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Abstract

Estimating the power dissipation and the reliability of integrated circuits is a major concern

of the semiconductor industry. Previously [1], we showed that a good measure of power
dissipation and reliability is the extent of circuit switching activity, called the transition

density. However, the algorithm for computing the density in [1] is very basic and does not
take into account the e�ect of inertial delays of logic gates. Thus, as we will show in this
paper, the transition density may be severely overestimated in high frequency applications.
To overcome this problem, we model the e�ect of gate delay on logic signals in the form of
a conceptual low-pass �lter module that does not allow unacceptably short logic pulses to
propagate. Using a stochastic model of logic signals, we then derive the equations required
to propagate the transition density through the �lter. We will present experimental results

that illustrate the validity and importance of these results.
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1. Introduction

The dramatic decrease in feature size and the corresponding increase in the number of

devices on a chip, combined with the growing demand for portable communication and

computing systems, has made power consumption one of the major concerns in VLSI circuits

and systems design. Indeed, excessive power dissipation in integrated circuits not only

discourages their use in a portable environment, but also causes overheating, which can lead

to soft errors or permanent damage. As such, power dissipation becomes one of many other

reliability concerns (such as electromigration, hot-carrier degradation, etc) that are becoming

increasingly important with today's technology.

A crucial observation is that the power dissipation and, in general, the reliability of a

chip is directly related to the extent of its switching activity, i.e., the rate at which its nodes

are switching. Less active circuits consume less power and are more reliable. However,

estimating the level of activity has traditionally been very hard because it depends on the

speci�c signals being applied to the circuit primary inputs. These signals are generally

unknown during the design phase because they depend on the system in which the chip

will eventually be used. Furthermore, it is practically impossible to simulate large circuits

for all possible inputs. To address these issues, the transition density was introduced in [1]

as a compact measure of switching activity in digital circuits. Simply put, the transition

density at a node is the average number of transitions per second at that node, and it can be

e�ciently evaluated without requiring exact information about the primary input signals.

However, the algorithm for computing the density in [1] is very basic and does not take

into account the e�ect of inertial delays of logic gates. Thus, the transition density may be

severely overestimated for high speed circuits, as we will now demonstrate.

Consider a multi-input multi-output logic module M whose outputs are Boolean func-

tions of its inputs. M may be a single gate, a cell, or a higher level module. A simpli�ed

timing model was used in [1] to represent the propagation delays through M , consisting of

a single value of delay for every input-output node pair. The main result in [1] was a simple

expression for the density at the outputs of M , in terms of its input densities and its Boolean

di�erence probabilities, as follows (assuming M has n inputs xi and m outputs yj) :

D(yj) =

nX
i=1

P

�
@yj

@xi

�
D(xi) (1:1)

The resulting algorithm requires only two pieces of information about every primary input

node, namely its equilibrium probability P (x) (fraction of time that it is high) and its tran-

sition density D(x). Thus (1.1) provides a very e�cient way of propagating these values

throughout the circuit so that P (x) and D(x) are computed for all internal nodes.
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The problem with this approach is that it places no checks or restrictions on themaximum

density (or, equivalently, the minimum pulse width) at a module's output nodes. This is

a result of the simpli�ed timing model. To illustrate, consider an n-input OR gate whose

inputs have equal probabilities P = 0:5 and equal densities D = d. Since the Boolean

di�erence
@yj
@xi

is the OR of the (n � 1) other inputs, its probability is at least 0:5, which

leads to D(y) � (nd=2). Thus, for large enough n, the gate output will carry arbitrarily

high density, and therefore unrealistically short pulses. In practice, such short pulses are

not generated; they are glitches that are �ltered out because the module is not fast enough

to respond to them. In order to model this �ltration e�ect of the circuit inertial delays, we

introduce a new delay block called a �lter block at every module output, as shown in Fig. 1.
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Figure 1. Block diagram of timing model.

The internal block M 0 is a zero-delay Boolean block that has the same Boolean function

as M . The delay blocks, which can have di�erent td delay values, simply introduce a delay

in the logic signal which is the same for a rising or falling transition. In the general case of

a multi-output module, these delays may be di�erent for di�erent output nodes.

The �lter block is a delay block with a low-pass �ltering property, that may be de�ned

as follows : a 0 ! 1 (1 ! 0) transition at the �lter input is transmitted to its output after

a delay of �1 (�0) if and only if its input does not change state during that time. Thus the

�lter block e�ectively sets a minimum pulse width at the output y : the minimum high (low)

pulse width at the module output is �0 (�1).

This paper is devoted to the analysis of a �lter block, in order to propagate P (x) and

D(x) from its input to its output. In section 2, we review the formalism of a companion

process of a logic signal that was introduced in [1]. The following section discusses the

distribution of pulse widths of a logic signal and makes a simplifying assumption that is
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required for the remainder of this paper. In section 4, we study the behavior of a �lter

block and present our main result on the propagation of density values through it. The

following two sections are devoted to experimental results and conclusions. Finally, some

proofs relevant to the simplifying assumption are given in appendix A, and the proof of our

main result is given in appendix B.

