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Abstract – In this paper, we propose a mod-

eling approach that captures the dependence of

the power dissipation of a combinational logic cir-

cuit on its input/output signal switching statis-

tics. The resulting power macromodel, consist-

ing of a single four-dimensional table, can be used

to estimate the power consumed in the circuit for

any given input/output signal statistics. Given a

low-level (typically gate-level) description of the

circuit, we describe a characterization process by

which such a table model can be automatically

built. The four dimensions of our table-based

model are the average input signal probability, av-

erage input transition density, average spatial cor-

relation coefficient and average output zero-delay

transition density. This approach has been im-

plemented and models have been built for many

benchmark circuits. Over a wide range of input

signal statistics, we show that this model gives

very good accuracy, with an RMS error of about

4% and average error of about 6%. Except for one

out of about 10,000 cases, the largest error ob-

served was under 20%. If one ignores the glitch-

ing activity, then the RMS error becomes under

1%, the average error becomes under 5% and the

largest error observed in all cases is under 18%.

1. INTRODUCTION

With the advent of portable and high-density
micro-electronic devices, the power dissipation of very
large scale integrated (VLSI) circuits is becoming a
critical concern. Modern microprocessors are hot, and
their power consumption can exceed 30 or 50 Watts.
Due to limited battery life, reliability issues, and pack-
aging/cooling costs, power consumption has become
a more critical design concern than speed and area
in some applications. Hence to avoid problems asso-
ciated with excessive power consumption, there is a
need for CAD tools to help in estimating the power
consumption of VLSI designs.

A number of CAD techniques have been proposed
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for gate-level power estimation (see [1] for a survey).
However, by the time the design has been specified
down to the gate level, it may be too late or too expen-
sive to go back and fix high power problems. Hence
in order to avoid costly redesign steps, power estima-
tion tools are required that can estimate the power
consumption at a high level of abstraction, such as
when the circuit is represented only by the Boolean
equations. This will provide the designer with more
flexibility to explore design trade-offs early in the de-
sign process, reducing the design cost and time.

In response to this need, a number of high-
level power estimation techniques have been proposed
(see [2] for a survey). Two styles of techniques have
been proposed, which we refer to as top-down and
bottom-up. In the top-down techniques [3, 4], a
combinational circuit is specified only as a Boolean
function, with no information on the circuit struc-
ture, number of gates/nodes, etc.. Top-down methods
would be useful when one is designing a logic block
that was not previously designed, so that its internal
structural details are unknown.

In contrast, bottom-up methods [5–9] are useful
when one is reusing a previously-designed logic block,
so that all the internal structural details of the cir-
cuit are known. In this case, one develops a power
macromodel for this block which can be used during
high-level power estimation (of the overall system in
which this block is used), in order to estimate the
power dissipation of this block without performing a
more expensive gate-level power estimation on it.

The method in [5] uses the power factor approx-
imation technique, which treats all the circuit input
bits as digital “white noise” and due to this assump-
tion can give errors of up to 80% in comparison to
gate-level tools. Although [6] gives more accurate
result, its main disadvantage is that it treats differ-
ent modules differently, requiring specialized analyt-
ical expressions for the power to be provided by the
user. Thus, depending upon the functionality of the
module, a different type of macromodel (analytical
equation) may have to be used.

The method in [7] characterizes the power dis-
sipation of circuits based on input transitions rather



than input statistics. Since the number of possible in-
put transitions for an n-input combinational circuit is
22n, they present a clustering algorithm to compress
the input transitions into clusters of input transitions
that have the same power values (approximately).
They use heuristics to implement the clustering al-
gorithm, but it is not clear how efficient the method
would be on large circuits.

In [8], the authors present a technique to estimate
switching activity and power consumption at the RTL
for data path and control circuits, in the presence of
glitching activity. To construct a power macromodel,
they use both analytical equations and look-up tables.
The method is quite good and uses 9 or more variables
in the power macromodel. Our independent work has
shown that it is possible to construct a look-up table
power macromodel with much fewer variables (4 can
be enough).

