
High-Level Area and Power Estimation for VLSI Circuits†

Mahadevamurty Nemani and Farid N. Najm

ECE Dept. and Coordinated Science Lab.
University of Illinois at Urbana-Champaign

1308 West Main Street
Urbana, Illinois 61801

Tel: (217) 333-7678, Email: najm@uiuc.edu

Abstract

High-level power estimation, when given only a high-level design specification such as a functional or RTL
description, requires high-level estimation of the circuit average activity and total capacitance. Consider-
ing that total capacitance is related to circuit area, this paper addresses the problem of computing the
“area complexity” of multi-output combinational logic given only their functional description, i.e., Boolean
equations, where area complexity refers to the number of gates required for an optimal multi-level imple-
mentation of the combinational logic. The proposed area model is based on transforming the multi-output
Boolean function description into an equivalent single-output function. The area model is empirical and
results demonstrating its feasibility and utility are presented. Also, a methodology for converting the gate
count estimates, obtained from the area model, into capacitance estimates is presented. High-level power
estimates based on the total capacitance estimates and average activity estimates are also presented.

1. Introduction
Rapid increase in the design complexity and the need to reduce time-to-market have resulted in a need for

CAD tools that can help make important design decisions early in the design process. To do so, these tools
must operate with a design description at a high level of abstraction. One design criterion that has received
increased attention lately is power dissipation. This is due to the increasing demand for low power mobile
and portable electronics. As a result, there is a need for high level power estimation and optimization (as
well as modeling for area, timing, noise, etc.).

There are two types of modeling approaches: bottom-up and top-down. In the bottom-up approach,
one starts with a complete implementation of a circuit block (down to gates, transistors, and/or layout) and
builds a simple and compact higher-level model that gives the power of the block for any specified input
vectors or input switching statistics. Bottom-up models can be built with high accuracy because the circuit
level implementation is available. Examples of bottom-up techniques include the power factor approximation
(PFA) technique [23, 24], the dual bit type (DBT) method [25, 26], the look-up table based techniques [27,
28], the clustering based method [30], and the cycle-accurate macro-model [31]. However, bottom-up models
are not enough. Certain parts of the design (typically 25% or more) will consist of application-specific logic
blocks that have not been previously designed. During high-level design planning, we need to have some
figure-of-merit for the power that these new functions would require, once implemented in a given gate
library. This paper proposes a technique to address this problem.

Specifically, we propose an area and power estimation capability, given only a functional view of the
design, such as when a circuit is described only with Boolean equations. In this case, no structural information
is known - the lower-level (gate-level or lower) description of this function is not available. Of course, a given
Boolean function can be implemented in many ways, with varying power dissipation levels. We are interested
in predicting the nominal area and power dissipation of a minimal area implementation of the function that
meets a given delay specification.

† This work was supported by Rockwell, by Intel Corp., by the National Science Foundation (MIP-9623237

& 9710235), and by the Semiconductor Research Corporation (SRC 97-DJ-484).

-1-

For a combinational circuit, since the only available information is its Boolean function, we consider
that its power dissipation will be modeled as follows:

Pavg ∝ DavgACavg (1)

where Davg is an estimate of the average node switching activity that a gate-level implementation of this
circuit would have, A (also referred to as area complexity) is an estimate of the gate count (assuming some
target gate library), and Cavg is an estimate of the average node capacitance. The estimation of Davg was
covered in [1-3]. The problem of estimating A from a high-level description of the circuit corresponds to the
problem of high-level area estimation. This problem is also of independent interest, as the information it
provides can be very useful, for instance, during floorplanning.

In an early work [4], Shannon studied area complexity, measured in terms of the number of relay
elements used in building a Boolean function (switch-count). In that paper, Shannon proved that the
asymptotic complexity of Boolean functions is exponential in the number of inputs (n), and that for large n,
almost every Boolean function is exponentially complex. In [18], Muller demonstrated the same result for
Boolean functions implemented using logic gates (gate-count measure). A key result of his work is that a
measure of complexity based on gate-count is independent of the nature of the library used for implementing
the function.

Several researchers have also reported results on the relationship between area complexity and entropy
(H) of a Boolean function (entropy will be introduced in the next section). These include [19,5,20]. More
recently, Cheng et. al. [6] empirically demonstrated the relation between entropy and area complexity, with
area complexity measured as literal-count. They showed that randomly generated Boolean functions (for
n = 8, 9, 10) have a complexity exponential in n, and proposed to use that model as a area predictor for logic
circuits. However, the circuits tested were very small, typically having less than 10 inputs. As one tries to
apply that model to realistic VLSI circuits, it quickly breaks down due to the exponential dependence on
n, leading to unrealistically large predictions of circuit area. For example, when applied to a circuit with 32
inputs (having been tuned to n = 25 inputs), this model predicts an area of ≈ 400 million gates, whereas
the circuit can in reality be implemented with only 84 gates!

In this paper, we use “gate-count” as a measure of complexity, mainly due to the key fact observed by
Muller [18], and also because of the popularity of cell-based or library-based design. As mentioned above, it is
clear that a given Boolean function can be implemented in many different ways, with different resulting areas
and gate-counts. For instance, a circuit may contain redundant logic, which artificially increases its area
and is not reflected in the circuit function. Since redundant logic is undesirable anyway, we aim to estimate
the gate-count of an optimized implementation of a Boolean function. Specifically, in our experiments, we
have compared our estimated gate-counts to the gate-count for optimal circuit implementations that were
obtained using the SIS synthesis system.

Our estimation technique is based on the novel concept of complexity measure of a Boolean function, to
be defined later in the paper. Based on this, we will provide an area prediction model which gives reasonable
results for realistic circuits, which is a significant improvement over traditional techniques. This will be
demonstrated with experimental results on a large set of benchmarks, for which we compare our predicted
gate-counts to those obtained from SIS. We will then combine the area estimates, provided by the area
estimation tool, with the high-level activity estimates [1, 3] to obtain high-level power estimates for various
circuits. This paper is an extended version of [17].

The proposed technique has two important limitations that one should be aware of. Firstly, it is limited
(in its present form) to combinational circuits. We continue to work on this problem and will, in future,
extend this approach to sequential circuits. Secondly, the method does not apply to circuits containing
large arrays of exclusive-or gates. Such circuits are also the source of problems in many CAD applications,
such as in BDD construction for verification. The failure of the area model on these circuits could be due
to the failure of the complexity measure to capture the extreme regularity of the on-set and off-set in the
Boolean space of the function. This regularity leads to area implementations which are small, however the
complexity measure would indicate otherwise. One can argue that is not an important limitation of the
model, because large xor arrays are typically arithmetic units, and it is natural for arithmetic blocks to be
modeled bottom-up, not top-down. As observed by one of the reviewers, our technique is “better suited to
relatively un-structured control-logic, whereas techniques such as the DBT method [a bottom-up approach]

-2-

are better suited to data-path blocks.” In any case, one way around the problem of exclusive-or arrays
is to require that the Boolean function specification explicitly list exclusive-or gates. In that case, these
can be identified up-front and excluded from the analysis, so that the proposed method is applied only
to the remaining circuitry. In the remainder of this paper we will not consider circuits composed of large
exclusive-or arrays.

The proposed technique can be combined with high-level top-down delay estimation methods [22, 29]
to derive the power-area-delay trade-off curves of a Boolean function, thus enabling the designer to make
useful design trade-offs early in the design. Such a capability is essential to do early design planning for
system-on-a-chip designs.

Before leaving this section, we should mention some previous work on layout area estimation from an
RTL level view. Wu et. al. [7] proposed a layout area model for datapath and control for two commonly
used layout architectures. They used transistor count as a measure of area of datapath and control logic.
For datapath units, the average transistor count was obtained by averaging the number of transistors over
different implementations of the unit. For control logic, they calculate the number of transistors from the
sum of products (SOP) expression for the next state and control signals. In addition to this, the wiring area
for both datapath and control logic were estimated. Kurdahi et. al. [8] modified the above model to account
for effects of floorplanning (effects of cell placement and interconnect on chip area). In [8], the area model
for control logic is also based on SOP expressions, similar to that of [7]. However, each product term is
implemented with AND gates (in the library) and the sum with OR gates (in the library). Since the product
terms could be much larger than the gates in the library, the resulting implementation is a multi-level one.
The advantage of these models ([7], [8]) is that they account for the effect of interconnect and placement
on the layout area. In both these methods ([7], [8]), the number of AND gates for the SOP expression
is computed by counting the number of AND gates required for each product term and summing over all
product terms. The number of OR gates required to implement the SOP expression is computed by counting
the number of OR gates required to form the sum of the product terms. The area estimate is equal to the
sum of the number of AND and OR gates required. In reality however, the optimal number of gates required
to implement the function would be much smaller than the above sum, because it is frequently possible to
apply logic optimization (synthesis) algorithms to give a much better implementation of the circuit.