2. Companion Process of a Logic signal

Throughout this paper, we will use bold font to represent random quantities, and will

denote the probability of an event A by PfAg. Furthermore, if x is a random variable, we

will denote its mean (or expected value) by E[x]. In this section, we will brie
y review the

concept of a companion process from [1].

Let x(t), t 2 (�1;+1); be a logic signal, i.e., it is a function of time that takes the

values 0 or 1. A 0-1 stochastic process is a stochastic process [2] that takes only 0 & 1 values.

We associate with x(t) a 0-1 stochastic process x(t), called its companion process, de�ned

as x(t)
4

= x(t+ �) where � is uniform over the whole real line [1]. It was shown in [1] that

x(t) is strict-sense stationary (for brevity : stationary) and mean-ergodic.

Let nx(T ) be the number of transitions of x(t) in the interval (�T
2
; +T

2
]. The equilibrium

probability P (x) and transition density D(x) were de�ned in [1] as follows :

P (x)
4

= lim
T!1

1

T

Z +T
2

�T
2

x(t)dt and D(x)
4

= lim
T!1

nx(T )

T
(2:1)

The signal x(t) is composed of an alternating sequence of high (corresponding to x = 1)

and low (x = 0) pulses. With �1 (�0) de�ned as the average high (low) pulse-width of x(t),

it was shown in [1] that (with �0 + �1 > 0) :

P (x) =
�1

�0 + �1
and D(x) =

2

�0 + �1
(2:2)

Finally, with nx(T ) de�ned as the number of transitions of x(t) in the interval (�T
2
; +T

2
],

it was also shown in [1] that, for any t and any T > 0, we have :

P (x) = Pfx(t) = 1g and D(x) = E

�
nx(T )

T

�
(2:3)

Based on these results, the expression (1.1) was derived [1] and used to propagate probability

and density values throughout the circuit.

3. Pulse Width Distributions

The purpose of this section is to introduce a simplifying assumption that will make possible

the solution of the �lter block in section 4. In order to illustrate the need for this assumption,
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and to show that it is actually mild in the sense that it is approximately true in practice, we

will lead up to it by discussing the distribution of pulse widths in a logic signal.

In general, a logic signal x(t) can have an in�nite number of high pulses (corresponding

to x = 1) and low pulses (x = 0). The width of a high pulse of x(t) can be any value in the

interval (0;+1]. Let the population of high pulse-widths have the cumulative distribution

function (cdf) F1(t). Thus F1(t) is the fraction of high pulses that are shorter than or equal

to t. Let r1 be a random variable with the same distribution F1(t), i.e., Pfr1 � tg = F1(t),

and the probability density function (pdf) f1(t) =
d
dt
F1(t). Likewise, let r0 be a random

variable distributed as the low pulses of x(t), with the cdf F0(t) = Pfr0 � tg, and the pdf

f0(t) =
d
dt
F0(t).

Consider the situation shown in Fig. 2, where t0 is a �xed (non-random) time point, and

where we focus on the case x(t0) = 0. In this case, let the length of the low pulse around

t0 be r̂0. It is interesting to note that r̂0 does not have the same distribution as r0 (this is

an instance of the so-called inspection paradox, see [5], page 69). This happens because it is

more probable for (t0 + �) to lie in the longer pulses of x(t) (recall that x(t0) = x(t0 + �),

and � is uniform over the whole real line).

(t)x
r^0

t0

r1 ’

0t’ t

Figure 2. Low pulse width around �xed t = t0.

Let F̂0(t) and f̂0(t) be the cdf and pdf of r̂0, respectively. We show in appendix A that

these distributions are given by :

f̂0(t) =
t

�0
f0(t) and F̂0(t) =

Z t

0

z

�0
f0(z)dz (3:6a; b)

Likewise, when x(t0) = 1, if the length of the high pulse around t0 is r̂1, with a cdf of

F̂1(t) and a pdf of f̂1(t), it can be shown that :

f̂1(t) =
t

�1
f1(t) and F̂1(t) =

Z t

0

z

�1
f1(z)dz (3:7a; b)

Going back to the x(t0) = 0 situation shown in Fig. 2, let r0
1
be the length of the �rst

high pulse to the right of r̂0, as shown in the �gure. We show in appendix A that, if r0
1
and

r̂0 are independent, then r0
1
is distributed as r1.

We can generalize this result, so that if r0
1
is any high pulse to the right or left of r̂0, and

if it is independent of r̂0, then r0
1
is distributed as r1. Likewise, when x(t0) = 1, if r0

0
is any
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high pulse to the right or left of r̂1, and if it is independent of r̂1, then r0
0
is distributed as

r0. Otherwise, i.e., if these pulses are not independent, then their distributions will depend

on their correlation with r̂0 or r̂1. (For the interested reader : the reason that these pulses

are not all distributed according to F1(t) or F0(t) is because the �xed time reference t0 was

chosen arbitrarily, and not, for instance, at the beginning of a pulse. This choice will become

important when Fig. 2 is again invoked in the derivations in the appendices.)

