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Abstract

We will present a power estimation technique for digital integrated circuits that operates at

the register transfer level (RTL). Such a high-level power estimation capability is required

in order to provide early warning of any power problems, before the circuit-level design has

been speci�ed. With such early warning, the designer can explore design trade-o�s at a

higher level of abstraction than previously possible, reducing design time and cost. Our

estimator is based on the use of entropy as a measure of the average activity to be expected

in the �nal implementation of a circuit, given only its Boolean functional description. This

technique has been implemented and tested on a variety of circuits. The empirical results to

be presented are very promising and demonstrate the feasibility and utility of this approach.
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1. Introduction

The high device count and operating frequency of modern integrated circuits has led to

unacceptably high levels of chip power consumption. Modern microprocessors have power

consumption speci�cations that can easily exceed 30 Watts. Due to limited battery life, high

power consumption is a major problem in the design of portable or mobile electronics. Even

in line-powered equipment, such high power levels require expensive packages and heat-sinks.

Thus, there is a need for CAD tools to help with the power management problem.

In order to avoid costly redesign steps, power estimation tools are required that can

assess the power dissipation early in the design process, before the �nal circuit-level design

has been speci�ed. This allows the designer to explore design trade-o�s at a higher level

of abstraction than was previously possible, reducing design time and cost. While several

approaches have been proposed for gate-level power estimation (see [1] for a recent survey),

there has been little work on power estimation for general logic circuits at higher levels of

abstraction, such as when the circuit is represented only by Boolean equations.

We propose that a way of providing this capability is to make use of the concept of

computational work, based on the use of entropy from information theory. This concept was

introduced in the early 70s, as researchers were looking for a measure of the area complexity

of a computational process (computer program). It was felt that, by somehow measuring

the computational work being performed, one should be able to predict the area cost of an

implementation. While this sounds reasonable, it turned out to be very di�cult to quantify

computational work. In 1972, Hellerman [2] proposed the use of entropy as a measure of

computational work. Entropy will be discussed at length in the next section.

These e�orts were mostly unsuccessful [3] for a general computational process, but were

reasonably successful [4{8] in the limited context of a combinational logic circuit implement-

ing a Boolean function. Thus, it seems plausible to apply these concepts to perform power

estimation of a combinational circuit at a point in the design process where only the Boolean

functionality of the circuit, but not its gate-level implementation, is known. The circuit rep-

resentation at this level of abstraction is usually called a (structural) register-transfer-level

(RTL) description. In this description, the circuit is described in terms of well-de�ned 
ip-


ops or latches and other combinational logic blocks, described only by Boolean functions.

In this paper, we will present a technique for estimating the average switching frequency

inside a combinational circuit, given only its input/output Boolean functional description.

This represents a �rst step towards a high-level power estimation capability. The technique

is based on properties of the entropy function and a few simplifying assumptions and ap-

proximations whose validity will be demonstrated with empirical results. This paper is an

extended version of [18].
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The remaining sections are organized as follows. In section 2 we give a brief review of

the concept of entropy and its application to logic circuits. Our model for average activity in

terms of input/output entropy is given in section 3, and is then veri�ed in section 4 against

empirical data. Section 5 provides a discussion of area estimation from entropy and presents

improved bounds for area prediction. Finally, conclusions are presented in section 6.

2. Entropy in Logic Circuits

Entropy is a characterization of a random variable or a random process. It is used in

information theory [9] as a measure of information-carrying capacity. If x is a random

Boolean variable with probability p of being high, i.e., Pfx = 1g = p, then the entropy of x

is de�ned as:

H(x) = p log2
1

p
+ (1 � p) log2

1

(1� p)
(1)

where log2 is the logarithm to base 2. A plot of H(x) is shown in Fig. 1.
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Figure 1. The entropy of a Boolean variable.

The function H(x) has a maximum value of 1 at p = 0:5. Intuitively, if a signal has

p = 0:5 then it can make the maximum number of transitions and can carry the most

information. In general, if a discrete variable can take n di�erent values then its entropy is:

H(x) =
nX
i=1

pi log2
1

pi
(2)

where pi is the probability that x takes the ith value xi.