Recently, in [9], the authors presented a macro-
model for estimating the cycle-by-cycle power at the
RTL. The proposed methodology consists of three
steps: module equation form generation and variable
selection, variable reduction, and population stratifi-
cations. The generated macromodel has 15 variables.
They show good accuracy in estimating average and
cycle-by-cycle power. The macromodels are depen-
dent on a training vector set, so that the accuracy is
compromised if the training set is not similar to the
vector set to be applied.

In this paper, we propose a power macromodeling
approach that (1) takes into account the effect of the
circuit input switching activity and does not treat the
circuit inputs as white noise, (2) takes into account in-
put correlation, both spatial and temporal, and (3) is
based on a single fixed macromodel template which
does not depend on the type of module being ana-
lyzed. Our model is table-based. Specifically, we con-
struct a four dimensional look-up table, whose axes
are the average input signal probability (Pin), aver-
age input transition density (Din),average input spa-
tial correlation coefficient (SCin), and average output
zero delay transition density (Dout). For a logic node,
the transition density is defined as the average num-
ber of logic transitions per unit time [10]. The zero
delay transition density refers to the case when the
circuit gates are considered to have zero delay, so that
only truly required logic transitions (and no hazards
or glitches) are observed. From a high-level view, it is
reasonable to assume that fast functional simulation
will be applied to measure signal switching statistics,
so that only the zero delay output density (and not
the real delay output density) will be computed. The
main advantage of our approach is that all types of

circuits are treated in the same way, i.e., we do not
use different model equation types for different mod-
ules. As a result, the method is very easy to use, and
requires no user intervention. Indeed, we will present
an automatic characterization procedure by which the
macromodel can be built for a given circuit. In this
paper we will present an extension of the approach
discussed in [11].

The paper is organized as follows. In section 2 we
will discuss the macromodeling problem in more de-
tail. In section 3 we will describe the characterization
procedure for the models. In section 4 we will evalu-
ate the accuracy of the macromodels and in section 5
we will give some conclusions.

2. POWER MACROMODELING

What should a power macromodel look like?
Which features are desirable and which are too ex-
pensive and infeasible? To begin with, it is clear that
a macromodel should be simple to evaluate, other-
wise there would be no advantage in using it and one
might as well perform the analysis at the gate level.
Furthermore, it must apply over the whole range of
possible input signal statistics. Finally, it should con-
sist of a fixed template, in which certain parameter
values can be determined by a well-defined and auto-
matic process of characterization, without user inter-
vention. We present a macromodel that has all these
properties.
2.1 Power and Input Parameters Relationship

It is instructive to study the relationship between
power and input parameters like average probability
and average transition density (see Eq. (17) for defi-
nitions) of the primary inputs. Simulations were per-
formed for different values of average input probabil-
ity and average input density to determine the nature
of their relationship with power. Fig. 1 shows the plot
of real-delay power dissipation for different values of
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Figure 1. Plot of total power for c6288,
for Din = 0.1 and different Pin.

average input probability and average input den-



sity for c6288, a combinational benchmark circuit [12].
Figs. 2 and 3 show the same plot for c3540, another
combinational benchmark circuit [12]. It can be seen
that the relationship is nonlinear and the plots do not
have a consistent shape. Similar results were obtained
for other circuits. These results preclude, for instance,
the use of a simple linear relationship to relate power
to the signal statistics, and led us to consider a table-
based approach.
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Figure 2. Plot of total power for c3540,
for Din = 0.3 and different Pin.
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Figure 3. Plot of total power for c3540,
for Din = 0.8 and different Pin.

