
Estimation of State Line Statistics in
Sequential Circuits

VIKRAM SAXENA, FARID N. NAJM, and IBRAHIM N. HAJJ
University of Illinois at Urbana-Champaign

In this article, we present a simulation-based technique for estimation of signal statistics (switching
activity and signal probability) at the flip-flop output nodes (state signals) of a general sequential
circuit. Apart from providing an estimate of the power consumed by the flip-flops, this information is
needed for calculating power in the combinational portion of the circuit. The statistics are computed
by collecting samples obtained from fast RTL simulation of the circuit under input sequences
that are either randomly generated or independently selected from user-specified pattern sets. An
important advantage of this approach is that the desired accuracy can be specified up front by the
user; with some approximation, the algorithm iterates until the specified accuracy is achieved. This
approach has been implemented and tested on a number of sequential circuits and has been shown
to handle very large sequential circuits that can not be handled by other existing methods, while
using a reasonable amount of CPU time and memory (the circuit s38584.1, with 1426 flip-flops, can
be analyzed in about 10 minutes).

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Simulation; B.7.2
[Integrated Circuits]: Design Aids—Simulation; B.8 [Hardware]: Performance and Reliabil-
ity—Performance Analysis and Design Aids; J.6 [Computer Applications]: Computer-Aided En-
gineering—Computer-Aided Design

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Power estimation, signal probability, transition density, switch-
ing activity, sequential circuit, finite-state machine, signal statistics

1. INTRODUCTION

The dramatic decrease in feature size and the corresponding increase in the
number of devices on a chip, combined with the growing demand for portable
communication and computing systems, have made power consumption one of
the major concerns in VLSI circuits and systems design [Brodersen et al. 1991].
Indeed, excessive power dissipation in integrated circuits not only discourages
the use of the design in a portable environment, but also causes overheating,

This work was supported in part by Intel Corp., Digital Equipment Corp., and the Semiconductor
Research Corp.
Authors’ addresses: V. Saxena, AccelChip Inc., Schaumburg, IL; F. N. Najm, University of
Toronto, Department of ECE, 10 Kings College Road, Toronto, Ontario, Canada M5S 3G4; email:
f.najm@utoronto.ca; I. N. Hajj, Dean of the Faculty of Engineering and Architecture, American
University of Beirut, Beirut, Lebanon.
Permission to make digital /hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1084-4309/02/0700-0455 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002, Pages 455–473.

456 • V. Saxena et al.

Circuit
Combinational

Sequential Circuit

Latches

Clock

Present
State

Next
State

Inputs Outputs

u

2u
1u

nx

2x

1x

m

Fig. 1. An FSM model of a sequential logic circuit.

which can lead to soft errors or permanent damage. Hence there is a need to
accurately estimate the power dissipation of an IC during the design phase.

The main conceptual difficulty in power estimation is that the power depends
on the input signals driving the circuit. Simply put, a more active circuit will
consume more power. Thus one straightforward method of power estimation is
to simulate the design over all possible inputs, compute the power dissipated
under each input, and average the results. However, such an approach is pro-
hibitively expensive. Thus the main difficulty in power estimation is that the
power is input pattern-dependent.

It is possible to overcome the pattern-dependency problem by using proba-
bilities to describe the set of all possible logic signals, and then studying the
power resulting from the collective influence of all these signals. This formu-
lation achieves a certain degree of pattern-independence that allows one to
efficiently estimate the power dissipation. Most recently proposed power esti-
mation tools [Najm 1994] are based on such a probabilistic approach, but are
limited to combinational circuits. Only a few techniques have been proposed for
sequential circuits, and they are reviewed in the next section.

We consider that the circuit has the popular and well-structured design style
of a synchronous sequential circuit, as shown in Figure 1. In other words, it
consists of flip-flops driven by a common clock and combinational logic blocks
whose inputs (outputs) are flip-flop outputs (inputs). Therefore, the average
power dissipation of the circuit can be broken down into the power consumed
by the flip-flops and that consumed by combinational logic blocks. This provides
a convenient way to decouple the problem and simplify the analysis.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 457

In this article, we present a statistical estimation technique for collect-
ing signal statistics (switching activity and signal probability) at the flip-flop
outputs. This work extends and improves the preliminary work proposed in
Najm et al. [1995]. The statistics are computed by collecting samples obtained
from fast register-transfer-level (RTL) simulation of the circuit under input
sequences that are either randomly generated or independently selected from
user-specified pattern sets. Given these, it is then possible to use any of the
existing combinational circuit techniques to compute the power of the com-
binational circuit. The use of an RTL or zero-delay simulator does not af-
fect the accuracy of the power estimate, since it is assumed the flip-flops are
edge-triggered and filter out any glitches or hazards that may exist at their
inputs.

In the following sections, we give some background and review of previous ap-
proaches (Section 2), formulate the problem in more detail (Section 3), present
our approach (Section 4), give experimental results (Section 5), and conclude
with some discussion (Section 6). Furthermore, a number of theoretical results
are presented and summarized in Appendix A.

2. BACKGROUND

Let u1, u2, . . . , um be the primary input nodes of a sequential logic circuit, as
shown in Figure 1, and let x1, x2, . . . , xn be the present state lines. For simplicity
of presentation, we have assumed that the circuit contains a single clock that
drives a bank of edge-triggered flip-flops. On the falling edge of the clock, the
flip-flops transfer the values at their inputs to their outputs. The inputs ui and
the present state values determine the next state values and the circuit outputs,
so that the circuit implements a finite state machine (FSM).

