” for D ( x ) .  For a 0-1 process, 6 { x ( t )  = l}  = 
E [ x ( r ) ] .  Thus by (3.3) and since x ( t )  is mean-ergodic, 
P ( x )  is the constant probability that x ( t )  = 1 .  The name 
“equilibrium probability” is inspired from the special 
case when the intertransition times of a 0-1 process x ( t )  
are independent exponentially distributed random vari- 
ables. In that case, the process is the well-known two- 
state continuous-time Markov process (see 12, pp. 392- 
3931) whose state probability tends to an equilibrium value 
for t + 03, at which time it becomes SSS (see [4, pp. 

+T’Z 

T - ~  T - T / 2  

272-2731), 

By (3.7),  D ( x )  is the expected “average number of 
transitions per unit time,” which we compactly refer to 
as “transition density.” This name is inspired by the den- 
sity of random Poisson points (see [2, page 581). If a large 
number of points are chosen on the time axis at random, 
then the “number of points in a given interval” is a ran- 
dom variable with a Poisson distribution whose densify 
parameter h is the “expected number of points per unit 
time.” The points that we are concerned with in this pa- 
per are the time points at which transitions occur, but we 
make no assumption about their distribution. The remark 
about Poisson points is meant only to motivate the ter- 
minology. 

IV. DENSITY SIMULATION 
A digital circuit provides a mapping from the logic sig- 

nals at its primary input nodes to those at its internal and 
output nodes. In the following, we use the term “internal 
nodes” to refer to the primary output nodes as well as 
other proper internal circuit nodes. 

If we consider the companion process of each such logic 
signal, the circuit may be seen as mapping stochastic pro- 
cesses at its inputs to similar processes at its internal 
nodes. The statistics (such as density and probability) of 
the internal processes are completely determined by those 
at the primary inputs. In fact, we will demonstrate in this 
section that the density and probability of internal pro- 
cesses can be efficiently computed from those at the pri- 
mary inputs. 

We assume that the primary input processes are mu- 
tually independent. Therefore, since these inputs are in- 
dividually SSS, they are also jointly SSS. In terms of the 
underlying logic signals x ( t ) ,  this assumption means that 
the signal values are not correlated, so that if one of them 
is 1 ,  then the average fraction of time that another is 1 (or 
0) is unaltered. 

Given the density and probability values of the com- 
panion processes at the primary inputs, we will present an 
algorithm to propagate them into a circuit to derive the 
corresponding values at internal nodes. We consider the 
circuit to be an interconnection of logic modules, each 
representing a certain (combinational) Boolean function 
and possessing certain delay characteristics. The propa- 
gation of density and probability will then proceed on a 
per-module basis from primary inputs to primary outputs, 
a process that we refer to as density simulation. 

A .  Propagation Through a Single Module 
Consider a multi-input multi-output logic module M ,  

whose outputs are Boolean functions of its inputs, as 
shown in Fig. 1. M may be a single logic gate or a higher 
level circuit block. We assume that the inputs to M are 
mutually independent companion processes. The validity 
of this assumption will be discussed in Section IV-B. 

We use a simplijied timing model of circuit behavior, 
as follows. We assume that an input transition that does 
get transmitted to an output node is delayed by a propa- 
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I 
Fig. 1. Logic module M 

gation delay time of rp. Different propagation delays may 
be associated with different input-output node pairs. Im- 
plicit in this model is the simplifying assumption that the 
propagation delay is independent of the values at other 
inputs of M .  

In effect, we decouple the delays inside M from its 
Boolean function description by introducing a special- 
purpose delay block to model the delays between every 
pair of input and output nodes, as shown in Fig. 2. The 
block M’ is a zero-delay logic module that implements the 
same Boolean function as M .  

Since the input signals are SSS, then the output of the 
delay block has the same statistics as its input, and there- 
fore has the same probability and density. As for the zero- 
delay module M ‘ ,  we now consider the problem of prop- 
agating equilibrium probabilities and transition densities 
from its inputs to its outputs. 

Since P(x) = 6 (x ( t )  = l}  (by Theorem 1) and M ‘  has 
zero delay, then the problem of propagating equilibrium 
probabilities through it is identical to that of propagating 
signal probabilities through logic circuits, which has been 
well studied [5 ] - [9 ] .  Since the internal structure of M ’  is 
now known, the problem is actually even more generic 
than that, and can be expressed as “given a Boolean func- 
tionf(x,, * * , x,) and that each xi can be high with prob- 
ability P(xi) ,  what is the probability thatfis high?” Any 
number of published techniques can be used to solve this 
problem. However, we have chosen (for reasons that will 
become clear below) to investigate a new approach based 
on Binary Decision Diagrams (BDD’s) [ 101, [ 1 11 which 
have recently become popular in the verification and syn- 
thesis areas. Appendix B describes how we use BDD’s to 
compute the probability of a Boolean function. 