This paper is organized as follows. In section 2 we give a background discussion on the high-level power
model for Boolean functions [1, 3] and a brief discussion of the activity prediction model of [1, 3]. In section
3 we discuss the issues pertaining to the complexity of randomly generated Boolean functions. In section
4, we define the complexity measure, linear measure, which would be used to estimate the area complexity
and also present a model to compute the complexity measure of multi-output Boolean functions. In section
5 we present an area prediction model and in section 6 we present the overall flow of our high-level area
estimation algorithm followed by empirical results, demonstrating the feasibility and utility of the proposed
area estimation scheme. In section 7 we propose a methodology for estimating Cavg and present empirical
results demonstrating its utility. In section 8 we present results showing the utility of the proposed area
model in estimating the area complexity of a Boolean function at any feasible delay point. In section 9 we
combine the high-level capacitance estimates and high-level activity estimates to obtain high-level power
estimates and compare these with gate-level power estimates obtained using a zero-delay and a general-delay
timing model. This is done for the minimum-area and minimum-delay implementations. We end the paper
with some conclusions presented in section 10.

2. Background
In this section we briefly discuss previously published results pertaining to high-level power and activity

estimation [1, 3]. These results are being summarized here for the convenience of the reader.

2.1. High-Level Power Estimation Model
We restrict ourselves to the common static fully complementary CMOS technology. Consider a combina-

tional logic circuit, composed of N logic gates, whose gate output nodes are denoted xi, i = 1, 2, . . . , N .
If D(xi) is the transition density [9] of node xi (average number of logic transitions per second), then the

-3-

average power consumed by the circuit is:

Pavg =
1
2
V 2

dd

N∑
i=1

CiD(xi)

where Ci is the total capacitance at node i. This expression accounts only for the capacitive charg-
ing/discharging component of power, and not for the so-called short-circuit power which is known to be
only around 10% of the total power in well-designed circuits. The transition density is a measure of circuit
switching activity. We will be using the terms “density” and “activity” interchangeably.

Since we wish to accomplish power estimation at a level of abstraction where the circuit internal details
are not known, certain approximations seem inevitable. The model proposed for high-level power estima-
tion [1, 3] is given by:

Pavg ∝ Ctot ×Davg

where Davg is a measure of the average node switching activity and Ctot is total circuit capacitance. Also,

Ctot = CavgA (2)

where Cavg is an estimate of the average gate capacitance for a given target library and A is an estimate of
the area complexity of the Boolean function. It must be noted that all the quantities, Davg, Cavg and A,
have to be estimated from a high level description of the function. In this paper we adopt the above model
for estimating the power.

The above power approximation (Pavg ∝ CtotDavg) was tested on several benchmark circuits from the
ISCAS-89 [15] and MCNC [16] benchmark suites. These circuits (described at the gate level) were simulated
under realistic gate delay models, for randomly generated vector sequences, for input probabilities ranging
from 0.1 to 0.9. Average circuit activity and the total average power were computed from this simulation [10],
and the area was computed as the total circuit capacitance (sum of output capacitance of all the gates). The
results of this test are shown in Fig. 1, demonstrating the validity of this power approximation. For further
details on this model, please refer to [1,3].

0.0 0.1 0.3 0.4 0.6 0.8
Ratio of Power to Capacitance (Trans/Clock Cycle)

0.0

0.1

0.3

0.4

0.6

0.8

A
ve

ra
ge

 A
ct

iv
ity

 fr
om

 S
im

ul
at

io
n

Figure 1. Accuracy of high-level power model.

2.2. High-Level Activity Prediction Model
It was observed in the previous sub-section that one would have to estimate the average switching activity

of a combinational logic block in order to compute the power dissipated from a high level description. In this

-4-

paper we use activity prediction model of [1, 3]. This model is based on the fact that the switching activity
of a signal is related to its entropy. The model assumes that the primary inputs of the Boolean function are
spatially and temporally independent, and is based on the empirical observation that the variation of cross-
sectional entropy normalized to a linear width model falls quadratically with depth. From this observation
it follows that:

Davg ≈ 2/3
n + m

(Di + 2Do) (3)

Here Davg is the average activity of a node of the circuit, Di is the sum of input activities, Do is the sum of
output activities, n is the number of primary inputs and m is the number of primary outputs of the Boolean
function. For further information on the activity model, please refer to [1, 3].

3. Randomly Generated Boolean Functions
It was pointed out in [4] that for large n, Boolean functions have exponential complexity in n, based on

a switch-count measure of complexity. In [6], Cheng et. al. point out a similar complexity behavior for
randomly generated Boolean functions with n inputs, for n = 8, 9, and 10, using a literal-count measure
(the same was observed by the authors when gate-count was used as a measure of complexity). By randomly
generated, we mean that these functions were obtained by making a random choice for each point in the
Boolean space, as to whether it belongs in the on-set or off-set of the function.

In [4], it was also pointed out that for sufficiently large n, all except a fraction δ of functions of n

variables require at least (1−ε)2n

n
switch elements. The results of Cheng et. al. seem to indicate that this is

also true for small n, so that “almost all” Boolean functions seem to have an exponential complexity. This
suggests that the average area complexity of an n-input Boolean function (with the average taken over the
set of all Boolean functions on n variables) varies exponentially with n. Perhaps based on the assumption
that typical logic functions used in practice may be “average” (or close to average), the method in [6] applies
this to every Boolean function, leading to the following area model:

A ∝ 2nH

Here n is the number of inputs, A is the area complexity measured as gate-count and H is the entropy of the
output of the Boolean function (with independent inputs, each with probability 0.5) where entropy is the
amount of information in a signal and can be easily computed from the signal probability using the following
expression:

H = p log2

(
1
p

)
+ (1 − p) log2

(
1

1 − p

)

The proportionality constant in the area expression depends on the library being used.
Risking abuse of terminology, we will refer to a Boolean function for which the above model holds true

as an average function. Unfortunately, we have found that logic functions that are typically used in VLSI
are far from being average, so that the above model breaks down very quickly for reasonable values of n.
This is dramatically illustrated by the 32-input 84-gate circuit mentioned in the introduction, for which this
model predicts an area close to 400 million gates. This behavior is typical of what we have seen.

Why is it that typical circuits are far from being average in terms of area complexity? We have
investigated this by examining the structure of the on-sets for randomly generated functions, and found that
their on-sets consist of points that are randomly scattered in the Boolean space, with no preferred direction.
However, we have found that typical VLSI circuits have well structured distributions of their on-sets in
the Boolean space, so that a function has certain preferred directions in which many of its cubes lie. This
seems to translate to tremendous reduction in the area complexity relative to the (unstructured) randomly
generated functions.

Thus typical VLSI circuits belong to the small minority of circuits whose area does not satisfy the model
of Cheng et. al [6]. Finding an area model for such functions has remained an open problem. This paper
utilizes the structure of the Boolean space, in addition to the entropy, to predict the area complexity.

-5-

4. The Area Complexity Measure
The problem of estimating the area complexity of a Boolean function pertains to estimation of the minimum
number of gates (A) required to implement the function, given only its high level description (Boolean
equations) and a target technology library. It must be noted here that by implementation we mean an
optimal multi-level implementation of the Boolean function. Let us, for now assume that the function at
hand is a single-output function. For such functions it has been observed that the sizes of prime implicants
of the on and off-sets may give us a hint about the area complexity. However to capture this dependence in a
quantitative fashion, the notion of complexity measure will be introduced, which depends on the distribution
of sizes of the prime implicants in the on and off-sets. This complexity measure will be referred to as the
linear measure (one other complexity measure was introduced by the authors in [12], however it will not be
discussed here).

