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Generating Current Constraints to Guarantee RLC Power Grid Safety

ZAHI MOUDALLAL and FARID N. NAJM, University of Toronto

A critical task during early chip design is the efficient verification of the chip power distribution network.
Vectorless verification, developed since the mid-2000s as an alternative to traditional simulation-based
methods, requires the user to specify current constraints (budgets) for the underlying circuitry and checks
if the corresponding voltage variations on all grid nodes are within a user-specified margin. This framework
is extremely powerful, as it allows for efficient and early verification, but specifying/obtaining current con-
straints remains a burdensome task for users and a hurdle to adoption of this framework by the industry.
Recently, the inverse problem has been introduced: Generate circuit current constraints that, if satisfied by
the underlying logic circuitry, would guarantee grid safety from excessive voltage variations. This approach
has many potential applications, including various grid quality metrics, as well as voltage drop-aware place-
ment and floorplanning. So far, this framework has been developed assuming only resistive and capacitive
(RC) elements in the power grid model. Inductive effects are becoming a significant component of the power
supply noise and can no longer be ignored. In this article, we extend the constraints generation approach
to allow for inductance. We give a rigorous problem definition and develop some key theoretical results
related to maximality of the current space defined by the constraints. Based on this, we then develop three
constraints generation algorithms that target the peak total chip power that is allowed by the grid, the
uniformity of current distribution across the die area, and a combination of both metrics.
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1. INTRODUCTION

Successive technology generations of integrated circuits have continuously driven to-
wards reduced feature size, larger operating frequency, and lower voltage supply. The
large operating frequency of modern chips often leads to large switching currents that
flow in the power and ground networks, causing power supply noise. Furthermore, the
lower voltage supply implies that noise margins are reduced and susceptibility to sup-
ply noise is increased. As a result, the power and ground networks experience excessive
voltage variations that put both circuit performance and reliability at risk. A well-
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designed chip power distribution network should deliver well-regulated voltages at all
grid nodes to guarantee correct logic functionality at the intended design frequency.
It is clear that analysis and verification of the power distribution network are neces-
sary for reliable high-performance designs. We will use the term “power grid” to refer
to either the power or ground distribution networks. Furthermore, a power grid con-
sisting of only resistors and capacitors will be referred to as an RC model or RC grid,
while a power grid consisting of resistors, capacitors, and inductors will be referred to
as an RLC model or RLC grid.

Voltage variations on the power grid result from two major factors. The metal lines
of the gird are resistive in nature that, due to the large number of metal branches
required for grid routing, makes a significant power noise, commonly referred to as
resistive IR drop. This drop is becoming increasingly significant from one technology
node to the next as the metal lines widths are shrinking. The fast switching currents
in the power grid generate inductive effects, also referred to as Ldi/dt noise, due to
the significant inductance of the package leads resulting in power noise at the pad
locations. This inductive noise is becoming a significant component of the total power
supply noise [Lee et al. 2004; Muramatsu et al. 2005; Srivastava et al. 2005].

A common technique to mitigate the effects of the resistive and inductive parasitics
on the power distribution network is to insert decoupling capacitances by filling on-
die white spaces at strategic locations. On the other hand, these capacitances along
with the resistive and inductive parasitics form a complex RLC circuit that has a spe-
cific resonance frequency. If the chip operating frequency is close to this resonance
frequency, then the grid might experience large voltage variations that can be prob-
lematic. Therefore, inductive effects on the power grid must be included when verifying
circuits operating at high frequencies.

Power grid verification techniques often used in the industry are based on simulation.
Such methods assume full knowledge of the current waveforms drawn by every logic
block tied to the grid. These waveforms would then be used to simulate the grid and
determine the voltage variation at every node. Verifying the grid in this manner is
computationally prohibitive, as it requires an exhaustive set of current traces to cover
all possible voltage variations exhibited on the grid. Several non-exhaustive methods
have been introduced in the recent past to implement some sort of search in current
space. For example, there are search techniques that find vectors to maximize the
current drawn from the power network [Krstic and Cheng 1997], as well as methods
that use voltage drop analysis based on current statistics [Pant et al. 2004]. Another
notable limitation of simulation-based methods is that they cannot be applied at an
early stage of the design flow, when detailed information on the circuit currents is
not yet available. This signifies the need for a verification approach that does not
require simulation and only assumes information about the circuit currents that may
be available early in the design process, that is, vectorless methods.

Vectorless power grid verification, first proposed in Kouroussis and Najm [2003],
does not require full knowledge of the circuit currents. Contrary to simulation-based
approaches, this method relies on information that may be available at an early stage
of the design in the form of current constraints. Essentially, vectorless verification
consists of finding the worst-case voltage fluctuations achievable at all nodes of the
grid under all possible transient current waveforms that satisfy user-specified current
constraints. The grid is said to be safe if these fluctuations are below certain user-
specified thresholds. These methods are often formulated as linear programs (LPs).

Vectorless verification methods require the user to obtain/specify the current con-
straints, which can be done by an “offline” process of simulation of a logic block, if
the block is available and small enough to simulate, or heuristically based on design
expertise and engineering judgement (how big it is, what its power needs were in a
previous technology, how scaling would affect those needs, etc.). The lack of a systematic
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Fig. 1. Simple example of an RLC power grid.

approach to obtain/specify current constraints is a key limitation of vectorless verifi-
cation methods that remains a burdensome task and a hurdle to adoption of these
methods by industry practices. This particular problem of obtaining/specifying the
current constraints was first addressed in Moudallal and Najm [2015] by proposing
the following framework, referred to as the inverse vectorless verification: Given a grid
and the allowed voltage drop thresholds at all grid nodes, we aim to generate circuit
current constraints that, if satisfied by the underlying circuitry, would guarantee grid
safety. These current constraints encapsulate much useful information about the grid,
because these are essentially power budgets for the logic blocks under the grid. If all
design teams respect these budgets throughout the design flow, then the grid is safe
by construction at the end of the design. If the constraints impose too severe a budget
on a certain block in some corner of the die, for example, then one can address the
problem early on by modifying the grid, while it is still easy to do so, and generating
a fresh set of constraints. Alternatively, if the budgets are too severe for a candidate
layout location of a high level block, then perhaps the floorplan needs to be reconsid-
ered. Indeed, the constraints can be used to drive automated floorplanning as well as
placement, so grid-aware placement may become feasible, something that has never
been done before.

The authors in Moudallal and Najm [2015] laid down the theoretical foundation
for the current constraints generation framework. They show that there is an infinite
number of sets of current constraints, some of that allow more “flexibility” than others
for the underlying logic circuitry. Thus, constraints generation algorithms could target
key grid quality metrics such as the peak power dissipation that the grid can safely
support and the uniformity of current distribution across the die. These methods have
been further improved in Moudallal and Najm [2016] in addition to introducing a
combination of those quality metrics in Moudallal and Najm [2015].

In Moudallal and Najm [2015, 2016], an RC model of the power grid is used, ignoring
the parasitic inductance. As the inductive noise is becoming a significant component of
the power supply noise, the parasitic inductance can no longer be ignored. To demon-
strate this, we present a simple example in Figures 1, 2, and 3. Figure 1 shows a
simple power grid consisting of a four-node RLC circuit. The two current sources i1(t)
and i2(t) represent circuit blocks whose switching activity constitutes the load on the
grid, inducing voltage swings on the grid nodes. Figure 2 show the voltage variations
experienced on nodes 1 and 3 due to two current configurations of the same wave-
forms i1(t) and i2(t) but with different temporal alignment. It is clear from Figure 2
that the second current configuration leads to large power supply noise and should be
prohibited. Thus, current constraints provided to the design team should avoid such
a configuration. Figure 3 shows a current container (represented as empty polygon)
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Fig. 2. An example of a current waveform that leads to voltage violations.

Fig. 3. A current container (represented as an empty polygon) generated for the RC circuit resulting from
ignoring the inductance of Figure 1 that includes the problematic current waveform of Figure 2. Also, a
current container (represented as striped polygon) generated using one of the proposed algorithms presented
below that avoid the problematic current stimulus presented in Figure 2.
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resulting from the algorithms in Moudallal and Najm [2015, 2016] on the RC circuit in
Figure 1 after ignoring (short-circuiting) the inductance and another current container
(represented as striped polygon) resulting from one of the algorithms presented in this
article applied to the RLC circuit in Figure 1. Only the latter excludes the current trace
of the problematic current configuration.

In this work, we extend the current constraints generation framework to allow for
inductance. We use the same systematic way of defining the problem as in our previous
work, in the sense that we are interested to discover a safe container that allows as
much flexibility as possible to the underlying logic circuitry and targets specific design
objectives. The major difference from the work in Moudallal and Najm [2016] is that,
because inductive elements introduce voltage overshoots, the bound v(·) that was appro-
priate for the RC case is no longer useful and a new bound x(·) is required. Thus, most
of the theoretical results in Moudallal and Najm [2016] require new proofs for the RLC
context of this article. Furthermore, the constraints generation algorithms described
in Section 5, even though they target the same design objectives as in Moudallal and
Najm [2016], turn out to significantly differ because of the new theoretical bound x(·).

The rest of the article is organized as follows. The next section describes the power
grid model. In Section 3, we present some important notations and definitions and give
the problem definition. In Section 4, we present the bulk of our theoretical contribution.
In Section 5, we give three algorithms for generating circuit current constraints that
are provably maximal. Section 6 describes the implementation details of one of the
algorithms. In Section 7, we present some test results along with an analysis and
comparison of the three algorithms and describe the tradeoffs among them. Finally, in
Section 8, we give concluding remarks.

2. GRID MODEL

Throughout the rest of the article, we will use the notation x ≤ y (or x < y), for any two
vectors x and y, to denote that xi ≤ yi (or xi < yi), ∀i, respectively. Similarly, we will
use the notation X ≥ 0 (or X > 0), for any matrix X, to denote that Xij ≥ 0 (or Xij > 0),
∀i, j, respectively. We will also use the notation R

m
+ to denote the non-negative part of

the real space, that is, R
m
+ = {x ∈ R

m : x ≥ 0}.
The power grid is a large full-chip structure of connected metal lines across multiple

layers interconnected through vias and connected by C4 bumps to wiring in the
package and on the board. Typically, a power grid is modelled as a linear circuit
composed of a large number of lumped linear (RLC) elements. At its metal-1 or metal-2
terminals, the grid is loaded by the circuit blocks, where nonlinearities are encountered
due to the circuit metal-oxide-semiconductor field-effect transistors (MOSFETs). It is
practically impossible to jointly simulate or analyze both the full nonlinear circuit and
the large grid all at once, and common practice is to decouple the two. This typically
means that the circuit blocks are represented by some suitable model, consisting
of a current source along with some parasitic network to ground. However, for grid
verification, these parasitics are often neglected because of the larger impact that
uncertainty of currents has on the grid response, and so the circuit current sources
are often assumed ideal—and this is what will be assumed in this article.

Consider an RLC model of the power grid in which there are three types of nodes:
(1) Some nodes are connected to ideal current sources to ground, in parallel with
capacitors to ground, (2) some (most) nodes are connected to resistors or inductors
to other grid nodes and capacitors to ground, and (3) some nodes are connected to
resistors or inductors to other grid nodes and ideal voltage sources to ground. Note
that, in this work, mutual inductances and branch capacitances are ignored. That is,
only self-inductances are considered, and all capacitances are assumed to be connected
to ground. The current sources (with their parallel capacitors) represent the currents
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drawn by the logic circuits tied to the grid at these nodes. The ideal voltage sources
represent the external voltage supply, Vdd.

Excluding the ground node, let the power grid consist of nv + p nodes, where nodes
{1, . . . , nv} are the nodes not connected to a voltage source, while the remaining nodes
(nv + 1), (nv + 2), . . . , (nv + p) are the nodes where the p voltage sources are connected.
Let mbe the number of current sources connected to the grid, whose positive (reference)
direction of current is from node to ground, and assumed to be connected at nodes
1, 2, . . . , m ≤ nv, and let i(t) ≥ 0 be the m× 1 vector of all source currents. Also, let H be
an nv × m matrix of 0 and 1 entries that identifies (with a 1) which node is connected
to which current source. Finally, let nl be the number of inductors in the grid.

Let ϑ(t) be the nv × 1 vector of node voltages, relative to ground. By superposition,
ϑ(t) may be found in three steps: (1) open-circuit all the current sources and find the
response, which would be ϑ (1)(t) = Vdd; (2) short-circuit all the voltage sources and find
the response ϑ (2)(t); and (3) find ϑ(t) = ϑ (1)(t)+ϑ (2)(t). To find ϑ (2)(t), Kirchhoff ’s current
law (KCL) at every node k ∈ {1, . . . , nv} provides the following:

Gϑ (2)(t) + Cϑ̇ (2)(t) + Mil(t) + Hi(t) = 0, (1)

where il(t) is the nl × 1 vector of inductor branch currents; G is the nv × nv conductance
matrix, which is a sparse, symmetric positive semidefinite matrix with positive diago-
nal entries and non-positive off-diagonal entries; C is an nv × nv non-singular diagonal
matrix of the node capacitances; and M is an nv × nl incidence matrix consisting of ±1
or 0 elements only. If the graph consisting of all grid nodes 1, 2, . . . , nv and all grid resis-
tances in between these nodes is a connected graph, then G is said to be irreducible (see
the appendix). If this graph is not connected or does not cover all nv nodes, then there is
an easy and practical “fix” that maintains this useful property of G, which is to attach a
large resistance in parallel with every inductor. These large resistors have a negligible
effect on the circuit solution, but they have the effect that G becomes irreducible. We
are mainly interested in the voltage drop v(t) �= Vdd − ϑ(t) = −ϑ (2)(t), so

Gv(t) + Cv′(t) − Mil(t) = Hi(t). (2)

To take into account the relationship between the inductor branch currents and the
inductor voltages, we have the familiar inductor branch equation MT ϑ (2)(t) = Li′

l(t),
from which

MT v(t) + Li′
l(t) = 0, (3)

where L is an nl × nl non-singular diagonal matrix consisting of the inductance values
of the nl inductors in the circuit. The dynamics of the power grid are governed by the
combined set of Equations (2) and (3). Backward Euler discretization, applied to this
system, leads to

Av(t) − Mil(t) = Bv(t − �t) + Hi(t), (4)
MT v(t) + Eil(t) = Eil(t − �t), (5)

where B = C/�t, E = L/�t, and A = G + B. Multiplying Equation (5) by E−1 to get an
expression for il(t),

il(t) = −E−1MT v(t) + il(t − �t), (6)
and substituting that into Equation (4) gives

Dv(t) = Bv(t − �t) + Mil(t − �t) + Hi(t), (7)

where

D = G + C
�t

+ M
(

L
�t

)−1

MT . (8)
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It can be shown that D is a symmetric positive-definite M-matrix [Fawaz and Najm
2016], so D is non-singular and has non-positive off-diagonal entries [Varga 1962].
Furthermore, notice that the matrix D is real, because G, C, and L, are real matrices,
and D is irreducible due to Lemma E.4 (in the appendix), so D−1 > 0 [Varga 1962].
Multiplying Equation (7) by D−1 gives

v(t) = D−1 Bv(t − �t) + D−1Mil(t − �t) + D−1 Hi(t), (9)

and then substituting this for v(t) into Equation (6), we get

il(t) = −E−1MT D−1 Bv(t − �t) + (Inl − E−1MT D−1M)il(t − �t) − E−1MT D−1 Hi(t), (10)

where Inl is the nl × nl identity matrix. Combining Equations (9) and (10) gives the
system [

v(t)
il(t)

]
=

[
D−1 B D−1M

−E−1MT D−1 B (Inl − E−1MT D−1M)

] [
v(t − �t)
il(t − �t)

]

+
[

D−1 H
−E−1MT D−1 H

]
i(t).

