
Cyclic Stress Tests for Full Scan Circuits

Vinay P. Dabholkar Sreejit Chakravarty
Department of Computer Science

State University of New York
Buffalo, NY 14260

Farid Najm
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Janak Patel
Center for Reliability and High-Performance Computing

University of Illiois at Urbana-Champaign
Urbana, IL 61801

Abstract

To ensure the production of reliable circuits and fully testable unpackaged dies for MCMs
burn-in, both dynamic and monitored, remains a feasible option. During this burn-in process the
circuit needs to be stressed for an extended period of time. This requires computation of cyclic
input sequences to stress the circuit. A taxanomy of stress related problems for full scan circuits is
presented. It is shown that there are efficient ways to compute the sequences for most variations of
monitored burn-in problems. The difficulty of computing stress tests for dynamic burn-in problems
is discussed. Preliminary experimental results on ISCAS89 benchmark circuits are presented.

1 Introduction

Growing size of VLSI circuits, high transistor density and advent of MCM technology is making

production of reliable chips a challenging task. Functional testing and various kind of burn-ins have

been used to guarantee greater reliability. It has been observed that potential advantages in circuit density

and performance of MCM technology cannot be realized without access to fully tested, unpackaged

integrated circuits. Until die integrity is guaranteed by qualification of the process that fabricates the

die, functional testing and burn-in procedures remain the best viable alternatives [1]. Hence, monitored

burn-in, a kind of burn-in in which functional testing and burn-in are done at the same time, are becoming

popular.

There are three different types of Burn-Ins : Static, Dynamic and Monitored. Selection of a particular

technique depends upon the types of defects targeted and the extent to which these defects are activated

by various techniques [2].

1

� Static Burn-In: applies a DC bias to the device at an elevated temperature (normally 125oC)

in a manner predetermined to either forward bias or reverse bias as many junctions as possible

within the device. Static burn-in is most effective in weeding out devices with thermally activated

surface related defects showing up as excessive leakage current, speed degradation or threshold

voltage shifts after electrical tests.

� Dynamic Burn-In: where all clocks and address lines are continually sequenced, results in

high power dissipation, current densities and chip temperature than static burn-in. Increased

current densities stress defects such as epitaxial and crystal imperfections, metallization, oxide

and junction anomalies, that include pipes and emitter shorts.

� Monitored Burn-In: Because of long electrical test times associated with large circuits, testing

during dynamic burn-in is becoming widespread. This is called monitored burn-in. There are

couple of advantages in using monitored burn-in against dynamic burn-in [3]. First, it utilizes the

“dead time” during burn-in in testing. Second, carefully ordered test vectors can stress circuit

nodes to their maximum. On the other hand, during dynamic burn-in, if the input vectors are not

carefully chosen, switching activity in some parts may not be sustained at a higher level. Third, if

a junction breaks down during burn-in, monitored burn-in will make it easier to detect the location

of the fault.

Since power dissipation due to switching transient current and charging and discharging of output

load capacitance is generally more than that due to leakage current [4], dynamic burn-in and monitored

burn-in are more widely used [3]. In this paper, we consider dynamic and monitored burn-in. During

burn-in, cyclic sequences need to be applied over an extended period of time such that the average

switching activity for a targeted set of nodes is maximized. To our knowledge no systematic study

of these problems exists. The main purpose of this paper is to study solutions to these problems in

the context of Full Integrated Scan circuits [5]. It is shown that computation of cyclic stress tests can

be done efficiently for most problems pertinent to monitored burn-in. For these problems we present

optimal, polynomial time algorithms. In addition, faster heuristics for large circuits that compute near

optimal solutions is presented.

The paper is organized as follows. Power dissipation model is briefly discussed in Section 2. In

section 3, a taxonomy of cyclic stress test computation problems is presented. Next, in section 4, we

discuss how to account for power dissipation when a cycle of input vectors are applied to a full scan

circuit. Polynomially solvable problems, solutions and experimental results are discussed in section 5.

Intractability issues of dynamic burn-in problems are discussed in section 6.

2

2 Power Dissipation Model

The two components of power dissipated in a CMOS circuit [4] are: Static dissipation due to leakage

current or other current drawn continuously from the power supply (Pst) and dynamic dissipation due

to (i) switching transient current (Psc) and (ii) charging and discharging of load capacitances (Pd). The

total power dissipationPtotal is given by :- Ptotal = Pst + Pd + Psc. As in [6] Pst and Psc are neglected.

Pd is power required to charge and discharge the output capacitive load of every gate. Pd is

approximated as follows:

Pd = 1=2 � C � V 2
DD � NG � f (1)

where C = output capacitance; NG = total number of gate output transitions (1! 0 or 0! 1); and f =

repetition frequency.