Thus every Boolean variable (or vector) has an associated entropy function, whose value

is determined by the probability value assigned to the variable (or vector). Let Y = f(X)
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be a Boolean function where X is a Boolean vector with n bits and Y is a Boolean vector

with m bits, i.e., f(�) can be implemented by an n-input m-output logic circuit. Then X

can take 2n values and the input entropy of f(�) is:

H(X) =
2nX
i=1

pi log2
1

pi
(3)

And Y can take 2m values and the output entropy of f(�) is:

H(Y ) =
2mX
i=1

pi log2
1

pi
(4)

With Y = f(X) it can be shown (see [9], page 43) that H(Y ) � H(X), so that the entropy

at the output of a combinational circuit is always less than at its input.

Previously, the entropy associated with a Boolean function has been used to predict the

silicon area required to implement that function, without knowing its gate-level implemen-

tation. Given input probabilities of 0.5, the output entropy of a Boolean function has been

used to predict the area of its average minimized implementation, according to:

A /
2n

n
H(Y ) (5)

This was shown to be theoretically valid in the limit (as n ! 1) [5]. For small circuits

(n � 10), it was empirically observed [8] that 2nH(Y ) provides a good measure of area. We

will show in section 5 that this model breaks down over a range of realistic input counts

from 25 to 200. In that section, we will also give two entropy-based new bounds on the area

that perform better than the above.

3. Power Estimation

We restrict ourselves to the common static fully-complementary CMOS technology. Con-

sider a combinational logic circuit, composed of N logic gates, whose gate output nodes are

denoted xi, i = 1; 2; : : : ; N . If D(xi) is the transition density [10] of node xi (average number

of logic transitions per second), then the average power consumed by the circuit is:

Pavg =
1

2
V 2
dd

NX
i=1

CiD(xi) (6)

where Ci is the total capacitance at node i. This expression accounts only for the capacitive

charging/discharging component of power, and not for the so-called short-circuit power which

is known to be only around 10% of the total power in well-designed circuits. The transition
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density is a measure of circuit switching activity. We will be using the terms \density" and

\activity" interchangeably.

Given that the internal details of the logic circuit are not known in a high level repre-

sentation, then a few approximations seem inevitable for high-level power estimation. The

impact and utility of these approximations will be demonstrated through empirical results

in section 4. We start with:

Pavg /

NX
i=1

CiD(xi) � D
NX
i=1

Ci (7)

where D is the average node transition density, de�ned by:

D =
1

N

NX
i=1

D(xi) (8)

so that:

Pavg / A�D (9)

where A is an estimate of the circuit area that is representative of the capacitance
P

N

i=1Ci.

It also seems inevitable that both D and A will be estimated only from knowledge of

the input/output behavior. The main result of this paper will be a relationship between the

average density D and entropy. We will also give (in section 5) two new bounds on the area

that perform better than existing methods. We will assume throughout that we are dealing

with a combinational circuit block that is part of a synchronous sequential circuit, as shown

in Fig. 2. If both area and average density are successfully related to entropy, then a viable

high-level power estimation methodology would be as follows:

1. Run a structural RTL simulation of the sequential circuit to measure the input/output

entropies of the combinational block.

2. From the input/output entropies, estimate D, A, and Pavg for the combinational block.

3. Combine with latch and clock power to get the total average power.

In the two sub-sections below, we discuss the estimation of entropy from an RTL sim-

ulation trace (step 1), and the estimation of average density from entropy (part of step 2).

Step 3 is easy, given the clock frequency and the results of steps 1 and 2.

3.1 Entropy from RTL Trace

The entropy H(xi) of a single input or output node xi can be easily computed from the

de�nition (1) once the node probability has been found. The probabilities of the primary

inputs of the sequential machine (nodes ui in Fig. 2) are assumed to be provided by the user,

or can otherwise be easily extracted from an RTL trace by counting the proportion of 1s.

The other inputs of the combinational block are latch outputs, whose probabilities can be
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Figure 2. A general synchronous sequential circuit.

obtained as in [13, 14], or from an RTL trace using Mont�e Carlo analysis as proposed in [11].

The same analysis also yields the probabilities of the latch inputs and of the other outputs

of the combinational block.