(11)

Let

x(t) =
[

v(t)
il(t)

]
, F =

[
D−1 B D−1M

−E−1MT D−1 B (Inl − E−1MT D−1M)

]
,

and R =
[

D−1 H
−E−1MT D−1 H

]
,

(12)

so the system is governed by the recurrence equation

x(t) = Fx(t − �t) + Ri(t), (13)

where x(t) denotes the response vector of the power grid. For reference throughout the
article, we recall the dimensions of all vectors and matrices, where n = nv + nl: v(·) is
an nv × 1 vector; il(·) is an nl × 1 vector; i(·) is an m× 1 vector; x(·) is an n × 1 vector;
G, C, B, A, and D are nv × nv matrices; L and E are nl × nl matrices; M is an nv × nl
matrix; H is an nv × m matrix; F is an n × n matrix; and R is an n × m matrix.

Because the RLC grid is a stable linear system, and because the backward difference
approximation used in Equations (4) and (5) is absolutely stable [Lambert 1991], it
follows that for i(t) = 0, ∀t, and any bounded initial condition x(0), x(t) converges to
0 as t → ∞, so limp→∞ F p = 0, which is known to be true if and only if ρ(F) < 1,
where ρ(F) is the spectral radius of F [Saad 2003]. This allows us to use results
from Abdul Ghani and Najm [2011] and Fawaz and Najm [2016] that are replicated
below in Equations (16) and (31).

Finally, we assume that a certain number of grid nodes d ≤ nv are required to
satisfy some user-provided voltage safety specifications, captured in the 2d × 1 vector
xth = [ xub

xlb
], where xub ≥ 0 and xlb ≤ 0 are d × 1 vectors. These would typically be nodes

at the lower metal layers, where the chip circuitry is connected. Suppose that nodes
with voltage safety specification are labeled ι1, . . . , ιd, so for any k ∈ {1, . . . , d}, xub,k and
xlb,k are the voltage safety bounds on node ιk. Let � be a d × n matrix consisting of 0
and 1 elements only, specifying (with a 1 entry) the nodes that are subject to a voltage
threshold specification, that is, �k,ι j = 0, ∀ j 
= k, and �k,ιk = 1. Note that � ≥ 0 and
has exactly one 1 in every row and at most one 1 per column, otherwise 0s. With this,
the voltage safety specifications translate to xlb ≤ �x(t) ≤ xub, ∀t.
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Fig. 4. Example of a container F for i1(t) and i2(t).

3. PROBLEM DEFINITION

Note that Definitions 3.1, 4.1, 4.3, 4.6, 4.7, and 4.9 were given in Moudallal and Najm
[2016] and are repeated here for clarity. The statements of Lemmas 4.8, 5.1, D.3, D.4,
and Theorem 4.13 have been presented in Moudallal and Najm [2016] for the RC case
but require new proofs for the RLC context of this article.

First, we will introduce the notion of a container for a vector of current waveforms,
which will help us express constraints that guarantee grid safety.

Definition 3.1 (Container). Let t ∈ R, let i(t) ∈ R
m be a bounded function of time, and

let F ⊂ R
m be a closed subset of R

m. If i(t) ∈ F , ∀t ∈ R, then we say that F contains i(t),
represented by the shorthand i(·) ⊂ F , and we refer to F as a container of i(·).
Figure 4 illustrates the idea of a container for a simple case of two current waveforms.
Because i(t) = [i1(t) i2(t)]T ∈ F for all time instants, we say that F contains i(t).

Definition 3.2. If u is an n× 1 vector and w is a 2n× 1 vector, then we say that u ∈ w
if, ∀ j ∈ {1, . . . , n},

uj ≤ w j and uj ≥ w j+n. (14)

Thus, u is upper bounded by the top half of w and lower bounded by the bottom half
of w. We say that w is empty if there does not exist any x for which x ∈ w. Note that
w is non-empty if and only if w j ≥ w j+n, ∀ j ∈ {1, 2, . . . , n}. Notice that 0 ∈ xth, because
xlb ≤ 0 ≤ xub, so xth is non-empty.

LEMMA 3.3. Let u, u′ ∈ R
n and w,w′ ∈ R

2n. If u ∈ w and u′ ∈ w′, then u + u′ ∈ w + w′.

PROOF. For any j ∈ {1, . . . , n}, we have uj ≤ w j , uj ≥ w j+n, u′
j ≤ w′

j , and u′
j ≥ w′

j+n. It
follows that uj + u′

j ≤ w j + w′
j and uj + u′

j ≥ w j+n + w′
j+n, so u + u′ ∈ w + w′.

Definition 3.4 (Safe Grid). A grid is said to be safe for a given i(t), defined ∀t ∈ R, if
�x(t) ∈ xth, ∀t ∈ R.
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Fig. 5. Nodal voltage at nodes 1 and 3 of Figure 1 due to current waveform in Figure 4. The gray line
represents the Vdd value. The dashed lines represent the voltage overshoot/undershoot thresholds. The blue
dotted lines represent the values of Px(F), where F is the current container represented in Figure 4.

Going back to the example of Figure 1, the nodes of interest are nodes 1 and 3
with voltage overshoot/undershoot thresholds of 50 mV, so �x(t) = [v1(t) v3(t)]T and
xth = [50 50 − 50 − 50]T . In Figure 5, we show the voltage response at nodes 1 and
3 due to the current waveform i(t) = [i1(t) i2(t)]T shown in Figure 4. Notice that the
voltage response is within the specified thresholds so �x(t) ∈ xth and the grid is safe
under i(t).

To check if a power grid is safe, one would typically be interested in the worst-case
voltage variation at some grid node k ∈ {1, . . . , nv}, at some time point τ ∈ R, over a wide
range of possible current waveforms. Using the above notation, and given a container
F that contains a wide range of current waveforms that are of interest, we can express
this as maxi(t)⊂F (xk(τ )) and mini(t)⊂F (xk(τ )). Clearly, because F is the same irrespective
of time, and applies at all time points t ∈ R, then these worst-case voltage variations
must be time invariant, independent of the chosen time point τ . We now introduce the
eopt(·) notation, which is used to capture in a single vector all the separate worst-case
voltage variations, as follows.

Definition 3.5 (eopt Operator). Let Y be a bounded and closed subset of R
m and let

f (·) be a vector-valued function f (·) : Y → R
n. If z ∈ R

2n is a 2n × 1 vector such that,
for every i ∈ {1, . . . , n}

zi = max
y∈Y

[ fi(y)]

zn+i = min
y∈Y

[ fi(y)],

then we capture this with the shorthand notation

z = eopt
y∈Y

[ f (y)], (15)

with the convention that eopty∈Y [ f (y)] = 0, if Y = φ.

With this, we can now define x(opt)(F) �= eopti⊂F [x(t)] to be the worst-case response
vector of the power grid. It should be clear that if F is not an empty set, then x(opt)(F) is
not empty (as a 2n × 1 vector) and x(t) ∈ x(opt)(F) for all i(t) ⊂ F . The exact expression
of the worst-case response vector x(opt)(F) was derived in Abdul Ghani and Najm [2011]
to be
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66:10 Z. Moudallal and F. N. Najm

x(opt)(F) =
∞∑

q=0

eopt
I∈F

(Fq RI), (16)

where I is an m × 1 vector dummy variable in units of current. One way to check
grid safety is to compute Equation (16) and then check if [� 0]x(opt)(F) ≤ xub and
[0 �]x(opt)(F) ≥ xlb, because, clearly, [0 �]x(opt)(F) ≤ �x(t) ≤ [� 0]x(opt)(F), ∀t. However,
this is obviously too expensive to compute directly using Equation (16), although it is
possible to get an approximate value of the solution by solving for only a few terms
of the summation. Instead, we will use some bounds on x(opt) based on the following
notation:

Definition 3.6. If v = [ vt
vb

] and w = [ wt
wb

] are 2n× 1 vectors and vt, vb, wt, and wb are
n × 1 vectors, then we say that v ⊆ w if

vt ≤ wt and vb ≥ wb. (17)

Definition 3.7. If v = [ vt
vb

] and w = [ wt
wb

] are 2n× 1 vectors and vt, vb, wt, and wb are
n × 1 vectors, then we say that v ⊂ w if

vt < wt and vb > wb. (18)

A few simple properties can be stated without proof.

1) The subset relation among vectors is transitive:

u ⊆ v and v ⊆ w =⇒ u ⊆ w, (19)
u ⊂ v and v ⊂ w =⇒ u ⊂ w, (20)

2) The subset relation may be combined by summation:

u ⊆ v and w ⊆ z =⇒ u + w ⊆ v + z, (21)
u ⊂ v and w ⊂ z =⇒ u + w ⊂ v + z. (22)

3) For any two vectors u and v, we have

u ⊆ v ⇐⇒ −v ⊆ −u, (23)
u ⊂ v ⇐⇒ −v ⊂ −u. (24)

4) For any two vectors u and v, we have

u ⊆ v ⇐⇒ 0 ⊆ v − u, (25)
u ⊂ v ⇐⇒ 0 ⊂ v − u. (26)

Definition 3.8 (Matrix Extension). Let W be an n×n matrix, and let W+ = 1
2 (W +|W |)

and W− = 1
2 (W − |W |), where |W | is the n × n matrix consisting of the absolute values

of the elements of W . We define the extension of W as the 2n× 2n matrix W̃ , given by

W̃ =
[

W+ W−
W− W+

]
. (27)

Notice that W+ ≥ 0 consists of only the non-negative elements of W while W− ≤ 0
consists of only the non-positive elements of W , so, with wi j denoting the (i, j)th entry
of W , we have for any (i, j):

w+
i j =

{
wi j, if wi j ≥ 0;
0, otherwise.

w−
i j =

{
wi j, if wi j ≤ 0;
0, otherwise.

(28)
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Definition 3.9 (Subset-Preserving). A 2n×2n matrix X is said to be subset-preserving
(SP) if, for any two 2n × 1 vectors u, v, we have that u ⊆ v =⇒ Xu ⊆ Xv.

From Lemma A.1 in the appendix, we have that, for any matrix W , its extension W̃
is SP.

Because x(opt) is expensive to compute, the authors in Fawaz and Najm [2016] derive
a bound x on x(opt), which is stated in Definition 3.10. The authors show that for a
certain range of the discretization timestep �t we have ρ(F̃) < 1, and (I2n − F̃) is
non-singular, where I2n is the 2n × 2n identity matrix. Furthermore, they show that it
is always possible to choose a �t in that range, it is easy to find such a �t, and that
the choice of �t is good for the accuracy of x. Throughout the rest of this document, we
will assume that �t is in such a range, so

ρ(F̃) < 1. (29)

With this, define Q to be the 2n × 2n matrix:

Q �= (I2n − F̃)−1. (30)

Definition 3.10. For any F ⊂ R
m, define

x(F) �= Qeopt
I∈F

(RI), (31)

where I ∈ R
m is a vector of artificial variables, with units of current, that is used to

carry out the eopt(·) operation.

In Fawaz and Najm [2016], the authors have shown that x is a bound on x(opt) for any
container F :

x(opt)(F) ⊆ x(F). (32)

Let P be a 2d × 2n matrix defined as follows:

P =
[

� 0d×n
0d×n �

]
. (33)

Using Lemma A.1, and because � ≥ 0, we have that P is SP and, of course, P ≥ 0.

LEMMA 3.11. For any u, u′ ∈ R
2n, if u ⊂ u′, then Pu ⊂ Pu′, where P is the 2d × 2n

matrix defined in Equation (33).

PROOF. Let u = [ ut
ub

], u′ = [ u′
t

u′
b

], v = Pu = [ vt
vb

], and v′ = Pu′ = [ v′
t

v′
b

], where ut, u′
t, ub,

and u′
b are n × 1 vectors and vt, v′

t, vb, and v′
b are d × 1 vectors. Notice that ut < u′

t and
ub > u′

b, because u ⊂ u′, so �ut < �u′
t and �ub > �u′

b, because � ≥ 0 and � has no row
with all zeros. It follows that vt < v′

t and vb > v′
b so Pu = v ⊂ v′ = Pu′.

Definition 3.12 (Safe Container). For a given container F , we say that F is safe if
Px(F) ⊆ xth.

For the example of Figure 1, one can simply find x(F) defined in Equation (31) for the
current container F represented in Figure 4. Because only nodes 1 and 3 are of interest,
then Px(F) = [v(ub)

1 v
(ub)
3 v

(lb)
1 v

(lb)
3 ]T , where v

(ub)
1 and v

(ub)
3 are the worst-case voltage drop

on nodes 1 and 3, respectively, and v
(lb)
1 and v

(lb)
3 are the worst-case voltage overshoot on

nodes 1 and 3, respectively, under all possible current waveforms i(t) ∈ F . In Figure 5,
we show the values of v

(ub)
1 , v

(ub)
3 , v

(lb)
1 , and v

(lb)
3 that clearly satisfy the voltage thresholds,

so Px(F) ⊆ xth, and F is safe.
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Thus, we are interested to discover a safe container F so, due to Equation (32) and
P being SP, we get Px(opt)(F) ⊆ xth, and the grid is safe. We will see below that a safe
container F can be expressed as a set of constraints on the circuit currents that load
the grid, thereby providing a set of constraints that are sufficient to guarantee grid
safety.