We consider next the density propagation problem. Re- 
call the concept of Boolean Diference: if y is a Boolean 
function that depends on x, then the Boolean difference of 
y with respect to x is defined as 

where 0 denotes the EXCLUSIVE-OR operation. Note that, 
if x is an input and y is an output of M ‘ ,  then a y l a x  is a 
Boolean function that does not depend on x, but may de- 
pend on all other inputs of M ‘ .  Therefore, a y l a x  and x 
are independent. A crucial observation is that if a y l a x  is 
1, then a transition at x will cause a (simultaneous) tran- 
sition at y, otherwise not. Since the input processes are 
SSS, then a y l a x  is also SSS; in fact it is a companion 
process with equilibrium probability P (ay /ax). We are 
now ready to prove the following: 

I I ’  

I M (non-zero-delay) 
.__.._._..___...._.._____________) 

Fig. 2. Decoupling of delays. 

Theorem 2: If the inputs x i ( t ) ,  i = 1, * . , n ,  of a 
zero-delay logic module are independent companion pro- 
cesses with transition densities D (xi), then the densities 
at its outputs yj(t), j = 1, * - - , m are given by 

Pro08 Let tik, k = 1, 2 ,  * , nxi ( T ) ,  be the se- 
quence of transition time points of x i ( t )  in 

Consider the sequence of random variables ayj/axi (fik), k 
= 1, 2 ,  * , nxi (T) ,  defined for every input-output pair 

Since (dy,/axi) ( t )  is SSS and independent of xi(t), then 
(Xi, yj) of M’. 

6 [: - ( t i k )  = 1 1 = P (z) - 

is the same for any k .  Therefore, (ayj/axi)(tik), k = 1, 2 ,  
. . .  , nxi (T) ,  is a sequence of identically distributed (not 
necessarily independent) random variables, with mean 

Since (ayj/axi) (tik) = 1 if and only if the kth transition 
of xi ( t )  is transmitted to yj(t), then the number of transi- 
tions of yj(t) in (- T / 2 ,  + T / 2 ]  is given by 

P(aYj/axi). 

(4.3) 

Taking the expected value of both sides gives 

Since (ayj/axi) (t)  is independent of x i ( t ) ,  and if n is some 
positive integer, then, 

(4.5) 

Using [2, p.  1831, these facts lead to 
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which, dividing by T and using (3.7), leads to the required 

If the Boolean difference is available, then evaluating 
P ( d y i / d x , )  is no more difficult than evaluating the prob- 
ability of a Boolean function knowing those of its inputs. 
Note that if M is a 2-input AND gate with inputs x I  and x2, 
and output y ,  then P ( d y / d x , )  = P ( x 2 ) .  In more complex 
situations, the “COMPOSE” and “XOR” functions of the 
BDD package [ I l l  can be used to evaluate the Boolean 
difference using (4.1). The BDD-based algorithm given 
in the appendix (for computing the probability of a Bool- 
ean function) can then be used to compute P(dy, /dx,) .  

result (4.2). 

B. Global Propagation Strategy 
The assumption was made at the beginning of Section 

IV-A that the inputs to a module are independent. Even 
though this is true at the primary inputs (as we have as- 
sumed), it may not be true for internal nodes. Circuit to- 
pologies that include reconvergent fanout and feedback 
will cause internal nodes to be correlated, and destroy the 
independence property. This problem is central to any cir- 
cuit analysis based on a statistical representation of sig- 
nals, and can usually be taken care of by using heuristics 
that tradeoff accuracy for speed [5]-[9]. 

Based on our previous experience with the propagation 
of probability waveforms [ 121, we have found that if the 
modules are large enough so that tightly coupled nodes 
(such as in latches or small cells) are kept inside the same 
module, then the coupling outside the modules is suffi- 
ciently low to justify an independence assumption. While 
this does take into account the correlations inside a mod- 
ule, it may create inaccuracies because internal delays are 
lumped together. Furthermore, performance may be sac- 
rificed because the BDD’s can become too large. Section 
VI will investigate this speed-accuracy tradeoff. 

V ,  PRACTICAL APPLICATIONS 
Once the density at every internal node has been com- 

puted, these values can be used in a postprocessing step 
to investigate various circuit properties. We present here 
four different applications of the density concept in CMOS 
circuits. 

A .  Average Power/Ground Bus Current5 
Consider the problem of computing the average current 

in the power or ground bus branches. We will consider 
only the case of the power bus, since that of the ground 
bus is identical. 