2.2 Power Macromodeling Assuming Independence
Because the power depends on the circuit input

switching activity, it is clear that a power macromodel
should take the input activity into account. The ques-
tion is, however, exactly what information about the
inputs should be taken into account and included in
the macromodel. When the circuit being modeled is
small (one or a few gates), then a simple modeling
strategy is to create a table that gives the power for
every possible input vector pair. In this case, there is
no loss of accuracy. However, this strategy cannot be
applied to large circuits. A circuit with 32 inputs will
have 264 possible input vector pairs, which would be
prohibitively expensive to store in a table. This leads
to a trade-off between the amount of detail that one

includes about the inputs and the accuracy resulting
from the model. One possibility is to consider the
signal probability P (xi) and transition density D(xi)
at every input node xi, and to build a model that de-
pends only on these two variables. Notice that any in-
formation about correlations between the input nodes
is lost when this is done. Thus, for instance, one could
consider building a table which gives the power for ev-
ery given assignment of input P (xi) and D(xi) values.
Even in this case, however, such a table-based model
would be too expensive, because a circuit with 32 in-
puts would require a 64-dimensional table.

Given the above observations, we have considered
what aggregate compact descriptions of the P (xi) and
D(xi) values would be sufficient to model the circuit
power. For instance, one could consider building a
two-dimensional table whose axes would be the aver-
age input P (xi), which we will denote by Pin, and the
average input D(xi), to be denoted Din. In this case,
two different input assignments of P (xi) and D(xi)
values, which may lead to different power values, may
have the same Pin and Din averages, and the table
would predict the same power for both assignments,
obviously with some error.

We have studied how big this error can be, as fol-
lows. Given a gate-level circuit and for a certain fixed
Pin and Din, we generate a large number (80 or more)
of P and D assignments at the circuit inputs that each
have averages equal to the specified Pin and Din. We
then perform an accurate power estimation for each
assignment using a Monte Carlo gate-level (with full
delay model) simulation technique [13]. The average
of the resulting power values is a good candidate value
to store in the table. For each of the estimated power
values, any deviation from this average value is con-
sidered to be an “error” relative to this table. The
root-mean-square (RMS) and maximum errors for IS-
CAS85 circuits [12] (see Table 1 for details of these
circuits) are reported in Table 2, for Pin = 0.4 and
Din = 0.4. A density of 0.4 means that the node
makes an average of 4 transitions in 10 consecutive
clock cycles. The largest RMS error is about 17%
and the largest maximum error is -40%.

Table 1. Details of the ISCAS85 circuits.
Circuit Function #inputs #outputs #gates
c432 Interrupt control 36 7 160
c880 ALU 60 26 383
c1908 Error correction 33 25 880
c2670 ALU and control 233 140 1193
c3540 ALU 50 22 1669
c5315 ALU 178 123 2307
c6288 Multiplication 32 32 2406
c7552 ALU 207 108 3512
c499 Error detection 41 32 202
c1355 Error detection 41 32 546



Table 2. RMS and maximum error in the 2-d
table approach, when total power is estimated.

Circuit Pin Din RMS.Error Max.Error
c432 0.4 0.4 1.61% 34.88%
c880 0.4 0.4 1.77% 40.46%
c1908 0.4 0.4 1.74% 16.80%
c2670 0.4 0.4 2.43% -31.61%
c3540 0.4 0.4 2.96% 35.77%
c5315 0.4 0.4 1.76% 20.94%
c6288 0.4 0.4 16.6% -40.04%
c7552 0.4 0.4 3.37% 19.02%

The power estimator (simulator) used to generate
this table uses a scalable-delay timing model that de-
pends on fanout and gate output capacitance. Thus,
it captures the glitching power accurately (multiple
transitions per cycle due to unequal delay from the
inputs to an internal node). The glitching power is
hard to account for in a high-level model. This is why
such a high RMS error is seen for c6288, in which
some internal nodes make up to 20 transitions per
cycle. The errors improve considerably if the power
estimates are based on a zero-delay timing model, in
which the glitches are excluded, as shown in Table 3.
The largest RMS error is now 1% and the largest max-
imum error is 27%.

Table 3. RMS and maximum error in the 2-d
table approach, when zero-delay power is estimated.