Equation (1) implies that power is dissipated at a node when the input vector is changed from Ti to

Ti+1. Let PC(Ti; T(i+1)) be the total power dissipated in C when inputs change from Ti to Ti+1. Then,

PC(Ti; T(i+1)) =
X

j2SetofNodes

1=2 � Cj � V 2
DD �NGj

� f (2)

Thus power dissipated at a node is proportional to the number of transitions (NGj
) at that node. This

depends on the gate delays and sequence of input vectors applied. Next we discuss how to compute the

the transitions at the other nodes.

Under the zero-delay model, all gates are assumed to have zero delay. The four possible transitions

and the corresponding logic levels are : static-zero (s0)) Logic level remains zero; static-one (s1)

) Logic level remains one; rising (r)) Logic level changes from 0 to 1; falling (f)) Logic level

changes from 1 to 0. For example for a two-input AND gate output behavior under zero-delay model

is described by Table 1. Drawback of this model is that it neglects glitches at the output of gates and

consequently the power dissipation is underestimated.

3 A Taxonomy of Stress Tests Related Problems

Typically burn in is performed for an extended period, usually several hours. So, while selecting vectors

for Burn-in, we will be more concerned with the ability of the resulting sequence to dissipate power

rather than its length.

What is a good measure of stress during burn in ? In other words, given a sequence of vectors

we would like to know its effectiveness in stressing the circuit. One possible measure is the average

switching where the transitions at all nodes in the circuit are considered. The other extreme of this is

3

to compute individual sequences for each node. The input sequence for a node would maximize the

average switching activity at that node, thus stressing the node to the maximum. Following example

shows that the former approach may not be the best approach.

Consider the scan circuit C shown in Figure 1. Inputs x3 and x4 come from the scan latches F1 and

F2. Consider the test set T = ft1 = 0001; t2 = 0000; t3 = 1011; t4 = 1111g. Inputs assignments given

in the order hx1; x2; x3; x4i. Table 2 shows the number of transitions at the output of gates g1; g2; g3 and

g4 for all combinations of transitions of vectors from test set T under the zero delay model. Scan-in

consists of two clock cycles. Assume that primary inputs x1; x2 change during the second clock cycle.

GraphG in Figure 1 represents the total number of transitions in circuitC during scan-in of each pair

of test vectors. Each node inG corresponds to a test vector and each edge weightw(i; j) corresponds to

the number of transitions during an application of vector ti followed by tj under the zero delay model. It

can be observed that ht2; t4; t2i constitutes a cycle with the maximum average weight among all possible

cycles in G.

Now consider the number of transitions at the output of gate g4. Only one vector pair causes output

of gate g4 to switch viz. (t4 ! t2). If vectors are cycled such that this order is not part of the cycle then

output of g4 will never be stressed. We consider this an unacceptable stress test. Thus we would like to

choose a cycle of vectors such that cycling through it would maximize the average power dissipation in

all parts of the circuit.

Typically during scan in, the values of the primary inputs are kept constant until the scan part of

the vector is completely scanned in [5]. If this constraint is dropped then primary input vector can be

switched during any clock cycle during the scan in process. Let switching time denote the clock cycle

at which the primary inputs are switched.

Consider the transition 0000! 1111 in the circuit in Figure 1(a). Here primary inputs switch from

00 to 11. Scan in consists of two cycles in which 00 is scanned out and 11 is scanned in. Table 3

compares the number of transitions at the output of gate g4 when (a) primary input switches in the first

clock cycle and; (b) primary input switches in the second clock cycle. First two rows indicate that there

are 2 transitions in case (a) while the last two rows indicate that there is none in case (b).

Now consider transitions 0001 ! 0000. Table 4 (case (a)) shows that there is no transition at the

output of any gate during scan in. However, if primary input vector 11 is applied during the first cycle,

2 transitions take place at the output of each of the gate g1; g3 and g4 (case (b)). Note that primary input

switches multiple times (00! 11, 11! 00) during scan in.

Tables 3 and 4 indicate that the time at which primary input vector switches and the number of

times it switches can affect the transitions at the output of gates.

4

So far the examples considered used vectors from a given test set only. This restriction is important

in the case of monitored bun-in. But it is not required in the case of dynamic burn-in. Additional test

vectors, not belonging to test set, can be used which will maximize the transitions at the gate outputs.

Consequently, we can define a number of problems depending on whether the primary inputs switch

once or multiple times and whether the input vectors are selected from the test set. All these variations

are summarized in Figure 2.

Figure 2 shows the taxonomy of burn-in problems described above. Note that classification based

on switching of primary inputs and that due to selection of vectors are orthogonal to each other. For

example, a problem can be considered where primary input is switched only once and primary input

vectors as well as scan vectors may or may not be selected from the test set. Problem with single

switching (SS) and selection of vectors from Test Vectors Only (TVO) is denoted by SS-TVO. Problems

SS-TVP, SS-AV, MS-TVO, MS-TVP and MS-AV are similarly denoted in Figure 1. Problems of type

SS-TVO, SS-TVP, MS-TVO and MS-TVP where the applied vectors involve all the test vectors, may

or may not be with additional vectors, are useful in monitored burn in. On the other hand, problems

SS-AV and MS-AV are useful during dynamic burn in.