4. MAXIMAL CONTAINERS

This section contains the bulk of the theoretical contributions of this article and is
organized as follows. First, we will establish a necessary and sufficient condition for
a container to be safe. We will find, however, that there is an infinity of possible
safe containers. The question becomes the following: Which safe container should we
choose? Recall that a container can be used to drive parts of the design process such
as automated floorplanning and placement, and, hence, the “larger” a container is,
the more flexibility is provided for the rest of the design stages. We are interested in
containers that allow as much flexibility as possible in the circuit loading currents,
which we will refer to as maximal containers. The following definition captures the
notion of maximal containers in mathematical terms.

Definition 4.1. Let E be a collection of subsets of R
m and let X ∈ E . We say that X is

maximal in E if there does not exist another Y ∈ E , Y 
= X , such that X ⊆ Y.

Notice that a container F is a subset of R
m. In the following, we will identify a set

E that is an infinite collection of safe containers. These containers will be of the form
of Equation (36). In fact, we will show that these are the only interesting containers.
Finally, we provide the necessary and sufficient conditions for a container X to be
maximal in E . These conditions are given in Theorem 4.13 and depend on several
results proved in Sections 4.1 and 4.2.

Let T = Q−1, so

T = I2n − F̃. (34)

Let u ∈ R
2n and define the sets U and F(u) as follows:

U �= {u ∈ R
2n : Pu ⊆ xth}, (35)

F(u) �= {I ∈ R
m : I ≥ 0, RI ∈ Tu}, (36)

and notice that

Tu ⊆ Tu′ =⇒ F(u) ⊆ F(u′), ∀u, u′ ∈ R
2n. (37)

To graphically illustrate the relation between the sets U and F(u), consider the
circuit in Figure 1 and suppose that only node 1 is required to satisfy the voltage safety
specifications |v1(t)| ≤ 50mV. Notice that in this case we have n = 5 and d = 1, so for
any u ∈ R

10, Pu ∈ R
2, and, for any u ∈ U , we have Pu ⊆ xth = [ 50

−50 ]mV. In Figure 6,
we show several instances of u and plot their corresponding Pu and F(u).

For the instance u(2), the resulting current container is F(u(2)), which, as defined
in Equation (36), can be represented using the following set of inequalities, with
I = [ I1

I2
] ≥ 0: ⎡

⎢⎢⎢⎣
0
0
0
0

−0.051

⎤
⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎣

0.76 0.26
0.30 0.27
0.26 1.53
0.04 0.03

−0.86 −0.78

⎤
⎥⎥⎥⎦

[
I1
I2

]
≤

⎡
⎢⎢⎢⎣

0.043
0.017
0.022
0.002

0

⎤
⎥⎥⎥⎦ . (38)
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Fig. 6. Examples of Pu and F(u).

The above set of inequalities on the current variable I defines a region in R
2 as shown

in Figure 6.

LEMMA 4.2. For any u ∈ R
2n, 0 ∈ F(u) if and only if 0 ∈ Tu.

PROOF. Let u ∈ R
2n with 0 ∈ Tu, so for I = 0 we have RI = 0 ∈ Tu, from which

0 ∈ F(u). Conversely, let u ∈ R
2n with 0 ∈ F(u), and then 0 ∈ Tu due to Equation (36).

Definition 4.3. For any u ∈ R
2n, u is said to be feasible if F(u) is not empty, otherwise

it is infeasible.

For illustration, notice that in Figure 6, the instance u(4) generates a current container
F(u(4)) represented using the following set of inequalities, with I = [ I1

I2
] ≥ 0:⎡

⎢⎢⎢⎣
−0.032

0
0
0

−0.041

⎤
⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎣

0.76 0.26
0.30 0.27
0.26 1.53
0.04 0.03

−0.86 −0.78

⎤
⎥⎥⎥⎦

[
I1
I2

]
≤

⎡
⎢⎢⎢⎣

−0.002
0.014
0.040
0.002

−0.01

⎤
⎥⎥⎥⎦ . (39)

It is easy to check that the above set of inequalities is unsatisfiable for any I ≥ 0, so
F(u(4)) = φ and u(4) is infeasible, whereas the current container F(u(2)), as shown in
Figure 6, is non-empty, so u(2) is feasible.

LEMMA 4.4. For any feasible u ∈ R
2n, we have x(F(u)) ⊆ u.

PROOF. For any feasible u ∈ R
2n, we have RI ∈ Tu, for all I ∈ F(u), due to Ref. (36),

so

eopt
I∈F(u)

(RI) ⊆ T u. (40)

Because Q is SP, due to Lemma E.8 (in the appendix), it follows that

Q eopt
I∈F(u)

(RI) ⊆ QT u = u. (41)

Therefore, x(F(u)) = QeoptI∈F(u)(RI) ⊆ u, and the proof is complete.

LEMMA 4.5. For any non-empty container J ⊂ R
m
+, J is safe if and only if ∃u ∈ U such

that J ⊆ F(u).
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PROOF. The proof is in two parts.
Proof of the “if direction”: Let J ⊆ F(u) for some u ∈ U , it follows that eoptI∈J (RI) ⊆

eoptI∈F(u)(RI), from which x(J ) ⊆ x(F(u)), due to Lemma E.8. Notice that F(u) is not
empty, because J is not empty, so u is feasible. Using Lemma 4.4 and Equation (19),
we get x(J ) ⊆ u, which, because P is SP and u ∈ U , gives Px(J ) ⊆ xth.

Proof of the “only if direction”: Let J ⊂ R
m
+ be a non-empty set with Px(J ) ⊆ xth, and

let u = x(J ), so Pu ⊆ xth, from which u ∈ U . Multiplying u = x(J ) = QeoptI∈J (RI) with
T , we get

eopt
I∈J

(RI) = Tu, (42)

so, ∀I ∈ J , we have RI ∈ Tu, which, coupled with I ≥ 0, gives J ⊆ F(u).

Definition 4.6. Define the set of containers:

S �= {F(u) : u ∈ U}. (43)

It should be clear from Lemma 4.5 that all containers of interest are members of S or
subsets of members of S. Note that if J ⊆ F(u) for some u ∈ U , with J 
= F(u), then,
clearly, F(u) is a better choice than J . Choosing J would be unnecessarily limiting,
while F(u) would allow more flexibility in the circuit loading currents. Therefore, it
is enough to consider only containers of the form F(u) with u ∈ U . This is why the
definitions (35), (36), and (43) are important, and we refer to S as the set of safe
containers.

Referring to Figure 6, the instance u(5) /∈ U and generates the current container
F(u(5)), represented using the following set of inequalities, with I = [ I1

I2
] ≥ 0:⎡

⎢⎢⎢⎣
0
0
0
0

−0.055

⎤
⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎣

0.76 0.26
0.30 0.27
0.26 1.53
0.04 0.03

−0.86 −0.78

⎤
⎥⎥⎥⎦

[
I1
I2

]
≤

⎡
⎢⎢⎢⎣

0.047
0.019
0.021
0.002

0

⎤
⎥⎥⎥⎦ . (44)

It can be easily verified by computing x(·) in Definition 3.10 that the current container
defined by the above set of inequalities gives Px(F(u(5)) = [ 55

−21 ] mV 
⊆ xth and thus is

an unsafe container. However, u(2) ∈ U generates the current container defined by the
set of inequalities (38) and satisfies Px(F(u(2)) ⊆ xth, so F(u(2)) is a safe container.

Going further, if F(u1) ⊆ F(u2) with F(u1) 
= F(u2), then, clearly, F(u2) is a better
choice than F(u1). In a sense, the “larger” the container, the better. Thus, we are only
interested in containers F(u) that are maximal in S.

In the example of Figure 6, the current container F(u(1)) represented using the
following set of inequalities, for I = [ I1

I2
] ≥ 0:⎡

⎢⎢⎢⎣
0
0
0
0

−0.042

⎤
⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎣

0.76 0.26
0.30 0.27
0.26 1.53
0.04 0.03

−0.86 −0.78

⎤
⎥⎥⎥⎦

[
I1
I2

]
≤

⎡
⎢⎢⎢⎣

0.034
0.014
0.022
0.002

0

⎤
⎥⎥⎥⎦ (45)

and the current container F(u(2)) represented using Equation (38) satisfy F(u(1)) ⊆
F(u(2)), with F(u(1)) 
= F(u(2)), so F(u(1)) is not maximal in S, whereas F(u(2)) can be
shown to be maximal in S.

Maximality is a highly desirable property, and so the purpose of the rest of this
section is to give necessary and sufficient conditions for a container to be maximal in
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S. We will see that the maximality of F(u) depends on crucial properties of u. Note that
0 ∈ U for any xth � 0, and 0 ∈ F(0), so u = 0 is always feasible. It follows that S always
contains a non-empty set as a member, so φ is never maximal in S; this will be useful
below.

4.1. Extremal

Throughout the rest of the article, whenever the product of a number of matrices Ai by
a vector v is followed by the notation |i, as in A1 A2 · · · Akv|i, the expression shall denote
the ith entry of the vector resulting from the product A1 A2 · · · Akv.

Definition 4.7. For any u ∈ U , we say that u is extremal in U if ∃k ∈ {1, . . . , 2d} such
that Pu|k = xth,k.

Notice that in Figure 6, Pu(2)|1 = xth,1 so u(2) is extremal in U , whereas Pu(1)|k 
= xth,k,
∀k, so u(1) is not extremal in U .

LEMMA 4.8. If F(u) is maximal in S, then u is feasible and extremal in U .

The proof of Lemma 4.8 is available in Appendix B as Lemma B.2.

4.2. Irreducible

Definition 4.9. We say that u ∈ R
2n is reducible if there exists u′ ⊆ u, u′ 
= u, with

F(u′) = F(u), otherwise u is said to be irreducible.

We will see that irreducibility of u is a crucial property that is required for maximality
of F(u). The proofs of Lemmas 4.10, 4.11, and 4.12 are available in Appendix C as
Lemmas C.2, C.3, and C.5.

LEMMA 4.10. For any feasible u ∈ R
2n, let u′ = x(F(u)), and it follows that F(u′) = F(u).

LEMMA 4.11. For any u ∈ R
2n, u is irreducible if and only if it is feasible and x(F(u)) =

u.

Note that if u is irreducible and extremal in U , then Pu|k = xth,k for some k, and so
P x(F(u))|k = xth,k.

LEMMA 4.12. For any u ∈ R
2n, u is irreducible if and only if

Tu ⊆ Tu′ ⇐⇒ F(u) ⊆ F(u′), ∀u′ ∈ R
2n. (46)

4.3. Maximality

As pointed out earlier, we are interested in safe containers that are maximal in S.
We now present our main result that gives the necessary and sufficient conditions for
maximality.

THEOREM 4.13. F(u) is maximal in S if and only if u is irreducible and extremal in U .

PROOF. The proof is in two parts.
Proof of the “if direction”: We give a proof by contradiction. Let u ∈ U be irreducible

and extremal in U , but suppose that F(u) is not maximal in S, so ∃u′ ∈ U such that
F(u) ⊆ F(u′), with F(u) 
= F(u′). Because F(u) 
= F(u′), then clearly Tu 
= Tu′, and,
using Lemma 4.12, we have Tu ⊆ Tu′. Let δ = Tu′ − Tu, so 0 ⊆ δ and δ 
= 0. Recall that
Q is SP, from Lemma E.8, so 0 ⊂ Qδ. Let w = Qδ. Denote by wi, δ j , and qij the ith entry
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Fig. 7. A graphical representation of the set U , vectors u that are irreducible, vectors u that are extremal in
U , and vectors u that have F(u) maximal in S.

of w, the jth entry of δ, and the (i, j)th entry of Q, respectively. Notice that

wi =
2n∑
j=1

qijδ j, (47)

where qij 
= 0, ∀i, j, due to Lemma E.6. For i ∈ {1, . . . , n}, we have qijδ j ≥ 0, ∀ j, because
Q is SP and 0 ⊆ δ, which, combined with qij 
= 0 and δ 
= 0, gives wi > 0. Similarly, for
i ∈ {n + 1, . . . , 2n}, we have qijδ j ≤ 0, ∀ j, because Q is SP and 0 ⊆ δ, which, combined
with qij 
= 0 and δ 
= 0, gives wi < 0. Therefore, we have 0 ⊂ w = Qδ = u′ − u. Then
u ⊂ u′, due to Equation (26), and Pu ⊂ Pu′ ⊆ xth, making use of Lemma 3.11 and the
final step due to u′ ∈ U , so u is not extremal in U , and we have a contradiction that
completes the proof.

Proof of the “only if direction”: We give a proof by contradiction. Given that F(u)
is maximal in S, we know from Lemma 4.8 that u is feasible and extremal in U .
Suppose u is reducible, so x(F(u)) 
= u, because we already have that u is feasible.
Recall that x(F(u)) ⊆ u, from which Px(F(u)) ⊆ Pu ⊆ xth, because P is SP and u ∈ U .
Let u′ = x(F(u)) 
= u, so u′ ∈ U and Tu′ = T x(F(u)) = eoptI∈F(u)(RI). Let δ = Tu − Tu′ =
Tu−eoptI∈F(u)(RI), and then we have 0 ⊆ δ due to eoptI∈F(u)(RI) ⊆ Tu and δ 
= 0 (due to
u′ 
= u). Recall that Q is SP, from Lemma E.8, and every element of Q is non-zero, due to
Lemma E.6, so 0 ⊂ Qδ = u′ − u; a more detailed explanation of this step was presented
in the first part of the proof. Consequently, we have u′ ⊂ u, due to Equation (26), so
Pu′ ⊂ Pu ⊆ xth, making use of Lemma 3.11, and the final step is due to u ∈ U , so u′
is not extremal in U . Therefore, by Lemma 4.8, F(u′) is not maximal in S. However,
F(u) = F(u′), due to Lemma 4.10, so F(u) is not maximal in S, a contradiction that
completes the proof.

In Figure 7, we give a graphical representation of the set U for the same example as in
Figure 6. Sweeping over all values of u ∈ U and checking the conditions of Lemma E.5,
we can discover the set of irreducible vectors u. We represent the set of vectors u that
are irreducible as the double-shaded polygon. Notice that the set of vectors u that are
extremal in U have Pu on the boundary of U . Thus, the set of vectors u that have
F(u) maximal in S is the intersection of both irreducible and extremal sets, due to
Theorem 4.13, represented in red on the boundary of U .