In practice, it is reasonable to assume for a general logic signal that two pulses that

are su�ciently separated in time will be uncorrelated or independent. By extending this

intuitive notion, we arrive at the following simplifying assumption which will make possible

the solution of a �lter block in the next section :

Assumption: The width of every pulse of x(t) is independent of all other pulse widths in

its past and future.

This assumption is mild in the sense that it is approximately true in practice, such as

when two pulses are widely separated in time.

Since the collection of all previous (future) pulse widths completely determines the past

(future) of x(t), then every pulse of x(t) is independent of its past and future. As a result, the

process x(t) (probabilistically) restarts itself after every transition. A stochastic process with

this property is commonly called a stationary, time-reversible, semi-Markov 0-1 process [5].

We will make use of these properties in the next section as we study the propagation through

a �lter block.

4. Filter Block Analysis

Let F be a �lter block with input x(t) and output y(t). The behavior of a �lter can be

formally de�ned by the state diagram shown in Fig. 3. A �lter has four states, determined

by the current values of x and y. The states S0 (corresponding to x = y = 0) and S3

(corresponding to x = y = 1) are called stable states. The �lter will stay in these states

inde�nitely if x does not change. The states S1 (x = 0; y = 1) and S2 (x = 1; y = 0) are

called unstable states. If the �lter gets into state S1 (S2), then it can stay there for at most �0

(�1), after which time it will automatically transition to the stable state S0 (S3). Transitions

of y(t) are generated only during these autonomous transitions from an unstable to a stable

state. If the �lter is in an unstable state, and a transition at x occurs, then it will move to

a stable state immediately, and no transition at y will be generated.

The main result of this paper is the following theorem that shows how P (y) and D(y)

can be computed from P (x) and D(x) :

Theorem 1. For a �lter with input x and output y, and given the basic assumption made
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x:0   1x:1   0

x:1   0 x:0   1

S
3

S2S
1

S
0

y:1   0 y:0   1

x=y=0 x=y=1

x=0,y=1 x=1,y=0

Figure 3. State diagram of a �lter block.

above, we have :

P (y) = P (x)�

�
F̂1(�1) +

�1

�1
[1 � F1(�1)]

�
[1� F0(�0)]

[1 � F0(�0)F1(�1)]
P (x)

+

�
F̂0(�0) +

�0

�0
[1� F0(�0)]

�
[1� F1(�1)]

[1 � F0(�0)F1(�1)]
[1� P (x)] (4:1)

and :

D(y) =
[1� F0(�0)] [1� F1(�1)]

1� F0(�0)F1(�1)
D(x) (4:2)

Proof : See appendix B.

Notice that all that is needed to use these results are the two distribution functions

F0(t) and F1(t). In practice, it is not clear what these functions should be, or how one might

estimate them. We will have more to say on this in the next section. For now, we will show

that by using a simple approximation, we can simplify this requirement so that only F0(�0)

and F1(�1) are required, as follows. The ratio D(y)=D(x) will be called the transmission

probability of the �lter F , and will be denoted by PF :

PF =
[1 � F0(�0)] [1� F1(�1)]

1� F0(�0)F1(�1)
(4:3)

Using this notation, we can (after some algebraic manipulation) rewrite (4.1) and (4.2) as :

P (y) = PF �

�
1

1 � F0(�0)
� P (x) + (E[r1 � �1 j r1 > �1]� E[r0 � �0 j r0 > �0])

D(x)

2

�
(4:4)

and :
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D(y) = PF �D(x) (4:5)

Furthermore, for small �1 and �0, one can use the approximations :

E[r1 � �1 j r1 > �1] �
(�1 � �1) + �1F1(�1)=2

1� F1(�1)
(4:6)

E[r0 � �0 j r0 > �0] �
(�0 � �0) + �0F0(�0)=2

1� F0(�0)
(4:7)

which are obtained by setting E[�1 � r1 j r1 � �1] � �1=2, for small �1, and likewise for �0.

Thus all that is needed is F0(�0) and F1(�1). The experimental results in the next section will

not use these approximations, but will be based on the accurate expressions (4.1) and (4.2).

5. Experimental Results and Discussion

Given the equilibrium probability P (x) and transition density D(x) at the primary inputs

of a combinational logic circuit, one can compute the corresponding probability and density

at every internal node using (1.1). The density values can be used to estimate the circuit

power dissipation as well as the susceptibility to certain reliability problems such as hot-

carrier degradation and electromigration. The density propagation algorithm based on (1.1)

was implemented in the program densim and presented in [1]. The results of this paper

(equations (4.1) and (4.2)) have been incorporated into densim by simply applying the �lter

operation to the output of every gate as shown in the block diagram in Fig. 1. The �lter

parameters �0 and �1 can be set by the user in the module library; otherwise, they are derived

from the propagation delay and rise/fall times of a module.

In order to use the �lter equations (4.1) and (4.2), however, we need to know the pulse

width distribution functions F1(t) and F2(t). The form of these distributions is generally

unknown, but one may make reasonable assumptions about them, as follows. We will again

make use of the intuitive property that the values of a logic signal at widely separated time

points are relatively independent. If we extend this property to the point that the future

value of the signal is independent of its past, once its present value is speci�ed, then it is

said to be Markov [2] and its high and low pulses are known to be exponentially distributed.