Circuit Pin Din RMS.Error Max.Error
c432 0.4 0.4 0.59% 16.02%
c880 0.4 0.4 0.85% 27.5%
c1908 0.4 0.4 0.46% -7.28%
c2670 0.4 0.4 0.92% -18.82%
c3540 0.4 0.4 0.83% -19.07%
c5315 0.4 0.4 0.47% 10.88%
c6288 0.4 0.4 0.72% -16.82%
c7552 0.4 0.4 1.01% -15.54%

In any case, with such a high RMS error in the
general delay case, the total power estimation using
Table 2 is too inaccurate. The simple 2-dimensional
table approach is too simplistic. Another parame-
ter is needed by which we can accurately model the
variation of the power due to various input P and D
assignments. We have found that if one more dimen-
sion is added to the table, reasonably good accuracy
can be obtained. The third axis is the average output
transition density over all the circuit output nodes,
measured from a zero-delay (functional) simulation of
the circuit, and which we will denote by Dout. The
stipulation that Dout corresponds to zero-delay is not
optional, but rather required for the following reason.
We envision that during high-level, say RTL, power
estimation, one would perform an initial step of esti-
mating the signal statistics at the visible RTL nodes
from a high-level functional simulation. These (zero-
delay) statistics would then be applied to the power

macromodel in order to estimate the power. Thus,
the power model will be given by:

Pavg = f(Pin, Din, Dout) (1)

In order to study the accuracy in this 3-d approach,
and to perform a direct comparison with Tables 2
and 3, we will show the errors in the estimation for
the same Pin = 0.4 and Din = 0.4 specifications as
before. The value of Dout will naturally be different
in different runs. For each circuit, we selected the
largest subset of cases that has the same (approxi-
mately) Dout value and examined the errors based on
the results in that subset. It is clear from Table 4
that the errors are much less now, and the RMS er-
ror in c6288 is now reduced to an acceptable 6%. For
comparison with Table 3, the errors in the zero-delay
power are given in Table 5. The RMS error is now
below 0.77% and the maximum error is under about
12%.

Table 4. RMS and maximum error in the 3-d
table approach, when total power is estimated.

Circuit Pin Din Dout RMS.Error Max.Error
c432 0.4 0.4 0.44 0.97% 16.48%
c880 0.4 0.4 0.32 1.58% 27.87%
c1908 0.4 0.4 0.44 1.18% 12.71%
c2670 0.4 0.4 0.37 1.78% -18.82%
c3540 0.4 0.4 0.44 1.94% -20.33%
c5315 0.4 0.4 0.42 1.76% 17.16%
c6288 0.4 0.4 0.44 6.05% -33.54%
c7552 0.4 0.4 0.42 2.97% -15.67%

Table 5. RMS and maximum error in the 3-d
table approach, when zero-delay power is estimated.

Circuit Pin Din Dout RMS.Error Max.Error
c432 0.4 0.4 0.44 0.33% 4.90%
c880 0.4 0.4 0.32 0.55% 9.87%
c1908 0.4 0.4 0.44 0.19% -3.23%
c2670 0.4 0.4 0.37 0.65% -9.70%
c3540 0.4 0.4 0.44 0.47% -12.37%
c5315 0.4 0.4 0.42 0.45% 6.32%
c6288 0.4 0.4 0.44 0.45% -10.18%
c7552 0.4 0.4 0.42 0.77% -8.82%

2.3 Power Macromodeling For Correlated Inputs
In the previous section we assumed that the pri-

mary inputs are independent, but in practice the pri-
mary inputs can be correlated. For example, the pri-
mary inputs could be the output of another circuit
block, which can be very highly correlated. Fig. 4
compares the correlated and 3-d table-based power
values for all ISCAS-85 circuits, over a wide range
of Pin, Din, and Dout values. An enlarged view of
the lower section of the Fig. 4 is shown in Fig. 5. It
can be seen from the figures that the 3-dimensional
table-based macromodel gives erroneous estimate of



the power when primary inputs are correlated. Ta-
ble 6 gives the RMS, average and maximum error,
when the inputs are correlated and the total power is
estimated using the 3-d table-based macromodel, over
a wide range of Pin, Din, and Dout values. It can be
seen from the table that the error is quite high. This
led us to consider other parameters to be included in
the macromodel.
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Figure 4. Power comparison between correlated
input vector stream and 3-d macromodel, when

total power is estimated.
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Figure 5. Power comparison between correlated
input vector stream and 3-d macromodel, when

total power is estimated.
Table 6. RMS, average and maximum error when

total power of correlated input vector stream is
estimated using 3-d macromodel.