This important theoretical result forms the basis for our choice of practical con-
straints generation algorithms that are guaranteed to give maximal containers, as we
will see in the next section. Recall that whenever u is irreducible and extremal in U ,
then Px(F(u))|k = xth,k, for some k, so the bound on the voltage variation at the kth
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grid node would be equal to its maximum allowable voltage variation. In other words, a
maximal container always causes some node(s) on the grid to experience the maximum
allowable voltage variation, at least based on the x(·) bound.

5. APPLICATIONS

So far, we have shown that a container F(u) is maximal in S if and only if u satisfies
the conditions of Theorem 4.13. Note that it is possible to find a container F(u) that is
maximal in S but does not include the zero state, that is, the state I = 0. We believe
that users are interested in containers that include the zero state, and, thus, we will
enforce this constraint when searching for maximal containers F(u). In this section, we
will describe some design objectives and corresponding algorithms for finding specific
maximal safe containers F(u), with the additional condition that 0 ∈ F(u). These
algorithms will each be formulated as a maximization of a certain design objective
g(u). Lemma D.1 in Appendix D establishes a sufficient condition on g(·) for which the
algorithms proposed below produce maximal containers, based on Theorem 4.13.

5.1. Peak Power Dissipation

An interesting quality metric for a power grid is the peak total power dissipation
that it can safely support in the underlying circuit. We refer here to the instantaneous
power dissipation, which is conservatively approximated by Vdd

∑m
j=1 i j(t). Thus, we are

interested in a safe container that is maximal in S and that allows the highest possible∑
∀ j Ij . Generally, one might be interested in the highest weighted sum of the individual

currents, that is,
∑

∀ j qj Ij , where qj > 0 is a user-specified weight on the jth current
source. This will allow certain areas of the die to support larger power dissipation than
other areas. However, in this article, we assume that all current sources have equal
weights, and, hence, we will be finding the peak total power dissipation that the grid
can safely support.

For any u ∈ U , we define σ (u) to be the largest sum of current source values allowed
under F(u):

σ (u) �= max
I∈F(u)

⎛
⎝ m∑

j=1

Ij

⎞
⎠ , (48)

and we define σ ∗ to be the largest σ (u) achievable over all possible u ∈ U with 0 ∈ F(u),
that is,

σ ∗ �= max
u∈U

0∈F(u)

(σ (u)) = max
u∈U
0∈Tu

(σ (u)), (49)

where the second equality is due to Lemma 4.2.
Let up ∈ U be such that σ (up) = σ ∗ and I∗ ∈ F(up) be such that

∑m
j=1 I∗

j = σ ∗. In
general, up and I∗ may not be unique. Based on Equations (35) and (36), and making
use of Lemma 4.2, we can express the combined Equations (48) and (49) as the following
LP:

LP1:

σ ∗ = Maximize
∑m

j=1 Ij

subject to RI ∈ Tu
0 ∈ Tu

Pu ⊆ xth
I ≥ 0.

(50)

Let D be the feasible region of the LP (50):

D �= {(I, u) : I ≥ 0, RI ∈ Tu, 0 ∈ Tu, Pu ⊆ xth}, (51)
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so from the above we have

σ ∗ = max
(I,u)∈D

⎛
⎝ m∑

j=1

Ij

⎞
⎠ . (52)

Notice that (0, 0) ∈ D, so D is not empty and all of σ ∗, up, and I∗ are well defined.
Therefore, the container F(up) = {I ∈ R

m : I ≥ 0, RI ∈ Tup} 
= φ provides the desired
current constraints, ∀t ∈ R,

i(t) ≥ 0
Ri(t) ∈ Tup.

The following lemma establishes the maximality of F(up), based on Lemma D.1.

LEMMA 5.1. F(up) is maximal in S.

PROOF. Recall that I∗ and up are well defined and (I∗, up) ∈ D, so RI∗ ∈ Tup and
I∗ ≥ 0 , from which up is feasible. We will prove that σ (·) satisfies the conditions of
Lemma D.1, from which F(up) is maximal in S. First, notice that for any u, u′ ∈ U , if
F(u′) = F(u), then it follows that σ (u′) = σ (u), due to Equation (48). It remains to prove
that for any u, u′ ∈ U , with 0 ∈ Tu and 0 ∈ Tu′, if Tu′ ⊃ Tu, then σ (u′) > σ (u).

For any u ∈ U , let I ∈ F(u) be such that σ (u) = ∑m
j=1 Ij . Let λ = min∀i(|Tu′|i −

Tu|i|)/ max∀i, j(|rij |), which is well defined due to R 
= 0, and λ > 0 because Tu ⊂ Tu′.
Also, let e1 ∈ R

m be the vector whose first entry is 1 and all other entries are 0 and
let I′ = I + λe1. Because λ > 0, we have λe1 ≥ 0, λe1 
= 0, I′ ≥ I ≥ 0, and I′ 
= I, so∑m

j=1 I′
j >

∑m
j=1 Ij . Denote by c j the jth column of R and notice that

RI′ = RI + λRe1 = RI + λc1, (53)

= RI + min∀i
(|Tu′|i − Tu|i|

)
max∀i, j(|rij |) c1. (54)

Let 12n be the 2n × 1 vector whose first n entries are 1 and the rest are −1. Because
c1/ max∀i, j(|rij |) ∈ 12n, notice that

min∀i
(|Tu′|i − Tu|i|

)
max∀i, j(|rij |) c1 ∈ min

∀i
(|Tu′|i − Tu|i|)12n, (55)

which, combined with RI ∈ Tu because (I, u) ∈ D, and due to Lemma 3.3, gives

RI + min∀i
(|Tu′|i − Tu|i|

)
max∀i, j(|rij |) c1 ∈ Tu + min

∀i
(|Tu′|i − Tu|i|)12n. (56)

Therefore, using Equation (54), it follows that

RI′ ∈ Tu + min
∀i

(|Tu′|i − Tu|i|)12n. (57)

Also, notice that, for any k ∈ {1, . . . , n}, because Tu ⊂ Tu′, we have

min
∀i

(|Tu′|i − Tu|i|) ≤ |Tu′|k − Tu|k| = Tu′|k − Tu|k. (58)

Likewise, for any k ∈ {n + 1, . . . , 2n}, we have

− min
∀i

(|Tu′|i − Tu|i|) ≥ −|Tu′|k − Tu|k| = Tu′|k − Tu|k. (59)

Combining Equations (58) and (59), we get

min
∀i

(|Tu′|i − Tu|i|)12n ⊆ Tu′ − Tu. (60)
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Fig. 8. An example of F(up), F(us), and F(uc).

This, combined with Tu ⊆ Tu and making use of Equation (21), gives

Tu + min
∀i

(|Tu′|i − Tu|i|)12n ⊆ Tu + Tu′ − Tu = Tu′
. (61)

Therefore, due to Equations (57) and (61), we get

RI′ ∈ Tu′
. (62)

This, coupled with u′ ∈ U , means that (I′, u′) ∈ D, so σ (u′) ≥ ∑m
j=1 I′

j >
∑m

j=1 Ij = σ (u),
from which σ (·) satisfies the conditions of Lemma D.1, and F(up) is maximal in S.

As an example, the LP (50) is run on a 17 nodes grid with two current sources,
and the resulting container is shown in Figure 8. Notice that this method, to allow
the maximum peak power, may generate a container that is skewed in a way that
imposes a tight constraint on current in certain locations of the die (such as at i2(t))
while allowing larger current in other locations (such as at i1(t)). Other approaches are
possible to avoid this skew and even out the current budgets, as we will see next.

5.2. Uniform Current Distribution—The Sphere Approach

The design team may be interested in a grid that safely supports a uniform current
distribution across the die to allow a placement that provides a uniform temperature
distribution. We can generate constraints that allow that objective by searching for a
safe maximal container F(u) that contains the hypersphere in current space that has
the largest volume or the largest radius θ . In other words, this method aims to “raise
the minimum” and avoid the skew indicated above.

For any s×1 or 1×s vector γ , we will use the standard notation ‖γ ‖ =
√∑s

j=1 γ 2
j ≥ 0

to denote the Euclidean norm of γ . Let S(θ ) ⊂ R
m denote the hypersphere with radius

θ ≥ 0, centered at the origin, and let S+(θ ) = S(θ ) ∩ R
m
+ be the part of that hypersphere

that is in the first quadrant of R
m, that is, S+(θ ) = {I ≥ 0 : ‖I‖ ≤ θ}. In the following

lemma, we will derive a necessary and sufficient condition for S+(θ ) ⊆ F(u), which will
be useful in the rest of this section.

Let R+ and R− be the n × m matrices that consist of the non-negative elements and
non-positive elements of R, respectively, so, with rij , r+

i j , and r−
i j denoting the (i, j)th

entries of R, R+, and R−, respectively, we have for any (i, j)

r+
i j =

{
rij, if rij ≥ 0;
0, otherwise.

r−
i j =

{
rij, if rij ≤ 0;
0, otherwise.

(63)
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Denote by ri, r+
i , and r−

i the ith rows of R, R+, and R−, respectively. Let ν+ and ν− be
n × 1 vectors, where ν+

i = ‖r+
i ‖ ≥ 0 and ν−

i = ‖r−
i ‖ ≥ 0, and let ν̃

�= [ ν+
−ν− ].

LEMMA 5.2. For any θ ≥ 0 and u ∈ R
2n with 0 ∈ F(u), S+(θ ) ⊆ F(u) if and only if

θν̃ ⊆ Tu.

The proof of Lemma 5.2 is available in Appendix D, as Lemma D.2.
For any u ∈ U with 0 ∈ F(u), we define �(u) to be the largest θ ≥ 0 for which

S+(θ ) ⊆ F(u) or, equivalently, for which θν̃ ∈ Tu is satisfied, so

�(u) �= max
S+(θ)⊆F(u)

θ≥0

(θ ) = max
θν̃⊆Tu
θ≥0

(θ ), (64)

and we define �∗ to be the largest �(u) achievable over all possible u ∈ U with 0 ∈ F(u),
that is,

�∗ �= max
u∈U

0∈F(u)

(�(u)) = max
u∈U
0∈Tu

(
�(u)

)
, (65)

where the second equality is due to Lemma 4.2.
Let us ∈ U be a vector at which the above maximization attains its maximum. In other

words, us ∈ U is such that �(us) = �∗ and S+(�∗) ⊆ F(us). In general, us may not be
unique. Based on Equations (35) and (36), we can express the combined Equations (64)
and (65) as the following linear program:

�∗ = Maximize θ
subject to θν̃ ⊆ Tu

0 ∈ Tu
Pu ⊆ xth
θ ≥ 0.

(66)

Notice that 0 ∈ θν̃, for any θ ≥ 0, so the constraints θ ≥ 0 and θν̃ ⊆ Tu in
Equation (66) automatically guarantee that 0 ∈ Tu, and so the constraint 0 ∈ Tu
in Equation (66) is redundant. Therefore, Equation (66) can be expressed as follows:

LP2:

�∗ = Maximize θ
subject to θν̃ ⊆ Tu

Pu ⊆ xth
θ ≥ 0.

(67)

Let R be the feasible region of the LP (67):

R �= {(θ, u) : θ ≥ 0, θ ν̃ ⊆ Tu, Pu ⊆ xth}, (68)

so from the above, we have

�∗ = max
(θ,u)∈R

(θ ). (69)

Notice that (0, 0) ∈ R, so R is not empty and both �∗ and us are well defined.
Therefore, the container F(us) = {I ∈ R

m : I ≥ 0, RI ∈ Tus} 
= φ provides the desired
current constraints, ∀t ∈ R,

i(t) ≥ 0
Ri(t) ∈ Tus.

Lemma D.3 in Appendix D establishes the maximality of F(us), based on Lemma D.1.
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5.3. Combined Objective—The Sphere Approach

Thus far, we have presented two algorithms for current constraints generation. The
first algorithm (50) aims to maximize the peak power dissipation that the grid can
safely support in the underlying circuit; however, it generates a skewed container in
a way that imposes a tight constraint on the currents in certain locations on the die.
The second algorithm (67) aims to uniformly distribute the power budgets across the
circuit by “raising the minimum,” but this approach does not necessarily allow for
a large peak total power dissipation. One may be interested in a middle scenario; a
container that is maximal in S tries to maximize the peak power dissipation that the
grid can safely support and tries to support a uniform current distribution across the
die. In this section, we will develop a constraints generation algorithm, essentially a
combination of Equations (52) and (69), that allows this type of design objective.

Recall that Equation (48) maximizes the sum of the m current sources attached
to the grid, while Equation (64) maximizes the current radius for which the part of
the hypersphere in the first quadrant is contained in F(u). Therefore, there is a clear
disproportionality between the dimensions of both objective functions that motivates
the following. For any u ∈ U , we define ξ (u) to be the largest value of the following
combined objective allowed under F(u):

ξ (u) �= max
I∈F(u)

S+(θ)⊆F(u)

⎡
⎣

⎛
⎝ m∑

j=1

Ij

⎞
⎠ + mθ

⎤
⎦ , (70)

= max
RI∈Tu
θν̃⊆Tu
I,θ≥0

⎡
⎣

⎛
⎝ m∑

j=1

Ij

⎞
⎠ + mθ

⎤
⎦ , (71)

and we define ξ ∗ to be the largest ξ (u) achievable under all possible u ∈ U with 0 ∈ F(u),
so

ξ ∗ �= max
u∈U

0∈F(u)

(ξ (u)) = max
u∈U
0∈Tu

(ξ (u)), (72)

where the second equality is due to Lemma 4.2.
Let uc ∈ U be a vector at which the above maximization attains its maximum. In other

words, uc ∈ U is such that ξ (uc) = ξ ∗. Also, let ζ and ω be such that (
∑m

j=1 ζ j)+mω = ξ ∗,
where ζ ∈ F(uc) and ων̃ ⊆ Tuc, where ν̃ is as defined in Section 5.2. In general, uc,
ζ , and ω may not be unique. Based on Equations (35) and (36), we can express the
combined Equations (71) and (72) as the following LP:

ξ ∗ = Maximize
(∑m

j=1 Ij

)
+ mθ

subject to RI ∈ Tu
θν̃ ⊆ Tu
0 ∈ Tu

Pu ⊆ xth
I, θ ≥ 0.