For area estimation, it has been found [8] that the entropy of the output Boolean vector

plays a key role. If X = [x1; x2; : : : ; xn] is a Boolean vector (say, the next state vector or

present state vector) then it is obviously too expensive to estimate its entropy from the

de�nition (3). Instead, one can e�ciently estimate an upper bound on the entropy based on

the relation:

H(X) �
nX
i=1

H(xi) (10)

where equality occurs when the signals xi are independent [9]. Thus, if the bits in a Boolean

vector are not too correlated, one can make the approximation:

H(X) �
nX
i=1

H(xi) (11)

We refer to this as a zeroth order approximation and denote it by H0(X) =
P

n

i=1
H(xi).

Other higher-order approximations are possible, as will be shown in section 5.

3.2 Average Activity from Entropy

Consider one of the present state bit signals, and let p be its signal probability (average

fraction of clock cycles in which it is high). If the signal values in two consecutive cycles

are assumed independent, then its average activity per clock cycle is 2p(1 � p) transitions
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per cycle (the transition density is 2p(1� p)=Tc transitions per second, where Tc is the clock

period [1]). It so happens that the plot of 4p(1 � p) is very close to that of the entropy

function, as shown in Fig. 3.
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Figure 3. The relation between activity and entropy.

Thus it makes sense to use entropy as a measure of activity, so that if H is the average

value of H(xi) over all nodes xi in the circuit, then (with some approximation):

Pavg / A�H (12)

In the following, we will see how the average internal node entropy of a combinational circuit

can be computed from its input/output entropy. We will start the analysis by considering

the variation of the internal entropy in a completely speci�ed gate-level implementation of

the circuit. From this, we will carefully abstract away (using a series of approximations)

all aspects of circuit structure to end up with a model that depends only on the circuit

input/output properties.

A combinational circuit can always be levelized so that its gates are tagged with level

values that represent their distance from the primary inputs. Thus every gate whose inputs

are all primary inputs is said to have level 1. Every other gate whose inputs are either

outputs of level 1 gates or are primary inputs is said to have level 2, etc. The levelization

algorithm [12] has linear time complexity and is standard in most logic/timing simulation

systems.

The largest level number K used in levelizing a circuit is called the circuit depth. Since

level numbers are gate attributes, not node attributes, it will be helpful to de�ne the notion

of a circuit cross-section, as follows. A node which is the output of some gate g is said to be

generated at the level of g. A primary input node is said to be generated at level 0. A node
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which is the input of some gate g is said to be used at the level of g. A primary output node

is said to be used at level K + 1. Thus, every circuit node is generated at some unique level

and used at possibly several other levels. For every i = 0; 1; 2; : : : ;K, de�ne the set of nodes

in cross-section i, Si, as the set of all circuit nodes that are generated at levels less than or

equal to i and used at levels greater than i.

3.2.1 De�nition of Ĥ(i)

Based on the notion of cross-section, we de�ne H(i) to be the sum of node entropies in

the set Si, called the cumulative entropy at cross-section i or, simply, the entropy at cross-

section i. Thus H(K) is the sum of entropies of the primary output nodes (next state vector

+ output vector, in the case of a sequential circuit), denoted by Ho. Likewise, H(0) is the

sum of entropies of the primary input nodes (present state vector + primary inputs vector,

in the case of a sequential circuit), denoted by Hi.

Let W (i) be the number of nodes in cross-section i, i.e., the number of elements in

Si. This we will call the circuit width at that cross-section. Thus W (K) is the number of

primary output nodes, which we denote by m (the output width). And W (0) is the number

of primary input nodes, denoted by n (the input width). De�ne Havg(i) as:

Havg(i) =
H(i)

W (i)
(13)

so that Havg(i) is the average entropy per node at cross-section i.

Given only a high-level speci�cation, the width W (i) at internal cross-sections of the

circuit is unknown. Consider the linear width model:

Ŵ (i) = m+ (n�m)

�
1�

i

K

�
(14)

We are not actually assuming that the circuit width is linear like this, but will only use the

model (14) as a scaling factor as we look for a reasonable entropy model, as we shall see.

Note that Ŵ (0) = n = W (0) and Ŵ (K) = m = W (K). Based on this, we now de�ne the

quantity Ĥ(i) as follows:

Ĥ(i) = Havg(i)Ŵ (i) (15)

so that Ĥ(i) is the entropy at cross-section i corresponding to a linear width model. Note

that Ĥ(0) = Hi and Ĥ(K) = Ho.