In the absence of any other information, therefore, it seems that the exponential distribution

is a reasonable assumption. We will come back to this point later in this section, after we've

considered the e�ect of these distributions on the �lter behavior.

If the mean pulse width is �, then the probability density function (pdf) for an expo-

nential distribution is (1=�)e�t=� and is shown in Fig. 4a. This distribution is a special

case of the gamma distribution - it is a gamma distribution of order 1. Two other gamma

distributions, of orders 2 and 3, are also shown in the same �gure.
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Figure 4. Three distributions (a) with � = 1 nsec and the corresponding

�lter transfer characteristics (b) with �0 = �1 = 0:5 nsec and P (x) = 0:5.

The e�ect of the �lter on an input waveform for the three distributions is shown in

Fig. 4b. The density of the �ltered signal starts to deviate appreciably from that of the

un�ltered signal at high densities. This plot was obtained using equations (4.1) and (4.2).

It is prudent at this point to experimentally validate the results of theorem 1 and of

Fig. 4b. To do this, we applied a randomly generated logic signal to the inputs of a �lter

block, and processed the signal as one would in a logic simulator. We then monitored

the signal at the �lter output. Averaging over a long enough simulation time, the output

probability and density should converge to those predicted by theorem 1. This behavior was

indeed observed, for the three di�erent distributions, as shown in Figs. 5 and 6. In both

�gures (and in the remainder of this section), the results of logic simulation are marked

\logsim," while the results of applying theorem 1 are marked \densim."

Going back to the issue of the form of the distributions F0(t) and F1(t), we have per-

formed extensive experimental studies on several kinds of circuits, but there seems to be no

general statements that one can make about the shape of the distributions in practice. For-

tunately, though, we have found that the overall power dissipation of a circuit (a weighted

average of the node densities) is relatively insensitive to the pulse width distributions at its

primary inputs. For instance the average power dissipated in a 32-bit ripple adder (measured

with a logic simulation, with an input density of 2� 109) was found to be 17.74 mW for the

exponential distribution, 17.49 mW for a gamma distribution of order 2, and 17.33 mW for

a gamma distribution of order 3. Therefore, at least for purposes of computing the average

power, it is enough to assume some arbitrary input pulse width distribution. For the reasons
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given above, we have chosen to use the exponential distribution. We should point out that

the 2� 109 input density chosen for this test case is high enough for the �lter mechanism to

\make a di�erence" in the results, as can be seen from Fig. 7.
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 p
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 (
m

W
)

logsim
densim, unfiltered
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Figure 7. Results for a 32-bit ripple adder with P (x) = 0:5 for

all inputs.

The plot shown in Fig. 7 compares the average power dissipation of the circuit, as mea-

sured by logic simulation, to that measured by densim with and without the �lter mechanism.

The horizontal axis shows the average frequency of the signals applied to the circuit primary

inputs (the transition density is twice the average frequency [1]). It clearly shows the need

for the �lter mechanism at higher frequencies. Fig. 8 shows the results of a similar analysis

for a 4-bit parallel multiplier and a 4-bit alu. Finally, some more results are shown in Fig. 9

for the �rst two ISCAS-85 benchmark circuits.

The above experimental results demonstrate the validity of the results in theorem 1,

and the fact that if the �lter mechanism is not used, then the basic density propagation

algorithm (1.1) will severely deviate from the correct results at higher frequencies.

As a �nal note, we should say that the improved accuracy a�orded by the �lter mecha-

nism is obtained at virtually no speed penalty. Equations (4.1) and (4.2) have to be evaluated

only once for a logic gate. Thus, the density propagation algorithm remains as e�cient as

was shown in [1].

-10-



0 20 40 60 80 100
Average input frequency

0.00

0.02

0.04

0.06

A
ve

ra
ge

 p
ow

er
 (

m
W

) logsim
densim, unfiltered
densim, filtered

0 20 40 60 80 100
Average input frequency

0

2

4

6

A
ve

ra
ge

 p
ow

er
 (

m
W

) logsim
densim, unfiltered
densim, filtered

mult alu

Figure 8. Results for a 4-bit parallel multiplier and a 4-bit alu

with P (x) = 0:5 for all inputs.
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Figure 9. Results for c432 and c499 with P (x) = 0:5 for all inputs.

On the other hand, the overall approach still has some accuracy problems, even at low

frequencies, due to the independence assumptions implicit in (1.1). As was discussed in [1],

this is due to node correlations resulting from reconvergent fanout. This issue is part of our

continuing work in this area.

6. Summary and Conclusions

The average number of logic transitions per second, called the transition density, was intro-

duced in [1] as a measure of circuit power dissipation and reliability. An algorithm was also

presented to compute the node densities by propagating the transition densities speci�ed at
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the circuit primary inputs. In this paper, we have pointed out that that algorithm does not

place any checks or restrictions on the maximum transition density at a node. Realistically,

an upper bound on the node density does exist because a logic gate with non-zero delay

cannot propagate arbitrarily short logic pulses. Pulses that are too short appear as glitches

and do not propagate through the gate.