The linear measure of a function is dependent on the complexity of the on and off-sets of the function.
The linear complexity measure of the on-set (complexity of off-set can be defined similarly) is given by:

L1(f) =
N∑

i=1

cipi (4)

Here, L1(f) is the linear complexity measure of the on-set of f , N is the number of distinct sizes (size of
a cube is the number of literals in it) of prime-implicants in a minimal cover [13] of f , {c1, c2, . . . , cN} are
the distinct sizes of these prime implicants, and pi is a weight on the prime implicants of size ci such that∑N

i=1 pi = P(f) where P(f) is the probability that f = 1 when each point of the Boolean space has the
same probability value and the probability of the entire space is 1. The weights pi constitute a weighting
function, defined as follows. For L1(f), let the ci be ordered such that c1 > c2 > · · · > cN . Let fi refer
to a Boolean sub-function of the original function f , defined so that its on-set consists only of the prime
implicants of sizes c1, c2, . . . , ci, where 1 ≤ i ≤ N . We define the weight pi as follows:

pi =
{P(fi) −P(fi−1), if i > 1;
P(f1), if i = 1. (5)

where P() denotes probability. Thus, pi is the probability of the set of all min-terms in the on-set
of f that are covered by the prime implicants of size ci, but not by prime implicants of any larger size.
With pi thus defined, as probabilities, the expression (4) becomes equal to the mean of L1(f) (when L1(f) is
assumed to take the value 0 with probability 1−P(f)), L1(f) = E[L1(f)], and hence can easily be computed
using Monte-Carlo mean estimation techniques such as the one used in [10]. Using a similar development,
L0(f) can also be computed using Monte-Carlo simulation. Using L1(f) and L0(f) we can define the linear
measure of f as:

L(f) = L1(f) + L0(f) (6)

We have observed that the presence of cubes of size one (cubes consisting of a single literal) can adversely
affect the accuracy of the area estimation. This is because these cubes have a negligible effect on the gate
count (a single OR gate) but have a big effect on the output probability value. Their presence also skews the
probability distributions and makes the Monte Carlo estimation much more expensive. We have found that
the best practical method for accounting for these cubes is to in effect exclude them from the summation (4)
used to compute L1(f), and similarly for L0(f). This leads to improved estimation speed and much improved
accuracy. Thus, the results to be presented in this paper make this modification to the cube distribution
before carrying out the area prediction.

4.1. Complexity Measure for Multi-Output Functions
The complexity measure proposed in the previous section is based on the notion of complexity of the on and
off-sets of a Boolean function. However, no such notion exists for multi-output Boolean functions. Moreover
any notion of area complexity of a multi-output function should implicitly account for the fact that there
is sharing of logic between the outputs of the Boolean function. In this section we propose a method by
which the previously defined complexity measure can be extended to measure the complexity of multi-output

-6-

functions. Our approach is inspired by the multi-valued logic approach to address the problem of two-level
minimization of multi-output Boolean functions [13]. The approach is based on transforming a binary-valued,
multi-output Boolean function into an equivalent multi-valued-input single-output (binary-valued) Boolean
function. The transformation is accomplished by adding an m-valued input to the Boolean function, i.e.,
given:

f : {0, 1}n → {0, 1}m

where f is an n-input, m-output Boolean function, f can be transformed to:

g : {0, 1}n × {0, 1, . . . , m− 1} → {0, 1}

where g is a binary-valued, single-output function with n binary inputs and one m-valued input. It must
be noted here that each value of the multi-valued input corresponds to one of the m outputs. It has been
shown that, for two-level minimization, minimizing a binary-valued, n-input, m-output Boolean function is
equivalent to minimizing the corresponding multi-valued-input, singled output function. In our approach we
perform a similar transformation on f , except that we use dlog2(m)e binary-valued inputs to implement a
m-valued input. An equivalent way of representing the transformation is to think of the additional dlog2(m)e
binary-valued inputs as control signals of a multiplexor, and that the value of the control word corresponds to
the output being selected. This corresponds to multiplexing the m outputs of a m-output Boolean function,
as shown if Fig. 2.

f

f
MUX

 (m x 1) (n x m)
Boolean Function

Control Inputs (log m)

Figure 2. Transformation of an m-output
Boolean Function into a single output Boolean function.

This multiplexing of the outputs of a n input, m output Boolean function f , gives rise to a (n+dlog2 me)
input, single-output Boolean function f̂ , shown in Fig. 2. Since f̂ is a single-output function, its complexity
measure can be computed, as presented in the previous section. It must be noted that by estimating the
complexity of f̂ , which is made up of all the outputs, we are in effect dealing with all the outputs at the
same time and thus automatically accounting for the effect of sharing. However, we must remember that
complexity of f̂ was computed by adding a multiplexor to f . Thus in order to compute the area complexity
of f from the area complexity of f̂ , we must be able to compute the influence of the multiplexor on the area
complexity of f̂ . This problem of recovery of area of f from that of f̂ will be discussed in section 5.1.

5. The Area Complexity Model
In this section we present the area model to compute the area complexity A(f) of Boolean functions. The

area model uses the complexity measure of the Boolean function along with its output entropy to estimate the

-7-

3 4 5 6 7 8
L(f)

0

100

200

300

A
(f

)

Randomly Generated Functions at H = 1
Average at H = 1

n=5 n=6

n=7

n=8

n=9

Figure 3. A(f) versus L(f) for Randomly
Generated Boolean functions with H(f) = 1.

area complexity. Since the approach adopted to estimate the area complexity of multi-output functions is to
transform them into equivalent single-output functions, we will start by considering single-output functions,
and then discuss the area recovery for the general case of multi-output functions.

5.1. Area Estimation for Single Output Functions
To start with, we will discuss the data shown in Fig. 3, which was generated as follows. For a given n,

consider the set of all Boolean functions on n inputs and whose output entropy is H(f) = 1, based on all
inputs being independent and with 0.5 probability. For a number of randomly generated Boolean functions
from this set, we computed their linear measure, L(f), using our algorithm and obtained an estimate of
the gate-count A(f) from an optimized implementation of the function using SIS. We then plotted these
points and it can be seen from the figure that the set of randomly generated functions for each n is clustered
around specific points in the plot. This means that the distribution of A(f) of randomly generated Boolean
functions (given n and H) is tight, as observed by many others (see section 3). It also illustrates that the
distribution of L(f) is also tight. The dotted curve shown in the figure is one which joins the center (average
values) of each cluster and is close, but not exactly equal, to an exponential.

This almost-exponential A versus L curve is very important and is in fact the essence of our area
prediction model. This is because we have found that not only do randomly generated Boolean functions
fall on this curve, but also typical VLSI functions fall on it or close to it, as shown in Fig. 4. The data
points shown in Fig. 4 correspond to test cases obtained from the benchmark suite presented in Table 1. It is
noteworthy that the points are not clustered at specific points, but spread all over the curve. This illustrates
the point made earlier about typical VLSI functions not being average. Further results will be given in the
empirical results section, where we will use this curve to predict A(f), having first computed L(f). In fact,
we use a family of such curves, corresponding to different entropy values, as shown in Fig. 5. Additional
curves can be easily generated for other entropy values. These curves need to be generated only once, which
is an up-front once-only cost, and they can then be used to predict the area of various functions.

An important consideration is what the largest n should be for which these curves need to be generated.
Obviously, the curves are going to be more difficult to generate for larger n because of the cost of running
synthesis to obtain the A(f) values. Luckily, there are two reasons why this is not a problem so that
considering n ≤ 12 as in Fig. 5 is sufficient. Firstly, we have found that for typical VLSI functions, the value
of L(f) turns out to be much smaller than n in most cases. Indeed, all the test cases that we will present
(for which n ranges from 4 to 70) had L(f) ≤ 8, so that the curves in Fig. 5 were sufficient. This fact is key

-8-

4.0 5.0 6.0 7.0 8.0 9.0
Complexity Measure L(f)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

A
re

a
A

(f
)

Average Functions at H = 0.68
VLSI Functions at H = 0.68

Figure 4. Typical VLSI functions fall close
to the A vs. L curve

0 1 2 3 4 5 6 7 8
L(f)

0

50

100

150

200

250

300

A
(f

)

H = 0.337
H = 0.543
H = 0.811
H = 1.00

Figure 5. A(·) versus L(·) for different values of entropy

because it illustrates why the traditional (exponential in n) model breaks down while our (almost-exponential
in L) model gives reasonable results for typical VLSI functions.

The second reason why generating the curves only for small n is sufficient is that for larger values of n the
curves become closer to the exponential and can be modeled analytically, as can be seen in the logarithmic
plot in Fig. 6. For large n values, one can simply compute the area complexity as:

A(f) = 2L(f)k(H)

where k(H) is a proportionality constant that depends on the entropy H, and can be computed using a least
squares approach.

5.2. Area Recovery for Multi-Output Functions
We have seen previously that in order to compute the complexity measure associated with a multi-output

function, we transform it into an equivalent single-output function by appending to it a multiplexor. However,

-9-

0 2 4 6 8 10
L(f)

0

2

4

6

8

10

lo
g(

A
(f

))

H = 0.337
H = 0.543
H = 0.811
H = 1.00

Figure 6. log2 A(·) versus L(·) for different values of entropy.

this transformation poses the problem of recovering the area of f from that of f̂ . In this section we address
this problem.