Most existing power estimation techniques handle only combinational cir-
cuits [Najm 1994] and require information on the circuit input statistics (tran-
sition probabilities, etc.). To allow extension to sequential circuits, it is therefore
sufficient to compute statistics of the flip-flop outputs (and corresponding flip-
flop power). Other existing techniques would then be applied to compute the
power consumed in the combinational block.

We briefly survey the few recently proposed techniques for estimating the
power in sequential circuits. All proposed techniques that handle sequential
circuits [Ismaeel and Breuer 1991; Hachtel et al. 1994; Monteiro and Devadas
1994; Tsui et al. 1994] make the simplifying assumption that the FSM is Markov
[Papoulis 1984], so that its future is independent of its past once its present
state is specified.

Some of the proposed techniques compute only the probabilities (signal and
transition) at the flip-flop outputs, whereas others also compute the power. The
approach in Ismaeel and Breuer [1991] solves directly for the transition prob-
abilities on the present state lines using the Chapman–Kolmogorov equations
[Papoulis 1984], which is computationally too expensive. Another approach that
also attempts a direct solution of the Chapman–Kolmogorov equations is given
in Hachtel et al. [1994]. Although it is more efficient, it remains quite expensive,
so that the largest test case presented contains less than 30 flip-flops.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

458 • V. Saxena et al.

Better solutions are offered by Monteiro and Devadas [1994] and Tsui et al.
[1994], which are based on solving a nonlinear system that gives the present
state line probabilities, as follows. Given probabilities pu1 , . . . , pum at the input
lines, let a vector of present state probabilities Pp.s. = [px1 , . . . , pxn] be applied
to the combinational logic block. Assuming the present state lines are indepen-
dent, one can compute a corresponding next state probability vector as F (Pp.s.).
The function F (·) is a nonlinear vector-valued function that is determined by
the Boolean function implemented by the combinational logic.

In general, if the next state probabilities form a vector Pn.s., then Pn.s. 6=
F (Pp.s.), because the flip-flop outputs are not necessarily independent. Both
methods [Monteiro and Devadas 1994; Tsui et al. 1994] make the independence
assumption Pn.s. ≈ F (Pp.s.). Finally, since Pn.s. = Pp.s. due to the feedback, they
obtain the state line probability values by solving the system P = F (P). This
system is solved using the Newton–Raphson method in Monteiro and Devadas
[1994], and using the Picard–Peano iteration method in Tsui et al. [1994].

One problem with this approach is that it is not clear that the system P =
F (P) has a unique solution. Being nonlinear, it may have multiple solutions,
and in that case it is not clear which is the correct one. Another problem is the
independence assumption which need not hold in practice, especially in view of
the feedback. Both techniques try to correct for this. In Monteiro and Devadas
[1994], this is done by accounting for m-wise correlations between state bits
when computing their probabilities. This requires 2m additional gates and can
get very expensive. Nevertheless, they show good experimental results. The
approach in Tsui et al. [1994] is to unroll the combinational logic block k times.
This is less expensive than Monteiro and Devadas [1994], and the authors
observe that with k = 3 or so, good results can be obtained. Finally, in order for
the FSM to be Markov, its input vectors must be independent and identically
distributed, which is another assumption that also may not hold in practice.

A new simulation-based approach was introduced by the authors in Najm
et al. [1995] that makes no assumptions about the FSM behavior (Markov or
otherwise), makes no independence assumption about the state lines, and al-
lows the user to specify the desired accuracy and confidence to be achieved in
the results; with some approximation, the algorithm iterates until the spec-
ified accuracy is achieved. The only assumption made (which is given in the
next section) has to do with the autocovariance of the logic signals, which is
mild and generally true for all but periodic logic signals. The method involves
collecting statistics from a number of parallel simulations of the same circuit,
each of which is driven by an independent set of vectors. The statistics gathered
are used to determine the state line probabilities. In this article, we extend this
approach to compute the latch switching activity in addition to the probability,
and we provide an improved convergence criterion that significantly improves
the run-time with no significant loss of accuracy.

3. PROBLEM FORMULATION

Since the system is clocked, it is convenient to work with discrete time, so
that the FSM inputs at time k, ui(k), and its present state at that time xi(k),

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 459

determine its next state xi(k+1), and its output. In order to take into account the
effect of large sets of inputs, one is typically interested in the average power dis-
sipation over long periods of time. Therefore, we assume that the FSM operates
for all time (−∞ < k <∞). An infinite logic signal x(k) can be characterized by
two measures: signal probability P (x) is the fraction of clock cycles (time units)
in which the signal is high, and transition density D(x) is the average number
of logic transitions per clock cycle. These measures are formally presented in
Appendix A, where it is also shown that D(x) = P (Tx), where Tx(k) is another
logic signal derived from x(k) so that Tx(k) = 1 only in those cycles where x(k)
makes a transition; that is,

Tx(k) =
{

1, if x(k) 6= x(k − 1);
0, otherwise.

(1)

It should be stressed that the result D(x) = P (Tx) is true only for discrete-time
logic signals, that is, for signals that make at most one transition per clock cycle,
so that they are glitch-free. In this article, we are mainly concerned with the
flip-flop outputs which are obviously glitch-free, so that this result is relevant.