Circuit RMS.Error Average Error Max.Error
c432 3.84% 35.5% 122.16%
c880 2.00% 16.26% 73.9%
c1908 3.73% 25.75% 114.78%
c2670 4.46% 27.08% 116.44%
c3540 2.936% 20.59% 120.01%
c5315 3.72% 21.72% 121.75%
c6288 41.4% 90.17% 226.64%
c7552 4.56% 28.73% 124.34%
c499 3.36% 43.15% 160.79%
c1355 2.846% 29.66% 134.71%
The primary inputs can be either temporally or

spatially correlated. A signal x is said to be tempo-

rally correlated if an event (occurrence of certain logic
state) at a given time is correlated to an event at
some past time and is said to be spatially correlated
to another signal y if their events are correlated.

2.3.1 Temporal Correlation
In the case of temporal correlation, we will con-

sider only correlations across one clock edge. For tem-
porally correlated primary inputs, define TCi for the
ith input, as:

TCi = P {xt
i ∧ xt−1

i = 1
}

(2)

where t − 1 and t are consecutive clock cycles and
where P {·} denotes probability. Temporal correlation
coefficient (γi) for ith input is defined as [14]:

γi =
P {xt

i ∧ xt−1
i = 1

}− P (xi)
2

P (xi)(1− P (xi))
(3)

In (3), P (xi) is the probability at an input node
xi, which is known, as individual input probabilities
are required to determine Pin for the 3-dimensional
table based power macromodel and the only quantity
which is unknown is P {xt

i ∧ xt−1
i = 1

}
. Therefore,

γi can be estimated accurately, if we can determine
TCi. But, we will show now that TCi can be uniquely
determined from the knowledge of P (xi) and D(xi).

Proposition 1. For any primary input node:

TCi = P (xi)− D(xi)
2

(4)

where TCi, P (xi) and D(xi) are the temporal correla-
tion, signal probability and transition density, respec-
tively.
Proof: Let us denote the probability of a low-to-high
transition by Plh, and the probability of a high-to-low
transition by Phl. Since a low-to-high transition is
eventually followed by a high-to-low transition, then:

Plh = Phl (5)

The transition density can be expressed as:

D(xi) = Plh + Phl = 2Plh = 2 [P (xi)− TCi] (6)

⇒ TCi = P (xi)− D(xi)
2

(7)

Hence proved.

Therefore, temporal correlation at the primary
inputs is taken care by P (xi) and D(xi) and we do
not need an additional parameter to represent it.



2.3.2 Spatial Correlation
We will consider only pairwise correlations. We

define SCij , the spatial correlation between the ith
and jth inputs as:

SCij = P {xi ∧ xj = 1} , (8)

i.e., the probability of both inputs being high simul-
taneously.

The reason for considering SCij as the measure
of spatial correlation coefficient follows from the defi-
nition of correlation coefficient [14]:

ρij =
P {xi ∧ xj = 1} − P (xi)P (xj)√

P (xi)P (xj) (1− P (xi)) (1− P (xj))
(9)

From the definition given in (8), it is clear that SCij

is sufficient to capture ρij .
As the number of primary inputs increases, the

number of SCij parameters will increase quadrati-
cally. We have found empirically that if we consider
SCin (average spatial correlation coefficient, i.e, av-
erage of all SCij terms), as the fourth parameter in
the power macromodel, sufficient accuracy can be ob-
tained for estimating the power of highly correlated
primary inputs. Thus, our table-based power macro-
model in presence of the fourth parameter looks as
follows:

Pavg = f(Pin, Din, SCin, Dout) (10)

3. CHARACTERIZATION

We assume that the combinational circuit is em-
bedded in a larger sequential circuit, so that its input
nodes are the outputs of latches or flip-flops and that
they make at most one transition per clock cycle. We
assume that the sequential design is a single clock sys-
tem and ignore clock skew, so that the combinational
circuit inputs x1, x2, . . . , xn switch only at time 0.