(73)

Notice that 0 ∈ θν̃, for any θ ≥ 0, so the constraints θ ≥ 0 and θν̃ ⊆ Tu in
Equation (73) automatically guarantee that 0 ∈ Tu, and so the constraint 0 ∈ Tu
in Equation (73) is redundant. Therefore, Equation (73) can be expressed as follows:
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LP3:

ξ ∗ = Maximize
(∑m

j=1 Ij

)
+ mθ

subject to RI ∈ Tu
θν̃ ⊆ Tu
Pu ⊆ xth
I, θ ≥ 0.

(74)

Let C be the feasible region of the LP (74),

C �= { (I, θ, u) : θν̃ ⊆ Tu, RI ∈ Tu, I, θ ≥ 0, Pu ⊆ xth }, (75)

so from the above, we have

ξ ∗ = max
(I,θ,u)∈C

⎡
⎣

⎛
⎝ m∑

j=1

Ij

⎞
⎠ + mθ

⎤
⎦ . (76)

Notice that (0, 0, 0) ∈ C so C is not empty, and all of ξ ∗, uc, ζ , and ω are well defined.
Therefore, the container F(uc) = {I ∈ R

m : I ≥ 0, RI ∈ Tuc} provides the desired current
constraints, ∀t ∈ R:

i(t) ≥ 0
Ri(t) ∈ Tuc.

Lemma D.4 in Appendix D establishes the maximality of F(uc), based on Lemma D.1.

6. IMPLEMENTATION

In this section, we discuss the implementation of one of the above algorithms,
namely Equation (74), as the implementation of the rest of the algorithms is similar.

One way to construct the feasible region of Equation (74) is to compute T = I2n − F̃.
Recall from Definition 3.8 that F̃ requires knowledge of the non-negative and non-
positive elements in F, where F is defined in Equation (12). Notice from Equation (12)
that the explicit computation of F in turn requires the computation of D−1 B, which has
two major drawbacks: (1) this requires the computation of all the columns of D−1 that
is prohibitively expensive and (2) D−1 is a dense matrix, so F, F̃, and T are also dense,
and the constraints of the LP (74) are dense. A key observation is that the explicit
representation of T is unnecessary, and we can avoid the computation of D−1, as we
will show below, using the simple change of variables in Equations (77) and (78).

For any u ∈ R
2n and I ∈ R

m, let z ∈ R
2nv and y ∈ R

nv be defined as follows:

Kz = B̂u, (77)
Dy = HI, (78)

where

K =
[

D 0
0 D

]
, B̂ =

[
B 0 0 0
0 0 B 0

]
. (79)

Recall that D is non-singular, so K is also non-singular, and its inverse is given by

K−1 =
[

D−1 0
0 D−1

]
. (80)

Define the following matrices:

Ĥ �=

⎡
⎢⎣

Inv
0

0 0
0 Inv

0 0

⎤
⎥⎦ , H′ �=

[
Inv

0

]
, F̂ �= F̃ − ĤK−1 B̂, R̂ �= R − H′D−1 H, (81)
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where Inv
is the nv × nv identity matrix, Ĥ is a 2n × 2nv matrix, and H′ is an n × nv

matrix.
Notice that Kz = B̂u ⇐⇒ z = K−1 B̂u. But z = K−1 B̂u =⇒ Ĥz = ĤK−1 B̂u, and

Ĥz = ĤK−1 B̂u =⇒ z = K−1 B̂u, because ĤT Ĥ = I2nv
. Therefore,

Kz = B̂u ⇐⇒ Ĥz = ĤK−1 B̂u, (82)
⇐⇒ F̂u + Ĥz = (F̂ + ĤK−1 B̂)u, (83)
⇐⇒ F̂u + Ĥz = F̃u. (84)

Also, notice that Dy = HI ⇐⇒ y = D−1HI. But y = D−1HI =⇒ H′y = H′D−1HI, and
H′y = H′D−1HI =⇒ y = D−1HI, because H′T H′ = Inv

. Therefore,

Dy = HI ⇐⇒ H′y = H′D−1HI, (85)

⇐⇒ R̂I + H′y = (R̂ + H′D−1 H)I, (86)

⇐⇒ R̂I + H′y = RI. (87)

Therefore, for any u ∈ R
2n, I ∈ R

m, and θ ∈ R, we have

RI ∈ Tu
θν̃ ⊆ Tu

}
⇐⇒

{
RI ∈ (I2n − F̃)u
θν̃ ⊆ (I2n − F̃)u

, (88)

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

R̂I + H′y ∈ (I2n − F̂)u − Ĥz
θν̃ ⊆ (I2n − F̂)u − Ĥz
Kz = B̂u
Dy = HI

, (89)

where in Equation (88) we have used the fact that T = I2n − F̃ and in Equation (89) we
have used Equations (84) and (87). With this, LP3 in Equation (74) can be expressed
as follows:

LP3’:

ξ ∗ = Maximize
(∑m

j=1 Ij

)
+ mθ

subject to R̂I + H′y ∈ (I2n − F̂)u − Ĥz
θν̃ ⊆ (I2n − F̂)u − Ĥz

Kz = B̂u
Dy = HI
Pu ⊆ xth
I, θ ≥ 0.

(90)

Notice that K and B̂ are sparse matrices that can be constructed easily from the
matrices D and B. Furthermore, notice that constructing the matrices R̂ and F̂ re-
quires the computation of D−1M, the computation of the inverse of the diagonal
matrix E, and some matrix multiplications. The computation of D−1M does not re-
quire the full inverse of D; it only requires an LU factorization of the matrix D
and nl forward/backward solves. The result of D−1M is used to compute the matri-
ces E−1MT D−1 B and E−1MT D−1 H in F̂ and R̂, respectively. With this, it is easy to
see that the constraints of Equation (90) do not require the full inverse of D thus, it is
easier to construct as compared to Equation (74), and the constraints of Equation (90)
are much sparser than Equation (74).

Finally, notice that the computation of ν̃ requires the computation of the rows of
R. More precisely, finding the upper part of ν̃, denoted as ν̃u, requires the elements
of D−1 H, which can be done using m � nv linear system solves. Notice that the full
D−1 H does not have to be stored in memory. Finding the lower part of ν̃, denoted as
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Table I. Comparison of the Three Approaches

Power Grid Peak Power Uniform Current Combined ObjectiveDistribution

Name P(up) in mW �(up) in μA P(us) in mW �(us) in μA P(uc) in mW �(uc) in μA

G1 0.48 0.98 0.11 2.88 0.43 2.58
G2 0.96 1.77 0.31 3.58 0.85 3.42
G3 1.45 1.04 0.45 2.86 1.31 2.74
G4 3.09 1.22 1.15 3.22 2.72 3.12
G5 5.77 1.43 2.35 3.43 5.05 3.36
G6 8.55 1.58 3.61 3.56 7.42 3.50
G7 18.69 1.28 8.38 3.29 16.75 3.25
G8 33.52 1.11 15.59 3.11 30.86 3.06
G9 70.04 0.75 33.95 2.73 66.21 2.71

G10 97.24 1.57 44.54 3.57 83.96 3.53
G11 118.53 1.58 54.86 3.55 103.13 3.54

ν̃l, requires the computation of −E−1MT D−1 H. Recall that D−1M is already computed
and stored in memory to construct F̂, so that −E−1MT D−1 H = −E−1(D−1M)T H, be-
cause D−1 is symmetric, can be easily computed using matrix transpose and matrix
multiplications.

7. RESULTS

To compare the different tradeoffs of the current containers generated by each of the
above three algorithms and their runtime efficiency, we implemented LP1, LP2, and
LP3 given in Equations (50), (67), and (74), respectively, using C++. Recall that these
algorithms were transformed into simpler forms by avoiding the computation of the
full D−1 matrix. The implementation details of LP1 and LP2 are similar to those of
LP3, which is explained in Section 6. We tested them on a number of power grids with
a 1.1V supply voltage that was generated based on user specifications, including grid
dimensions, metal layers, pitch and width per layer, and C4 pads and current source
distributions, consistent with 65nm technology. With these specifications, the grids
are automatically generated, after which we introduce non-uniformity in the grid to
model the real-world scenario. The maximizations were performed using the Mosek
optimization package [MOSEK ApS 2015]. All results were obtained using a 3.4GHz
Linux machine with 32GB of RAM.

The number of variables and constraints required for each LP are shown in Table III.
Furthermore, the specifications of the generated power grids are given in columns 1–4
of Table II. Also, the total CPU runtime for setting up and solving LP1, LP2, and LP3
are given in columns 5–7 of Table II. Note that the CPU time in columns 6 and 7 of
Table II include the time required for computing ν̃ and η̃, respectively. For example, on
a 600k-node grid, LP1 took 5.8h, LP2 took 9.6h, and LP3 took 10.8h.

In Table I, we present the resultsof the three LPs. Denote by P(u) �= Vdd × σ (u)
the peak power dissipation allowed under F(u). To study the difference between the
containers generated using LP1, LP2, and LP3, we used the following method. First, we
computed the peak power dissipation achievable under all containers, which are P(up),
P(us), and P(uc), and the largest current radius for which the part of the hypersphere
in the first quadrant is contained in all containers, which are �(up), �(us), and �(uc).
For instance, on a 560k-node grid, the peak power dissipation achievable under F(up),
F(us), and F(uc) is 97.24mW, 44.54mW, and 83.96mW, respectively, and the largest
current radius for which the part of the hypersphere in the first quadrant is contained
in F(up), F(us), and F(uc) is 1.57μA, 3.57μA, and 3.53μA, respectively. The results show
that P(us) � P(up) and �(up) � �(us) on all grids. Thus, both F(up) and F(us) provide
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Table II. Runtime of the Three Approaches

Power Grid Peak Power Uniform Current Combined ObjectiveDistribution

Name Nodes Current C4 Total Time Total Time Total TimeSources Connections
G1 2,027 156 27 1.7s 1.3s 2.3s
G2 4,499 306 71 5.2s 5.0s 5.8s
G3 7,774 552 97 10.2s 11.5s 11.9s
G4 17,160 1,190 199 31.0s 33.6s 36.5s
G5 30,117 2,070 360 1.3min 1.2min 1.6min
G6 46,701 3,192 556 2.6min 3.1min 3.7min
G7 104,530 7,140 1,164 14.8min 16.0min 14.3min
G8 184,523 12,656 1,994 21.7min 1.0h 48.8min
G9 412,927 28,056 4,375 1.6h 6.3h 4.2h
G10 561,344 38,220 6,027 3.0h 8.6h 6.0h
G11 662,708 45,156 7,119 5.8h 9.6h 10.8h

Table III. Number of Variables and Constraints for All Three LPs

LP1 (50) LP2 (67) LP3 (74)
Number of Variables 5N+2n+m 4N+2n+1 4N+2n+m+1

Number of Constraints 6N+2n 5N+2n 6N+2n

a distinct tradeoff for the chip design team. Moreover, the results show that P(uc) ≈
P(up) and �(uc) ≈ �(us). Therefore, the combined objective approach in LP3 gives
the best features of the peak power dissipation and the uniform current distribution
approaches.

Another way to compare the three approaches, LP1, LP2, and LP3, is to look at the
power density, that is, the power dissipation per unit area of the die, allowed by the three
resulting containers. To assess this, we maximize the allowed power (current) within
a small window of the die surface, and we do this for every position of that window
across the die. We divide the die area into κ × κ of these windows and compute the
peak power dissipation inside each, as allowed by F(up), F(us), and F(uc). In Figure 9,
we present contour plots for κ = 35 for the peak power densities under F(up), F(us),
and F(uc), respectively, on a 100k-node grid. Note that the current constraints based on
F(up) allow higher current densities at certain spots but also include some spots with
very small and restricted current density budgets. This large spread in power densities
can lead to thermal hotspots. This may be avoided by using F(us), which, as expected
and as seen in the figure, provides a uniform distribution of power densities across
the die area compared to F(up), which is reflected in a smaller standard deviation.
Of course, F(up) supports larger overall peak power dissipation than F(us), which is
reflected in a larger mean. The current constraints based on F(uc) provide a power
density distribution over a smaller range compared to F(up) and allow for larger power
dissipation compared to F(us). Clearly, F(uc) is superior to F(up) and F(us), providing
the best features in those containers.

8. CONCLUSION

Efficient and early power grid verification is a key step in modern chip design. This
has been extensively addressed in the recent literature, introducing novel simulation-
based and vectorless approaches, both of which have their shortcomings. In this article,
we adopt a recently introduced framework, namely the inverse problem of vectorless
verification, that generates circuit current constraints to guarantee power grid safety.
We extend the applicability of this framework to allow for inductance. We develop
some key theoretical results to allow the generation of constraints that correspond
to maximal current spaces. We then apply these results to provide two constraints
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Fig. 9. Contour plots for peak power density across the layout and the corresponding histograms. The color
bar units are mA/cm2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 4, Article 66, Pub. date: June 2017.



Generating Current Constraints To Guarantee RLC Power Grid Safety 66:27

generation algorithms that target key quality metrics of the grid: maximum power
dissipation and uniformity of the power spread across the die. Finally, we present a
combination of both quality metrics that proved to be superior to the other algorithms.

APPENDIXES

APPENDIX A: SP MATRICES

LEMMA A.1. Let X be a 2n × 2n matrix represented as:

X =
[

X11 X12
X21 X22

]
, (91)

where X11, X12, X21, and X22 are n × n matrices. X is SP if and only if

X11 ≥ 0 , X12 ≤ 0 , X21 ≤ 0 , and X22 ≥ 0. (92)

PROOF. The proof is in two parts.
Proof of the “if direction”: Let X be a 2n× 2n matrix that satisfies Equation (92). Let

u = [ ut
ub

] and v = [ vt
vb

] be any two 2n × 1 vectors, where ut, ub, vt, and vb are n × 1, and
let u ⊆ v. Because ut ≤ vt, then X11ut ≤ X11vt, and because ub ≥ vb, then X12ub ≤ X12vb,
which gives X11ut + X12ub ≤ X11vt + X12vb. Likewise, because ut ≤ vt, then X21ut ≥ X21vt,
and because ub ≥ vb, then X22ub ≥ X22vb, which gives X21ut + X22ub ≥ X21vt + X22vb, so
Xu ⊆ Xv and X is SP.