In order to study the properties of a logic signal over (−∞,∞), it is useful
to consider a random model of logic signals. We use bold font to represent
random quantities. We denote the probability of an event A by P{A} and, if x
is a random variable, we denote its mean by E[x]. An infinite logic signal x(k)
can be viewed as a sample of a stochastic process x(k), consisting of an infinite
set of shifted copies of the logic signal. This process, which we call a companion
process, embodies all the details of the logic signal, including its probability and
density. Details and basic results related to the companion process are given in
Appendix A.2 as an extension of previous continuous-time work [Najm 1993b].
Specifically, the companion process is stationary, and for any time instant k,
the probability that x(k) is high is equal to the signal probability of the logic
signal:

P{x(k) = 1} = P (x). (2)

This result holds for any logic signal. If we (conceptually) construct the
companion processes corresponding to the FSM signals, then we can view
the FSM as a system operating on stochastic inputs, consisting of the com-
panion processes u1(k), u2(k), . . . , um(k), and having a stochastic state consist-
ing of the processes x1(k), x2(k), . . . , xn(k). Given statistics of the input vector
U(k) = [u1(k) u2(k) · · · um(k)], one would like to compute some statistics of the
state vector X(k) = [x1(k) x2(k) · · · xn(k)].

Before going on, we need to make one mild assumption related to the covari-
ance of the process X(k):

ASSUMPTION 1. The state of the machine at time k becomes independent of
its initial state at time 0 as k→∞.

This assumption is mild because it is generally true in practice that, for
all nonperiodic logic signals, two values of the signal that are separated by a
large number of clock cycles become increasingly uncorrelated. One necessary
condition of this assumption is that the FSM be aperiodic, that is, that it does not

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

460 • V. Saxena et al.

cycle through a repetitive pattern of states. Aperiodicity is implicitly assumed
by most previous work on sequential circuits. Specifically, whenever an FSM is
assumed Markov (in which case aperiodicity becomes equivalent to the above
assumption) the FSM is usually also assumed to be aperiodic.

Before leaving this section, we consider the question of exactly what statis-
tics of X(k) are required in order to estimate the power. These statistics must
be sufficient to compute the combinational circuit power. Many techniques for
combinational circuit power estimation [Najm 1994] require the signal prob-
ability and transition density at every input (for discrete-time signals, know-
ing the transition density is equivalent to knowing the transition probability).
Since the power consumed in the flip-flops can also be derived from D(xi), then
the state line P (xi) and D(xi) can be sufficient to compute the power for the
whole circuit. An algorithm for computing these statistics is presented in the
next section.

4. COMPUTING STATE LINE STATISTICS

We propose to obtain the state line statistics by performing Monte Carlo logic
simulation of the design using a high-level functional description, say, at the
register-transfer-level, and computing the probabilities from the large number
of samples produced. High-level simulation can be done very fast, so that one
can afford to simulate a large number of cycles. However, we need to define a
simulation setup and a mechanism to determine the length of the simulation
necessary to obtain meaningful statistics. It is also important to correctly choose
the input vectors used to drive the simulation. These issues are discussed below.

4.1 Simulation Setup

We first discuss the estimation of the state line probability P (xi). Suppose the
FSM is known to be in some state X 0 at time 0. Using (2), and given Assump-
tion 1, we have that for any state signal xi,

lim
k→∞

P{xi(k) = 1 | X(0) = X 0} = lim
k→∞

P{xi(k) = 1} = P (xi).

For brevity, we denote the above conditional probability by

Pk(xi | X 0) 4= P{xi(k) = 1 | X(0) = X 0}
so that

lim
k→∞

Pk(xi | X 0) = P (xi). (3)

Our method consists of estimating Pk(xi | X 0) for increasing values of k until
convergence (according to (3)) is achieved. To accomplish this, we perform a
number of simulation runs of the circuit, in parallel, starting from some state
X 0, and drive the simulations with input vector streams that are consistent
with the statistics of U(k). Each simulation run is driven by a separate inde-
pendently chosen input vector stream, and results in a logic waveform x(j)

i (k),
k = 0, 1, 2, . . . , where j = 1, 2, . . . , N designates the run number, and N is the

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 461

number of simulation runs. If we average the results at every time k we obtain
an estimate of the probability at that time as follows,

p(N)
i (k) = 1

N

N∑
j=1

x(j)
i (k).

From the law of large numbers, it follows that

lim
N→∞

p(N)
i (k) = Pk(xi | X 0).

We do not actually have to perform an infinite number of runs. Using established
techniques for the estimation of proportions [Miller and Johnson 1990], we can
predict how many runs to perform in order to achieve some user-specified error-
tolerance (ε) and confidence (1 − α) levels. Specifically, it can be shown [Najm
1993a] that if we want (1− α)× 100% confidence that∣∣p(N)

i (k)− Pk(xi | X 0)
∣∣ < ε, (4)

then we must perform at least N ≥ max(N2
1 , N2

2 , N2
3) runs, where

N1 = zα/2
2ε

, N2 =
zα/2
√

2ε + 0.1+
√

(ε + 0.1)z2
α/2 + 3ε

2ε
,

and N3 =
√

63+ zα/2
2
√
ε

,

and where zα/2 is a real-valued function of α, defined as follows. Let z be a
random variable with a standard normal distribution, that is, a normal distri-
bution with mean 0 and variance 1. Then, for a given α, zα/2 is defined as the
real number for which

P{z > zα/2} = α/2.
The value of zα/2 can be obtained from the erf(·) function available on most
computer systems. For instance, zα/2 = 1.96 for 95% confidence (i.e., α = 0.05),
and zα/2 = 2.575 for 99% confidence. From the above equations, it can be seen
that 490 runs are enough to obtain a result with accuracy ε = 0.05 and 95%
confidence.

From the user-specified ε and α, the required value of N can be found up
front. Given this, we initiate N parallel simulations of the FSM and for each
state signal xi obtain waveforms representing Pk(xi | X 0) ≈ p(N)

i (k) for in-
creasing k values. The same methodology can be used to estimate D(xi). Dur-
ing the simulation, statistics for estimation of the state transition density are
also collected, along with the statistics for state line probability estimation.
This results in another set of waveforms for each state signal xi representing
Dk(xi | X 0) = Pk(Txi = 1 | X 0), where Txi (k) is defined in (1).