A natural question to ask is, what is the relation between the (optimal) area of f and that of f̂ . To
answer this question, consider the following two scenarios. In the first scenario, let all the outputs of the
multi-output Boolean function be the same. In this case the area of the multi-output Boolean function is
equal to the area of any of its outputs. Also note that the prime implicants of the on and off-sets of f̂ are
independent of the control inputs. Hence the complexity measure of f̂ is equal to the complexity measure
of any of the outputs of f . Also, as all the outputs of the function are the same, there is no need for the
multiplexor. Thus the area contribution of the multiplexor to the overall area of a minimized f̂ is zero.

Now consider the second scenario. Here assume that all the outputs of the multi-output Boolean function
have disjoint support sets. It then follows that the optimal area of f̂ is equal to the sum of optimal area
complexity of f and the area complexity of the multiplexor. Thus one has to subtract the area of the
multiplexor from the area complexity of f̂ in order to get the area complexity of f . Moreover every prime
implicant in the on and off-sets of f̂ contains all the control inputs.

In the first scenario, when the contribution of the multiplexor to the area of f̂ was zero, we saw that the
control inputs were absent from all the prime implicants, while in the second scenario when the contribution
of the multiplexor to the area of f̂ is maximum, we saw that all the control inputs are present in every prime
implicant of f̂ . Thus there seems to be a correlation between the influence of the multiplexor on the area of
f̂ and the number of control inputs in the prime implicants of f̂ .

From the above considerations, we propose that an appropriate area model for a multi-output function
f , in terms of the area of f̂ and the area of a m to 1 multiplexor is given by

A(f) = A(f̂) − αAmux (7)

where Amux is the area complexity of an m to 1 multiplexor, and 0 ≤ α ≤ 1 is a coefficient that represents
the contribution of the multiplexor to the area complexity of f̂ . In the following, we present an approach
for estimating α.

Note that the complexity measure of a m to 1 multiplexor is given by dlog2 me+ 1, i.e., the complexity
of a m to 1 multiplexor is proportional to the number of control inputs. This is true because every prime
implicant of a m to 1 multiplexor has a size given by dlog2 me+1. It is well known that an m to 1 multiplexor
has a balanced tree decomposition such that the height of the tree is equal to dlog2 me and the number of
nodes in the tree is equal to 2dlog2 me. From this observation it follows that the area complexity (Amux) of
a m to 1 multiplexor is given by:

Amux ∝ 2dlog2 me (8)

-10-

Also we can re-write equation (7) as,

α =
A(f̂) −A(f)

Amux

Here A(f̂)−A(f) represents the area contribution of the multiplexor to an optimal area implementation of
f̂ . Note that after optimization it might so happen that certain control inputs become redundant for certain
outputs. This manifests itself as some control inputs being absent in some prime implicants of on and off-sets
of f̂ . Thus, we may think of A(f̂) − A(f) as representing the area of a reduced multiplexor resulting from
the optimization. This reduced multiplexor area is related to the number of remaining control signals, which
leads us to a method for estimating this area, as follows.

Let Ci denote the number of control inputs in a prime implicant Pi. Then define Con to be the average
number of control inputs in a prime implicant belonging to the on-set of f̂ , so that:

Con =
∑Kon

i=1 Ci

Kon
(9)

where Kon is the number of prime implicants in the on-set of f̂ . Similarly, one can define Coff . From the
above discussion it follows that Con and Coff can be used to measure the area contribution of the multiplexor
to an optimal area implementation of f̂ . Notice that the optimal implementation of f̂ will contain a (implicit)
reduced multiplexor whose area depends on the smaller of Con and Coff . Thus, we can model this area
contribution, in a fashion analogous to equation (8), as:

A(f̂) −A(f) ∝ 2min{Con,Coff} (10)

It then follows from equations (8) and (10) that:

α = 2min{Con,Coff}−dlog2 me (11)

It must be noted that α can be computed with minimal effort from the prime implicants of f̂ , and once α
is available, A(f) can be computed using (7).

6. High-Level Area Estimation Flow
The transformation, as stated in the previous section, does not place any restriction on the number of

outputs that can be dealt with at a time (m). However, we have observed that in practice there is a trade-off
between run time of the area estimation procedure and m. As the value of m increases we observed that the
time taken to generate the prime implicants increases. Also, the size of the table capturing the variation of
area of single-output Boolean functions with the linear measure increases. However, using too small a value
of m can affect accuracy by overestimating the area, as the sharing between all outputs is not captured.
Keeping these reasons in mind, after experimenting with different values of m, it was found that a reasonable
choice for the value of m was 16.

Typically, a multi-output Boolean function has outputs with varying support set sizes. Outputs whose
support set size is very small, for instance 1, 2 or 3, consume very little area. For these outputs very little
area optimization can be done. One can make a reliable area prediction for such outputs without having to
resort to the aforementioned approach. In fact it was found that an area estimate of two gates for outputs
whose support set size is two, and an estimate of three gates for outputs with support set size of three, works
very well in practice. As far as outputs with support set size of one are concerned, their contribution to an
optimal area implementation depends on whether or not they are realized by inversion of a primary input
signal. Those which are realized by inversion are assumed to contribute an area of one gate while the rest
are assumed not to contribute to the area. The above approach yields benefits in terms of both run time

-11-

function f
input Boolean

Partition based on support
set sizes of individual outputs

Group 16 undone outputs
 and apply transformation

αCompute Probability, and
 Linear Measure

Estimate Area

 Total Area = Total Area + Area

Support set size > 3

Estimate Area

Support set size <= 3

 Are all the
Outputs done?

Stop

 Total Area = Total Area + Area

Yes

No

on and off set using espresso
Compute minimal cover of

Figure 7. Flow Diagram of the overall Area estimation Procedure.

and accuracy, and has been adopted in our area estimation procedure. The flow diagram for the overall area
estimation procedure is given in Fig. 7.

The area estimation tool reads an input description of f and partitions the function into two sub-
functions. One sub-function (f1) comprises of all outputs whose support set size is less than or equal
to three, while the other (f2), comprises of all outputs whose support set size is greater than three. The
partitioning of the network into f1 and f2 can be performed by a breadth first search and is fairly inexpensive.
We estimate the area of f1 in the following fashion:

A(f1) = β|f1
1 | + 2|f2

1 | + 3|f3
1 | (12)

Here, |f1
1 | is the number of outputs in f1 with support set size equal to 1, β is a fraction of these outputs

which are realized by inversion of a primary input signal, |f2
1 | is the number of outputs in f1 with support

set size equal to 2, and |f3
1 | is the number of outputs in f1 with support set size equal to 3. For estimating

the area of f2 we use the transformation based approach described above. Let the outputs of f2 be grouped
into I groups of size sixteen each, except perhaps for one group which may have fewer than 16 outputs. Let
the Boolean function comprising of the ith group of outputs be gi. We apply the multiplexor transformation
to gi, and compute α, probability and the linear measure of the resultant ĝi. We then compute the area
complexity of gi using (7) and (11). This procedure is repeated until all the outputs have been used up, and

-12-

the area of f2 is estimated as:

A(f2) =
I∑

i=1

A(gi) (13)

Finally, the area of f is computed as:

A(f) = A(f1) + A(f2) (14)

It must be noted that the proposed area model does not account for area sharing across groups. Also it
must be mentioned that in our implementation no particular effort was made in grouping the outputs, as
any specific style of grouping would require additional computational effort.

6.1 Empirical Results
The above proposed area model for multi-output functions was tested on several ISCAS-89 [15] and

MCNC [16] benchmark circuits. These circuits are listed in Table 1 which, in addition to primary input and
output count, shows the functionality of these benchmarks.