Proof of the “only if direction”: Let X be SP, and let u = [ ut
ub

] and v = [ vt
vb

] be any two
2n× 1 vectors, where ut, ub, vt, and vb are n× 1 vectors, and let u ⊆ v or, equivalently,

ut ≤ vt and ub ≥ vb. (93)

Because Xu ⊆ Xv, we have that

X11ut + X12ub ≤ X11vt + X12vb, (94)
X21ut + X22ub ≥ X21vt + X22vb. (95)

Let ut = ub = 0, vb = 0, and vt = ek, where ek ∈ R
n is the vector whose kth entry is

1 and all other entries are 0. Because this assignment satisfies Equation (93), then
Equations (94) and (95) lead to X11ek ≥ 0 and X21ek ≤ 0, for every k ∈ {1, . . . , n}. This
means that X11 ≥ 0 and X21 ≤ 0. Likewise, let ut = ub = 0, vt = 0, and vb = −ek.
Because this assignment satisfies Equation (93), then Equations (94) and (95) lead
to −X12ek ≥ 0 and −X22ek ≤ 0 for every k ∈ {1, . . . , n}. This means that X12 ≤ 0 and
X22 ≥ 0, which completes the proof.

LEMMA A.2. If X and Y are SP, then XY and (X + Y ) are SP.

PROOF. Suppose that Xand Y are 2n×2nSP matrices. For any two 2n×1 vectors u ⊆ v,
we have Y u ⊆ Yv, and X(Y u) ⊆ X(Yv), so XY u ⊆ XYv and XY is SP. Furthermore,
Xu ⊆ Xv and Y u ⊆ Yv, so (X + Y )u = Xu+ Y u ⊆ Xv + Yv = (X + Y )v and so (X + Y ) is
SP.

APPENDIX B: PROOF OF LEMMA 4.8

LEMMA B.1 ([JOSHI 2001]). Let G = {y ∈ R
m : Zy ≤ w} be a non-empty convex polytope,

where Z is an r × m matrix and w is an r × 1 vector. Also, let zi and wi be the ith row of
Z and the ith element of w, respectively. Then there exists a y ∈ G such that zi y = wi for
some i ∈ {1, . . . , r}.

LEMMA B.2. If F(u) is maximal in S, then u is feasible and extremal in U .
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PROOF. We will prove the contrapositive. Let u ∈ U be either infeasible or not extremal
in U ; we will prove that F(u) is not maximal in S. If u is infeasible, then F(u) = φ, which
we already know is not maximal in S. Now consider the case when u is feasible but not
extremal in U . In other words, we have Pu ⊂ xth, so ε

�= min∀i(|Pu|i − xth,i|) > 0. Let 12d
be the 2d × 1 vector whose first d entries are 1 and the rest are −1, so Pu ⊆ xth − ε12d.
Also, let 12n be the 2n × 1 vector whose first n entries are 1 and the rest are −1.
Because P has exactly one 1 in each row, it follows that P12n = 12d. Also, let q = Q12n,
so δ

�= max∀i |qi| > 0 because Q is non-singular, and let u′ = u + (ε/δ)q. Notice that
(1/δ)q ⊆ 12n, due to the definition of δ, so (ε/δ)Pq ⊆ εP12n because εP is SP, from which
Pu+(ε/δ)Pq ⊆ xth−ε12d+εP12n = xth, due to P12n = 12d. Therefore, we have Pu′ ⊆ xth,
so u′ ∈ U . Also, notice that Tu′ = Tu + (ε/δ)T q = Tu + (ε/δ)T Q12n = Tu + (ε/δ)12n,
so Tu ⊂ Tu′, because (ε/δ) > 0. We have so far established that there exists u′ ∈ U
with Tu ⊂ Tu′, so F(u) ⊆ F(u′), due to Equation (37). It only remains to prove that
F(u) 
= F(u′). Notice that F(u′) 
= φ, because u is feasible and F(u) ⊆ F(u′). Also, for
any y, z ∈ F(u′) and 0 ≤ α ≤ 1, we have αy + (1 − α)z ≥ 0 and R[αy + (1 − α)z] =
αRy + (1 − α)Rz ∈ αTu′ + (1 − α)Tu′ = Tu′, so F(u′) is convex. Therefore, due to
Lemma B.1, there exists an I ∈ F(u′) such that:

ri I = tiu′ or ri I = tn+iu′ (96)

for some i ∈ {1, . . . , n}, where ri is the ith row of R, ti is the ith row of T , and tn+i is the
(n + i)th row of T . Suppose, towards a contradiction, that I ∈ F(u), from which

ri I ≤ tiu and ri I ≥ tn+iu, ∀i ∈ {1, . . . , n}. (97)

Therefore, due to Equations (96) and (97), we have

tiu′ ≤ tiu or tn+iu′ ≥ tn+iu, (98)

that contradicts Tu ⊂ Tu′, so I /∈ F(u), F(u) 
= F(u′), F(u) is not maximal in S, and the
proof is complete.

APPENDIX C: PROOF OF LEMMAS 4.10–4.12

LEMMA C.1. For any feasible u ∈ R
2n and any z ∈ R

2n such that 0 ⊆ T z ⊆ T (u −
x(F(u))), let u′ = u − z, it follows that F(u′) = F(u).

PROOF. For any I ∈ F(u′), we have I ≥ 0 and RI ∈ Tu′ = Tu − T z ⊆ Tu, due to
Equation (25) and 0 ⊆ T z, so I ∈ F(u). It follows that F(u′) ⊆ F(u). Conversely, for any
I ∈ F(u), we have I ≥ 0 and

RI ∈ eopt
I∈F(u)

(RI) = T x(F(u)). (99)

Notice that for any z with 0 ⊆ T z ⊆ T (u − x(F(u))), we have Tu′ = Tu − T z ⊇
Tu − T (u− x(F(u))), due to Equations (23) and (21), so Tu′ ⊇ T x(F(u)). Combining this
with Equation (99), we get RI ∈ Tu′, so I ∈ F(u′). Therefore, F(u) ⊆ F(u′) from which
F(u′) = F(u), and the proof is complete.

LEMMA C.2. For any feasible u ∈ R
2n, let u′ = x(F(u)), it follows that F(u′) = F(u).

PROOF. Let z = u− x(F(u)), so T z = Tu− T x(F(u)) = Tu−eoptI∈F(u)(RI) ⊇ 0, the last
step due to the definition ofF(u) and Equation (25). As a result, z satisfies the conditions
of Lemma C.1. Let u′ = u − z = x(F(u)). Then, by Lemma C.1, F(u′) = F(u).
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LEMMA C.3. For any u ∈ R
2n, u is irreducible if and only if it is feasible and x(F(u)) = u.

PROOF. The proof is in two parts.
Proof of the “if direction”: The proof is by contradiction. Let u be feasible with

x(F(u)) = u, and suppose that u is reducible so there exists u′ ⊆ u, u′ 
= u, with
F(u′) = F(u). Notice that F(u) is not empty, because u is feasible, so F(u′) is not empty
and u′ is feasible. Therefore, we get

u′ − x(F(u′)) = u′ − x(F(u)) = u′ − u + u − x(F(u)).

Because x(F(u′)) ⊆ u′, due to Lemma 4.4, it follows that u′ − u + u − x(F(u)) ⊇ 0,
due to Equation (25), so u − x(F(u)) ⊇ u − u′ ⊇ 0, the final step due to u′ ⊆ u and
Equation (25). But u − x(F(u)) = 0 due to x(F(u)) = u, so u′ = u, and we have a
contradiction that completes the proof.

Proof of the “only if direction”: We will prove the contrapositive. Let u be either
infeasible or x(F(u)) 
= u, and we will prove that u is reducible. If u is infeasible, then
F(u) = φ and u 
= 0 (recall that u = 0 is always feasible), and it is easy to find another
infeasible u′ with u′ ⊆ u and u′ 
= u, as follows. Let u′ = 1

2 u, from which Tu′ = 1
2 Tu.

Suppose that there exists I ∈ F(u′), that is, ∃I ≥ 0 such that RI ∈ 1
2 Tu, then 2I ≥ 0

and R(2I) ∈ Tu, so2I ∈ F(u) that contradicts that u is infeasible; it follows that u′ is
infeasible. Therefore, we have found u′ ⊆ u, u′ 
= u, with F(u′) = F(u) = φ, which means
that u is reducible. If u is feasible and x(F(u)) 
= u, then let u′ = x(F(u)), so x(F(u)) ⊆ u,
due to Lemma 4.4, leads to u′ ⊆ u, u′ 
= u, with F(u′) = F(u) due to Lemma 4.10, and u
is reducible.

LEMMA C.4. For any feasible u ∈ R
2n, let u′ = x(F(u)), it follows that u′ is irreducible.

PROOF. Because u′ = x(F(u)), it follows from Lemma 4.10 that F(u′) = F(u), so u′ is
feasible and x(F(u′)) = x(F(u)). With this, notice that u′ − x(F(u′)) = u′ − x(F(u)) = 0,
from which x(F(u′)) = u′. Using Lemma 4.11, it follows that u′ is irreducible, and the
proof is complete.

LEMMA C.5. For any u ∈ R
2n, u is irreducible if and only if:

Tu ⊆ Tu′ ⇐⇒ F(u) ⊆ F(u′), ∀u′ ∈ R
2n. (100)

PROOF. The proof is in two parts.
Proof of the “if direction”: We give a proof by contradiction, given Equation (100) and

supposing u is reducible, so it is either infeasible or x(F(u)) 
= u. If u is infeasible, then
F(u) = φ ⊆ F(u′), for any u′ ∈ R

2n, so Tu ⊆ Tu′, for any u′ ∈ R
2n, due to Equation (100).

But this is impossible, because we can always find a u′ ∈ R
2n that violates Tu ⊆ Tu′, as

follows. Let 12n be the 2n×1 vector whose first nentries are 1 and the rest are −1, and let
w = Q12n so Tw = 12n ⊇ 0, and let u′ = u−w so Tu−Tu′ = Tw ⊇ 0, and, hence, Tu′ ⊆ Tu,
due to Equation (25), with Tu′ 
= Tu, because Tw = 12n 
= 0. This violates Tu ⊆ Tu′.
Therefore, it must be that u is feasible and x(F(u)) 
= u. Let u′ = x(F(u)), so F(u′) = F(u)
due to Lemma 4.10, with Tu′ = T x(F(u)). Recall that T x(F(u)) = eoptI∈F(u)(RI) ⊆ Tu,
and T x(F(u)) 
= Tu due to x(F(u)) 
= u, so Tu′ ⊆ Tu, Tu′ 
= Tu. This means that we have
F(u) ⊆ F(u′) while Tu 
⊆ Tu′, which contradicts (100), and the proof is complete.

Proof of the “only if direction”: Let u be irreducible, so u is feasible with x(F(u)) = u.
Due to Equation (37), it only remains to prove that ∀u′ ∈ R

2n, F(u) ⊆ F(u′) =⇒ Tu ⊆
Tu′. Notice that F(u′) is non-empty, because F(u) 
= φ and F(u) ⊆ F(u′), from which u′
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is feasible. Because u and u′ are feasible, and using u = x(F(u)), notice that

Tu′ − Tu = Tu′ − T x(F(u))

= Tu′ − eopt
I∈F(u)

(RI)

⊇ Tu′ − eopt
I∈F(u′)

(RI) ⊇ 0,

where we used eoptI∈F(u′) (RI) ⊇ eoptI∈F(u)(RI), because F(u) ⊆ F(u′), making use
of Equations (23), (21), and (25). Therefore, Tu′ − Tu ⊇ 0, so Tu ⊆ Tu′ due to
Equation (25) and the proof is complete.

APPENDIX D: APPLICATIONS

LEMMA D.1. Given a real-valued function g(·) : R
2n → R such that, for any u, u′ ∈ U ,

with 0 ∈ Tu and 0 ∈ Tu′, we have (i) g(u′) = g(u) if F(u′) = F(u) and (ii) g(u′) > g(u) if
Tu′ ⊃ Tu. Furthermore, let

g∗ �= max
u∈U
0∈Tu

[g(u)], (101)

and let u∗ ∈ U be feasible with 0 ∈ Tu∗ and g(u∗) = g∗. It follows that F(u∗) is maximal
in S.

PROOF. We will prove that u∗ is irreducible and extremal in U , soF(u∗) is maximal in
S, due to Theorem 4.13. The proof is in two parts.

First, we will prove that u∗ is extremal in U ; the proof is by contradiction. Let u ∈ U be
feasible with 0 ∈ Tu and g(u) = g∗, and suppose that u is not extremal in U , so Pu ⊂ xth.
Let ε

�= min∀i(|Pu|i −xth,i|) > 0, and let 12n be the 2n×1 vector whose first nentries are 1
and the rest are −1. Because P has exactly one 1 in each row, it follows that P12n = 12d,
so Pu ⊆ xth − ε12d, due to the definition of ε. Also, let q = Q12n, so δ

�= max∀i |qi| > 0,
because Q is non-singular, and let u′ = u+ (ε/δ)q, for which, clearly, u′ 
= u. Notice that
(1/δ)q ⊆ 12n, due to the definition of δ, so (ε/δ)Pq ⊆ εP12n, because εP is SP, from which
Pu+(ε/δ)Pq ⊆ xth−ε12d+εP12n = xth, due to P12n = 12d. Therefore, we have Pu′ ⊆ xth,
so u′ ∈ U . Note that Tu′ = Tu+(ε/δ)T q = Tu+(ε/δ)T Q12n = Tu+(ε/δ)12n, and, because
(ε/δ) > 0, we get Tu′ ⊃ Tu, so 0 ∈ Tu′, due to 0 ∈ Tu. It follows that g(u′) > g(u) = g∗
with u′ 
= u, which contradicts Equation (101). Therefore, u is extremal in U , so u∗ is
extremal in U , which completes the first part of the proof.

Next, we will prove that u∗ is irreducible; the proof is by contradiction. Let u ∈ U
be feasible with 0 ∈ Tu and g(u) = g∗, and suppose that u is reducible; then, by
Lemma 4.11, we must have x(F(u)) 
= u. Let u′ = x(F(u)), so F(u′) = F(u) due to
Lemma 4.10. Because u′ ⊆ u due to Lemma 4.4, from which Pu′ ⊆ Pu because P is SP,
then u′ ∈ U . Note that Tu′ = T x(F(u)) = eoptI∈F(u)(RI). Furthermore, because 0 ∈ Tu,
we have 0 ∈ F(u), due to Lemma 4.2, so 0 ∈ eoptI∈F(u)(RI) due to Equation (36), from
which 0 ∈ Tu′, and the conditions of the lemma provide that g(u′) = g(u) = g∗. Let
δ = Tu − Tu′. Note that Tu′ = T x(F(u)) = eoptI∈F(u)(RI) ⊆ Tu, due to Equation (36),
and Tu 
= T x(F(u)), due to x(F(u)) 
= u, from which δ ⊇ 0 and δ 
= 0. Combining this
with Qbeing SP, from Lemma E.8, and every element of Q is non-zero, from Lemma E.6,
so we have 0 ⊂ Qδ = u − u′. Consequently, we have u′ ⊂ u, due to Equation (26), so
Pu′ ⊂ Pu ⊆ xth, making use of Lemma 3.11 and the final step due to u ∈ U , so u′ is
not extremal in U . But this contradicts the first part of the proof. It follows that u is
irreducible, so u∗ is irreducible. Therefore, F(u∗) is maximal in S.