4 Accounting for Power Dissipation in Full Scan Circuits

Block diagram of Full Integrated Scan is shown in Figure 3 [5]. C is the combinational part of the

circuit while R is the test register where the tests are scanned serially. Note that as a new vector is

scanned in, the input to the combinational circuit C changes.

Next we divide the circuit nodes into different categories whose characteristics can be exploited

while constructing vector sequences that maximize switching activity at their output. Consider a node

that has only primary inputs in its fanin. e.g. node g1 in Figure 1(a). Such a node does not depend

upon state variables. Vectors (v1; v2) should be found such that set one of the vectors sets the node to 1

and the other sets it to 0. Cycling hv1; v2i continuously would stress the node to its maximum. We call

such a node, a c-node.

Consider a node that has only state input in its fanin. Here the problem reduces to finding a cycle

hv1; :::; vki such that average switching activity due to application of v1 followed by v2 and so on

followed by vk is maximum. We call such a node, an s-node. we call a node that has primary input as

well as state input variables in its fanin, an h-node. The following notations are used in the rest of the

paper.

Q = a sequential circuit

n = number of primary inputs

5

m = number of primary outputs

PI = fx1; : : : ; xng primary inputs of Q

PS = fy1; : : : ; ymg present state inputs of Q

NS = fY1; : : : ; Ymg next state outputs of Q

S(ti; tj) = hs1; : : : ; s2mi = hY i
1 ; : : : ; Y

i
m; y

j
1; : : : ; y

j
mi

S(k : l) = hsk; : : : ; sli

ti = hPI i@PSii,(@ denotes concatenation)

= hxi1; : : : ; x
i
n@yi1; : : : ; y

i
mi be a test vector,

where PI i are primary inputs and PSi are present state variables of ti

Let I(ti; tj) denote the (m+1) clock cycle interval while tj is scanned in and its response is latched

into the scan chain. During the first m clock cycles PSj is scanned in and NSi is scanned out in test

register R. In (m+ 1)st clock cycle output of C, i.e. NSj is latched to R. Next, we describe power

dissipated in a set of c-nodes, s-nodes and h-nodes separately.

(1) Power dissipated in c-nodes: Let x be a c-node in scan circuit Q and assume that the primary

inputs change from vi to vj . Since x is a c-node, power dissipated in x does not depend upon sequential

input, hence only primary input is considered. Let Px(vi; vj) denote power dissipated in xwhen primary

inputs change from vi to vj .

Px(vi; vj) =

(
1 if vi ! vj causes output of gate x to switch (3)
0 otherwise

LetX = fx1; :::; xlg denote a collection of c-nodes. Power dissipated in X when primary input changes

from vi to vj is denoted by:

PX(vi; vj) =
lX

k=1

Pxk(vi; vj) (4)

(2) Power dissipated in s-nodes: Let x be an s-node of Q. Consider the interval I(ti; tj). Since

x does not depend upon primary input, it can be ignored. In the first cycle, input to C is S(1 : m).

Similarly, in the kth cycle the input to C is v(k) = S(k + 1 : k +m� 1). Then

Px(ti; tj) =
lX

k=1

Px(v(k); v(k+ 1)) (5)

If X = fx1; :::; xlg denote a collection of s-nodes, power dissipated during I(ti; tj) is given by:

PX(t
i; tj) =

lX
t=1

Pxk(t
i; tj) (6)

6

(3) Power dissipated in h-nodes: Consider interval I(ti; tj). Let hv1 = PI i; v2; :::; vm�1; vm =

PIji be a set of primary input applied to C during this interval in the given order. Input to C during

kth cycle is v(k) = vk@S(k + 1 : k +m� 1). Power dissipated during I(ti; tj) is given by:

Px(t
i; tj) =

lX
k=1

Px(v(k); v(k+ 1)) (7)

If X = fx1; :::; xlg denote a collection of h-nodes, power dissipated during I(ti; tj) is given by:

PX(t
i; tj) =

lX
r=1

Pxr(t
i; tj) (8)

Given a node x in circuit Q, we would like to choose a sequence of vectors hs1; :::; ski such that

average power dissipated in node x given by the expression 1
k
((
Pk�1

i=1 Px(s
i; si+1)) + Px(s

k; s1)) is

maximized. Note that k = 2 in case x is a c-node. Here Px(si; si+1) corresponds to equations (3), (5)

or (7) according to whether x is a c-node, s-node or h-node respectively. In case of a collection X of

nodes of a particular type, Px(si; si+1) is replaced by PX(si; si+1) as defined by equations (4), (6) and

(8).

5 Polynomially Solvable Monitored Burn-in Problems

In this section, we show that optimal solutions to most problems of interest in monitored burn-in can be

obtained in polynomial time. These problems fall under the category in which (1) Vectors are chosen

from a given set of test vectors only (TVO) and ; (2) Primary input is assumed to remain constant

during scan-in of a new vector (single switching or SS). Next, we describe problems and algorithms for

c-nodes, s-nodes and h-nodes.