In order to overcome this problem, we have presented an extension to the transition

density approach in [1] by taking into account the e�ect of the inertial delay of a logic gate.

In the framework of the stochastic representation of logic signals of [1], we have modeled

this e�ect with a conceptual low-pass �lter block. Detailed analysis of this block has yielded

compact expressions for the transition density at its output given the density at its input.

Experimental results demonstrate that the �lter module behaves as it should, and that

the �lter mechanism is required in order to maintain accuracy at higher frequencies.

Appendix A

Some Proofs Relevant to Section 2

Recall that r1 is a random variable distributed as the high pulses of x(t), with the cumulative

distribution function (cdf) F1(t) = Pfr1 � tg, and the probability density function (pdf)

f1(t) =
d
dtF1(t). Likewise, r0 is a random variable distributed as the low pulses of x(t), with

the cdf F0(t) = Pfr0 � tg, and the pdf f0(t) =
d
dt
F0(t).

In an interval (�T
2
; +T

2
], let nx;0(T ) be the total number of low pulses of x(t) and ntx;0(T )

be the number of those low pulses whose width is in the interval [t; t+dt]. From the de�nition

of a pdf, it follows that :

f0(t)dt = Pft � r0 � t+ dtg = lim
T!1

ntx;0(T )

nx;0(T )
(A:1)

Recall that, in the de�nition of the companion process x(t), � is a random variable

uniformly distributed over the whole real line (time axis). Thus, for any �xed t0, x(t0) =

x(t0 + �) is a random variable equal to either 0 or 1. If x(t0) = 0, let the length of the low

pulse around t0 be r̂0, as shown in Fig. 2. It is interesting to note that, as we will now show,

r̂0 does not have the same distribution as r0 (this is an instance of the so-called inspection

paradox, see [5], page 69). This happens because it is more probable for (t0+ �) to lie in the

longer pulses of x(t).

Let R0

4

= ft : x(t) = 0g be the subset of the time axis for which x = 0, and Rt
0
� R0 be

the set of those x = 0 intervals whose width is in [t; t+ dt]. Let F̂0(t) and f̂0(t) be the cdf

and pdf of r̂0, respectively. From the de�nition of a pdf, it follows that :

f̂0(t)dt = Pft � r̂0 � t+ dtg = Pft0 + � 2 Rt
0
j t0 + � 2 R0g =

Pf� 2 Rt
0
g

Pf� 2 R0g
(A:2)
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where the last equality follows because t0+� has the same distribution as � [1] and Rt
0
� R0.

If �T is uniform over (�T
2
; +T

2
] with the cdf F

�T
(t) = 1=T , for t 2 (�T

2
; +T

2
], then :

Pf� 2 R0g = lim
T!1

Pf�T 2 R0g = lim
T!1

�0nx;0(T )

T
(A:3)

and :

Pf� 2 Rt
0
g = lim

T!1
Pf�T 2 R

t
0
g = lim

T!1

tntx;0(T )

T
(A:4)

Therefore :

f̂0(t)dt = lim
T!1

tntx;0(T )

�0nx;0(T )
=

t

�0
f0(t)dt (A:5)

which leads to :

f̂0(t) =
t

�0
f0(t) and F̂0(t) =

Z t

0

z

�0
f0(z)dz (A:6a; b)

Likewise, when x(t0) = 1, if the length of the high pulse around t0 is r̂1, with a cdf of

F̂1(t) and a pdf of f̂1(t), it can be shown that :

f̂1(t) =
t

�1
f1(t) and F̂1(t) =

Z t

0

z

�1
f1(z)dz (A:7a; b)

Going back to the x(t0) = 0 situation shown in Fig. 2, let r0
1
be the length of the �rst

high pulse to the right of r̂0, as shown in the �gure. We will now show that, if r0
1
and r̂0 are

independent, then r0
1
is distributed as r1.

Let Rt0

0
be the set of all x = 0 time intervals whose neighboring (to the right) high pulses

have widths in [t; t+ dt]. If f 0
1
(t) is the cdf of r0

1
, then using the same development made

above :

f 0
1
(t)dt = Pft � r0

1
� t+ dtg = Pft0 + � 2 Rt0

0
j t0 + � 2 R0g =

Pf� 2 Rt0

0
g

Pf� 2 R0g
(A:8)

Pf� 2 R0g = lim
T!1

Pf�T 2 R0g = lim
T!1

�0nx;0(T )

T
(A:9)

Pf� 2 Rt0

0
g = lim

T!1
Pf�T 2 R

t0

0
g = lim

T!1

�t
0

0
ntx;0(T )

T
(A:10)

where �t
0

0
is the mean of low pulses whose neighboring (to the right) high pulses have widths

in [t; t+ dt]. However, since r̂0 and r0
1
are independent, we must have �t

0

0
= �0. Therefore :

f 0
1
(t)dt = lim

T!1

�t
0

0
ntx;1(T )

�0nx;0(T )
= lim

T!1

ntx;0(T )

nx;0(T )
= f1(t)dt (A:11)
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Thus r0
1
is distributed as r1. We can generalize this result, so that if r0

1
is any high pulse to

the right or left of r̂0, and if it is independent of r̂0, then r0
1
is distributed as r1. Likewise,

when x(t0) = 1, if r0
0
is any high pulse to the right or left of r̂1, and if it is independent of

r̂1, then r0
0
is distributed as r0.