3.2.2 Quadratic model for Ĥ(i)

We have empirically observed that Ĥ(i) varies quadratically with depth. This is shown in

Figs. 4(a), 4(b), and 4(c) where we show, for some example circuits, the actual variation of

Ĥ(i) with depth and compare it with the quadratic model for Ĥ(i), namely Hq(i), which

can be written in terms of Hi and Ho as follows:
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Hq(i) = Ho + (Hi �Ho)

�
1�

i

K

�2

(16)
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Figure 4(a). Comparison of Hq with Ĥ for S713 .
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Figure 4(b). Comparison of Hq with Ĥ for C5315.

The plots show that there is a good agreement between the quadratic model, Hq(i),

and the actual variation of Ĥ(i). The deviation from the quadratic model observed at

the input side is due to the fact that the actual cross-sectional entropy falls faster than the

quadratic model in this region. The deviation in the middle is due to the fact that the actual

cross-sectional entropy increases due to recombination or reconvergent fanout while the cross-

sectional entropy as predicted by the quadratic model continues to decrease. Towards the
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Figure 4(c). Comparison of Hq with Ĥ for C2670.

output side, Ĥ seems to fall linearly. This implies that the average entropy per node in a

cross-section, Havg(i), is approximately constant towards the output end.

To further verify the quadratic model, the root mean square (RMS) error between the

quadratic model and the actual variation was measured for all the ISCAS-85 and ISCAS-89

benchmark circuits for input probabilities ranging from 0.1 to 0.9. A histogram depicting the

errors obtained is shown in Fig. 5. The histogram indicates that Hq is a good approximation

of Ĥ. In the cases where the RMS error was large it was observed that the quadratic model

overbounds the actual data. This means that the quadratic approximation is conservative,

and would err on the side of higher activity.
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Figure 5. Root-Mean-Square Error between Hq and Ĥ.

-9-



3.2.3 Average entropy model

Having empirically demonstrated the fact that Ĥ decreases quadratically with circuit depth,

we now derive a model for computing the average node entropy from the input and output

entropies as follows. By the de�nition of average entropy per node, H, we have:

H =
1

N

KX
i=1

X
Gi

H(xj) (17)

where N is the number of logic gates in the circuit, and Gi is the set of nodes xj that are

outputs of gates at level i. We de�ne G0 to be equal to the empty set. Let Ns be de�ned as:

Ns =
KX
i=0

W (i) (18)

It then follows from the de�nitions of Ns and H(i) that Ns � N and H(i) �
P
Gi
H(xj).

Thus,

1

Ns

KX
j=0

H(j) =

P
K

i=1

P
Gi
H(xj) +

P
K

j=0
�H(j)

N +
P

K

j=0 �N(j)
(19)

where �H(j) is the sum of entropies of those nodes in Sj but not in Gj and �N(j) is the

number of such nodes. Now let �H =
P

K

j=0
�H(j) and �N =

P
K

j=0
�N(j). If �N is small

relative to N , we have the approximation:

1

Ns

KX
j=0

H(j) �
1

N

KX
i=1

X
Gi

H(xj) +
1

N

2
4�H �

1�
�N

N

�
�

KX
i=1

X
Gi

H(xj)
�N

N

3
5 (20)

which is the result of using a Taylor series expansion of 1=(1+�N=N) and dropping the high

order terms. For large N , we can further approximate the above expression and write the

equation as:

1

Ns

KX
j=0

H(j) �
1

N

KX
i=1

X
Gi

H(xj) (21)

When the condition �N � N does not hold, the Taylor approximation can not be used. In

spite of this, (21) can be derived from (19) by rewriting (19) as follows:

1

Ns

KX
j=0

H(j) =

P
K

i=1

P
Gi
H(xj)

"
1 + �HPK

i=1

P
Gi

H(xj)

#

N
�
1 + �N

N

�
Now let k1 = 1 + �HPK

i=1

P
Gi

H(xj)
and k2 = 1 + �N

N
. It must be observed that if

�H

�N
�

P
K

i=1

P
Gi
H(xj)

N
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then k1

k2
� 1. The correlation between k1 and k2 was measured for ISCAS-85 and ISCAS-89

circuits for input probabilities ranging from 0.1 to 0.9 and the results are shown in Fig. 6.