5.1 c-nodes

Problem of computing a pair (v1; v2) that causes gate output of a c-node to switch is simple if a stuck

at test set for the circuit is available. A solution can be obtained by simulating the set of test vectors

and identifying a vector that sets the node to 0 and another that sets the node to 1. Since a c-node is

independent of sequential input, multiple switching is not relevant in the context of c-nodes. In general,

addition of new vectors (not in test set) is not going to improve the quality of the solution as there is

just one transition possible under the zero delay model. Unless the fault at the gate output is untestable

the vectors that cause the transition can be obtained from the test set. Thus variants of the problems for

c-nodes, where selection of vectors need not be from test set e.g. TSP and VA, are not relevant in the

context of a single c-node.

7

The simulation based approach mentioned above can be extended to multiple c-nodes case. Given a

set of c-nodes, simulation of all pairs of test vectors would give the number of gate outputs that switch

due to the pair of input vectors. If there are l test vectors, choosing the best pair would take O(l2) time.

5.2 s-nodes

Consider an s-node x and a test set T = ft1; :::; tlg. A complete graph G = (V;E) is constructed

such that vi corresponds to vector ti and weight function on the edges is defined as w : E ! R where

w(vi; vj) = Px(ti; tj)=F . Px(ti; tj) is given by equation (5). F represents the number of flip flops.

Weight function w represents the average number of transitions during scan-in of ti and scan-out of tj

per clock cycle. We would like to compute a cycle hvi1 ; :::; viki such that 1
k
((
Pk�1

r=1 w(vir ; vir+1)) +

w(vik ; vi1)) is maximized.

For example, consider the s-node g2 in Figure 1 and the test set shown in Table 2. The complete

graph in Figure 5 represents the transitions at the output of g2 for all possible combinations of test

vector transitions. Maximum average weight of a cycle in this graph is 2. In fact, there are a number of

cycles with average weight 2. e.g. ht2; t4i, ht2; t3i, ht1; t3i, ht1; t4i etc. Note that if all the edge weights

are negated in the original graph then a cycle with maximum average weight in the original graph

corresponds to a minimum average weight cycle in the new graph. For example, if all the edge weights

of graph in Figure 5 are negated then minimum average weight of any cycle is -2. Thus computation

of maximum average weight cycle and minimum average weight cycle in a directed weighted graph are

equivalent problems.

Karp studied the problem of computing minimum edge weight cycle in a directed weighted graph

and proposed an algorithm which yields optimal solution in time O(jV jjEj) and O(jV j2) space [7].

The algorithm is a modification of the Bellman-Ford single-source shortest path algorithm and it is

based on the following important observation

Observation 5.1 [7] It can be assumed that every vertex is reachable from every other vertex in the

graph. If this were not the case, graph can be partitioned into strongly connected components each

having this property. let s be an arbitrary (source) vertex. Let �k(s; v) denote total weight of the shortest

path from s to v such that the path has exactly k edges. If � denotes the weight of a cycle with minimum

average weight then

� = min
v2V

max
0�k�n�1

�n(s; v)� �k(s; v)

n� k

Based on the above observation, Bellman-Ford algorithm for single-source shortest path can be

modified to get the required algorithm. For sake of completeness, we give the algorithm below.

8

Algorithm Optimal (G;w; s)

(1) Initialize-Single-Source (G; s);

(2) for (i 1 to n)

(3) for (each edge (u; v) 2 E)

(4) if (�k(s; v) > �k�1(s; u) + w)

(5) �k(s; v) = �k�1(s; u) + w

(6) end for

(7) end for

(8) for (v 2 V)

(9) for (k 0 to n � 1)

(10) t = �n(s;v)��k(s;v)
n�k

(11) if (t > max)

(12) max = t

(13) end for

(14) if (max > min)

(15) min = max

(16) end for

(17) output min

Since the graph under consideration is always complete, Karp’s algorithm runs inO(n3) time where

n is the number of test vectors for the circuit. Next, we illustrate the algorithm with a hypothetical graph.

Consider the graph in Figure 6. The graph has 3 nodes viz. fs; v1; v2g. Let s be the source vertex. At the

end of one iteration of the for loop in steps 2-7, we have �1(s; s) =1; �1(s; v1) = 4; �1(s; v2) = 5. At

the end of second iteration we have, �2(s; s) = 7; �2(s; v1) = 6; �2(s; v2) = 10 and after third iteration,

�3(s; s) = 9; �3(s; v1) = 11; �3(s; v2) = 12. If �(v) denotes the term max
0�k�n�1

�n(s; v)� �k(s; v)

n� k
, then

�(s) = 3 for k = 0; �(v1) = 4:5 for k = 1 and �(v2) = 4:5 for k = 1. Thus it can be observed that

weight of the minimum average weighted cycle is 3 viz. hs; v2; v1i.