At this point it is helpful to recall some defini-
tions. The signal probability P (xi) at an input node
xi is defined as the average fraction of clock cycles in
which the final value of xi is a logic high. The tran-
sition density D(xi) at an input node xi is defined as
the average fraction of cycles in which the node makes
a logic transition (its final value is different from its
initial value). For brevity, in this section we will write
Pi and Di to represent P (xi) and D(xi). Both Pi and
Di are real numbers between 0 and 1.

Because the input signals xi make at most a sin-
gle transition per cycle, there is a special relationship
between probability and density, given by:

Di

2
≤ Pi ≤ 1− Di

2
(11)

The derivation of this property is rather simple, as
follows. Let µ1 (µ0) be the average number of con-
secutive clock cycles that an input node remains high
(low). Through a minor extension of the results in [10]
to the case of discrete time signals, P (x) and D (x)
at input node x are given by:

P (x) =
µ1

µ0 + µ1
(12)

D (x) =
2

µ0 + µ1
(13)

from which it follows that:

µ1 =
2P (x)
D (x)

(14)

µ0 =
2 (1− P (x))

D (x)
(15)

Since µ1 ≥ 1 and µ0 ≥ 1, (14) and (15) lead to the
required result (11).

One can rewrite (11) as:

Di ≤ 1− 2 |Pi − 0.5| (16)

so that for a given P (x), D(x) is restricted to the
shaded region shown in Fig. 6.

0 10.5
0

1

P(x)

D(x)

Figure 6. Relationship between density and
probability for discrete-time signals.

We also recall the definitions of the average input
probability, denoted Pin, and average input density,
denoted Din, as follows:

Pin =
1
n

n∑
i=1

Pi Din =
1
n

n∑
i=1

Di (17)

where n is the number of input nodes. It is clear
from (11) that similar bounds hold for Pin and Din:

Din

2
≤ Pin ≤ 1− Din

2
(18)



from which we also have:

Din ≤ 1− 2 |Pin − 0.5| (19)

Similarly we can derive a special relationship be-
tween SCin and Pin, i.e., given Pin we can find lower
and upper bounds for SCin. Because SCin is a proba-
bility it can take values only between 0 and 1. Before
describing the bounds, we first recall the definition of
SCin:

SCin =
2

n (n − 1)

n∑
i=1

n∑
j=i+1

P {xi = 1, xj = 1} (20)

where n is the number of primary inputs.
Let us consider that we have to generate a block

of N consecutive input vectors, with each vector con-
sisting of 1s and 0s, and let us denote the kth vector
by Vk. SCin can be written in terms of the input
vectors as:

SCin = lim
N→∞

SCN
in (21)

where:

SCN
in =

1
N

N∑
k=1

2
n (n− 1)

n∑
i=1

n∑
j=i+1

xi,kxj,k

=
2

n (n− 1)N

N∑
k=1

n∑
i=1

n∑
j=i+1

xi,kxj,k (22)

and where xi,k is the ith bit in the kth vector. Notice
that

∑n
i=1

∑n
j=i+1 xi,kxj,k = number of bit pairs, in

kth vector, that are (1, 1). Therefore,

n∑
i=1

n∑
j=i+1

xi,kxj,k =
n1 (k) (n1 (k) − 1)

2
(23)

where n1 (k) = number of 1s in Vk.
By substituting (23) into (22), we get:

SCN
in =

2
Nn (n− 1)

N∑
k=1

n1 (k) (n1 (k) − 1)
2

(24)

At this point, it will be helpful to define P N
in . For

a block of N vectors, Pin can be written as:

Pin = lim
N→∞

P N
in (25)

where:

P N
in =

1
N

N∑
k=1

n1 (k)
n

(26)

Notice that, for large N :

1
N

N∑
k=1

n1 (k) ≈ nPin (27)

It can be shown from (24) & (26) that, if we
allow n1(k) to take real non-integer values, then the
minimum value of SCN

in occurs when, for all k (see
Appendix A for proof):

n1 (k) = nP N
in (28)

Therefore, a lower bound on SCN
in is given by:

SCN
in ≥

nP N
in

(
nP N

in − 1
)

n (n− 1)
(29)

For large values of N , this leads to:

SCin ≥ nP 2
in − Pin

(n− 1)
(30)

To compute an upper bound on SCN
in, we start

with the observation that the maximum value of SCN
in

in (24) will occur when as many n1(k)s as possible
are set to their maximum value n, because of the
quadratic term. Since not all n1(k)s can be set to
n due to (26), the largest SCN

in is achieved by having
m < N vectors have n1(k) = n 1s, one vector contain
the remaining r < n 1s, and the remaining vectors
contain all 0s. In other words, m is the largest inte-
ger for which mn + r =

∑N
k=1 n1(k) = NnP N

in , where
0 < r < n is an integer. With this, m = bNP N

inc, and
the largest possible value of SCN

in is given by:

SCN
in ≤ mn (n− 1) + r (r − 1)

Nn (n− 1)
=

m

N
+

r(r − 1)
Nn(n− 1)

(31)
From this, it follows that:

SCin = lim
N→∞

SCN
in ≤ Pin (32)

due to the fact that m/N = P N
in − (r/Nn) so that

limN→∞m/N = Pin.
Combining the lower and upper bounds gives:

nP 2
in − Pin

(n− 1)
≤ SCin ≤ Pin (33)

The shaded region in Fig. 7 shows the feasible re-
gion for Pin and SCin. Shown in Fig. 8 is the three-
dimensional plot showing the relationship between
Pin, Din, and SCin. The two shaded surfaces are the
lower and upper bounds for SCin for different values
of Pin and Din. It is evident from the figure that Din



does not have any effect on SCin. The surface in the
(Pin Din) plane shows the relationship between Pin

and Din as given by (18).
Thus, the 4-dimensional table with axes Pin, Din,

SCin and Dout will not be completely full, and the
choices of Pin, Din, and SCin during characteriza-
tion will have to satisfy the above constraints (18)
and (33). We subdivide the probability, density and
spatial correlation axes between 0 and 1 into intervals
of size 0.1, so that we form a 10 × 10 × 10 grid in
the (Pin, Din, SCin) plane. This choice is rather an
arbitrary one, which we have found works well. Only
a fraction of these points are valid, namely those that
fall inside the shaded regions in Figs. 7 and 8. Each
valid grid point will correspond to a column of cells
in the table along the Dout axis as shown in Fig. 9.

Pin

SCin

0 1.0

1.0

Figure 7. Relationship between probability and
spatial correlation for discrete-time signals.
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Figure 8. Relationship between probability, density
and spatial correlation for discrete-time signals.
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Figure 9. Four dimensional power macromodel.

For each valid grid point in the (Pin, Din, SCin)
space, we generate blocks of input vectors such that
the average probability, density and spatial correla-

tion at the primary inputs are equal to Pin, Din, and
SCin respectively. Using these vectors, the circuit
power is computed using Monte Carlo power estima-
tion [13], and the value of Dout is computed as the
average of the individual (zero-delay) density values
at the circuit outputs, also found during the Monte
Carlo analysis. The value of Dout is rounded to the
nearest grid point on the Dout axis, and the power
value obtained is associated with the resulting cell lo-
cation (Pin, Din, SCin, Dout) in the table. Eventually,
a number of power values may be associated with a
single cell in the table. At the end of the charac-
terization, every cell is filled with the average of the
power values associated with it. Some cells may have
no power values associated with them, in which case
their contents are left at zero. When it comes time
to use the table, interpolation and extrapolation can
be used to find the power for a (Pin, Din, SCin, Dout)
combination which does not exist in the table. In
the next section, we will show a number of results
that demonstrate the accuracy of this approach over
a wide range of input statistics, in which interpolation
and extrapolation were used whenever required.