A convenient approximation is to view the bus as an 
interconnection of lumped resistors, with lumped capac- 
itors to ground, i.e.,  a linear RC network. Some nodes of 
this network are connected to the external V,, power sup- 
ply, while others (referred to as contacts) are connected 
to the various circuit components, e .g . ,  CMOS gates, 
drawing power supply current. Let il, ( t ) ,  k = 1, 2 ,  . . , 
n ,  be the various current waveforms that the circuit draws 
at these contact nodes. Let i , ( t ) ,  U = 1, 2 ,  . * , m ,  be 

the various current waveforms in the bus branches. The 
bus can now be viewed as a linear time-invariant (LTI) 
system whose outputs iJ ( t )  are related to its inputs ik  ( t )  by 
the convolutions: 

+m 

$ ( t )  = k =  5 1 hJk(t) * ik(f) = k = l  5 1 -m hJk(r)ik(t - r) dr ,  

(5.1) j =  I , - . -  , m  

where hJk(t) are the impulse response functions, and “*” 
denotes the convolution operation. 

Let 
+ T I 2  

~ + m  T - T I 2  
I J  4 lim - 1 $ ( t )  dt 

be the average current in the j t h  bus branch. Combining 
this with (5.1) and exchanging the order of the integrals, 
we get 

n 

1, k =  1 h,k(t) * I k ,  j = 1, * . , m (5 .2 )  

where we have made use of the fact that 

l k ( t  - Y I )  dt lim - 

is equal to 
+ T I 2  

T+ m T - T / 2  
I k  & lim - 1 ik(t)  dt 

for any given r , .  The proof of this is identical to that of 
(3.3) and assumes the existence of an arbitrary, but finite, 
upper bound on i k  ( t ) .  

In other words, if the time-averages of the contact cur- 
rents are themselves applied at the contacts, and the bus 
is solved (i.e., simulated) as a resistive network (dc so- 
lution), the resulting branch currents are the required 
time-averages of the bus currents. To complete the solu- 
tion, we will now express the time-average contact cur- 
rents Zk in terms of the transition densities inside the cir- 
cuit. 

Let D ( x )  be the transition density at the output node x 
of a CMOS gate that draws power supply current i ( t )  
whose time-average is I .  Furthermore, let C,(C,) be the 
total capacitance from x to the ground (power) bus con- 
nection. These capacitances are the sum of i) any lumped 
capacitance tied to the gate output; ii) MOSFET drain and 
source capacitances in the gate output stage; and iii) 
MOSFET gate capacitances in any logic gates driven by 
x. As such, they are related to both load capacitance and 
transistor strength. It has been established [13] that a good 
estimate of the supply current i ( t )  can be obtained by 
looking only at its capacitive charging/discharging com- 
ponent. Since the charge drawn from the supply when- 
ever the gate switches low-to-high (high-to-low) is 
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(5.3) 

where C A C, + Cp is the total capacitance at the output 
node. 

Equations (5.3) and (5.2) provide an efficient technique 
for computing the average current in every branch of the 
bus, given the transition densities at all circuit nodes. It 
is significant that this requires only a single DC simula- 
tion of the resistive network representing the power bus; 
no transient simulation is required, and the bus capaci- 
tance is irrelevant. 

B.  Average Power Dissipation 
As a direct consequence of the above results, it should 

be clear that the overall average power dissipation is given 
by P,,, = 1 / 2  VidE c i ~ ( x i ) ,  summing over all circuit 
nodes xi. 

C. Electromigration Failures 
Electromigration [ 141, [ 151 is a major reliability prob- 

lem caused by the transport of atoms in a metal line due 
to the electron flow. Under persistent current stress this 
can cause deformations of the metal, leading to either 
short or open circuits. The time-to-failure is a lognor- 
mally distributed random variable. It is usually character- 
ized by the median (or mean) time-to-failure (MTF ) [ 151, 
which depends on the current density in the metal line. 

The models for MTF prediction under pulsed-dc or ac 
current stress are still controversial. Some recent models 
[16] predict that, at least under pulsed-dc conditions, the 
average current is sufficient to predict the MTF, as fol- 
lows: 

A 
MTF = - 

Z 2  (5.4) 

where a is a parameter that does not depend on the current 
and I is the average current. However, other recent stud- 
ies [ 171 show that the situation is much more complicated. 

In any case, even if I is not sufficient by itself to esti- 
mate the MTF, it represents a Jirst-order approximation 
of the current stress in the wire. Thus (5.2) and (5.3), 
based on the transition density, provide the required av- 
erage current values I ,  and help identify potential elec- 
tromigration problems in the power/ground bus branches. 