Experiments were performed on ISCAS89 benchmark circuits [8] on SUN sparcII machine. Table 5

gives the number of c-nodes, s-nodes and h-nodes in the ISCAS89 circuits. Experimental results for

the optimal algorithm are given in Table 6. For each circuit, sets of 50 s-nodes were grouped together

and maximum weight cycle was computed using the optimal algorithm. part1, part2 etc. denote the

partitions of s-nodes into 50 nodes each. For each partition, length and weight denote the length and

9

the weight respectively of the optimal cycle. Following reasons explain why runs for larger circuits

(s5378 onwards) did not complete.

There are two main drawbacks of the optimal algorithm. (1) It requires construction of a complete

graph which involves n2 edge weight computations. Each edge weight computation consists of F logic

simulations where F is the number of flip flops in the scan chain. For large n and F the computation

time is very large. (2) Running time O(n3) will be too large for large n. i.e. large circuits. This

motivates the study of heuristics that do not require construction of a complete graph and run faster.

Next, we present a randomized greedy heuristic for the same problem.

Algorithm GreedyRandomized (k, factor)

(1) source pick a random vertex

(2) current-node source

(3) path current-node

(4) while (length(path) < n� 1)f

(5) for (i 1 to k)

(6) v pick ith distinct random vertex

(7) if (v 2 path) f /* a cycle is formed */

(8) cycle-cost cost of the cycle due to

the back edge (current-node,v)

(9) if (cycle-cost < best-cycle-cost)

(10) best-cycle-cost cycle-cost

(11) g

(12) else f /* update path */

(13) path-cost cost of the path if v is added to it

(14) if (path-cost < best-path-cost)

(15) best-path-cost path-cost

(16) g

(17) end for

(18) if (best-cycle-cost < factor * best-path-cost)

(19) terminate

(20) elsef

(21) store best-cycle-cost

(22) path path [fvg

(23) g

10

(24)g

The procedure takes two parameters viz. k and factor. k denotes the number of edge weights

computed for each node before making the greedy choice of next vertex in the path. The heuristic works

as follows: It starts with a random source vertex as a path and then at each step of iteration (steps 4-24)

picks k vertices at random with replacement. Edge weights for these vertices are computed. Average

cycle cost is computed if a vertex belongs to the path and average path cost is computed otherwise. best

cycle is accepted only if it is much better than the best path i.e. if average path < factor� average cycle.

k was chosen to be 25 while factor was set to 0.6. Time complexity of this algorithm is O(n).

Experimental results of GreedyRandomized algorithm are given in Table 7. For each ISCAS89

benchmark circuit, 10 iterations of this randomized heuristic were performed with random starting

vertex. For each partition, denoted by part1, part2 etc., best weight denotes the best cycle weight

obtained among the 10 iterations and worst weight denotes the worst weight among the 10 iterations.

worst weight represents how bad a solution can get if the heuristic is run only once. length represents

the cycle length for the best cycle. For example, in s298 for first set of 50 s-nodes, weight of the optimal

cycle is 40.11 and its length is 10 (see Table 6). By running greedy heuristic 10 times the best solution

computed was 35.68 with length 2 and 33.18 was the worst weight obtained in any individual run.

Circuit s5378 has 2465 s-nodes. We partitioned them into sets of 100 nodes each. Results of the

first 20 partitioned are tabulated in Table 7. These runs took 4370 minutes; using one run of the greedy

heuristic.

Table 8 compares the weights of the best and worst cycles obtained during greedy heuristic with the

optimal weight. greedy best % denotes the average of all percentages (from all partitions) of best weight

cycles with respect to the optimal weight. For example, in circuit s298 first partition has best percentage

(35:68=40:11)� 100 = 88:95 and second partition has best percentage (16:96=16:96)� 100 = 100.

92.24 is the average of these two percentages which is listed in Table 8. optimal time denotes the

user time in seconds for optimal algorithms. greedy avg time denotes the average time per iteration

of the greedy heuristic in seconds. While comparing performance of a deterministic algorithm with a

randomized algorithm following norms should be noted. If the best solution obtained during all the

iterations is to be compared with the solution obtained by deterministic algorithm then the total time

for all iterations should be considered. However, if worst solution obtained during all the iteration is

compared with the solution obtained by deterministic algorithm then average time of an iteration of the

randomized algorithm can be compared with that of deterministic algorithm.

11

5.3 h-nodes

If vectors chosen are restricted to test set only and if primary inputs switch at the last clock cycle during

scan-in then computation of the cycle with maximum activity is similar to the s-node case. In case of

s-nodes primary input change does not matter however, in case of h-nodes, during the last clock cycle

change in primary input should be considered. Same algorithms were run on ISCAS89 circuits and

results are tabulated in Tables 9 and 10. The performance and timings are compared in Tables 11.