The remaining question is how to determine when k is large enough so that
Pk(xi | X 0) and Dk(xi | X 0) can be said to have converged to P (xi) and D(xi).
This is discussed in the next section.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

462 • V. Saxena et al.

4.2 Convergence in Time

Accurate determination of convergence in time (k) can be computationally very
expensive. This is not because the time to converge is long, but because study-
ing the system dynamics that determine convergence is very expensive. For in-
stance, even in the relatively simpler case when the system is assumed Markov,
convergence is related to the eigenvalues of the system matrix, whose size is
exponential in the number of flip-flops. To overcome this difficulty, we use a
heuristic technique to efficiently check for convergence. Simply stated, we mon-
itor the waveform values, over time, until convergence is detected. In order for
this simple approach to work well in practice, we make careful choices for the
specific ways in which the waveforms are monitored and convergence is checked,
as we describe. The resulting method, which we have found works quite well
in practice, has several important features: (1) monitor two waveforms instead
of one, (2) check both the average and difference of the two waveforms over a
time window, and (3) use a low-pass filter to remove the noise in the waveforms.
These are explained below, where we restrict the discussion to the probability
waveforms since the treatment of the density waveforms is similar.

4.2.1 Two Waveforms. Checking convergence of one waveform, say,
Pk(xi | X 0), may be done by simply monitoring the waveform values until they
have “leveled off” and remained steady for some length of time. By itself, this
simple approach is not advisable because it is possible for a waveform to level
off for some time and then change again before reaching its steady-state value.
In order to reduce the chance of this type of error, we monitor two versions of
the Pk waveform for each xi, and check on convergence by looking at both of
them. This is done by considering two different initial states denoted X 0 and
X 1, as follows.

It is clear from Equation (3) that the choice of the initial state does not affect
the final result. It may affect the rate of convergence, but not the final proba-
bility or density values. The only requirement, in order for the error tolerance
and confidence results to be valid, is that all the N simulation runs start in the
same state. Thus, we perform two sets of simulation runs of the machine, each
consisting of N machines running in parallel. Each of the N machines in a set
starts in the same initial state, but different initial states, X 0 and X 1, are used
for the two sets (the mechanism for determining X 0 and X 1 is presented in Sec-
tion 4.3). Each machine is driven by an independently selected (see Section 4.5)
input stream so that the observed data from the different machines constitute
a random sample. For each state line signal, statistics are collected from each
of the N parallel simulations in a set. This results in two waveforms for the
steady-state probability, Pk(xi | X 0) and Pk(xi | X 1), for increasing k values.

Is it possible to further improve the technique by examining three or more
waveforms? It may be, but we have observed that the use of two waveforms gives
sufficient accuracy. The second waveform basically gives a second opinion, and
we have not found a need for a third.

4.2.2 Time Window. We use two measures to check on the convergence
of the pairs of Pk waveforms. Since both Pk(xi | X 0) and Pk(xi | X 1) should

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 463

converge to P (xi), we monitor both their difference (δk) and their average (µk);
where δk(xi) is defined as |Pk(xi | X 0) − Pk(xi | X 1)| and µk(xi) is defined as
(Pk(xi | X 0) + Pk(xi | X 1))/2. When δk(xi) remains within ±ε of 0 and µk(xi) re-
mains within±ε of some fixed value, for a certain time window, we consider that
Pk(xi | X 0) and Pk(xi | X 1) have converged to their steady-state P (xi) value. We
have experimented with various time window sizes, and found that a window
of just three cycles is sufficient.

During the simulation, we simultaneously obtain another set of two wave-
forms corresponding to the transition density, Dk(xi | X 0) and Dk(xi | X 1), for
each state signal xi. The convergence criteria used for P (xi) presented above
are also applied to determine the convergence of D(xi). A state signal xi is
declared converged when both P (xi) and D(xi) have converged.

4.2.3 Filter. The combination of the two features presented above gives
good results in practice, but we have found that it sometimes takes longer
than it should to observe convergence. By this we mean, for instance, that
both waveforms Pk(xi | X 0) and Pk(xi | X 1) will be found to “hover” for a
long time around the same value. They will have effectively converged, but
their constant fluctuations around the steady-state value impede the con-
vergence check. The fluctuations have the character of random noise and in
some cases they may simply be due to slow system dynamics. In any case, it
is clear that their removal is imperative in order to get a faster convergence
check.

To achieve this, the waveforms are filtered before the convergence criteria are
applied to them. We use a linear phase, ideal low-pass filter with an empirically
selected fcT equal to 0.02, in conjunction with a Hamming window of width
100. The impulse response of the filter is:

h[n] =
{ sin[2π0.02(n− 50)](0.54− 0.46 cos[2πn/100])

π (n− 50), if 0 ≤ n ≤ 100;

0, otherwise.
(5)

The first sidelobe of the Hamming window is 41 dB below the main lobe. As a
result the negative component in its frequency response is negligible in com-
parison with the other filtering windows such as the Hanning or the Rectangu-
lar window and the resulting FIR filter does not have ripples in the passband.
Although the Blackman and the Bartlett (triangular) windows also result in fil-
ters without ripples in the passband, the Hamming window introduces the nar-
rowest transition band for the same window size [Oppenheim and Schafer 1989;
Chen 1979]. Any sinusoidal variation with a time period less than 100 (= 1/ fcT)
timesteps is removed by the filtering process, eliminating high-frequency noise
and oscillations in the waveforms. At least 100 time steps are required before
one has sufficient datapoints to use this filter. For this reason, the filter is ap-
plied to the waveforms only after 100 cycles have passed. This amounts to a
warmup period of 100 cycles, which speeds up the convergence check without
compromising the quality of the results. The above filter parameters were cho-
sen because they were found to work well in practice. The specific parameter
values are not critical; it only matters that the filter remove the high frequency
fluctuations in the waveforms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

464 • V. Saxena et al.