D. Hot-Electron Degradation 
As MOSFET devices are scaled down to very small di- 

mensions, certain physical mechanisms start to cause deg- 
radation in the device parameters, causing major reliabil- 

ity problems. One such mechanism is the injection of “hot 
electrons” (or, in general, hot carriers) into the MOS gate 
oxide layer [14]. Trapping of these carriers in the gate 
insulator layer causes degradation in the transistor tran- 
sconductance and/or threshold voltage. 

It is widely accepted that the MOSFET substrate cur- 
rent is a good indicator of the severity of the degradation. 
In fact one can write an expression for the “age” of a 
transistor (i.e., how far it is down the degradation path) 
that has’been operating for time T as follows [ 181 

where I,, ( t )  and Isub (1) are the MOSFET drain-to-source 
and substrate currents, W is the channel width, and H and 
m are parameters that do not depend on the transistor cur- 
rents. 

In order to see how this can be used in a CMOS circuit, 
consider a MOSFET in a CMOS inverter whose output 
node is x .  It can be shown that the both Isub(t) and I d a ( t )  
are nonzero only when the inverter is switching (this also 
holds for any CMOS gate). Whenever the inverter 
switches, it generates two current pulses Isub (t) and Id, (1). 
The pulses resulting from different switching events are 
identical except for a dependence on the rise-fall at the 
inverter input. If one assumes a certain nominal rise/fall 
time at the input, then using (5 .5)  one can compute the 
incremental aging due to 0 -+ 1 and 1 + 0 transitions at 
the inverter output, call these Alh and Ah[ .  Then (5 .5)  may 
be written: 

Degradation due to hot-carriers takes years to manifest 
itself. In other words, T and n,(T) are very large, which 
(using (2.2)) permits the approximation n,(T) z= TD(x ) ,  
and leads to: 

Thus, if CMOS gates are precharacterized to estimate the 
incremental damage to their transistors due to a single 
output transition, then the transition density provides the 
means to predict transistor aging over extended periods 
using (5.7). 

VI. EXPERIMENTAL RESULTS 
We have implemented this approach in a prototype den- 

sity simulator, called DENSIM, that takes a description 
of a circuit in terms of its Boolean modules and gives the 
transition density at every node. It also accepts values for 
transition density and equilibrium probability at the pri- 
mary inputs. Our current implementation is restricted to 
combinational (nonfeedback) circuits. Every Boolean 
module should be an instance of a model from a simula- 
tion library built by a separate model compiler called 
MODCOM. MODCOM uses an input specification in the 

1 
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form of Boolean equations to build a BDD representation 
of the module outputs and the relevant Boolean differ- 
ences, and stores this in a model file that DENSIM can 
use. 

We present below the results of a number of test cases 
that were used to investigate the accuracy and efficiency 
of this technique. In order to assess the accuracy of the 
results, we have devised a test by which randomly gen- 
erated logic waveforms are fed to the circuit primary in- 
puts and propagated into the circuit (by logic simulation 
based on the BDD's). The logic simulator uses assignable 
nonzero delays, scaling them based on the fan-out load at 
every module output. The input waveforms must have the 
same probability and density values given to DENSIM, 
and are generated as follows. Starting with P ( x )  and D ( x )  
values, we solve for po and pI from (2.3a) and (2.3b). We 
then use (arbitrarily) an exponentially distributed random 
number generator to produce sequences of inter-transi- 
tional times that have the means po and pI (the theory 
presented above holds for any distribution of intertransi- 
tion times). Starting from arbitrary initial values, the 
waveforms are built using these sequences. From the logic 
simulation results, we estimate the average number of 
transitions per unit time for every circuit node. For a large 
number of input transitions, this number should converge 
to the transition density, according to (2.2). We also es- 
timate the fraction of time that the signal spends in the 
high state and check if that converges to the equilibrium 
probability, in accordance with (2.1). 

In the first few test cases to be presented, the modules 
were chosen to contain all reconvergent fan-out. Thus all 
signals are independent and the results from DENSIM 
should agree exactly with those from logic simulation. We 
will then move on to other test cases where signal corre- 
lation does become an issue and will study the speed- 
accuracy tradeoff involved. 

As a first test case, consider a single logic module with 
eight inputs and one output that implements the Boolean 
function Z = ABFD + CFD + ABHD + CHD + ABFG 
+ CFG + ABHG + CHG + AFE + ADE + CFE + 
CDE. Using input values of P = 0.5 and D = 2.0, DEN- 
SIM gives P ( 2 )  = 0.476562 and D ( 2 )  = 3.71875. The 
results of the logic simulation run, showing the correct 
convergent behavior at the output 2, are shown in Fig. 3. 