It can be seen from this �gure that k1

k2
� 1 and hence, when �N is large, it is reasonable to

assume that k1

k2
� 1. It then follows that for large �N (19) can be approximated by (21).
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Figure 6. Histogram of the ratio k1

k2
.

The empirical results presented in the next section indicate that the above assumptions

are quite reasonable for large circuits. From (17) and (21), it thus follows that:

H �
1

Ns

KX
j=0

H(j) (22)

The right hand side of the above equation can be further approximated as follows:

1

Ns

KX
j=0

H(j) =

P
K

j=0
Havg(j)W (j)P
K

j=0
W (j)

�

P
K

j=0
Havg(j)Ŵ (j)P
K

j=0
Ŵ (j)

=
1

Nl

KX
j=0

Ĥ(j) (23)

where Nl is the total number of nodes corresponding to a linear width model, de�ned as:

Nl =

KX
j=0

Ŵ (j) (24)

The errors between 1
Ns

P
K

j=0
H(j) and 1

Nl

P
K

j=0
Ĥ(j) were measured for the ISCAS-85 and

ISCAS-89 circuits for input probabilities ranging from 0.1 to 0.9. The results obtained are

summarized in the histogram shown in Fig. 7.

It can be seen from the histogram that the error due to the above approximation is quite

small. This implies that the above approximation is quite good. Thus, we have reduced the
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problem of computingH for the actual circuit to computing the average of Ĥ(j) for the linear

width model Ŵ (j). But we have already demonstrated that Ĥ(j) can be approximated by

the quadratic model Hq(j). This implies that:

1

Nl

KX
j=0

Ĥ(j) �
1

Nl

KX
j=0

Hq(j) (25)

Thus it follows from (22), (23), and (25), that:

H �
1

Nl

KX
j=0

Hq(j) (26)

Now, if we denote the average width of the linear model by Ŵ, so that:

Ŵ =
1

K + 1

KX
j=0

Ŵ (j) = (n+m)=2 (27)

then, from (24), (26), and (27), it follows that:

HŴ(K + 1) �
KX
j=0

Hq(j) = (K + 1)Ho + (Hi �Ho)
KX
j=0

�
1�

j

K

�2

= (K + 1)Ho + (Hi �Ho)
1

K2

KX
j=0

(K � j)2 = (K + 1)Ho + (Hi �Ho)
1

K2

KX
k=1

k2

= (K + 1)Ho + (Hi �Ho)
K(K + 1)(2K + 1)

6K2

(28)
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From which, it follows that:

HŴ =
4K � 1

6K
Ho +

2K + 1

6K
Hi �

2

3
Ho +

1

3
Hi (29)

where the last approximation is based on the fact that 1 is negligible compared to 2K and

4K, given that the circuit depth K can be large for large circuits. This leads to:

HŴ �
Hi + 2Ho

3
(30)

which does not depend on circuit depth (a must, so as to be applicable to a high level

representation). Using (27), we �nally arrive at our main result:

H �
2=3

n+m
(Hi + 2Ho) (31)

which depends only on the input and output entropies and on the input and output node

counts, all of which are obtainable from a high level representation.

In spite of the approximations made above, we have found that the resulting simple

expression for H, (31), works quite well for a broad range of circuits. The empirical results

presented in the next section will be based on this expression.

4. Empirical Results

As a �rst step towards a high-level power estimation capability, we have implemented a

technique for estimating the average node activity of a combinational circuit, based on the

average entropy measure (31). To use this technique, we estimate Hi and Ho from their

de�nitions and then use (31). We tested the technique on isolated combinational circuit

blocks whose input probabilities are user-speci�ed. Normally, these input probabilities would

be obtained from an examination of the behavior of the sequential circuit as in the established

techniques [13, 14] or [11]. The input probabilities are enough to computeHi, butHo depends

on the output probabilities. These can be computed using BDDs as explained in [10], but

this can be memory intensive. Instead, we compute them using a Mont�e Carlo approach [15].