Table 1. Benchmark circuits and execution times.
CIRCUIT Circuit Inputs Outputs CPU Time

Name Function sec

b9 Logic 41 21 5.7

c8 Logic 28 18 4.9

example2 Logic 85 66 28

frg2 Logic 143 139 268

i7 Logic 199 67 23.1

i8 Logic 133 81 81.5

i6 Logic 138 67 17.5

cht Logic 47 36 6.5

alu2 ALU 10 6 12.8

alu4 ALU 14 8 104

term1 Logic 34 10 17.4

ttt2 Logic 24 21 6.25

apex6 Logic 135 99 45.3

apex7 Logic 49 37 20.3

x1 Logic 51 35 12.8

x3 Logic 135 99 53

x4 Logic 94 71 28.6

vda Logic 17 39 39.3

k2 Logic 45 45 170.1

s298 Controller 17 20 4.4

s386 Controller 13 13 4.2

s400 Controller 24 27 8.5

s444 Controller 24 27 8.5

s510 Controller 25 13 6.9

s526 Controller 24 27 10.4

s526n Controller 24 27 10

s641 Controller 59 43 41.4

s713 Controller 58 42 42.3

s820 Controller 37 24 16.3

s832 Controller 37 24 16.5

s953 Controller 39 52 38.8

s1196 Logic 28 32 163

s1238 Logic 28 32 141

s1494 Controller 27 25 26.8

s1488 Controller 27 25 29.3

s13207 Logic 152 783 212.8

s35932 Logic 1763 1728 942.4

-13-

These circuits were optimized in SIS using the script script.rugged for optimization, and mapped using
the library lib2.genlib. The area predicted using the area model was compared with the SIS optimal area.
The performance of the model on all the benchmarks in Table 1, except s13207∗ and s35932, is shown in
Fig. 8. The circuit s13207∗ is a modified version of s13207, obtained by deleting the primary outputs which
contain exclusive-or arrays in them. The SIS-optimal area of s13207∗ was 1367. The estimated area for
this circuit was 1045. The circuit s35932 could not be optimized in SIS in one piece. Hence the circuit
was partitioned based on the support set sizes (in a fashion similar to the above discussion) and optimized
separately in SIS. The resulting SIS-area that was obtained was 7252. The area estimated by the area
estimation tool was 8492. The area estimation results obtained have also been tabulated in Table 2. As
indicated in Table 2, the average absolute error of our estimation approach on the benchmarks is 21.65%.

0 100 200 300 400 500 600 700
Actual Multi-Output Area of Benchmarks

0

100

200

300

400

500

600

700

P
re

di
ct

ed
 M

ul
ti-

O
ut

pu
t A

re
a

Figure 8. Comparison between actual versus
predicted area at minimum-area point.

The execution time required by our area estimation tool is also given in Table 1, in cpu seconds on a
SUN sparc5 with 24 MB RAM. We compared these run times, on the above benchmarks, with one run of
SIS using script.rugged followed by SIS technology mapping. The speedup obtained is shown in Fig. 9. The
figure shows a speedup between 2x and 36x. Two important observations are in order. The proposed area
model is implementation independent. Hence for a given function only one run is required to estimate its
area. However, in practice, several runs of SIS might be required to build a reasonable confidence that the
implementation is in fact near area-optimal. Hence the speedup obtained in practice could be significantly
larger. Also, speedup of 10x was obtained on large benchmarks like s35932 and s13207∗. It must be kept
in mind that the reported time for s35932 was obtained after the circuit was partitioned. Strictly speaking
the circuit was not completed in SIS. Hence we believe that on large benchmarks the speedups that can be
obtained in practice can be significant. A side observation to be made is that a significant portion of the
run time of the area estimation tool was spent on computation of the prime implicants in a minimal cover
using espresso [11].

7. Estimation of Cavg

In order to estimate the power, one needs to estimate not only the area complexity but also Cavg, which
is the average node capacitance in a circuit. If Ctot is the total circuit capacitance of an optimal area
implementation and A is the number of gates, then:

Cavg =
Ctot

A (15)

-14-

Table 2. Actual versus predicted areas
for benchmark circuits at minimum-area point.
CIRCUIT Act. area Pred. area Abs. error

Name Gate count Gate count %

s298 58 51 12.1

c8 60 88 46.67

s386 76 46 39.50

b9 79 62 21.5

s444 85 59 30.5

s400 86 79 8.1

cht 94 118 25.5

s510 94 74 21.2

term1 97 43 55.6

s526 104 92 11.5

s526n 105 96 8.6

ttt2 106 79 25.4

s641 108 145 35.2

s713 108 145 35.2

apex7 130 96 26.1

s832 152 137 9.86

s820 159 148 6.90

x1 164 150 8.5

alu2 173 151 12.7

i6 182 212 16.5

example2 198 302 56.1

x4 208 241 15.8

s953 246 238 3.20

s1196 279 329 17.9

s1238 288 269 6.60

s1494 321 204 36.4

i7 321 354 10.3

s1488 328 241 26.5

vda 348 369 6.03

alu4 350 297 15.1

frg2 393 601 52.9

x3 399 350 12.3

apex6 404 326 19.3

i8 503 590 17.3

k2 672 647 3.70

s13207* 1367 1045 23.56

s35932 7252 8761 20.81

Average 21.65

This quantity depends on the target gate library and on the fan-out structure of the circuit. Conceivably,
one can make a rough estimate Cavg by averaging the intrinsic output capacitance of gates in the target
library. In order to make this estimate more accurate, the averaging would have to be weighted according
to the frequency of use of the gates in typical designs. It is not unreasonable to consider that several prior
designs may be available from which to obtain this data. To make the estimation even more accurate, one
needs to consider the fanout structure of the circuit and to add to the output capacitance of each gate the
capacitance due to the fanout branches. This is the method which we use. In this case, Cavg becomes truly
node capacitance and not just logic-gate capacitance. In order to estimate this, it is assumed that one has
access to a few area optimal circuit implementations in the desired target library. This does not appear to
be an unreasonable assumption. In this case, an estimate of Cavg can be obtained by performing an average
of the Cavg estimates obtained from the area optimal circuit implementations.

In order to test the accuracy of this approach, only a few benchmarks from the benchmark set listed in
Table 1 were used to obtain an estimate of Cavg. These benchmarks were s13207∗, s35932 (without outputs
with support set size less than or equal to three), k2 and i8. This estimated value of Cavg was used to
compute Ctot, assuming that the exact value of A was available. The estimated value of Ctot was compared

-15-

0 4 8 12 16 20 24 28 32 36 40
Speedup With Respect to SIS

0

2

4

6

8

10

N
um

be
r

of
 C

as
es

Figure 9. Speed-up versus Number of Cases.

with the true value of Ctot, for the benchmark set, and the results are shown in Fig. 10, which validates the
above estimation procedure for Cavg.

0 500 1000 1500 2000 2500
Actual Total Capacitance (fF)

0

500

1000

1500

2000

2500

P
re

di
ct

ed
 T

ot
al

 C
ap

ac
ita

nc
e

(f
F

)

Figure 10. Error between actual and estimated
values of Ctot assuming A is known.

The above computed estimate of Cavg works well in general. However, for circuits containing a large
number of outputs with support set size less than or equal to three, the above value of Cavg can lead to
an over-estimation of Ctot. This over-estimation problem can be fixed by using smaller values of Cavg for
estimating the capacitance of the various sub-functions of f1 (sub-function comprising of all outputs with
support set size less than or equal to three), namely functions with support set size of one, two and three. As
an example, the Cavg for functions with support set size three can be determined by performing an average
of this quantity over several randomly generated three input functions. The value of Cavg for functions with
support set size of one and two can be similarly determined. Thus we have the following:

Ctot = A(f2)Cavg + β|f1
1 |C1

avg + 2|f2
1 |C2

avg + 3|f3
1 |C3

avg (16)

-16-

Here Cavg can be thought of as the average node capacitance of a function whose outputs have a support
set size greater than three, and Ci

avg is the average node capacitance of a function with support set size of i,
where i ∈ {1, 2, 3}.

The estimated value of Cavg was combined with the estimated area complexity of Boolean functions to
obtain an estimate of the total capacitance of the Boolean function, Ctot. The plot comparing the actual
versus predicted values of Ctot, when both A and Cavg are estimated, is shown in Fig. 11.

0 500 1000 1500 2000 2500 3000
Actual Optimal Total Capacitance (fF)

0

500

1000

1500

2000

2500

3000
P

re
di

ct
ed

 T
ot

al
 C

ap
ac

ita
nc

e
(f

F
)

Figure 11. Actual versus Estimated values of Ctot

The above approach can be adopted to estimate Cavg at any delay point on the area-delay curve (see
Fig. 12). We observed that the value of Cavg decreases as we move from the minimum-area to minimum-delay
point (see Fig. 12). This could be because simple gates, as opposed to complex gates like aoi’s and oai’s,
may be preferred to implement a faster design.

8. Extensions to Area Model
So far we have looked at a prediction scheme to estimate the minimum area required to implement the

function. However, there are many possible realizations of a Boolean function depending on the delay
requirements, i.e., the area required to implement a Boolean function optimally, depends on the delay
constraint on the Boolean function, as shown in Fig. 12. Hence in order to have meaningful power estimation
one must estimate the area (and hence capacitance) as a function of the delay constraints on the function.
In this section we will present extensions to the basic area estimation approach that allow one to estimate
the area at any feasible delay point.