The horizontal axis in this figure is the CPU time 
elapsed during the logic simulation run, and the vertical 
axis is the cumulative values of density and probability at 
the output node. The two horizontal dashed lines are the 
values of density and probability computed by DENSIM 
and the vertical dashed line indicated by the arrow shows 
the total CPU time required by the DENSIM run. The 
other vertical line indicates the CPU time required to ob- 
serve 1000 logic transitions at node 2. 

The second test case is the 4-bit ALUIfunction gener- 
ator SN54181 from the TI TTL data book. This circuit 
has 75 logic gates and is shown in Fig. 4. 

If we consider the whole circuit as a single Boolean 
module, then the effects of all internal node correlations 

" I " " " " " " ' " ' " " " " ' )  

Probability I I 

0 1 1 '  ' " I '  " " " " " " " ' " " 
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  

CPU time (sec) 

Fig. 3 .  Density and probability convergence plot at node 2. 

are taken care of, and the DENSIM results should, again, 
be exact. It takes MODCOM 6.53 CPU seconds (SUN 
SparcStation 1) to build and store the 6092-node BDD 
model in this case, and DENSIM requires 0.84 CPU sec- 
onds (SUN) to run on it. The DENSIM results for the two 
output nodes F 3  and X are shown in Figs. 5 and 6,  re- 
spectively. 

The preceding test cases show that even for single- 
module circuits, computing the density values using 
DENSIM instead of traditional logic simulation is accu- 
rate, much faster, and avoids lengthy simulations involv- 
ing thousands of logic transitions. This observation will 
be further enforced by the results presented below. 

Moving on to multimodule circuits, consider a 32-bit 
binary ripple adder. In this case, we chose the full adders 
to be our Boolean modules. This again leads to a situation 
where all reconvergent fan-out and signal correlation is 
inside the modules, and where DENSIM results should be 
exact. DENSIM takes only 0.46 CPU seconds (SUN), as 
opposed to the five minutes required for the logic simu- 
lation results to converge, as shown in Figs. 7 and 8, re- 
spectively. 

An interesting feature of the result in Fig. 7 is the pro- 
longed "flat" part of the curve around 1000 transitions. 
This illustrates the point made in the introduction that it 
is impossible to tell beforehand exactly when a logic sim- 
ulation run should be terminated. In this case, if one were 
monitoring the density values from logic simulation with 
the intention of terminating the run when the density 
"converged to something," one might terminate the run 
at 1000 transitions, getting the wrong result. 

We now move on to a consideration of the effects of 
signal correlation caused by reconvergent fanout. As 
pointed out in Section IV-B, one can accurately handle 
these effects by keeping all reconvergent fan-out within 
the Boolean modules. However, since large BDD's are 
expensive to build and maintain, this can become im- 
practical and leads to a speed-accuracy tradeoff. To illus- 
trate this point, we again consider the ALU circuit in Fig. 
4. We partition the circuit into the 19 smaller modules 

7 
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Fig. 4. ALUifunction generator circuit. 
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Fig. 5 .  Results for node F 3 of the ALU 

"3n.n 

6 
I 

0 1 1  ' 1 1  

0 
I 

10 20 30 40 50 

CPU time (sec) 

Fig. 6 .  Results for node X of the ALU 
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Fig. 7 .  Results for node n2 of the adder. 
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Fig. 9. Error histogram for the ALU. 
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Fig. 8 .  Results for node n129 of the adder. Fig. 10. Second error histogram for the ALU. 

shown in the figure and examine the resultant density val- 
ues at all nodes that are module outputs. By comparing 
these to the values obtained from the single-module run 
on this circuit, we get the error histogram shown in Fig. 
9. In this case there was a less than 29% loss in accuracy 
for a 15X gain in speed. 

For a further comparison, we ran a logic simulation on 
the ALU using its gate-level representation, and com- 
pared the resulting densities to those observed in the above 
19-module run. The error histogram in this case is shown 
in Fig. 10. All but one of the densities are within 23 %. 
The single point of poor agreement is at node AB which 
is a reconvergent node for all four ALU outputs FO-F3. 

Finally, we present some results obtained for the 
ISCAS-85 benchmark circuits [ 191. In this case we used 
a “lowest level partitioning” in which every logic gate 
was represented as a separate Boolean module. This pro- 
vides the fastest, but potentially the least accurate, DEN- 
SIM run. The 10 ISCAS circuits, their sizes, and the total 
DENSIM CPU time (on a CONVEX c240) are shown in 
Table I. 