In order to assess the accuracy of the technique, we need an accurate measure of average

node activity, obtained from a gate-level view of the same circuit. This can be obtained by

�rst �nding the transition density at every node and then averaging the results. Accurate

transition density values were obtained by simulation in two ways, depending on the timing

model chosen:

1. Using a zero-delay timing model: In this case, one is interested only in the �nal steady

state node values in a clock cycle, and any additional toggles due to unequal delay paths

are ignored. In this case, also, the density is easily obtained from the signal probability [1]
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according toD(x) = 2p(1�p)=Tc, and the probabilities were obtained using the technique

in [15].

2. Using a general-delay timing model: In this case, the delays are obtained from a gate

library and an event driven simulation is performed as in [16].

The delay model did not enter into the derivation of (31), as is probably to be expected

in a high-level model. Therefore, in order to check the impact of the approximations made in

the derivation, it is important to check the accuracy of (31) against the zero-delay simulation

results.
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Figure 8. Comparison with zero-delay simulation results.

The results of testing against the zero-delay analysis results are shown in Fig. 8 for 56

di�erent circuits, with sizes ranging from 100 to about 22,000 gates, and with input probabil-

ities ranging from 0.1 to 0.9. These circuits include all the ISCAS-85 and ISCAS-89 circuits.

As shown in Fig. 3, the average entropy should correlate well with twice the average activity

per clock cycle. Thus the \activity from simulation" shown on the horizontal axis in Fig. 4

is actually normalized to give the average value of 4p(1� p) for each circuit. The agreement

is quite good, with an error of less than 0.09, with 90% con�dence. We consider this to

be strong indication that the technique is feasible and constitutes a reasonable approach to

high-level power estimation. The approach is also very fast. Our implementation, which

includes reading the circuit, estimating the output entropy, and evaluating (31), requires

only 14 cpu seconds for a 20,000 gate circuit (on a SUN sparc-10).

The e�ect of capacitance is not included in the data shown Fig. 8 (only activity values

were measured, and not activity � capacitance). Therefore, before moving to the case of

the general delay timing model, we tested the impact of the approximation (7) which is

equivalent to an independence assumption between the node capacitance and node density
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distributions. To do this, we checked if the average entropy correlates with the power per

unit area, according to D / P=A. We used gate count as a measure of area, and estimated

power using a zero-delay timing model, accounting for fanout capacitance. Average entropy

is compared to power per unit area, in units of �W/MHz/gate, in Fig. 9. The results shown

are for the same circuits used in Fig. 8, but only for an input probability value of 0.5. The

results show slightly more spread than Fig. 8, due to the e�ect of the node capacitance

distribution.
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Figure 9. Comparison with zero-delay power/area simulation results.

Finally, we measured the power under a general timing model. The power in some

circuits increases appreciably due to multiple transitions/cycle. We compare the average

activity measured from entropy to the power/area, in �W/MHz/gate, as shown in Fig. 10.

For one circuit (ISCAS-85:c6288), the deviation was very large, as shown by the point at the

far right in the �gure. Hence more work is needed to predict situations like this. Furthermore,

the comparisons for the other circuits are not as good as before and show increased spread,

as shown in Fig. 11.

5. Area Measurement

In the previous sections we presented an approach for measuring the average activity of a

circuit using entropy. In order to estimate the average power consumed by a circuit we also

need an estimate of the total area (capacitance) consumed by a circuit (see equation (7)).

Thus, one has to come up with techniques to measure the area consumed by a circuit from

its high level description.

The importance of entropy in the computation of area complexity of a Boolean function

has been known for some time. However most of the work focuses on characterization of the
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Figure 10. Comparison with general-delay power/area simulation results.
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Figure 11. Comparison with general-delay power/area simulation results.

area consumed by single output functions. In [8], Cheng et. al proposed a model for the

area complexity of a multi-output Boolean function given by the following expression

A = (1� d)k2nH (32)

Here, A is a measure of the area complexity of the circuit in terms of the literal count, d is

the fraction of don't cares in the function speci�cation, n is the number of inputs, H is the

entropy of the output vector and k is some proportionality constant. In this paper we have

used gate count as a measure of area consumed by a circuit. In [17], Muller showed that

the type of gates used a�ects the area complexity by a scaling constant, asymptotically. We

assume that this fact holds true for all n.
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According to the model of Cheng et. al [8], the area complexity increases exponentially

in the number of inputs. This implies that circuits with input counts of the order of a few

hundreds, which is quite common, would have an exponentially large area requirement. But

this does not seem to be the case as can be seen from Table 1, where the constant k is shown

to vary widely as the number of inputs changes. The variation in k is so large that the

model (32) is neither a good area estimator, nor a good area upper bound.