Otherwise, i.e., if these pulses are not independent, then their distributions will depend

on their correlation with r̂0 and r̂1. Since the collection of all previous (future) pulse widths

completely determines the past (future) of x(t), then every pulse of x(t) is independent

of its past and future. As a result, the process x(t) probabilistically restarts itself after

every transition. A stochastic process with this property is commonly called a stationary,

time-reversible, semi-Markov 0-1 process [5].

Appendix B

Proof of Theorem 1

Let x(t0) =" denote the event fx(t) makes a 0 ! 1 transition at time t0g, and x(t0) =#

denote the event fx(t) makes a 1 ! 0 transition at time t0g. We start out with a lemma

that gives the probability that the output y of the �lter is 0 at a time when its input x

makes a 0! 1 transition.

Lemma 1. If t0 is any �xed time, then :

P fy(t0) = 0 j x(t0) ="g =
1� F0(�0)

1� F0(�0)F1(�1)
(B:1)

Proof : Since companion processes are stationary [1], then P fy(t0) = 0 j x(t0) ="g does

not depend on t0. Therefore, for any �xed t :

P fy(t0) = 0 j x(t0) ="g = P fy(t) = 0 j x(t) ="g ; 8t (B:2)

Let t�1 � t0 be the (random) time of the last 0 ! 1 transition of x(t) before t0, and

t0
�1

be the (random) time of the 1! 0 transition of x(t) that lies between t�1 and t0.

If y is 0 at the end of a 0-pulse, [t0
�1
; t0], of x(t), then either that pulse persisted long

enough (i.e., t0 � t0
�1

> �0), or y(t) was already low at the beginning of that pulse (i.e.,

y(t0
�1
) = 0). This corresponds to the �lter arriving at state S0 at t�

0
via either S1 or S2,

and can be formally expressed as :

P fy(t0) = 0 j x(t0) ="g = P
n
t0 � t0

�1
> �0 or y(t

0

�1
) = 0 j x(t0) ="

o

= P
n
t0 � t0

�1
> �0 j x(t0) ="

o
+P

n
y(t0

�1
) = 0 j x(t0) ="

o

� P
n
t0 � t0

�1
> �0; y(t

0

�1
) = 0 j x(t0) ="

o
(B:3)
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Recall that each of the pulse widths of x(t) before t0
�1

is independent of t0 � t0
�1
. Since

y(t0
�1
) is completely determined by that (in�nite) sequence of pulses, it follows that y(t0

�1
)

and t0 � t0
�1

are independent. Therefore :

P fy(t0) = 0 j x(t0) ="g = 1� F0(�0) + F0(�0)P
n
y(t0

�1
) = 0 j x(t0) ="

o
(B:4)

Using similar arguments, we can write :

P
n
y(t0

�1
) = 0 j x(t0) ="

o
= P

n
t0
�1
� t�1 � �1; y(t�1) = 0 j x(t0) ="

o
= F1(�1)P fy(t�1) = 0 j x(t0) ="g (B:5)

where we have used the fact that, by the same argument given for t0
�1

, y(t�1) and t
0

�1
�t�1

are independent (in fact, we also have that y(t�1) and t�1 are independent). Therefore :

P fy(t0) = 0 j x(t0) ="g = 1� F0(�0) + F0(�0)F1(�1)P fy(t�1) = 0 j x(t0) ="g (B:6)

Since y(t�1) and t�1 are independent, then for any �xed t� < t0 we have :

P fy(t�1) = 0 j x(t0) ="g = P fy(t�1) = 0 j t�1 = t�;x(t0) ="g (B:7)

The event ft�1 = t�g is equivalent to (the intersection of) the two events fx(t�) ="g

and fx(t) makes no 0 ! 1 transitions in the interval (t�; t0)g. However, when x(t�) =",

y(t�1) = y(t�) is independent of x(t) for all time larger than t�. Therefore :

P fy(t�1) = 0 j x(t0) ="g = P fy(t�) = 0 j x(t�) ="g = P fy(t0) = 0 j x(t0) ="g (B:8)

where we have used (B.2) to write the last equality. This, coupled with (B.6), leads to (B.1)

and completes the proof.

Likewise, one can show that :

P fy(t0) = 1 j x(t0) =#g =
1� F1(�1)

1� F0(�0)F1(�1)
(B:9)

B.1. Equilibrium probability

We will make use of the following lemma that gives the distribution of the time-to-transition

of x(t), given that x(t0) is known.