For every state signal xi, each of the four waveforms Pk(xi | X 0), Pk(xi | X 1),
Dk(xi | X 0), and Dk(xi | X 1) is filtered separately. When all state signals have
converged, the simulation is terminated and the average of the filtered versions
of Pk(xi | X 0) and Pk(xi | X 1) is reported as the signal probability P (xi), for each
xi and the average of the filtered versions of Dk(xi | X 0) and Dk(xi | X 1) is
reported as the transition density D(xi).

4.3 Determination of the Initial States

To carry out the simulations described above, we require two initial states
X 0 and X 1 for the FSM. In case information about the design of the FSM is
available, the user may supply a set of two states that correspond to normal
operation of the circuit. Care should be taken to ensure that these states are
far apart in the state space of the FSM, but in the same connected subset of the
state space, leading to better coverage of the state space during the simulation
process.

In practice, it may not be possible for the user to supply two different states.
Thus, we present a simulation-based technique to determine a second state X 1,
given a state X 0. If the circuit in consideration has an explicit reset state, X 0
could be chosen to be equal to that. In other cases, if no reset state is known,
any state that occurs in the regular operation of the circuit could be supplied
by the user to be used as X 0. In case no user-supplied information is available,
we choose X 0 = [0 0 · · ·0] as the default value. We initiate a simulation with
the FSM starting in X 0. The simulation is carried out for 100 timesteps, using
either randomly selected (or user-supplied; see Section 4.5) input vectors. The
required X 1 is chosen to correspond to the state with the largest Hamming
distance from X 0, observed during the 100 timesteps. Although this does not
guarantee optimal starting points in the state-space, we use this method in the
absence of any other information about the design of the FSM.

The mechanism also ensures that X 1 corresponds to a state that the FSM
would visit under the circuit’s normal operation. The choice of 100 timesteps is
empirical and user-controlled. This simulation, to determine X 1, is carried out
before the main simulation starts and its contribution to the total run-time is
negligible (less than 1%).

4.4 Low Density State Signals

We observed that, in some circuits, there exist some state signals which have
very low switching activity. We refer to such signals as being low-density state
signals. For most of these signals, the low density is observed regardless of
the initial state of the FSM (X 0 or X 1). For such signals, it is typical to find
that the transition density waveforms Dk(xi | X j) converge, but the signal prob-
ability waveforms Pk(xi | X j) may not converge as fast. This is because a signal
may get stuck at logic 0 or 1 and remain there for a long time because of low
switching activity. As a result the Pk(xi | X 0) may be close to 1 and the Pk(xi | X 1)
waveform may be close to 0 or vice versa. Although the waveforms do not have
significant variation over time and thus satisfy the average criterion, they do
not satisfy the difference criterion for convergence. As a result in the case of

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 465

some circuits, the simulation process may continue for a long time, without any
tangible gain of knowledge about the node statistics.

To account for these state signals we have incorporated a stopping criterion
called the low density criterion. Essentially, we relax the error tolerance for state
signals that are declared to be low density. This results in significant speedup
and allows the handling of very large circuits. During the simulation, we keep
note of the last timestep klast in which at least one state signal was declared
to have converged using the regular convergence criterion. We continue the
simulation process using the regular convergence criterion as long as kcurrent −
klast < knochange, where knochange is a fixed threshold value that indicates how
long one is willing to wait before possibly doing some special case handling for
low-density nodes. In our implementation, knochange is a user-defined constant.

The special case handling is as follows. We consider all the state signals
that have not yet converged and check to see if either Dk(xi | X 0) or Dk(xi | X 1)
is below a user-specified low-density threshold Dmin, in which case the state
signal xi is declared to be a low-density state signal. Since low-density state
lines will have little impact on the circuit power, all low-density signals are
immediately assumed to have converged, although the user is cautioned about
their presence. As obvious from the results in Section 5, the number of such state
lines is very low. Since the switching activity for these state lines is low, the
absolute error in the power estimate introduced as a result of this termination
is negligible. The authors have also observed that the low-density criterion has
no effect on the results for the remaining nodes which converge normally.

The simulation is continued further in case some state signals remain that
have neither converged nor are classified as low density. If no new state sig-
nals converge in another knochange timesteps, the low-density threshold is incre-
mented by a small amount and the low-density criterion is applied again. For
the benchmark circuits which we considered, this happened only once, and is
pointed out in Section 5.

4.5 Input Generation

In view of Assumption 1, one requirement on the applied input sequence U (k)
is that it not be periodic. Another condition, required for the estimation (4) to
hold, is that the different U (j)(k) sequences used in different simulation runs
j = 1, . . . , N be selected independently. Otherwise, no limitations are placed
on the input sequence.

The exact way in which the inputs are selected depends on the design and
on what information is available about the inputs. For instance, if the FSM is
meant to execute microcode from a fixed set of instructions, then every sequence
U (j)(k) may be a piece of some microcode program, with each U (j)(k) being se-
lected independently from some pool of typical microcode sections. This method
of input generation faithfully reproduces the bit correlations in U (k) as well
as the temporal correlation between U (k), U (k + 1), Alternatively, if the
user has information on the relative frequency with which instructions occur
in practice, but no specific program from which to select instruction sequences,
then a random number generator can be used to select instructions at random

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

466 • V. Saxena et al.

to be applied to the machine. This would preserve the bit correlations, but not
the temporal correlations between successive instructions. Conceivably, if such
correlation data are available, one can bias the random generation process to
reproduce these correlations.