TABLE 1

EVALUATION OF PROPORTIONALITY CONSTANT IN AREA MODEL OF CHENG et. al

CIRCUIT INPUTS #GATES k

s400 25 164 2.92e-7

s713 54 393 1.12e-15

c2670 157 1193 1.78e-46

c5315 178 2307 7.85e-53

The fact that circuits with large numbers of inputs and outputs are typically designed

to have reasonable (at least, not exponentially large) area suggests that the model (32) is

not applicable to practical circuits, and needs to be improved.

As a �rst step towards improving the area model (32), we have developed an e�cient

scheme for estimating a more accurate estimate of the entropy of a Boolean vector. This

estimate takes the form of an upper bound on the entropy that is is more accurate than the

zeroth order approximation (11), because it does not completely ignore the bit correlations.

Based on this, we then veri�ed that two entropy-based simple bounds on the area seem to

work well in practice well into the range of input counts where (32) breaks down. Both these

topics are discussed below.

5.1 Entropy Bound Computation

To compute a more accurate upper bound on the vector entropy, we will take into account

pair-wise correlations between the bits. Before getting into the details of the computation,

a de�nition of conditional entropy is in order. Let Y1 2 Y1 and Y2 2 Y2 be scalar random

variables with joint probability density function given by p(y1; y2) and a conditional density

function given by p(y1 j y2). Then the conditional entropy [9] of Y1 given Y2, denoted by

H(Y1 j Y2), is de�ned as:

H(Y1 j Y2) = �
X
y22Y2

X
y12Y1

p(y1; y2) log2 p(y1 j y2) (33)

Intuitively, conditional entropy measures the additional information required to encode Y1
having speci�ed (encoded) Y2.
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Now we discuss the calculation of the upper bound on H(Y ), where Y = [y1; y2; : : : ; yn]

is a Boolean output vector. It can be shown (refer to [9]) that:

H(Y ) = H(y1) +H(y2 j y1) +H(y3 j y2; y1) + � � �+H(yn j yn�1; : : : ; y1) (34)

where the above equation is true for all orderings of the bits of vector Y . Also:

H(yk j ym; ym�1; : : : ; y1) � H(yk j yj); j = 1; 2; : : : ;m (35)

Using the above facts one can write an upper bound on H(Y ) as:

H(Y ) � H(y1) +H(y2 j y1) +H(y3 j y2) + � � �+H(yn j yn�1) (36)

Since the expansion of H(Y ) in terms of conditional entropies is independent of the ordering

of yi in Y , we get that the above inequality must hold for all orderings of the components

of vector Y . Let Z be the set of all possible orderings of yi; i = 1; 2; : : : ; n in Y . Further let

H1
opt
(Y ) be de�ned as:

H1
opt

(Y ) = min
Z

H(Y ) (37)

Then it follows that:

H1
opt

(Y ) � H(y1) +H(y2 j y1) +H(y3 j y2) + � � �+H(yn j yn�1) (38)

Also,

H(Y ) � H1
opt
(Y ) (39)

Note that if yi; i = 1; 2; : : : ; n are not independent, then the above bound is strictly smaller

than the sum of the individual entropies, i.e.,

H(Y ) � H1
opt
(Y ) < H0(Y ) (40)

where:

H0(Y ) =
nX
i=1

H(yi): (41)

Thus H1
opt
(Y ) is called the optimal �rst order bound on entropy. Since it is computationally

expensive to �nd the optimal ordering, we will resort to a heuristic that orders the variables

based on their correlation coe�cients. Given this ordering, we will refer to the resulting

entropy upper bound (36) as a �rst order bound, denoted H1(Y ).

The following brie
y describes how the heuristic works. First, we compute all the cor-

relation coe�cients �(yi; yj); i 6= j, and set �(yi; yi) = 0, as we are not interested in these.