The different realizable delays of a Boolean function can be expressed in terms of a dimensionless
parameter λ, such that λ = 0 corresponds to the minimum delay point (t0), λ = 100 corresponds to the
maximum delay point (t100), and every intermediate value of λ, between 0 and 100, corresponds to a specific
delay between the minimum and maximum delays. Specifically, if td is a feasible delay specification of a
Boolean function, as shown in Fig. 12, whose minimum delay is equal to t0 and maximum delay is equal to
t100, i.e., t0 ≤ td ≤ t100, then td can be expressed in terms of λ (in %) as follows:

td =
λ

100
t100 + (1 − λ

100
)t0 (17)

Note that the RGBF curves which have been described as part of the basic area estimation approach
correspond to the minimum area point, i.e., to λ = 100. The curves at λ = 0, i.e., the minimum delay

-17-

 point
minimum area

minimum delay
 point

Delay

A
re

a

t0 100ttd

A0

A100

Ad

Figure 12. Feasible delay realizations of a Boolean function.

point, are built in a similar fashion, except that the RGBF functions are synthesized to have minimum delay
instead of minimum area. Hence to obtain the curves for an intermediate value of λ, the RGBF functions
are synthesized to the delay corresponding to the value of λ, as given by equation (17). As a result, the area
complexity model, capable of predicting the area complexity at any feasible delay point, contains a family
of curves parameterized in terms of delay parameter λ.

We derived the RGBF curves for three different values of λ, namely, 0%, 50% and 100%. In practice, this
granularity may be enough, although this would really depend on the application. It is definitely possible
to generate the curves for any value of λ. The curves for these three values of λ require about 36KB of
memory. While this memory cost is quite reasonable, the total computational effort can be significant, due
to the necessity to make so many synthesis runs. It took us a couple of days to generate the curves for each
value of λ (using SIS), having spread the computational effort over a few workstations. However, this is a
one-time cost associated with using a specific gate library.

In [21] we demonstrate that the parameter λ for a multi-output function is approximately the same
as λ of its transformed single-output counterpart. Given a multi-output Boolean function and a specified
value of λ, the estimation procedure is as follows. Construct the single-output Boolean function counterpart,
using a multiplexor as usual, then compute its output entropy and complexity measure. Then, look up the
appropriate (for the given λ) set of RGBF curves to get the area complexity of the transformed function,
followed by area recovery to obtain the area complexity of the multi-output function. Recent results [22]
show that it is also possible to carry out this procedure starting with a specification of td instead of λ.

Empirical results will now be reported at two specific delay points on the area-delay trade-off curve,
corresponding to λ = 0 and λ = 50%. As we have done before, the area of a multi-output function will
be estimated by summing up the areas of its 16-output sub-functions. However, a more careful analysis
is possible, based on the separate area-delay trade-off curves of the 16-output sub-functions, as described
in [21].

In order to generate the minimum delay implementations, the functions were optimized in SIS using
the script script.rugged followed by script.delay [13,14] for delay optimization, and mapped using the library
lib2.genlib. The results comparing the actual area of the overall function with the predicted area, at the
minimum delay point, are given in Fig. 13. The area estimation results have also been tabulated in Table 3.
The average error in area estimation was 21.07%, which is close to the average error obtained at the minimum-
area point. The results were reasonably accurate for all except i8. In the case of i8, there was an over-
estimation by about 250 gates due to the conservative approach of simply adding the areas of the 16-output
sub-functions. Also note that the two circuits, s35932 and s13207∗, are missing from Table 3 because they

-18-

0 250 500 750 1000 1250
Actual Area at Minimum Delay (Gate Count)

0

250

500

750

1000

1250

P
re

di
ct

ed
 A

re
a

(G
at

e
C

ou
nt

)

Figure 13. Comparison between actual and
predicted areas at the minimum-delay point.

could not be synthesized in SIS at the minimum-delay point.
In order to generate the 50% delay implementations, the functions were first optimized in SIS using

script.rugged for area optimization, and mapped using lib2.genlib. This was followed by speeding up the
circuit to the 50% delay point using the command speed up [14] in the SIS environment. In Fig. 14 we
compare the actual and predicted area for the benchmarks at the mid-delay point and these area numbers
have been tabulated in Table 4. It can be seen from this table that the average percentage error in area
estimation at the 50% delay point is 22.18%. Also, note that seven circuits, namely, alu4, i6, i7, i8, frg2,
s35932 and s13207∗, are missing from Table 4 because they could not be synthesized in SIS at the 50% delay
point.

0 200 400 600 800
Actual Area (Gate Count)

0

200

400

600

800

P
re

di
ct

ed
 A

re
a

(G
at

e
C

ou
nt

)

Figure 14. Comparison between actual and
predicted areas at the 50% delay point.

These results indicate that the proposed area complexity model can be used to make area predictions at
any feasible delay realization of the given Boolean function. While using traditional logic synthesis methods,

-19-

Table 3. Actual versus predicted areas
for benchmark circuits at minimum-delay point.
CIRCUIT Act. area Pred. area Abs. error

Name Gate count Gate count %

c8 98 122 24.50

s298 102 81 20.6

b9 106 92 13.2

term1 127 83 34.6

s386 129 63 51.1

s400 138 98 29.5

s444 143 84 41.2

s510 160 124 22.5

s526 166 141 15.1

cht 173 160 7.50

s526n 175 144 17.7

ttt2 180 116 35.6

s641 189 245 29.6

s713 189 245 29.6

apex7 198 130 34.3

s832 252 269 6.70

x1 257 227 11.7

s820 267 248 7.11

alu2 307 231 24.8

i6 346 309 10.7

example2 358 520 45.2

x4 369 328 11.1

s953 384 442 15.1

s1196 550 645 17.2

s1238 557 511 8.20

s1494 560 382 31.2

s1488 569 417 26.7

i7 588 562 4.4

alu4 624 600 3.8

x3 648 583 10.0

vda 660 692 4.80

apex6 672 534 20.5

frg2 714 939 31.5

i8 759 1047 37.9

k2 1126 1153 2.40

Average 21.07

each area evaluation at a feasible delay point would require a separate run of SIS, using our model the area
at all delay points of interest can be obtained in one shot. This we believe, is a major advantage of this
high-level approach.

Using the proposed techniques for estimating Cavg, discussed in section 7, one can obtain an estimate
of Cavg at every feasible delay point. Using these estimates of Cavg along with the area estimates, one
can obtain capacitance estimates at any delay point, which can in turn be converted into high-level power
estimates.

9. High-Level Power Estimation
In the previous sections we addressed the problem of estimating the area complexity of a multi-output

Boolean function. This estimate can in turn be used to estimate the power dissipated by a Boolean function,
by combining it with average activity estimates [1, 3] and the average node capacitance estimate. In this
section we present results on high-level power estimates by comparing them with the power dissipated by
a gate level optimal implementations of the Boolean function, at the minimum-area and minimum-delay
points, under two different timing models, namely, a zero-delay model and a general-delay timing model.
In the case of the general-delay timing model the delays were obtained from a gate library and an event

-20-

Table 4. Actual versus predicted areas
for benchmark circuits at 50% delay point.

CIRCUIT Act. 50% area Pred. 50% area Abs. error

Name Gate count Gate count %

c8 71 108 52.11

s298 106 69 34.90

b9 78 84 7.69

term1 101 68 32.67

s386 86 53 38.4

s400 102 84 17.6

s444 125 79 36.8

s510 129 96 25.6

s526 149 125 16.1

cht 97 162 67.1

s526n 102 128 25.5

ttt2 145 86 40.69

s641 165 194 17.58

s713 167 194 16.17

apex7 155 120 22.58

s832 169 151 10.65

x1 168 198 17.8

s820 175 161 8.00

alu2 224 160 28.57

example2 243 380 56.4

x4 297 302 1.68

s953 263 302 14.82

s1196 373 357 4.29

s1238 338 329 2.67

s1494 323 266 17.65

s1488 357 256 28.29

x3 401 462 15.21

vda 371 388 4.58

apex6 422 428 1.42

k2 690 676 2.03

Average 22.18

driven simulation was performed. The estimated average activity was combined with the estimates of total
capacitance to obtain an estimate of the power dissipated. In sub-section 9.1 we will discuss the power
estimation results at the minimum-area point and, in sub-section 9.2 we will discuss the results obtained at
the minimum-delay point.

9.1. Results at Minimum-Area Point
It must be noted that the activity prediction model (3) does not account for the increase in switching

activity due to glitches, as is probably to be expected from a high-level model. Hence it is important to
check the accuracy of the high-level power model against the zero-delay simulation results. The actual and
the predicted zero-delay power values for the benchmark circuits of Table 1, at an input probability of 0.5,
are tabulated in Table 5. The average percentage error obtained, at this input probability, is equal to 32.16%.
Since the activity prediction model (3) depends on the input switching statistics of the circuit, we varied the
signal probabilities at the circuit inputs from 0.1 to 0.9 and computed the actual and predicted zero-delay
powers. This is shown in Fig. 15. Note that each benchmark circuit is represented by a number of data
points in the figure. The average percentage error between the actual and the predicted zero-delay power
over the range of input probabilities, from 0.1 to 0.9, was measured to be 32.9%.