In more general situations, where the machine inputs can be arbitrary,
simpler random generation processes can be used. For instance, it may not
be important in some applications to reproduce the correlations between bits
and between successive vectors. The user may only have information on the
statistics of the individual input bits, such as the probability P (ui) and den-
sity D(ui) for every input. In this case, one can design a random genera-
tion process to produce signals that have the required P and D statistics, as
follows.

Using Equations (A.3) in Appendix A, one can compute from P and D the
mean high time and mean low time of the signal. By assuming a certain dis-
tribution type for the high and low pulse widths, one can then easily generate
a logic signal with the required statistics. For instance, if one uses a geometric
distribution (which is equivalent to the signals xi being individually Markov),
then one obtains a fixed value for the probabilities P{xi(k) = 1 | xi(k − 1) = 0}
and P{xi(k) = 0 | xi(k − 1) = 1}, as shown in Xakellis and Najm [1994], and
generates the logic signals accordingly. Incidentally, in this case, even though
the inputs are Markov, the FSM itself is not necessarily a Markov system.

Finally, if only the probabilities P (xi) are available for the input nodes, and if
it is not important to reproduce any input correlation information, one can gen-
erate the inputs by a sequence of coin flips using a random number generator.
In this case, the inputs are said to be independent and identically distributed
and the FSM can be shown to be Markov, but the individual state bits xi may
not be Markov.

Our implementation results for this approach, reported in the next section,
are based on this last case of independent and identically distributed inputs.
However, the technique is applicable to any other mechanism of input genera-
tion, as we have explained.

5. EXPERIMENTAL RESULTS

This technique was implemented in a prototype C program that accepts a netlist
description of a synchronous sequential machine. The program performs a zero
delay logic simulation and monitors the flip-flop output probabilities and den-
sities until they converge. To improve the speed, we simulate 31 copies of the
machine in parallel, using bitwise operations. We have tested the program on a
number of circuits from the ISCAS-89 sequential benchmark set [Brglez et al.
1989].

All the results presented below are based on an error tolerance of 0.05 (i.e.,
ε = 0.05) and 95% confidence (i.e., α = 0.05), which implies that N = 490.
For each circuit we choose X 0 = [0 0 · · ·0]. Under these conditions, a typical
convergence characteristic is shown in Figure 2. The two waveforms shown
correspond to p(N)

i (k) starting from X 0 and p(N)
i (k) starting from X 1, for node

X.3 of circuit s838.1 (this circuit has 34 inputs, 32 flip-flops, and 446 gates).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 467

0 20 40 60
Clock Cycles

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Fig. 2. Convergence of probability for s838.1, node X.3.

Table I. A Few ISCAS-89 Circuits

Circuit No. Inputs No. Latches No. Gates
s1196 14 18 529
s1238 14 18 508

s713 35 19 393
s1423 17 74 657

This decaying sinusoidal convergence is typical, although in some cases the
convergence is simply a decaying exponential and is much faster.

In order to assess the accuracy of the technique, we compared the (0.05, 95%)
results to those of a much more accurate run of the same program. We used 0.005
error tolerance and 99% confidence for the accurate simulation which required
66,349 separate copies of the machines for each of the two initial states X 0
and X 1. Each of these 66,349 machines was simulated independently. Since we
used a 100-point filter and a convergence window of 3 timesteps, at least 103
timesteps were required before we started to apply the convergence criteria.
Assuming convergence in the shortest possible time (103 cycles), this implies
that a total of more than 6.8 million (103× 66, 349) vectors were fed into each
set of machines (X 0 and X 1).

Since we are interested only in steady-state node values during the simu-
lation, there is no need to use a more accurate timing simulator or a circuit
simulator to make these comparisons. These highly accurate runs take a long
time and, therefore, they were only performed on the limited set of benchmark
circuits given in Table I. We then computed the difference between the statistics
from the (0.05, 95%) run and those from the (0.005, 99%) run. Figure 3 shows
the resulting error histogram for all the state line probability for all the flip-flop
outputs from the circuits in Table I, and Figure 4 is the error histogram for the
state line transition density. Notice that all the nodes have errors well within

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

468 • V. Saxena et al.

0

20

40

60

80

100

120

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"proberr"

Fig. 3. Flip-flop probability error histogram.

the desired user-specified 0.05 error bounds for both the state line probability
and transition density.

We monitored the speed of this technique and report some results in Table II,
where the execution times are on a SUN Sparc-5 workstation. These circuits
are much larger (especially in terms of flip-flop count) than the largest ISCAS-
89 circuits tested in previous methods [Monteiro and Devadas 1994; Tsui et al.
1994]. Furthermore, for those circuits in the table that were also tested in
Monteiro and Devadas [1994] and Tsui et al. [1994], this technique works much
faster. Since our method does not use BDDs to compute probabilities, there are
no memory problems with running large circuits. The largest circuit, s38584.1,
requires 19.2 MB on a SUN Sparc5.

Table II also gives the number of cycles required for convergence and the
number of state signals that are classified as low density. For the low-density
criterion, the parameters used are: knochange = 500 and Dmin = 0.05 with in-
crement (if required) of 0.05. As mentioned earlier, at least 103 timesteps are
required before we start to apply the convergence criteria. Most of the smaller
circuits without low-density flip-flops converge within 120 timesteps. As ex-
pected, however, the number of cycles required increases for larger circuits.
The larger flip-flop count means that the machine state space is much larger
and the probability of individual machine states becomes much smaller. As
a result, many more cycles may be required to achieve equilibrium. Larger
circuits also require more CPU time per cycle, since the simulation of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 469

0

10

20

30

40

50

60

70

80

90

100

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

"denserr"

Fig. 4. Flip-flop density error histogram.