6 Comments On the Intractability of Dynamic Burn-in Problems

Consider a c-node in a full-scan circuit. As stated in section 5, two stuck-at test vectors, one of which

sets the node to 0 and the other that sets the node to 1 would suffice to generate maximum activity at

the node. However, a c-node may not have a stuck-at test vector for two reasons. (1) The node may not

be sensitizable [5] or; (2) the fault may not be propagated to a primary output. In case (1) no activity

can be generated at the node. However, in case (2) a pair of vectors may exist that causes the output

of the gate to switch but a stuck-at test vector may not exist. This motivates the need for a method of

generating activity at the output of such c-nodes. A direct reduction from satisfiability [9] would show

that this problem is intractable.

Note that in case of multiple c-node case the problem is at least as hard as the single c-node

case. In fact, multiple c-node case is equivalent to computation of worst case power dissipation in

a combinational circuit when the activity in all the c-nodes is considered together. We feel that the

techniques of Davadas et. al. [10] and Kriplani et. al. [11] can be used in this context.

In case of s-nodes an optimal algorithm was discussed which computes a cyclic sequence with

maximum average activity. It is an interesting problem to see if addition of new vectors (not be from

the test set) would increase the average power dissipation significantly. However, we conjecture that

this problem is intractable. It can be shown for h-node the problem of computing stress cycles, when

inputs are not restricted to a test set, is at least as hard as that for c-nodes even when the number of scan

latches is just one.

Notwithstanding these difficulties in computing cyclic tests for dynamic burn-in it is interesting

to determine if fast heuristics that compute suboptimal solutions that stress the circuit more than in

monitored burn-in can be developed. Heuristics for these problems are beyond the scope of this paper.

12

7 Conclusions

In this paper we presented a systematic approach towards generating cyclic stress tests for Full Integrated

Scan circuits. These tests can be used during monitored and dynamic burn-ins. Optimal algorithm and

fast greedy heuristic are compared in terms of quality of solution obtained and running times. We feel

that the greedy heuristic or its variations can compute cyclic stress tests for large circuits where optimal

algorithm takes too much time. This paper motivates the study for good heuristics for computing cyclic

stress tests for dynamic burn-in problems.

References

[1] R. Parkar, “Bare die test,” in IEEE Multi-Chip Module Conference, pp. 24–27, 1992.

[2] E. Hnatek, “Thoughts on VLSI burn-in,” in IEEE International Test Conference, pp. 531–535,

1984.

[3] M. Campbell, “Monitored burn-in (a case study for in-situ testing and reliability studies),” in IEEE

International Test Conference, pp. 518–523, 1984.

[4] H. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A systems perspective. Addison-

Wesley Publication Company, second ed., 1992.

[5] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing and Testable Design.

Computer Science Press, 1990.

[6] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer, “On average power dissipation and random pattern

testability of CMOS combinational logic networks,” in ACM/IEEE International Conference on

Computer Aided Design, pp. 402–407, 1992.

[7] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. Cambridge, Massachusetts:

The MIT Press, 1991.

[8] F. Brglez, D. Byan, and K. Kozminsky, “Combinational profiles of sequential benchmark circuits,”

in ACM/IEEE Int’l Symposium on Circuits and Systems, pp. 1929–1934, 1989.

[9] M. R. Gary and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness. San Fransisco: W. H. Freeman, 1979.

13

[10] S. Devadas, K. Keutzer, and J. White, “Estimation of power dissipation in CMOS combinational

circuits using boolean function manipulation,” IEEE Trans. Computer Aided Design, vol. CAD-11,

pp. 373–383, March 1992.

[11] H. Kriplani, F. Najm, P. Yang, and I. Hajj, “Resolving signal correlations for estimating maximum

currents in CMOS combinational circuits,” in ACM/IEEE 30th Design Automation Conference,

pp. 384–388, 1993.

14

AND s0 s1 r f
s0 s0 s0 s0 s0
s1 s0 s1 r f
r s0 r r s0
f s0 f s0 f

Table 1: Zero Delay Model

Transition g1 g2 g3 g4

0001! 1111 1 1 1 0
1111! 0001 1 1 1 0
1011! 1111 1 0 0 0
1111! 1011 1 0 0 0
0000! 1011 0 1 1 0
1011! 0000 0 1 1 0
0000! 0001 0 0 0 0
0001! 0000 0 0 0 0
0000! 1111 1 1 1 0
1111! 0000 1 1 2 1
0001! 1011 0 1 1 0
1011! 0001 0 1 1 0

Table 2: Transitions for circuit in Figure1

Transition cycle number of
number transitions

0000! 1101 1 1
1101! 1111 2 1

0000! 0001 1 0
0001! 1111 2 0

Table 3: Transitions at the output of g4 when primary inputs are switched in the first cycle and in the
second cycle