The execution times are excellent, taking under 10 s 
even for the largest circuit. It becomes exceedingly diffi- 

TABLE I 
EXECUTION TIME RESULTS FOR THE ISCAS-85 BENCHMARK CIRCUITS 

Circuit 
Name 

Size 
(# gates) 

Total Time 
(CPU sec.) 

c432 
c499 
c880 

c1355 
c1908 
c2670 
c3540 
c5315 
c6288 
c7552 

160 
202 
383 
546 
880 

1193 
1669 
2307 
2406 
3512 

0.52 
0.58 
1.06 
1.39 
2.00 
3.45 
3.77 
6.41 
5.67 
9.85 

cult to assess the accuracy for large circuits because the 
BDD’s become unacceptably large. Even though BDD’s 
for these circuits have been built by other researchers, the 
BDD’s that we require are much larger because they must 
include the Boolean function at every internal node as well 
as the output nodes, along with all the associated Boolean 
difference terms. Thus we are reduced to having to assess 
the accuracy by obtaining a best possible estimate of the 
densities from long logic simulation runs. Even then, it is 
practically impossible to examine the density plot for 
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TABLE 11 
AVFRACI- DmsirY RES( LTS FOR I - H E  ISCAS-85 BF.NCHMAKK CIRCUI 1s. 

T I M f  IS I N  CPU SECONDS 

Circuit Avg. Density Avg. Density (time) 
Name (DENSIM) (logic simulation) % Error 

c432 
c499 
c880 

c I355 
c1908 
c2670 
c3540 
c5315 
c6288 
c7552 

3.46 
1 I .36 
2.78 
4.  I9 
2.97 
3.50 
4.47 
3.52 

25.10 
3.85 

3.39 (62.8) 
8.57 (241.1) 
3.25 (131.7) 
6.18 (407.9) 
5.01 (463.9) 
4.00 (618.5) 
4.49 (1082.0) 
4.79 (1616.0) 

34.17 (31 057.0) 
5.08 (2713.0) 

+2 .1% 
+29.8% 
- 14.5% 
-32.2% 
-40.7% 
- 12.5% 

-0 .4% 
-26.5% 
-26.5% 
-24.2% 

every internal node to determine whether the run was long 
enough for it to converge. Based on several test cases, 
however, we found that an average of 1000 transitions per 
input node seems to be enough to approximate most node 
densities. Such logic simulation runs were performed on 
all ten circuits. In order to tabulate the results, we show 
the average density values (averaged over all circuit 
nodes) in Table 11. 

The third column in the table also lists the total CPU 
time required (on the CONVEX) to finish the logic sim- 
ulation run in each case. Even for the smallest circuits, 
such long simulation runs meant that hundreds of thou- 
sands of internal events had to be simulated. Comparing 
the execution times between Tables I and I1 clearly dem- 
onstrates the speed advantage of this approach (e.g., 
5.67 s versus 8 h 38 min for ~ 6 2 8 8 ) .  As for the average 
density values, the agreement is very good for c432 and 
c3540, acceptable for c880 and c2670, and poor for the 
other circuits. These results highlight the need to better 
account for signal correlation if one is to obtain consis- 
tently good results in the general case. 

In general, the problem of estimating equilibrium prob- 
abilities, let alone transition densities, is %@-hard. As a 
result, no single eficient solution will work well in all 
cases. The partitioning strategy in general cases, and the 
speed-accuracy tradeoff, are the focus of our continuing 
research efforts in this area. 

VII. SUMMARY AND CONCLUSIONS 
To summarize, we have observed that a common thread 

that runs through most causes of runtime failure is the 
extent of circuit activity, i.e., the rate at which its nodes 
are switching. We have defined a new measure of circuit 
activity, called the transition density. Based on a stochas- 
tic model of logic signals, we have also presented an al- 
gorithm to propagate the density from the primary inputs 
to internal nodes. 

To illustrate the practical significance of these results, 
we have considered four ways in which the density values 
can be used to study circuit reliability by estimating 1) the 
average power and ground currents; 2) the average power 
dissipation; 3 )  the susceptibility to electromigration fail- 
ures; and 4) the extent of hot electron degradation. We 

have also presented experimental results that demonstrate 
the practical significance and power of this approach. We 
envision that the computation of density values inside the 
circuit can be used as a preprocessing step and the result- 
ing information applied to these and possibly other reli- 
ability problems. 

APPENDIX A 
EXISTENCE OF P ( x )  AND D ( x )  

A .  Existence of P ( x )  

ity: 
Recall the definition (2.1) of the equilibrium probabil- 

1 P + T P  

P ( X )  lim - x ( t )  d t .  
T - m  T -T/2 

For convenience, we also repeat the statement of Propo- 
sition 1: 

Proposition I :  For a logic signal x ( t ) ,  the limit in (2.1) 
always exists. 