LEMMA D.2. For any θ ≥ 0 and u ∈ R
2n with 0 ∈ F(u), S+(θ ) ⊆ F(u) if and only if

θν̃ ⊆ Tu.
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PROOF. Let tk be the kth row of T . Because 0 ∈ F(u), it follows that tiu ≥ 0 and
t(n+i)u ≤ 0, ∀i ∈ {1, . . . , n}, due to Lemma 4.2. Also, notice that θν̃ ⊆ Tu if and only if
θν+

i ≤ tiu and −θν−
i ≥ t(n+i)u, ∀i ∈ {1, . . . , n}. The proof is in two parts.

Proof of the “if direction”: Let θν̃ ⊆ Tu. For any I ∈ S+(θ ), we have I ≥ 0 and ‖I‖ ≤ θ ,
so ν+

i ‖I‖ ≤ ν+
i θ ≤ tiu and −ν−

i ‖I‖ ≥ −ν−
i θ ≥ t(n+i)u, ∀i ∈ {1, . . . , n}, where we have used

the fact that ν+
i ≥ 0 and −ν−

i ≤ 0. Notice that

ri I ≤ r+
i I = |r+

i I| ≤ ‖r+
i ‖‖I‖ = ν+

i ‖I‖, (102)

where the first two steps are due to I ≥ 0 and the third step is due to the Cauchy-
Schwarz inequality (see Saad [2003]). Therefore, it follows that ri I ≤ tiu. Similarly,
notice that

ri I ≥ r−
i I = −|r−

i I| ≥ −‖r−
i ‖‖I‖ = −ν−

i ‖I‖, (103)

so ri I ≥ t(n+i)u. Thus, RI ∈ Tu, so I ∈ F(u) and S+(θ ) ⊆ F(u).
Proof of the “only if direction”: Let S+(θ ) ⊆ F(u). For any i ∈ {1 . . . , n}, notice that

if r+
i = 0, then ν+

i = 0 and θν+
i ≤ tiu, because tiu ≥ 0. Otherwise, if r+

i 
= 0, then let

I = θ
(r+

i )T

ν+
i

≥ 0. Notice that ‖I‖ = θ , because ‖(r+
i )T ‖ = ‖r+

i ‖ = ν+
i , so I ∈ S+(θ ), from

which I ∈ F(u), that is, ri I ≤ tiu. Therefore, we have

ri I = θri
(r+

i )T

ν+
i

≤ tiu. (104)

But ri(r+
i )T = r+

i (r+
i )T = ‖r+

i ‖2 = (ν+
i )2, so

θν+
i ≤ tiu. (105)

Similarly, if r−
i = 0, then ν−

i = 0 and −θν−
i ≥ t(n+i)u, because t(n+i)u ≤ 0. Otherwise, if

r−
i 
= 0, then let I′ = −θ

(r−
i )T

ν−
i

≥ 0. Notice that ‖I′‖ = θ , because ‖(r−
i )T ‖ = ‖r−

i ‖ = ν−
i , so

I′ ∈ S+(θ ), from which I′ ∈ F(u), that is, ri I′ ≥ t(n+i)u. Therefore, we have

ri I′ = −θri
(r−

i )T

ν−
i

≥ t(n+i)u. (106)

But ri(r−
i )T = r−

i (r−
i )T = ‖r−

i ‖2 = (ν−
i )2, so

−θν−
i ≥ t(n+i)u. (107)

From Equations (105) and (107), it follows that θν̃ ⊆ Tu.

LEMMA D.3. F(us) is maximal in S.

PROOF. Recall that �∗ and us are well defined and (�∗, us) ∈ R, so �∗ν̃ ⊆ Tus and
�∗ ≥ 0. We will prove that �(·) satisfies the conditions of Lemma D.1, from which
it would follow that F(us) is maximal in S. First, notice that for any u, u′ ∈ U , if
F(u′) = F(u), then it follows that �(u′) = �(u), due to Equation (64). It remains to
prove that for any u, u′ ∈ U , with 0 ∈ Tu and 0 ∈ Tu′, if Tu′ ⊃ Tu, then �(u′) > �(u).

Let λ = min∀i
(|Tu′|i − Tu|i|

)
/ max∀i(|ν̃i|), which is well defined because ν̃ 
= 0 due to

R 
= 0, and let θ ′ = �(u) + λ. Because Tu′ ⊃ Tu, it follows that λ > 0 and θ ′ > �(u) ≥ 0.
Therefore,

θ ′ν̃ = �(u)ν̃ + min∀i
(|Tu′|i − Tu|i|

)
max∀i(|ν̃i|) ν̃, (108)

⊆ Tu + min
∀i

(|Tu′|i − Tu|i|
)
12n, (109)
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where 12n is the 2n × 1 vector whose first n entries are 1 and the rest are −1, and
in Equation (109) we used (�(u), u) ∈ R and ν̃/ max∀i(|ν̃i|) ⊆ 12n. Notice that, for any
k ∈ {1, . . . , n}, because Tu ⊂ Tu′, we have

min
∀i

(|Tu′|i − Tu|i|
) ≤ |Tu′|k − Tu|k| = Tu′|k − Tu|k. (110)

Likewise, for any k ∈ {n + 1, . . . , 2n}, we have

− min
∀i

(|Tu′|i − Tu|i|
) ≥ −|Tu′|k − Tu|k| = Tu′|k − Tu|k. (111)

Combining Equations (110) and (111), we get

min
∀i

(|Tu′|i − Tu|i|
)
12n ⊆ Tu′ − Tu. (112)

Therefore, due to Equations (109) and (112) and making use of Equation (21), we get

θ ′ν̃ ⊆ Tu + Tu′ − Tu = Tu′
. (113)

This, coupled with u′ ∈ U , means that (θ ′, u′) ∈ R, so �(u′) ≥ θ ′ > �(u), from which �(·)
satisfies the conditions of Lemma D.1 and F(us) is maximal in S.

LEMMA D.4. F(uc) is maximal in S.

PROOF. Recall that ζ , ω, and uc are well defined and (ζ, ω, uc) ∈ C, so Rζ ∈ Tuc,
ων̃ ⊆ Tuc, and ζ, ω ≥ 0. We will prove that ξ (·) satisfies the conditions of Lemma D.1,
from which it would follow thatF(uc) is maximal in S. First, notice that for any u, u′ ∈ U ,
if F(u′) = F(u), then it follows that ξ (u′) = ξ (u), due to Equation (71). It remains to
prove that for any u, u′ ∈ U , with 0 ∈ Tu and 0 ∈ Tu′, if Tu′ ⊃ Tu, then ξ (u′) > ξ (u).

For any u ∈ U , there must exist a vector I ∈ F(u) and θ , where θν̃ ⊆ Tu, such that∑m
j=1 Ij + mθ = ξ (u). Let λ = min∀i

(|Tu′|i − Tu|i|
)
/ max∀i, j(|rij |), which is well defined

due to R 
= 0. Because Tu ⊂ Tu′, it follows that λ > 0. Also, let e1 ∈ R
m be the vector

whose first entry is 1 and all other entries are 0, and let I′ = I + λe1. Because λ > 0,
we have λe1 ≥ 0, λe1 
= 0, I′ ≥ I ≥ 0, and I′ 
= I, so

∑m
j=1 I′

j + mθ >
∑m

j=1 Ij + mθ = ξ (u).
Denote by c j the jth column of R and notice that

RI′ = RI + λRe1 = RI + λc1, (114)

= RI + min∀i
(|Tu′|i − Tu|i|

)
max∀i, j(|rij |) c1. (115)

Let 12n be the 2n × 1 vector whose first n entries are 1 and the rest are −1. Because
c1/ max∀i, j(|rij |) ∈ 12n, notice that

min∀i
(|Tu′|i − Tu|i|

)
max∀i, j(|rij |) c1 ∈ min

∀i
(|Tu′|i − Tu|i|)12n, (116)

which, combined with RI ∈ Tu because (I, θ, u) ∈ C, and due to Lemma 3.3, gives

RI + min∀i
(|Tu′|i − Tu|i|

)
max∀i, j(|rij |) c1 ∈ Tu + min

∀i
(|Tu′|i − Tu|i|)12n. (117)

Therefore, using Equation (115), it follows that

RI′ ∈ Tu + min
∀i

(|Tu′|i − Tu|i|)12n. (118)

Also, notice that, for any k ∈ {1, . . . , n}, because Tu ⊂ Tu′, we have

min
∀i

(|Tu′|i − Tu|i|) ≤ |Tu′|k − Tu|k| = Tu′|k − Tu|k. (119)
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Likewise, for any k ∈ {n + 1, . . . , 2n}, we have

− min
∀i

(|Tu′|i − Tu|i|) ≥ −|Tu′|k − Tu|k| = Tu′|k − Tu|k. (120)

Combining Equations (119) and (120), we get

min
∀i

(|Tu′|i − Tu|i|)12n ⊆ Tu′ − Tu. (121)

This, combined with Tu ⊆ Tu and making use of Equation (21), gives

Tu + min
∀i

(|Tu′|i − Tu|i|)12n ⊆ Tu + Tu′ − Tu = Tu′
. (122)

Therefore, due to Equations (118) and (122), we get

RI′ ∈ Tu′
. (123)

Also, we have θν̃ ⊆ Tu ⊂ Tu′. Therefore, we have I′ ∈ F(u′) and θ satisfying θν̃ ⊆ Tu′,
with ξ (u′) ≥ ∑m

j=1 I′
j + mθ > ξ (u), so ξ (·) satisfies the conditions of Lemma D.1, and

F(uc) is maximal in S.

APPENDIX E: PROPERTIES OF THE MATRICES

In the following, we present key theoretical results that are useful to carry out some
of the above proofs. First, we prove that the nv × nv matrix D given in Equation (8) is
irreducible, which is required to prove D−1 > 0, a key result that is useful to prove
Lemma E.5. Second, we prove that every element of Q is non-zero. This result is
established in Lemma E.6, depends on the result of Lemma E.5, and is a key result in
proving Theorem 4.13 and Lemma D.1. Finally, we prove that Q is SP in Lemma E.8,
depending on Lemma E.7, which is used in the proofs of Theorem 4.13, Lemmas D.1, 4.4,
and 4.5.

Definition E.1 (Directed Graph). A directed graph G is the combination of a set of
vertices V(G) and a set of ordered pairs of vertices from V(G), called directed edges, E(G).
If (vi, v j) is a directed edge of G, then it is said to have a direction from vi to v j .

Definition E.2 (Directed Path). A directed path in a graph G is a sequence of vertices
v0, v1, . . . , vk where (vi−1, vi) ∈ E(G) for all i ∈ {1, . . . , k}. The vertex vk is said to be
reachable from v0, denoted as v0 → vk.

Definition E.3 (Strongly Connected). A directed graph is said to be strongly connected
if, for every pair of vertices, u, v, we have u → v.

Any square n × n matrix A can be used to generate a graph G(A), defined as the
directed graph on n vertices {v1, . . . , vn}, in which (vi, v j) ∈ E(G(A)) if and only if aij 
= 0,
where aij is the (i, j)th element of A. If the graph is strongly connected, then the matrix
A is said to be irreducible (see Berman and Plemmons [1994]).

LEMMA E.4. The nv × nv matrix D given in Equation (8) is irreducible.

PROOF. Recall that D = G + B + ME−1MT , where G is an irreducible matrix with
positive diagonal entries and non-positive off-diagonal entries and B is a non-negative
diagonal matrix with a positive diagonal. We will show that G(D) is strongly connected,
so D is irreducible. We start by showing that ME−1MT has non-negative diagonal
entries and non-positive off-diagonal entries. Notice that

(E−1)i j =
{

�t
lii

if i = j
0 otherwise

. (124)
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Therefore, if X = E−1MT , then we have

xij =
nl∑

k=1

(E−1)ik(MT )kj,
i = 1, . . . , nl
j = 1, . . . , nv

, (125)

so xij = �t
lii

mji. Also, if W = ME−1MT , then

wi j =
nl∑

k=1

mikxkj =
nl∑

k=1

mik
�t
lkk

mjk,
i = 1, . . . , nv

j = 1, . . . , nv
. (126)

By definition, every column of the matrix M contains either one non-zero entry or two
non-zero entries where one of them is +1 and the other is −1. It follows that, for any
i 
= j, we have mikmjk ≤ 0, for any k, so wi j ≤ 0, ∀i 
= j. Also, we have mikmik ≥ 0,
for any k, so wii ≥ 0, ∀i. Therefore, W = ME−1MT has non-negative diagonal entries
and non-positive off-diagonal entries. Therefore, B + ME−1MT has positive diagonal
entries and non-positive off-diagonal entries, similarly to G. It follows that dij 
= 0
whenever gij 
= 0, so E(G(G)) ⊆ E(G(D)). Therefore, G(D) is strongly connected, so D is
irreducible.

LEMMA E.5. For the n × n matrix F given in Equation (12), and its extension F̃
according to Definition 3.8, the directed graph G(F̃) is strongly connected.