15

Transition cycle Total number of
number transitions

0001! 0000 1 0
0000! 0000 2 0

0001! 1100 1 3
1100! 0000 2 3

Table 4: Total number of transitions in the circuit of Figure 1 in case of single switching and multiple
switching

circuit c-nodes s-nodes h-nodes
s208.1 20 8 76
s298 7 78 34
s349 18 60 83
s382 15 94 49
s386 41 5 113

s420.1 46 14 158
s444 4 113 64
s510 173 1 37
s526 7 119 67

s526n 7 120 67
s641 34 47 298
s713 34 47 312
s820 183 4 102
s832 181 4 102

s838.1 98 26 322
s1423 23 170 464
s1488 291 18 344
s1494 288 14 345
s5378 79 2465 235

Table 5: c-nodes, s-nodes, h-nodes in ISCAS89 circuits

16

circuit part1 part2 part3 part4
length weight length weight length weight length weight

s208.1 34 2.50
s298 10 40.11 10 16.96
s344 22 51.00 14 1.17
s349 2 42.13 26 1.73
s382 8 32.81 36 39.48
s386 80 5.25

s420.1 76 3.19
s444 36 31.98 20 43.95 32 6.90
s510 65 0.00
s526n 66 47.95 14 53.14 15 10.54
s526 50 48.31 72 53.17 22 10.48
s641 40 42.95
s713 54 39.16
s820 14 9.60
s832 24 10.80

s838.1 152 6.00
s1423 14 16.90 16 16.87 76 56.15 76 10.04
s1488 130 35.83
s1494 142 32.00

Table 6: Maximum weighted cycles for s-nodes by optimal algorithm

X1

X2

X3

X4

g 1

g 2

g 3

g 4F1

F2
0 0 0 1

1 1 1 11 0 1 1

0 0 0 0

3
3

2
2

2

2
1

1

5

3

0

0

Figure 1: Full Integrated Scan Circuit and Transitions Graph

17

circuit part1/5/9 part2/6/10 part3/7 part4/8
length best worst length best worst length best worst length best worst

s208.1 2 2.50 2.12
s298 2 35.68 33.18 2 16.96 14.91
s349 2 42.13 38.50 2 1.67 1.63
s382 2 31.26 27.97 2 39.38 39.38
s386 2 4.83 4.17

s420.1 2 3.09 2.73
s444 2 30.14 28.07 2 43.95 41.57 2 6.90 6.17
s510 2 0.00 0.00
s526 2 47.88 44.44 2 51.45 46.86 2 10.48 9.48
s526n 2 47.45 41.64 3 49.60 46.71 3 10.52 9.99
s641 2 42.95 39.76
s713 3 38.88 35.80
s820 3 8.80 7.20
s832 3 8.80 8.16

s838.1 4 5.24 4.91
s1423 2 16.49 15.33 2 16.43 15.42 3 54.55 51.93 2 9.92 9.57
s1488 2 33.75 31.94
s1494 2 31.67 27.78
s5378 4 45.24 45.24 3 65.06 65.06 2 51.03 51.03 2 58.15 58.15

2 42.71 42.71 2 63.62 63.62 2 46.04 46.04 2 52.01 52.01
2 50.32 50.32 4 68.10 68.10 3 32.38 32.38 3 59.27 59.27
3 60.89 60.89 3 56.90 56.90 2 61.98 61.98 2 52.99 52.99
4 52.07 52.07 3 31.28 31.28 4 51.89 51.89 2 76.78 76.78

Table 7: Results of the greedy algorithm on ISCAS89 circuits

Multiple
Switching

Test Set

Burn In Problems

Single
Switching

Test Set
Partially

Arbitrary
 Only

SS-TSO SS-TSP

Vectors

SS-AV

Test Set
Partially

ArbitraryTest Set
 Only

MS-TSO MS-TSP MS-AV

Vectors

Figure 2: Taxonomy of Burn-In Problems

18

circuit greedy greedy optimal greedy
best % worst % time avg time

s208.1 100.00 84.80 3.28 0.30
s298 92.24 84.26 34.41 3.10
s349 99.86 91.50 30.74 2.49
s382 97.72 77.38 73.74 6.60
s386 92.00 79.43 32.91 2.67

s420.1 96.87 85.58 59.13 5.12
s444 97.78 75.23 115.29 10.40
s526 98.08 87.85 463.44 31.90
s526n 96.36 83.55 399.65 29.44
s641 100.00 92.57 59.87 5.35
s713 99.28 91.42 47.21 4.10
s820 91.67 75.00 185.48 14.46
s832 81.48 75.56 208.34 15.64

s838.1 87.33 81.83 918.61 69.50
s1423 97.43 55.58 3568.37 224.73
s1488 94.19 89.14 474.57 36.83
s1494 98.97 86.81 546.12 40.99

Table 8: Performance and timing comparison between optimal and greedy algorithm (s-nodes)

SCAN-IN SCAN-OUT

PI PO

R

C

Y y

Figure 3: Scan Structures

Y
i
1

Y
i

m

Sk+1 k+mS

S
k+2

Sk+m+1

S1 Sm

y
j
1

y
m
j

Sm+1 S2m

k th cycle

(k+1) st cycle

Input Transitions During kth shift

S(k+1 : k+m) S(k+2 : k+m+2)