To compute these coe�cients, it su�ces to �nd the joint probability of every two bits, i.e.,

the probability that yiyj = 1. These probabilities can be found at the same time that signal
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probabilities are computed, using Mont�e Carlo analysis [11]. We then pick the element of the

resulting correlation matrix that has the largest absolute value. The row and column indices

of this element provide us the �rst two elements in our ordering, i.e., yo1 and yo2. We then

set the correlation coe�cients �(yi; y
o

1) = 0; i = 1; 2; : : : ; n as we do not want to pick these

pairs. Now we pick out the element that has the largest correlation coe�cient (in absolute

value) with yo2. This is the third element in our ordering. Then the correlation coe�cients

�(yi; y
o

2); i = 1; 2; : : : ; n are set to zero. This procedure is repeated until all elements are

exhausted. The algorithm has O (n2) time and space complexity.

In Table 2, we perform a comparative study between the �rst order bound on entropy,

H1(Y ), computed using the above heuristic, and the zeroth order bound, H0(Y ), on a few

circuits from ISCAS-85 and ISCAS-89 benchmarks. It can be seen that, on the average,

H1(Y ) o�ers a 16% improvement over H0(Y ). In the next section, we use this bound to

obtain empirical upper and lower bounds on the area complexity of a combinational circuit.

TABLE 2

COMPARISON OF FIRST AND ZERO ORDER BOUNDS ON ENTROPY

(ISCAS-85 and ISCAS-89 CIRCUITS)

CIRCUIT INPUTS OUTPUTS ENTROPY ENTROPY % IMPROV

Name FIRST ZERO

c880 60 26 16.47 17.48 5.76

c1908 33 25 24.24 24.63 1.93

c2670 157 64 36.75 52.34 29.77

c3540 50 22 17.92 19.42 7.70

c5315 178 123 76.64 104.05 26.34

c6288 32 32 31.03 31.17 0.43

c7552 208 107 83.01 99.47 16.54

s382 24 27 15.69 19.97 21.39

s510 25 13 9.02 10.32 12.70

s526 24 27 20.52 22.84 10.16

s713 54 42 19.65 26.23 25.08

s953 22 29 6.84 10.05 31.94

s1196 31 31 15.83 18.23 13.20

s5378 214 156 76.06 95.10 20.00

s9234.1 247 250 186.72 225.91 17.35

Average 16.02

5.2 Area Bounds

It is well known that (see [5]) as the number of inputs tends to in�nity, the area complexity

of a circuit grows exponentially. However, as our data has shown, this asymptotic bound is

quite loose for practical circuits. Thus one has to come up with better models to predict the
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area of a circuit. Here, we present a lower bound and an upper bound, which were arrived

at empirically, that seem to describe the area behaviour of the ISCAS-85 and ISCAS-89

benchmark circuits, much better than (32).

We begin by assuming that the area of a circuit depends only on the output entropy

(when the inputs are assumed to be independent and equi-probable with probability 0.5)

and the number of inputs in a circuit in the following way:

A / H(Y )f(n) (42)

where H(Y ) is the entropy of the output vector and f(n) is some function of the number of

inputs n. This model is along the same lines of previous area models (see [2,4,5,8]). In our

work, we have characterized the function f(n) empirically, to obtain functions flow(n) and

fupp(n) such that:

k1H(Y )flow(n) � A � k2H(Y )fupp(n) (43)

We have found that the following bounds work well:

0:4H1(Y )(
n

log10 n
) � A � 2H1(Y )(n log10 n) (44)

where we have used H1(Y ) instead of H(Y ), because H(Y ) is too expensive to compute.

These bounds suggest that the circuit area grows sublinearly for medium sized circuits.

These bounds are compared with the actual area (gate count) consumed by the circuits in

Table 3. Of course, these bounds are not as close to each other as one would like, and we

do not suggest that they be used directly for area estimation. Nevertheless, these bounds

are valuable because they are valid over a wide range of circuits and input node counts. In

this, they represent a signi�cant improvement over the previous model (32) which completely

breaks down when the inputs count is around 200.

6. Conclusions

There is a need for high-level power estimation, and the RTL level seems the reasonable place

to start. We proposed to use computational work, based on entropy, as a high-level measure

of power. Preliminary investigation shows that entropy is a viable measure of circuit activity,

but needs improvement to account for general delay and capacitance distribution. We also

presented an algorithm to estimate the entropy of a vector which was used in obtaining

improved bounds on the area complexity of combinational circuits.
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