Table II. Convergence Information for ISCAS89 Benchmarks

Circuit No. Inputs No. Latches No. Gates No. Cycles CPU Time No. Low Dens

s208.1 10 8 104 711 36.57 sec. 1
s298 3 14 119 111 5.30 sec. 0
s344 9 15 160 112 7.21 sec. 0
s349 9 15 161 110 7.18 sec. 0
s420.1 18 16 218 711 1.14 min. 1
s444 3 21 181 111 7.38 sec. 0
s641 35 19 379 110 17.00 sec. 0
s713 35 19 393 110 17.15 sec. 0
s838.1 34 32 446 711 2.23 min. 1
s953 16 29 395 112 15.50 sec. 0
s1196 14 18 529 111 15.49 sec. 0
s1238 14 18 508 112 15.67 sec. 0
s1423 17 74 657 112 27.36 sec. 0
s1494 8 6 647 108 13.94 sec. 0
s5378 35 179 2779 179 2.67 min. 0
s9234.1 36 211 5597 614 12.12 min. 3
s13207.1 62 638 7951 1387 53.13 min. 3
s15850.1 77 534 9772 372 17.99 min. 0
s38584.1 38 1426 19253 112 10.25 min. 0

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

470 • V. Saxena et al.

combinational part of the circuit also takes more time in comparison to smaller
circuits.

In the case of circuits with low-density flip-flops, the number of cycles re-
quired was at least 603 (103 before we applied the normal criteria and 500 wait
cycles before we applied the low-density criterion). Circuit s13207.1 is the only
one in which we needed to increment the low-density threshold Dmin.

6. SUMMARY AND CONCLUSIONS

Most existing power estimation techniques are limited to combinational cir-
cuits, whereas all practical circuit designs are sequential. We have presented
a new statistical technique for estimation of the state line statistics in syn-
chronous sequential circuits. By simulating multiple copies of the circuit, un-
der independently selected input sequences, statistics on the flip-flop outputs
can be collected. This allows efficient power estimation for the whole design. An
important advantage of this approach is that the desired accuracy of the results
can be specified up front by the user; with some approximation, the algorithm
iterates until the specified accuracy is achieved.

We have implemented this technique and tested it on a number of sequential
circuits with up to 1526 flip-flops and a state space of size greater than 10459. The
additional convergence criterion for low-density nodes and the new simulation-
based mechanism to determine the starting state of the FSM leads to reduced
run-time. We confirm that the accuracy specified by the user is indeed achieved
by our technique. The memory requirements are very reasonable, so that very
large circuits can be handled with ease.

APPENDIX

A. DISCRETE-TIME LOGIC SIGNALS

Let Z = {. . . ,−2,−1, 0, 1, 2, . . .} be the set of all integers, and let x(k), k ∈ Z,
be a function of discrete time that takes the values 0 or 1. We use such time
functions to model discrete-time logic signals in digital circuits. The definitions
and results presented below represent extensions of similar concepts developed
for continuous time signals [Najm, 1993b]. The main results, Propositions 1
and 3, are therefore given without proof. In Proposition 2 we present a bounding
relationship between probability and density for discrete-time signals.

A.1 Probability and Density

Notice that the set of integers {b−K /2c + 1, . . . , b+K /2c} contains exactly K
elements, where K > 0 is a positive integer.

Definition 1. The signal probability of x(k), denoted P (x), is defined as:

P (x) 4= lim
K→∞

1
K

b+K /2c∑
k=b−K /2c+1

x(k). (A.1)

It can be shown that the limit in (A.1) always exists.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 471

If x(k) 6= x(k − 1), we say that the signal undergoes a transition at time k.
Corresponding to every logic signal x(k), one can construct another logic signal
Tx(k) so that Tx(k) = 1 if x(k) undergoes a transition at k; otherwise Tx(k) = 0.
Let nx(K) be the number of transitions of x(k) over {b−K /2c + 1, . . . , b+K /2c}.
Therefore, nx(K) ≤ K .

Definition 2. The transition density of a logic signal x(k), denoted by D(x),
is defined as

D(x) 4= lim
K→∞

nx(K)
K

. (A.2)

Notice that nx(K) = ∑b+K /2c
k=b−K /2c+1 Tx(k), so that D(x) = P (Tx), and the limit

in (A.2) exists.

The time between two consecutive transitions of x(k) is referred to as an
intertransition time: if x(k) has a transition at i and the next transition is
at i + n, then there is an intertransition time of length n between the two
transitions. Let µ1 (µ0) be the average of the high (low), that is, corresponding
to x(k) = 1 (0), intertransition times of x(k). In general, there is no guarantee
of the existence of µ0 and µ1. If the total number of transitions in positive time
is finite, then we say that there is an infinite intertransition time following the
last transition, and µ0 or µ1 will not exist. A similar convention is made for
negative time.

PROPOSITION 1. If µ0 and µ1 exist, then

P (x) = µ1

µ0 + µ1
and D(x) = 2

µ0 + µ1
. (A.3a, b)

PROPOSITION 2. P (x) and D(x) are related as

1
2

D(x) ≤ P (x) ≤ 1− 1
2

D(x).