Proof: Let 

l T  
X T  2 - So x ( t )  dt 

T 

be the time average o f x ( t )  over [0, TI;  it suffices to show 
that limT, ,XT always exists. Notice that ZT E [0, 11, and 

d X T ( T )  = x ( T )  __ - X 2 
dT T T '  

Since both x ( T )  and X T  are bounded, then 

dxT 
~ - m  dT 
lim ~ ( T )  = 0. 

By the mean value theorem, for any A > 0, there exists 
a y E [T ,  T + A] such that 

Therefore, 

dxT 
T +  m y + m  dT 
lim { X T + a  - X T }  = A lim - (y) = 0 (A.2) 

which means that limT+ ,XT exists. 

B. Existence of D ( x )  
Recall the definition (2.2) of the transition density: 

We also recall a few other definitions: The time between 
two consecutive transitions of x ( t )  is called an intertrun- 
sition time; p is the average value of all the intertransition 
times of x ( t ) ;  and p1 ( po) is the average of the high (low), 
i.e.,  corresponding to x ( t )  = 1(0), intertransition times of 
x ( t ) .  It should be clear that p = (1 /2)(p0 + p , ) .  In gen- 
eral, there is no guarantee of the existence of p ,  po, and 
pl. If the number of transitions in positive time isjnite,  

1 
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then we say that there is an injinite intertransition time 
following the last transition, and p = 03. A similar con- 
vention is made for negative time. pf is the average of all 
thefinite intertransition times of x ( t ) .  In general, there is 
also no guarantee of the existence of pp It should be clear, 
however, that if p exists, then pfalso exists and pf = p .  

;c I.: 
T +Ti2 

Fig. 11. Existence of D ( x ) .  

We are now ready to prove Proposition 2 ,  which we re- - Tf2 
state for convenience. 

Proposition 2: Two parts: 
i) If pfexists and is nonzero, then D ( x )  exists. 
ii) If po and pI exist, and p # 0, then D ( x )  exists and gives 

we have: 

PI P ( x )  = ~ 

Po + PI 

. (A.6) t4 - tl 
I lim - I lim - t3 - t2 lim - 

T + m  n,(T) T - m  n,(T) T + m  n,(T) 
T 

(A.3a) 
Using (A.4) and ( A . 9 ,  we seen that 

and 

2 
Po + PI 

D(x) = -. (A.3b) 

Proof: i )  Suppose that pf # 0 exists. We first dis- 
pose of the special case when x ( t )  has a finite number of 
transitions. In that case, limT+mn,(T) is a finite integer 
value, and D (x) = 0. 

Another special case is when x ( t )  has an infinite num- 
ber of transitions in only one time direction. Without loss 
of generality, consider that x ( t )  = 0 for all t < to. If we 
build another signal x‘ ( t )  so that x’ ( t )  = x ( t ) ,  for t > to, 
and x’ ( t )  = x (to + (to - t ) ) ,  for t < to, then x’ ( t )  has an 
infinity of transitions in both time directions and it can be 
shown that D ( x )  = (1 /2 )D(x ’ ) .  Thus the existence of 
D ( x )  is covered by the general case of a signal with an 
infinity of transitions in both time directions, to be con- 
sidered next. 

In the general case of an infinity of transitions in both 
time directions, x ( t )  cannot have an infinite intertransition 
time, so that pf = p.  It will simplify the discussion below 
to refer to p rather than pj.  Consider Fig. 11 where, for 
every T,  c1 is the time of the last transition of x ( t )  before 
- T / 2 ,  t2 is that of the first transition after - T / 2 ,  t3 is 
that of the last transition before + T / 2 ,  and t4 is that of 
the first transition after + T / 2 .  

There are n,(T) transitions between - T / 2  and + T / 2 ,  
including t2 and t 3 .  Thus there are (n, ( T )  - 1) intertran- 
sition time intervals between t2 and t 3 .  Since 1imTAmnx(T) 
= 03, we have 

T 
lim ~ = P  

T +  m n,(T) 

exists. Since p = pf # 0, then D ( x )  = l / p  exists. 
ii) If po and p ,  exist, and p = ( p o  + p 1 ) / 2  is nonzero, 

then pf exists and is nonzero and (2.2) exists. Existence 
of po and pI also means that x ( t )  has no infinite intertran- 
sition times, so that D ( x )  = l/p, and we directly get 
(A.3b) 

2 
Po + PI 

D(x)  = -. (A.7) 

To obtain (A.3a), let nl  ( T )  be the number of 
(whole) 1-pulses of x ( t )  in ( -  T / 2 ,  + T / 2 ] .  It is easy to 
verify that ( n l ( T )  - (n , (T ) /2 ) (  I 1,  which gives 
limT-m(nl ( T ) / T )  = (1/2)D(x). Consider Fig. 12 
where, for every T,  tl is the time of the last 0 + 1 tran- 
sition of x ( t )  before -T/2, t2 is that of the first 0 + 1 
transition after - T / 2 ,  t3 is that of the last 1 + 0 transi- 
tion before + T / 2 ,  and t4 is that of the first 1 + 0 tran- 
sition after + T / 2 .  