In Table 6 a comparison is shown between the actual general-delay power and the predicted power,
at an input probability of 0.5. The average estimation error was equal to 30.95%. We also compared the
predicted power against the general-delay simulation results for input probabilities ranging from 0.1 to 0.9.
This is shown in Fig. 16. The average estimation error in this case was 33.7%.

-21-

Table 5. Actual versus predicted zero-delay power for
benchmarks at minimum-area point for input probability of 0.5.

CIRCUIT Act. ZD power Pred. ZD power Abs. error

Name uW uW %

s298 151.7 126.14 16.93

c8 119.40 207.10 73.45

s386 65.90 41.30 37.33

b9 169.8 152.14 10.40

s444 127.8 95.17 25.53

s400 131.7 125.2 4.93

cht 380.5 458.94 20.61

s510 161.6 81.2 49.75

term1 180.6 72.54 59.83

s526 201.1 237.1 17.90

s526n 180.7 191.56 6.00

ttt2 187.4 129.45 30.92

s641 87.60 127.1 45.10

s713 81.70 124.86 52.83

apex7 188.20 166.80 11.37

s832 217.7 142.83 34.40

s820 218.3 155.76 6.90

x1 310.77 308.70 0.64

alu2 108.8 108.11 0.63

i6 234.1 248.88 6.30

example2 261.0 432.88 65.66

x4 298.6 340.7 14.1

s953 196.3 230.24 17.29

s1196 289.0 318.12 10.07

s1238 240 215.3 10.29

s1494 463 303.63 34.4

i7 427.7 408.31 4.53

s1488 482.7 349.1 27.68

vda 219 583.35 166.37

alu4 182.1 196.24 7.76

frg2 330.9 510.48 54.27

x3 690.4 605.90 12.24

apex6 510.3 435.14 14.73

i8 586.36 700.84 19.47

k2 200 501.37 150.68

s13207* 1274.3 1060.1 16.8

s35932 1740.1 2266.24 30.24

Average 32.16

9.2 Results at Minimum-Delay Point
In Table 7, we compare the predicted power with the actual power dissipated by the gate-level optimum-

delay implementation under zero-delay conditions at an input probability of 0.5. As seen in the table, the
average estimation error was 30.21%. It must be noted that two circuits, namely, s35932 and s13207∗, are
missing from the table because they could not be synthesized in SIS at the minimum-delay point. In Fig. 17,
we compare the actual and predicted power values for input probabilities ranging from 0.1 to 0.9. The
average estimation error for this range of input probabilities was measured to be 30.1%.

In Table 8 we compare the error between the actual power under general-delay conditions with the
predicted power for an input probability of 0.5, and in Fig. 18 we compare these quantities over an input
activity range of 0.1 to 0.9. The estimation errors obtained were 31.91% and 31.2% respectively.

It must be noted that average estimation error at the minimum-area and minimum-delay points for the
benchmark circuits is approximately the same. Also, for 80% of the circuits, the relative estimation error in
zero-delay power between the minimum-area and minimum-delay implementations was within 25%. Hence
it can be concluded that the proposed high-level power estimation approach is relatively accurate across
different implementations.

-22-

0 200 400 600 800
Actual Power Under Zero-Delay Model (uW)

0

200

400

600

800

P
re

di
ct

ed
 P

ow
er

 (
uW

)

Figure 15. Comparison between actual zero-delay
power and predicted power at minimum-area point.

Finally, before leaving this section, we would like to discuss the relative accuracy of the proposed
approach. In order to get a feel for relative accuracy, we compared the ratio of actual powers at the
minimum-area and minimum-delay points with the ratio of the predicted powers at the same points. The
results of this comparison are summarized in Table 9. It can be seen from this table that the average error of
this comparison is 15.68%. Based on this, we believe that the proposed approach preserves relative accuracy
reasonably well.

10. Conclusions
We have presented a new area estimation approach to predict the area complexity of multi-output Boolean
functions. This was based on transforming the multi-output function to an equivalent single-output function.
The advantage of this area model is that it can be easily characterized, and it also offers a natural framework
to account for sharing occurring in a multi-output function. Moreover, the utility of the area model in
predicting the area of a multi-output Boolean function at any feasible delay point has been demonstrated.
We have also proposed a methodology for estimating Cavg needed to convert a gate count estimate of area
complexity into an estimate of total capacitance. The predicted capacitance was then combined with average
activity estimates to get high level power estimates.

References

[1] F. Najm, “Towards a High-Level Power Estimation Capability,” ACM/IEEE International Symposium
on Low-Power Design, pp. 87–92, 1995.

[2] D. Marculescu, R. Marculescu and M. Pedram, “Information theoretic measures for power analysis,”
IEEE Transactions on Computer Aided Design of Integrated Circuits and System, vol. 15, no. 6, pp. 599-
610, 1996.

[3] M. Nemani and F. Najm, “Towards a high-level power estimation capability,” IEEE Transactions on
Computer Aided Design of Integrated Circuits and System, vol. 15, no. 6, pp. 588-589, June 1996.

[4] C. E. Shannon,“The synthesis of two-terminal switching circuits,” Bell System Technical Journal, val. 28,
no. 1, pp. 59-98, 1949.

-23-

Table 6. Actual general-delay power versus predicted power for
benchmarks at minimum-area point for input probability of 0.5.

CIRCUIT Act. GD power Pred. power Abs. error

Name uW uW %

s298 181.3 126.14 30.30

c8 160.46 207.10 29.10

s386 83.23 41.30 50.38

b9 195.7 152.17 22.24

s444 168.3 95.17 43.45

s400 162.3 125.2 22.86

cht 432.1 458.94 6.20

s510 222.8 81.2 63.55

term1 234.46 72.54 69.06

s526 237.70 237.1 0.25

s526n 213.0 191.56 10.06

ttt2 242.54 129.45 46.63

s641 117.24 127.1 8.40

s713 110.85 124.86 12.61

apex7 228.40 166.80 26.97

s832 287.65 142.83 50.34

s820 288.45 155.76 46.0

x1 353.84 308.70 12.75

alu2 192.24 108.11 43.76

i6 321.89 248.88 22.68

example2 351.38 432.88 23.19

x4 356.36 340.7 4.40

s953 249.24 230.24 7.63

s1196 374.22 318.12 15.00

s1238 318.56 215.3 32.41

s1494 622.8 303.63 51.20

i7 586.51 408.31 30.38

s1488 649.9 349.1 46.28

vda 337.12 583.35 73.04

alu4 310.24 196.24 36.74

frg2 425.45 510.48 20.00

x3 850.9 605.90 28.79

apex6 657.3 435.14 33.80

i8 850.74 700.84 17.62

k2 282.20 501.37 77.68

s13207* 1453.8 1060.1 27.1

s35932 2317.6 2266.24 2.21

Average 30.95

[5] N. Pippenger, “Information theory and the complexity of Boolean functions,” Mathematical Systems
Theory, vol. 10, New York: Springer-Verlag Inc., pp. 129–167, 1977.

[6] K-T Cheng and V. Agrawal, “An entropy measure for the complexity of multi-output Boolean functions,”
27th ACM/IEEE Design Automation Conference, pp. 302–305, 1990.

[7] A. C-H. Wu, V. Chaiyakul and D. D. Gajski, “Layout area models for high level synthesis,” International
Conference on Computer Aided Design, pp. 34-37, 1991.

[8] F. J. Kurdahi, D. D. Gajski, C. Ramachandran and V. Chaiyakul, “Linking register transfer and physical
levels of design,”IEICE Transactions on Information and Systems, September 1993.

[9] F. Najm, “Statistical Estimation of the Signal Probability in VLSI Circuits,” Coordinated Science
Laboratory Report #UILU-ENG-93-2211, April 1993.

[10] M. Xakellis and F. Najm, “Statistical Estimation of the Switching Activity in Digital Circuits,” 31st
ACM/IEEE Design Automation Conference, pp. 728–733, 1994.

-24-

0 200 400 600 800 1000
Actual Power Under General-Delay Model (uW)

0

200

400

600

800

1000

P
re

di
ct

ed
 P

ow
er

 (
uW

)

Figure 16. Comparison between actual general-delay
power and predicted power at minimum-area point.

[11] R. K. Brayton, G. D. Hachtel, C. T. McMullen and A. L. Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 1984.

[12] M. Nemani and F. Najm, “High-Level Area Prediction for Power Estimation,” Custom Integrated Cir-
cuits Conference, 1997.