Lemma 2. If x(t0) = 0 at some �xed time t0, and t0
0
is the (random) time of the last 1! 0

transition before t0, then the cdf of t0 � t0
0
is given by :

Pft0 � t0
0
� tg = F̂0(t) +

t

�0
[1� F0(t)] (B:10)

-15-



Proof : Consider again the situation in Fig. 2, where x(t0) = 0 at some �xed time t0 and

t0
0
is the (random) time of the last 1 ! 0 transition before t0. Using the same notation as

in Fig. 2, let r̂0 denote the width of the low pulse around t0. If r̂0 is shorter than t, then

t0 � t0
0
is also shorter than t. Therefore :

Pft0 � t0
0
� tg = Pfr̂0 � tg+Pft0 � t0

0
� t j r̂0 > tgPfr̂0 > tg

= F̂0(t) + [1� F̂0(t)] Pft0 � t0
0
� t j r̂0 > tg (B:11)

where (recall) F̂0(t) is the cdf of r̂0. Let n
t+
x;0(T ) denote the number of low pulses of x(t) in

(�T
2
; +T

2
] that are longer than t.

Let Rt+
0

be the set of all x = 0 time intervals that are longer than t, and Rt
0
� Rt+

0
be

the set of all initial segments of length t of every interval in Rt+
0
. Therefore :

Pft0 � t0
0
� t j r̂0 > tg = Pft0 + � 2 Rt

0
j t0 + � 2 Rt+

0
g =

Pf� 2 Rt
0
g

Pf� 2 Rt+
0
g

(B:12)

where the last equality follows because t0+� has the same distribution as � [1] andRt
0
� Rt+

0
.

If �T is uniform over (�T
2
; +T

2
] with the cdf F

�T
(t) = 1=T , for t 2 (�T

2
; +T

2
], then :

Pf� 2 Rt
0
g = lim

T!1
Pf�T 2 R

t
0
g = lim

T!1

tnt+x;0(T )

T
(B:13)

and :

Pf� 2 Rt+
0
g = lim

T!1
Pf�T 2 R

t+
0
g = lim

T!1

E[r0 j r0 > t]nt+x;0(T )

T
(B:14)

where (recall) r0 is distributed as the low pulses of x(t). This leads to :

Pft0 � t0
0
� t j r̂0 > tg = lim

T!1

tnt+x;0(T )

E[r0 j r0 > t]nt+x;0(T )
=

t

E[r0 j r0 > t]
(B:15)

It can be shown that E[r0 j r0 > t] =
R
1

t
zf(z)dz=(1 � F0(t)) = �0[1 � F̂0(t)]=[1� F0(t)],

which leads to :

Pft0 � t0
0
� tg = F̂0(t) +

t

�0
[1� F0(t)] (B:16)

This completes the proof.

Likewise, if x(t0) = 1 and t0
0
is the (random) time of the last 0! 1 transition before t0,

then :

Pft0 � t0
0
� tg = F̂1(t) +

t

�1
[1� F1(t)] (B:17)

We are now ready to derive the expression for the �lter output probability. If t0 is any

speci�c (�xed) time, then from basic probability theory, we have :

P (y) = Pfy(t0) = 1g

= Pfy(t0) = 1 j x(t0) = 1gPfx(t0) = 1g

+ Pfy(t0) = 1 j x(t0) = 0gPfx(t0) = 0g (B:18)
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If y is 1 at a time when x is 0, then y must have been 1 at the time of the last 1 ! 0

transition of x and that transition must have occurred no earlier than �0 time units ago.

Formally, this can be expressed as :

Pfy(t0) = 1 j x(t0) = 0g = Pfy(t0
0
) = 1; t0 � t0

0
� �0g (B:19)

where t0
0
is the (random) time of the last 1 ! 0 transition of x before time t0, given that

x(t0) = 0, as shown in Fig. 2.

With x(t0) = 0, y(t0
0
) is completely determined by the (in�nite) sequence of pulses of

x(t) prior to t0
0
. Since all of those pulses are independent of the signal future, i.e. of t0� t0

0
,

it follows that y(t0
0
) is independent of t0 � t0

0
, which gives :

Pfy(t0) = 1 j x(t0) = 0g = Pfy(t0
0
) = 1gPft0 � t0

0
� �0g (B:20)

Since y(t0
0
) is independent of t0

0
, then Pfy(t0

0
) = 1g = Pfy(t0

0
) = 1 j t0

0
= t�g, for some

�xed t� < t0. The event t
0

0
= t� is equal to the (intersection) of the two events fx(t�) =#g

(i.e. x(t) makes a 1 ! 0 transition at t�) and fx(t) = 0 over the interval [t�; t0]g. However,

x(t�) =# makes y(t�) independent of the future of x(t) after t�, leading to simply Pfy(t0
0
) =

1g = Pfy(t�) = 1 j x(t�) =#g. The expressions for this and for Pft0� t0
0
� �0g are given by

lemmas 1 and 2, and lead to :

Pfy(t0) = 1 j x(t0) = 0g =

�
F̂0(�0) +

�0

�0
[1� F0(�0)]

�
[1� F1(�1)]

[1� F0(�0)F1(�1)]
(B:21)