By definition of pI, we have 

lim - (A.@ 

and 

Likewise, 

We now observe that 

x ( t )  dt I i . (A.5) t4 - f l  
= lim - t4 - tl p = lim 

T - m  n,(T) + 1 T + m  n,(T) f T / 2  

x ( t )  dt < ir4 x ( t )  di 
We now observe that t3 - t2 I T I t4 - tl, which - T / 2  I 
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0 

T . TI2 +TO 
Fig. 12. Deriving the expression for P ( x )  

1 

which gives 

lim - x ( t )  dt I lirn - j+'I2 x ( t )  dt 
T + m  nI (T )  12 T +  m nl ( T )  - ~ / 2  

1 l4 
I lirn - j x ( t )  dt. 

T - ~ W  n l ( T )  I I  

(A. 11) 
Using (A.8) and (A.10), we see that 

lirn - x ( t )  dt = pl .  

Since 

we find that 

which leads to (A.3a) 

(A. 13) P I  P(x)  = ~ 

Po + PI 

rn and the proof is complete 
In order to illustrate how mild the condition of Propo- 

sition 2 is, one can prove another (more stringent) suffi- 
cient condition for the existence of D ( x ) ,  namely, that 
there exists a non-zero lower bound 6, > 0 on the inter- 
transition times. The proof is as follows: Consider the 
logic signal xg ( t )  built as follows: xs ( t )  is 0 everywhere, 
except on intervals of width 6, centered at every transition 
time point of x ( t ) ,  where it is 1 .  It is clear that 

Therefore, 

By Proposition 1 ,  and since 6, > 0, the density exists. 
This condition can be easily satisfied in all practical cases. 

Consider the Boolean function y = xI * x2 + x3, which 
can be represented by the BDD shown in Fig. 13. The 
Boolean variables xI are ordered, and each level in the 
BDD corresponds to a single variable. Each level may 
contain one or more BDD nodes at which one can branch 
in one of two directions, depending on the value of the 
relevant variable. For example, suppose that x1 = 1 ,  x2 
= 0, and x3 = 1 .  To evaluate y, we start at the top node, 
branch to the right since x1 = 1 ,  then branch to the left 
since x2 = 0, and finally branch to the right since x3 = 1 
to reach the terminal node " 1 .  " Thus the corresponding 
value of y is 1. 

The importance of the BDD representation is that it is 
canonical, i.e., that it does not depend on the Boolean 
expression used to express the function. In our case, if 
the function was expressed as y = x3 + xI (x2 + x3) (an 
equivalent representation), it would have the same BDD. 
BDD's have been found to be an efficient representation 
for manipulating Boolean functions, both in terms of 
memory and execution time. For example, checking if a 
Boolean function is satisfiable can be done in time that is 
linear in the number of variables. 

* , x,) be a Boolean function. We will 
show that, given signal probabilities for the variables xi 
and that these variables are independent (random vari- 
ables), then the probability of the function f can be ob- 
tained in linear time (in the size of its BDD representa- 
tion). By Shannon's expansion: 

(B. 1) 

Lety = f ( x l ,  

Y = X l L ,  + Gin 

wheref,, = f ( l ,  x 2 ,  * , x,) and& = f ( O ,  x2, * - * , x,) 
are the cofactors offwith respect to xl. Since xlXl = 0, 
then, 

APPENDIX B 
"INci BDD's PRoBABILITY PRoPAGAT1oN 

We will briefly review the concept of a BDD [lo], [ l  I ]  
and then present a new application for BDD's as tools for 
computing the probability of a Boolean function. P t Y )  = P ( x , f , , )  + P(Ff,). (B.2) 
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Since the cofactors of x, do not depend on x , ,  and since 
all variables are independent, then 

P ( Y )  = P ( x J P ( f , , )  + p(ap ( fn ) .  03.3) 
This equation shows how the BDD is to be used to eval- 

uate P (  4’). The two nodes that are descendants of y in the 
BDD correspond to the cofactors off. The probability of 
the cofactors can then be expressed in the same way in 
terms of their descendants. Thus a depth-first transversal 
of the BDD, with a postorder evaluation of P ( . )  at every 
node is all that is required. We have implemented this 
using the “scan” function of the BDD package [ l l ] .  
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