Figure 4: Scan Register Shifting

19

circuit part1/5/9 part2/6/10 part3/7 part4/8
length weight length weight length weight length weight

s208.1 33 12.96 35 8.50
s298 36 16.39
s349 4 21.63 6 9.53
s382 34 28.38
s386 78 19.50 78 15.50 21 4.44

s420.1 74 9.25 76 17.44 76 11.97 75 1.75
s444 36 28.07 6 2.08
s510 15 7.89
s526 48 20.29 21 2.86
s526n 16 20.55 68 2.99
s641 38 33.82 60 30.97 4 26.37 60 32.24

33 17.74 60 17.21
s713 54 33.92 54 42.50 54 28.47 24 35.75

26 23.53 26 22.45 54 5.12
s820 120 13.70 12 15.20 122 0.00
s832 80 13.10 124 15.40 128 0.00

s838.1 152 9.62 152 10.23 152 19.83 152 14.34
152 13.66 150 6.25 153 7.62

s1423 12 23.89 76 22.43 76 27.28 16 30.03
14 22.80 76 23.17 46 30.11 72 15.05
14 13.99 16 2.91

s1488 132 27.22 38 15.58 132 22.25 39 14.39
36 14.44 38 17.58 132 15.17

s1494 141 27.22 138 14.33 48 22.83 142 18.50
48 13.42 138 15.33 142 18.00

Table 9: Opitmal algorithm for h-nodes

2
2

2

2

0

0 2

2

0

0

2

2

t 2

t 4
t 3

t 1

Figure 5: Transitions at gate g2

20

circuit part1/5/9 part2/6/10 part3/7 part4/8
length best worst length best worst length best worst length best worst

s208.1 3 12.96 11.75 3 8.50 7.81
s298 2 16.39 13.93
s349 2 21.63 19.76 2 9.53 8.57
s382 2 27.55 24.04
s386 2 18.25 13.72 3 13.22 10.50 2 4.08 2.75

s420.1 2 8.62 7.24 2 17.44 14.16 2 11.31 9.06 2 1.75 1.33
s444 2 28.07 25.14 3 2.08 2.02
s510 3 7.17 5.50
s526n 2 20.19 17.19 2 2.93 2.62
s526 3 19.37 17.60 2 2.76 2.51
s641 2 31.95 24.68 2 28.42 23.93 2 24.11 21.04 2 30.47 24.61

2 16.68 14.72 2 16.84 14.14
s713 3 33.47 25.87 2 42.50 29.58 2 26.37 22.82 2 35.00 29.09

2 23.53 19.19 3 21.79 18.95 2 5.05 4.11
s820 2 11.20 8.77 2 13.70 10.63 2 0.00 0.00
s832 2 10.60 8.90 2 13.90 11.05 2 0.00 0.00

s838.1 2 9.62 6.25 3 8.70 6.73 2 19.44 16.02 2 13.42 8.65
2 13.36 11.70 2 5.55 4.40 2 7.45 6.47

s1423 2 23.82 22.38 2 22.43 19.35 2 27.09 24.61 2 29.82 28.05
2 22.80 18.97 2 22.88 18.39 2 29.74 27.80 2 13.79 12.43
2 13.99 11.36 2 2.85 2.73

s1488 2 27.17 19.27 2 12.42 8.92 2 19.25 13.87 2 13.50 9.47
2 13.17 10.10 2 17.58 11.11 3 13.50 9.96

s1494 2 24.50 16.96 3 12.11 10.25 2 20.00 13.25 2 16.00 11.00
3 11.11 8.83 2 15.33 10.44 2 12.92 9.92

Table 10: Maximum weighted cycles for h-nodes by greedy algorithm

4

3

5

7

1

6

s

v v
1 2

Figure 6: Graph for the illustration of optimal algorithm

21

circuit greedy greedy optimal greedy
best % worst % time avg time

s208.1 100.00 91.15 9.41 0.92
s298 100.00 84.99 12.76 1.19
s349 100.00 90.92 15.04 1.37
s382 97.08 84.71 18.59 1.75
s386 90.14 68.38 84.77 7.24

s420.1 96.81 57.04 346.75 30.16
s444 100.00 90.08 43.73 4.05

s526n 98.22 84.15 218.32 19.27
s526 95.59 86.87 247.73 21.86
s641 93.76 75.50 465.69 42.39
s713 97.90 72.82 465.75 44.12
s820 86.16 60.69 369.94 28.77
s832 85.96 62.46 406.26 30.73

s838.1 95.08 49.11 8502.12 652.00
s1423 98.84 76.87 13314.53 1145.74
s1488 92.07 57.48 2427.41 188.87
s1494 86.38 57.24 2767.86 209.40

Table 11: Performance and timing comparison between optimal and greedy algorithm (h-nodes)

22