[13] G. De Micheli, Synthesis and Optimization of Digital Circuits, New York, NY: McGraw-Hill Inc., 1994.

[14] SIS-1.2, Reference Manual, University of California, Berkeley, 1992.

[15] F. Brglez, D. Bryan and K. Koźmiński, “Combinational profiles of sequential benchmark circuits,”IEEE
International Symposium On Circuits and Systems, pp. 1929-1934, 1989.

[16] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide Version 3.0,”Rep. Microelectronics
Center of North Carolina, 1991.

[17] M. Nemani and F. Najm, “High Level Area and Power Estimation of VLSI Circuits,”IEEE/ACM
International Conference on Computer Aided Design, pp. 114-119, 1997.

[18] D. E. Muller,“Complexity in electronic switching circuits,”IRE Transactions on Electronic Computers,
vol. 5, pp. 15-19, 1956.

[19] E. Kellerman,“A Formula for Logical Network Cost,” IEEE Transactions on Computers, vol. 17, no. 9,
881-884, 1968.

[20] R. W. Cook and M. J. Flynn,“Logical network cost and entropy,”IEEE Trans. on Computers, vol. 22,
no. 9, 823-826, 1973.

[21] M. Nemani,“High-level power estimation,” Ph.D dissertation, Dep. of Electrical and Computer Engi-
neering, Univ. of Illinois at Urbana-Champaign, May 1998.

[22] M. Nemani and F. Najm, “Delay Estimation of VLSI Circuits from a High-Level View,”IEEE/ACM
Design Automation Conference, pp. 591-594, 1998.

[23] S. Powell and P. Chau, “Estimating power dissipation of VLSI signal processing chips: The PFA tech-
nique,”VLSI Signal Processing (H. S. Moscovitz, ed.), pp. 250-259, New Jersey: IEEE Press, 1990.

[24] S. Powell and P. Chau, “A model for estimating power dissipation in a class of VLSI chips,”IEEE
Transactions on Circuits and Systems, pp. 646-650, 1991.

-25-

Table 7. Actual versus predicted zero-delay power values for
benchmarks at minimum-delay point for input probability of 0.5.

CIRCUIT Act. GD Power Pred. Power Abs. error

Name uW uW %

c8 259.49 397.40 53.14

s298 275.66 244.12 11.44

b9 285.78 212.58 25.61

term1 286.21 139.35 51.3

s386 196.30 66.21 66.3

s400 285.44 217.28 23.9

s444 275.93 166.45 39.7

s510 296.50 209.64 29.3

s526 351.03 355.18 1.18

cht 594.98 602.13 1.20

s526n 393.86 396.62 0.70

ttt2 386.05 255.37 33.85

s641 251.15 320.39 27.56

s713 280.11 340.85 21.68

apex7 405.87 291.07 28.28

s832 444.30 290.29 34.66

x1 678.16 534.71 21.15

s820 475.14 304.48 35.92

alu2 343.69 265.75 22.67

i6 1302.64 1115.44 14.37

example2 656.57 803.44 22.37

x4 602.09 663.12 10.13

s953 495.51 531.76 7.30

s1196 843.60 810.52 3.90

s1238 800.38 672.07 16.03

s1494 1009.99 649.41 35.7

s1488 1098.87 712.99 35.11

i7 1950.48 1667.22 14.54

alu4 494.18 609.54 23.34

x3 1303.24 1052.80 19.21

vda 588.52 1345.49 128.6

apex6 1083.56 736.02 32.07

frg2 946.91 1377.47 45.47

i8 1196.23 1854.67 55.04

k2 652.09 1073.51 64.60

Average 30.21

[25] P. Landman and J. Rabaey, “Architectural power analysis: The dual bit model,”IEEE Transactions on
VLSI Systems, vol. 3, no. 2, pp. 173-187, 1995.

[26] P. Landman and J. Rabaey, “Activity-sensitive architectural power analysis,”IEEE Transactions on
Computer Aided Design of Integrated Circuits and System, vol. 15, no. 6, pp. 571-587, June 1996.

[27] A. Raghunathan, S. Dey, and N. K. Jha, “Register-transfer level techniques for switching activity and
power consumption,”IEEE/ACM International Conference on Computer Aided Design, pp. 158-165,
1996.

[28] S. Gupta and F. Najm, “Power macro-modeling for high-level power estimation,”Proc. IEEE/ACM
Design Automation Conference, pp. 365-370, 1997.

[29] D. Wallace and M. Chandrasekhar, “High-level delay estimation for technology independent logic equa-
tions,”IEEE/ACM International Conference on Computer Aided Design, pp. 188-191, 1990.

[30] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characterization based on clustering,” 33rd Design
Automation Conference, pp. 702–707, June 3–7 1996.

[31] Q. Qiu, Q. Wu, M. Pedram, and C.-S. Ding, “Cycle-accurate macro-models for RT-level power analysis,”
1997 International Symposium on Low Power Electronics and Design, pp. 125–130, August 18–20 1997.

-26-

0 500 1000 1500 2000 2500
Actual Power Under Zero-Delay Model (uW)

0

500

1000

1500

2000

2500

P
re

di
ct

ed
 P

ow
er

 (
uW

)

Figure 17. Comparison between actual zero-delay power
and predicted power at minimum-delay point.

-27-

Table 8. Actual general-delay power versus predicted power for
benchmarks at minimum-delay point for input probability of 0.5.

CIRCUIT Act. GD Power Pred. Power Abs. error

Name uW uW %

c8 318.60 397.40 24.73

s298 308.61 244.12 20.89

b9 321.13 212.58 33.80

term1 342.09 139.35 59.3

s386 226.53 66.21 70.8

s400 350.05 217.28 37.9

s444 340.19 166.45 51.1

s510 366.54 209.64 42.8

s526 412.40 355.18 13.8

cht 695.89 602.13 13.5

s526n 443.12 396.62 10.49

ttt2 464.80 255.37 45.06

s641 292.40 320.39 9.57

s713 354.62 340.85 3.88

apex7 493.50 291.07 41.02

s832 541.39 290.29 46.38

x1 744.34 534.71 28.16

s820 554.59 304.48 45.09

alu2 481.43 265.75 44.8

i6 1604.35 1115.44 30.47

example2 866.32 803.44 7.26

x4 749.71 663.12 11.55

s953 618.52 531.76 14.03

s1196 1060.04 810.52 23.5

s1238 996.75 672.07 32.58

s1494 1202.54 649.41 46.0

s1488 1328.34 712.99 46.32

i7 2414.36 1667.22 30.94

alu4 724.42 609.54 15.86

x3 1626.27 1052.80 35.26

vda 737.90 1345.49 82.3

apex6 1407.94 736.02 47.72

frg2 1180.9 1377.47 16.64

i8 1716.17 1854.67 8.07

k2 857.20 1073.51 25.23

Average 31.91

-28-

0 450 900 1350 1800 2250 2700
Actual Power Under General-Delay Model (uW)

0

450

900

1350

1800

2250

2700

P
re

di
ct

ed
 P

ow
er

 (
uW

)

Figure 18. Comparison between actual general-delay power
and predicted power at minimum delay point.

-29-

Table 9. Relative accuracy comparisons; RAP is Ratio of Actual Powers, RPP is Ratio of Predicted
Powers, and ARE is Absolute value of the Relative Error between RPP and RAP.

Circuit RAP RPP ARE (%)
s298 0.587 0.517 11.90
c8 0.504 0.521 3.37

s386 0.367 0.624 70.03
b9 0.609 0.716 17.57

s444 0.495 0.572 15.56
s400 0.464 0.576 24.14
cht 0.621 0.762 22.70
s510 0.608 0.387 36.30

term1 0.685 0.521 23.94
s526 0.576 0.668 15.97
s526n 0.481 0.483 0.62
ttt2 0.522 0.507 2.87
s641 0.401 0.397 1.00
s713 0.313 0.366 17.25

apex7 0.463 0.573 23.76
s832 0.531 0.492 7.34
s820 0.520 0.512 1.54
x1 0.475 0.577 21.47

alu2 0.399 0.407 2.00
i6 0.201 0.223 10.94

example2 0.406 0.539 32.76
x4 0.475 0.514 8.21

s953 0.403 0.433 7.44
s1196 0.353 0.392 11.05
s1238 0.319 0.320 0.31
s1494 0.518 0.468 9.65

i7 0.243 0.245 0.82
s1488 0.489 0.426 12.88
vda 0.457 0.434 5.03
alu4 0.428 0.322 24.77
frg2 0.360 0.371 3.06
x3 0.523 0.576 10.13

apex6 0.467 0.591 26.55
i8 0.496 0.378 23.79
k2 0.329 0.467 41.94

Average 15.68

-30-