PROOF. From (A.3), it is easy to arrive at:

µ1 = 2P (x)
D(x)

and µ0 = 2(1− P (x))
D(x)

(A.4)

Since time is discrete, then µ1 ≥ 1 and µ0 ≥ 1. Combining this with (A.4) leads
to the required result.

Another way of expressing this result is to say that D(x) ≤ 1−2|P (x)−1/2|, so
that for a given P (x), D(x) is restricted to the shaded region shown in Figure 5.

A.2 The Companion Process

Let x(k), k ∈ Z, be a discrete-time stochastic process [Najm 1993a] that takes
the values 0 or 1, transitioning between them at random discrete transition
times. Such a process is called a 0–1 process. A logic signal x(k); can be thought
of as a sample of a 0-1 stochastic process x(k); that is, x(k) is one of an infinity
of possible signals that comprise the family x(k).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

472 • V. Saxena et al.

0 10.5
0

1

P(x)

D(x)

Fig. 5. Relationship between density and probability.

A stochastic process is said to be stationary if its statistical properties are
invariant to a shift of the time origin [Najm 1993a]. Among other things, the
mean E[x(k)] of such a process is a constant, independent of time, and is denoted
by E[x]. Let nx(K) denote the number of transitions of x(k) over {b−K /2c +
1, . . . , b+K /2c}. For a given K , nx(K) is a random variable. If x(k) is stationary,
then E[nx(K)] depends only on K , and is independent of the location of the
time origin. Furthermore, one can show that if x(k) is stationary, then the
mean E[nx(K)/K] is constant, irrespective of K .

Let z ∈ Z be a random variable with the cumulative distribution function
Fz(k) = 1/2 for any finite k, and with Fz(−∞) = 0 and Fz(+∞) = 1. One might
say that z is uniformly distributed over the whole integer set Z. We use z to
construct from x(k) a stochastic 0–1 process x(k), called its companion process,
defined as follows.

Definition 3. Given a logic signal x(k) and a random variable z, uniformly
distributed over Z, define a 0–1 stochastic process x(k), called the companion
process of x(k), given by

x(k) 4= x(k + z). (A.5)

For any given k = k1, x(k1) is the random variable x(k1 + z), a function of
the random variable z. Intuitively, x(k) is a family of shifted copies of x(k), each
shifted by a value of the random variable z. Thus, not only is x(k) a sample of
x(k), but one can also relate statistics of the process x(k) to properties of the
logic signal x(k), as follows.

PROPOSITION 3. The companion process x(k) of a logic signal x(k) is station-
ary, with

E[x] = P{x(k) = 1} = P (x) and E
[

nx(K)
K

]
= D(x). (A.6a, b)

REFERENCES

BRGLEZ, F., BRYAN, D., AND KOZMINSKI, K. 1989. Combinational profiles of sequential benchmark
circuits. In Proceedings of the IEEE International Symposium on Circuits and Systems, 1929–
1934.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Estimation of State Line Statistics • 473

BRODERSEN, R. W., CHANDRAKASAN, A., AND SHENG, S. 1991. Technologies for personal communica-
tions. In Proceedings of the 1991 Symposium on VLSI Circuits (Tokyo), 5–9.

CHEN, C. T. 1979. One-Dimensional Digital Signal Processing. Marcel Dekker, New York.
HACHTEL, G. D., MACII, E., PARDO, A., AND SOMENZI, F. 1994. Probabilistic analysis of large finite

state machines. In Proceedings of the 31st ACM/IEEE Design Automation Conference (San Diego,
June 6–10), 270–275.

ISMAEEL, A. A. AND BREUER, M. A. 1991. The probability of error detection in sequential circuits
using random test vectors. J. Electron. Test. 1 (Jan.), 245–256.

MILLER, I. R. AND JOHNSON, R. 1990. Probability and Statistics for Engineers, 4th ed., Prentice-
Hall, Englewood Cliffs, N.J.

MONTEIRO, J. AND DEVADAS, S. 1994. A methodology for efficient estimation of switching activity
in sequential logic circuits. In Proceedings of the 31st ACM/IEEE Design Automation Conference
(San Diego, June 6–10), 12–17.

NAJM, F. 1993a. Statistical estimation of the signal probability in VLSI circuits. Tech. Rep.
#UILU-ENG-93-2211, DAC-37, Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign.

NAJM, F. 1993b. Transition density : A new measure of activity in digital circuits. IEEE Trans.
Comput. Aided Des. 12, 2 (Feb.), 310–323.

NAJM, F. 1994. A survey of power estimation techniques in VLSI circuits. IEEE Trans. VLSI
Syst. 2, 4 (Dec.), 446–455.

NAJM, F. N., GOEL, S., AND HAJJ, I. N. 1995. Power estimation in sequential circuits. In Proceedings
of the 32nd Design Automation Conference (San Francisco, June 12–16), 635–640.

OPPENHEIM, A. AND SCHAFER, R. 1989. Discrete-Time Signal Processing. Prentice-Hall, Englewood
Cliffs, N.J.

PAPOULIS, A. 1984. Probability, Random Variables, and Stochastic Processes, 2nd ed., McGraw-
Hill, New York.

TSUI, C.-Y., PEDRAM, M., AND DESPAIN, A. M. 1994. Exact and approximate methods for calculat-
ing signal and transition probabilities in FSMS. In Proceedings of the 31st ACM/IEEE Design
Automation Conference (San Diego, June 6–10), 18–23.

XAKELLIS, M. AND NAJM, F. 1994. Statistical estimation of the switching activity in digital circuits.
In Proceedings of the 31st ACM/IEEE Design Automation Conference (San Diego, June 6–10),
728–733.

Received January 1996; revised January 1997; accepted April 2002

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