PROOF. We can represent the 2n × 2n matrix Z �= F̃ as follows:

Z =

⎡
⎢⎣

Z11 Z12 Z13 Z14
Z21 Z22 Z23 Z24
Z31 Z32 Z33 Z34
Z41 Z42 Z43 Z44

⎤
⎥⎦ , (127)

=

⎡
⎢⎢⎣

(D−1 B)+ (D−1 M)+ (D−1 B)− (D−1 M)−

(−E−1 MT D−1 B)+ (Inl − E−1 MT D−1 M)+ (−E−1 MT D−1 B)− (Inl − E−1 MT D−1 M)−

(D−1 B)− (D−1 M)− (D−1 B)+ (D−1 M)+

(−E−1 MT D−1 B)− (Inl − E−1 MT D−1 M)− (−E−1 MT D−1 B)+ (Inl − E−1 MT D−1 M)+

⎤
⎥⎥⎦ , (128)

where, using the notation introduced in Definition 3.8,

Z11 = Z33 = (D−1 B)+, (129)
Z13 = Z31 = (D−1 B)−, (130)
Z12 = Z34 = (D−1 M)+, (131)
Z14 = Z32 = (D−1 M)−, (132)
Z21 = Z43 = (−E−1 MT D−1 B)+, (133)
Z23 = Z41 = (−E−1 MT D−1 B)−, (134)
Z22 = Z44 = (Inl − E−1 MT D−1 M)+, (135)

Z24 = Z42 = (Inl − E−1 MT D−1 M)−. (136)

The matrix Z can be used to construct a graph G(Z) whose vertices are V =
{v1, v2, . . . , v2n} and whose directed edges are (vi, v j) for every zij 
= 0, where zij is
the (i, j)th element of Z. Let E denote the set of edges of G(Z). Also, consider a
partition V1 = {v1, v2, . . . , vnv

}, V2 = {vnv+1, vnv+2, . . . , vn}, V3 = {vn+1, . . . , vn+nv
}, and

V4 = {vn+nv+1, . . . , v2n} of V. For any two vertices u, v ∈ V, define a binary-valued func-
tion β(u, v) as follows:
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Fig. 10. A high-level representation of G(Z).

β(u, v) =
{

1, if u ↔ v;
0, otherwise. (137)

where u ↔ v is a shorthand for u → v and v → u. It should be clear that β(·) is
transitive, that is, for any three vertices u, v, w ∈ V, if β(u, v) = 1 and β(v,w) = 1,
then β(u, w) = 1, and β(·) is commutative, that is, β(u, v) = β(v, u). In the follow-
ing, we will show that for any u, v ∈ V we have β(u, v) = 1, so G(Z) is strongly
connected.

We start by proving the following properties on the vertices of G(Z),

∀u, v ∈ V1 β(u, v) = 1, (138)
∀u, v ∈ V3 β(u, v) = 1, (139)

∀v ∈ V2, ∃u ∈ V1 such that β(u, v) = 1, (140)
∀v ∈ V4, ∃u ∈ V3 such that β(u, v) = 1, (141)

which will lead us to the desired result. To better visualize the proof, refer to Figure 10.
Recall that D−1 > 0, from which D−1 B > 0, because B = C/�t ≥ 0 is a diagonal

matrix with non-zero diagonal elements. Therefore, we have (D−1 B)+ = D−1 B > 0
which, due to Equation (129), gives

u → v, ∀u, v ∈ V1, (142)
u → v, ∀u, v ∈ V3, (143)

This proves Equations (138) and (139).
For any i ∈ {1, 2, . . . , nv} and j ∈ {1, 2, . . . , nl}, notice that vi ∈ V1, vnv+ j ∈ V2,

vn+i ∈ V3, and vn+nv+ j ∈ V4, as shown in Figure 10. Also, for any i ∈ {1, 2, . . . , nv} and
j ∈ {1, 2, . . . , nl}, we define the following indexing scheme and notation for certain
edges in E :
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e12(i, j) = (vi, vnv+ j) ∈ E ⇐⇒ (Z12)i j 
= 0, (144)
e21(i, j) = (vnv+ j, vi) ∈ E ⇐⇒ (Z21)i j 
= 0, (145)

e23(i, j) = (vnv+ j, vn+i) ∈ E ⇐⇒ (Z23)i j 
= 0, (146)
e32(i, j) = (vn+i, vnv+ j) ∈ E ⇐⇒ (Z32)i j 
= 0, (147)

e34(i, j) = (vn+i, vn+nv+ j) ∈ E ⇐⇒ (Z34)i j 
= 0, (148)
e43(i, j) = (vn+nv+ j, vn+i) ∈ E ⇐⇒ (Z43)i j 
= 0, (149)

e41(i, j) = (vn+nv+ j, vi) ∈ E ⇐⇒ (Z41)i j 
= 0, (150)
e14(i, j) = (vi, vn+nv+ j) ∈ E ⇐⇒ (Z14)i j 
= 0. (151)

Then

Z12 = Z34 from (131) leads to e12(i, j) ∈ E ⇐⇒ e34(i, j) ∈ E, (152)
Z14 = Z32 from (132) leads to e14(i, j) ∈ E ⇐⇒ e32(i, j) ∈ E, (153)
Z21 = Z43 from (133) leads to e21(i, j) ∈ E ⇐⇒ e43(i, j) ∈ E, (154)
Z23 = Z41 from (134) leads to e23(i, j) ∈ E ⇐⇒ e41(i, j) ∈ E . (155)

Now let X = D−1M be a nv × nl matrix and Y = −E−1MT D−1 B be a nl × nv matrix,
and notice that Y = −E−1 XT B, where E−1 ≥ 0 and B ≥ 0 are diagonal matrices with
non-zero diagonal elements, so yij = − 1

e j j
(XT ) jibii = − 1

e j j
xijbii. Thus, the corresponding

non-zero elements of Y and XT have opposite signs. Two things follow from this:

1) Considering the positive elements of Y ,

(Y +) ji 
= 0 ⇐⇒ yji > 0 ⇐⇒ xij < 0 ⇐⇒ (X−)i j 
= 0.

But Y + = Z21 and X− = Z14, so

(Z21) ji 
= 0 ⇐⇒ (Z14)i j 
= 0,

from which, due to Equations (145) and (151),

e21(i, j) ∈ E ⇐⇒ e14(i, j) ∈ E . (156)

2) Considering the negative elements of Y :

(Y −) ji 
= 0 ⇐⇒ yji < 0 ⇐⇒ xij > 0 ⇐⇒ (X+)i j 
= 0.

But Y − = Z23 and X+ = Z12, so

(Z23) ji 
= 0 ⇐⇒ (Z12)i j 
= 0,

from which, due to Equations (146) and (144),

e23(i, j) ∈ E ⇐⇒ e12(i, j) ∈ E . (157)

Furthermore, let xj and mj be the jth columns of X and M, respectively. Note that
mj 
= 0, by definition of M, and D−1 is non-singular, so xj = D−1mj 
= 0. Therefore,
xij 
= 0 for some i ∈ {1, 2, . . . , nv}, so either (Z12)i j 
= 0 or (Z32)i j 
= 0, depending
on whether xij > 0 or xij < 0. By Equations (145) and (147), it follows that either
e12(i, j) ∈ E or e32(i, j) ∈ E .

This being said, and due to Equations (152)–(157), for every i and j, we have either
e12(i, j), e23(i, j), e34(i, j), and e41(i, j) ∈ E or e32(i, j), e21(i, j), e14(i, j), and e43(i, j) ∈ E .
Thus, for any vertex in V2 and the corresponding vertex in V4, as indexed by j, there
exists a cycle connecting all the partitions of V and passing through these two vertices
as shown in Figure 10. This completes the proof of Equations (140) and (141).

Now we are ready to show that for any two vertices u, v ∈ V, we have β(u, v) = 1.
Notice that ∀u, v ∈ V1 ∪ V2, β(u, v) = 1, due to the following:
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Fig. 11. A high-level representation of G(Z).

—if u or v ∈ V1, then, clearly, u ↔ v, either due to Equation (138) or due to Equa-
tions (138) and (140) and due to transitivity of β(·).

—if u, v ∈ V2, then there exist w,w′ ∈ V1 such that β(w, u) = 1 and β(w′, v) = 1, due
to Equation (140), which, combined with β(·) being commutative and transitive, and
due to Equation (138), gives β(u, v) = 1.

Therefore, we will combine V1 and V2 as V12
�= V1 ∪ V2, so V12 is strongly connected.

Likewise, V34
�= V3∪V4 is strongly connected, due to Equation (139) and Equation (141).

W can now look at G(Z) using the simple representation of Figure 11, where V12 and
V34 are strongly connected. Moreover, because either e23(i, j) and e41(i, j) ∈ E or e14(i, j)
and e32(i, j) ∈ E , then G(Z) is strongly connected.

LEMMA E.6. Every element of Q is non-zero.

PROOF. Let Z = F̃. Note that Q = (I2n − Z)−1 = ∑∞
k=0 Zk, because ρ(Z) < 1 [Saad

2003]. In the following, we will first show that |Zk| = |Z|k, for every integer k ≥ 1,
starting with the block-form of Zi in the following notation:

Zi =
[

Z(i)
11 Z(i)

12

Z(i)
21 Z(i)

22

]
. (158)

Recall that Z = F̃ is SP, due to Definition 3.8 and Lemma A.1, so Zk is SP, due to
Lemma A.2, which, due to Lemma A.1, gives Z(i)

11 ≥ 0, Z(i)
12 ≤ 0, Z(i)

21 ≤ 0, and Z(i)
22 ≥ 0.

Let Y �= |Z|, where |Z| is the matrix consisting of the absolute values of the elements
of Z, and represent Y i as follows:

Y i =
[

Y (i)
11 Y (i)

12

Y (i)
21 Y (i)

22

]
. (159)

We will prove by induction that Y i = |Zi| for every i ≥ 1. Notice that for i = 1, the
result is trivially true, and suppose that Y k−1 = |Zk−1|, so

Y k = Y k−1Y = |Zk−1||Z| =
[

Z(k−1)
11 −Z(k−1)

12

−Z(k−1)
21 Z(k−1)

22

] [
Z11 −Z12

−Z21 Z22

]
(160)

=
[

Z(k−1)
11 Z11 + Z(k−1)

12 Z21 −Z(k−1)
11 Z12 − Z(k−1)

12 Z22

−Z(k−1)
21 Z11 − Z(k−1)

22 Z21 Z(k−1)
21 Z12 + Z(k−1)

22 Z22

]
, (161)
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while

Zk = Zk−1 Z =
[

Z(k−1)
11 Z(k−1)

12

Z(k−1)
21 Z(k−1)

22

] [
Z11 Z12
Z21 Z22

]
, (162)

=
[

Z(k−1)
11 Z11 + Z(k−1)

12 Z21 Z(k−1)
11 Z12 + Z(k−1)

12 Z22

Z(k−1)
21 Z11 + Z(k−1)

22 Z21 Z(k−1)
21 Z12 + Z(k−1)

22 Z22

]
. (163)

Recall that Zk is SP which, due to Lemma A.1, means that the diagonal blocks in
Equation (163) are non-negative and the off-diagonal blocks are non-positive. Thus,
comparing Equations (161) and (163), we see that Y k = |Zk|, for every k. Furthermore,
notice that G(Z) = G(|Z|), due to the definition of G(·), and G(Z) is strongly connected,
due to Lemma E.5, so G(|Z|) is strongly connected and |Z| is irreducible (see Berman
and Plemmons [1994]). This, combined with |Z| ≥ 0, leads to |Z|p > 0, for some integer
p ≥ 1 (see Berman and Plemmons [1994]). Therefore, |Zp| > 0, due to |Zp| = |Z|p,
so every element of Zp is non-zero. Let z(k)

i j be the (i, j)th element of Zk, so the (i, j)th
element of Q = ∑∞

k=0 Zk is

qij =
p−1∑
k=0

z(k)
i j + z(p)

i j +
∞∑

k=p+1

z(k)
i j 
= 0,

where we used the fact that z(k)
i j have the same sign, ∀k, due to Zk being SP, ∀k, and

Lemma A.1, and z(p)
i j 
= 0, because every element of Zp is non-zero. It follows that every

element of Q is non-zero.

LEMMA E.7. Let u(k), v(k) ∈ R
2n be sequences of vectors. If u(k) ⊆ v(k), ∀k ≥ 1, and if

u �= limk→∞ u(k) and v
�= limk→∞ v(k) exist, then u ⊆ v.

PROOF. Let u(k) = [ u(k)
t

u(k)
b

], v(k) = [ v
(k)
t

v
(k)
b

], u = [ ut
ub

], and v = [ vt
vb

], where u(k)
t , v

(k)
t , ut, vt, u(k)

b ,

v
(k)
b , ub, and vb are n× 1 vectors. In the following, we will show that ut ≤ vt and ub ≥ vb,

so u ⊆ v.
Let w

(k)
t = v

(k)
t − u(k)

t ≥ 0, ∀k, and let wt
�= limk→∞ w

(k)
t = limk→∞(v(k)

t − u(k)
t ) =

limk→∞ v
(k)
t − limk→∞ u(k)

t = vt − ut. If wt < 0, then there exists an integer N ≥ 1
such that |w(k)

t − wt| < −wt, ∀k ≥ N, due to the definition of limits [Bartle and Sherbert
1992]. It follows that wt < w

(k)
t − wt < −wt, ∀k ≥ N, so w

(k)
t < 0, ∀k ≥ N, and we have a

contradiction. Therefore, wt = vt − ut ≥ 0 and ut ≤ vt. Similarly, let w
(k)
b = u(k)

b − v
(k)
b ≥ 0,

∀k, and let wb
�= limk→∞ w

(k)
b = limk→∞(u(k)

b − v
(k)
b ) = limk→∞ u(k)

b − limk→∞ v
(k)
b = ub − vb.

If wb < 0, then there exists an integer N ≥ 1 such that |w(k)
b −wb| < −wb, ∀k ≥ N, due to

the definition of limits [Bartle and Sherbert 1992]. It follows that wb < w
(k)
b −wb < −wb,

∀k ≥ N, so w
(k)
b < 0, ∀k ≥ N, and we have a contradiction. Therefore, wb = ub − vb ≥ 0,

ub ≥ vb, and u ⊆ v.

LEMMA E.8. Q is SP.

PROOF. Let Z = F̃. Recall that, because ρ(Z) < 1, then the summation
∑∞

k=0 Zk exists,
and we have Q = (I2n − Z)−1 = ∑∞

k=0 Zk [Saad 2003]. The proof is by induction. Notice
that Z0 is SP, due to Lemma A.1. Suppose that Zk−1 is SP, then Zk = Zk−1 Z is also SP,
due to Lemma A.2. Therefore, Zk is SP, for any k ≥ 0. Also, notice that, for any two
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2n × 1 vectors u ⊆ v and for any integer p ≥ 1, we have[ p∑
k=1

Zk

]
u =

p∑
k=1

[Zku] ⊆
p∑

k=1

[Zkv] =
[ p∑

k=1

Zk

]
v, (164)

where in the second step we used the fact that Zk is SP, for any k ≥ 0, and that the
finite sum of SP matrices is SP, due to Lemma A.2. Because limp→∞[

∑p
k=1 Zk] exists

and converges to (I2n − Z)−1, taking the limits on both sides of Equation (164), due to
Lemma E.7, leads to

Qu = (I2n − Z)−1u ⊆ (I2n − Z)−1v = Qv. (165)

Hence, Q is SP, which completes the proof.
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