Similarly, if x(t0) = 1 and t0
0
is (re)de�ned as the last 0! 1 transition time before t0, then :

Pfy(t0) = 1 j x(t0) = 1g = 1� Pfy(t0
0
) = 0gPft0 � t0

0
� �1g (B:22)

which gives :

Pfy(t0) = 1 j x(t0) = 1g = 1�

�
F̂1(�1) +

�1

�1
[1� F1(�1)]

�
[1� F0(�0)]

[1� F0(�0)F1(�1)]
(B:23)

Consolidating all this gives the required expression for the �lter output probability :

P (y) = P (x)�

�
F̂1(�1) +

�1

�1
[1 � F1(�1)]

�
[1� F0(�0)]

[1� F0(�0)F1(�1)]
P (x)

+

�
F̂0(�0) +

�0

�0
[1 � F0(�0)]

�
[1� F1(�1)]

[1 � F0(�0)F1(�1)]
[1� P (x)] (B:24)

B.2. Transition density

If D(x) = 0 then D(y) = 0; otherwise, the ratio D(y)=D(x) = limT!1 ny(T )=nx(T ) exists.

We will �rst show that this ratio is equal to the probability Pfy(t0 + �1) =" j x(t0) ="g,

for any �xed time t0.
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Let nx"(T ) denote the number of 0! 1 transitions of x(t) in (�T
2
; +T

2
]. Similarly de�ne

ny"(T ). Since jnx(T )� 2nx"(T )j � 1 and jny(T )� 2ny"(T )j � 1, then :

D(x) = 2 lim
T!1

nx"(T )

T
and D(y) = 2 lim

T!1

ny"(T )

T
(B:25)

Note that 0 ! 1 (1 ! 0) transitions at y are in one-to-one correspondence with 0 ! 1

(1 ! 0) transitions at x that get transmitted to y. If Rx"
4

= ft : x(t) ="g is the set of

transition time points of x(t), and Ry"
4

= ft : y(t+ �1) ="g, then Ry" � Rx" and :

Pfy(t0 + �1) =" j x(t0) ="g = Pft0 + � 2 Ry" j t0 + � 2 Rx"g

= lim
T!1

Pf�T 2 Ry" j �T 2 Rx"g (B:26)

where we have made use of the fact that � has the same distribution as �+ t0 and that �T

is uniform on (�T
2
; +T

2
]. If ny"(

�T
2
+ �1;

+T
2
+ �1) denotes the number of 0! 1 transitions of

y(t) in (�T
2

+ �1;
+T
2

+ �1], then (B.26) gives :

Pfy(t0 + �1) =" j x(t0) ="g = lim
T!1

ny"(
�T
2

+ �1;
+T
2

+ �1)

nx"(T )
(B:27)

Notice that ny"(T � 2�1) � ny"(
�T
2

+ �1;
+T
2

+ �1) � ny"(T + 2�1), so that :

ny"(T � 2�1)

nx"(T )
�
ny"(

�T
2

+ �1;
+T
2

+ �1)

nx"(T )
�
ny"(T + 2�1)

nx"(T )
(B:28)

As T !1, the �rst and last terms of this inequality converge to D(y)=D(x), since :

lim
T!1

ny"(T � 2�1)

nx"(T )
= lim

T!1

�
ny"(T � 2�1)

T � 2�1
�
T � 2�1

T
�

T

nx"(T )

�
=

D(y)

D(x)
lim
T!1

T � 2�1

T

(B:29)

Therefore :
D(y)

D(x)
= Pfy(t0 + �1) =" j x(t0) ="g (B:30)

We will now derive an expression for the probability in (B.30). A 0! 1 transition at x

gets transmitted (after a delay of �1) to y if and only if it takes the �lter from state S0 to

state S2 and is then followed by a high pulse that is longer than �1. Therefore, if x(t0) ="

and t0
0
> t0 is the (random) time of the �rst 1 ! 0 transition of x(t) after t0, then the

probability that the transition at t0 is transmitted to y is given by :

P fy(t0 + �1) =" j x(t0) ="g = P
�
y(t0) = 0; t0

0
� t0 > �1 j x(t0) ="

	
= P fy(t0) = 0 j x(t0) ="g P

�
t0
0
� t0 > �1 j x(t0) ="

	
(B:31)
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where we have used the two facts : (1) t0
0
� t0 is independent of all occurrences before t0,

and (2) y(t0) is completely determined by occurrences before t0, to conclude that the two

events fy(t0) = 0g and ft0
0
� t0 > �1g are independent.

The second term in (B.31) is simply : Pft0
0
� t0 > �1 j x(t0) ="g = 1 � F1(�1). As for

the �rst term, Pfy(t0) = 0 j x(t0) ="g, its value is derived by lemma 1, leading to :

P fy(t0 + �1) =" j x(t0) ="g =
[1� F0(�0)] [1� F1(�1)]

1� F0(�0)F1(�1)
(B:32)

so that the density at the �lter output is given by :

D(y) =
[1� F0(�0)] [1� F1(�1)]

1� F0(�0)F1(�1)
D(x) (B:33)
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