The above characterization process is straightfor-
ward, except for the generation of the block of input
vectors at the primary inputs such that the average
values of probability, density, and spatial correlation
are equal to Pin, Din, and SCin respectively.

Mathematically, the problem can be stated as
to generate a block of N input vectors (as shown in
Fig. 10) such that they satisfy the following require-
ments:

P N
in ≈ Pin

DN
in ≈ Din

SCN
in ≈ SCin

(34)

where Pin, Din, and SCin are the required average
signal probability, average transition density and av-
erage spatial correlation coefficient, respectively, at
the primary inputs which satisfy (18) and (33). Sim-
ilarly, P N

in , DN
in, and SCN

in are the averages obtained
from the generated input vectors.

X2 X3 Xn-1 XnX1

1 1 0 0 1

0 0 1 0 1

1 0 1 1 1

0 0 1 1 0

1 1 1 0 0

1V

V2

V3

V

VN

N-1

Figure 10. A block of N input vectors.
We have developed a heuristic technique to gen-



erate blocks of input vectors satisfying (34). Fig. 11
shows a histogram of the Euclidean distance between
(Pin, Din, SCin) and (P N

in , DN
in, SCN

in), for blocks of
input vector of size N = 100, over a wide range of
Pin, Din and SCin values. It is clear from the figure
that for most cases the distance is near zero, and that
the maximum error is under 5%, thus demonstrating
the accuracy of this technique. For more details on
this, refer to [15].
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Figure 11. Distance distribution between
(Pin, Din, SCin) and (P N

in , DN
in, SCN

in).

Table 7 gives the execution times for the ISCAS-
85 circuits, under the column named ’Time’, for build-
ing the look-up table based macromodel. The execu-
tion times are on a SUN Ultra Sparc 1 with 64 MB of
RAM. It can be seen from the table that the largest
execution times are required for c7552 and c6288 re-
spectively. This is due to the fact that it is very time
consuming to compute the power dissipation for these
circuits. The number of iterations (power estimation
runs) required to build the macromodel is the same for
all the circuits, including c7552 and c6288. If one uses
a more efficient power estimator, the overall time to
build the macromodel would be reduced. In any case,
it should be kept in mind that the time required to
build the macromodel is a one-time up-front cost.

4. MODEL ACCURACY EVALUATION

In this section, we report the results of the 4-
dimensional power macromodeling approach on the
ISCAS-85 circuits. We have implemented this ap-
proach and built the power macromodels
(4-dimensional look-up tables) for a number of combi-
national circuits. In order to study the accuracy over
a wide range of signal statistics, we randomly gener-
ated blocks of input vectors at the circuit inputs while
covering a wide range of Pin, Din, and SCin values
that satisfy (18) and (33). Approximately 1000 such
valid blocks of input vectors were generated this way
for every ISCAS-85 circuits, for which the power was
estimated from gate-level Monte Carlo simulation; the

Monte Carlo simulation also provides accurate esti-
mation of Dout. The power values predicted by the
look-up table were compared to those from simula-
tion, and the RMS, absolute average and maximum
errors were computed.

The results are summarized in Table 7 for the
case when total power is estimated. It is seen that
the RMS error is very good, under about 5%. The
largest maximum error is at 22.56% for c432, because
the estimated power value is very small and a slight
difference in power value causes a lot of error. The
average error in all cases is less than 6%, which shows
the accuracy of our macromodeling approach. The
combined scatter plot of all ISCAS-85 circuits showing
the accuracy of this approach is shown in Fig. 12. An
enlarged view of the lower section of this plot is given
in Fig. 13. Both these plots report normalized power
values, so that the results for all the circuits can be
examined on the same plot.

Table 7. Accuracy of the 4-d look-up tables,
when total power is estimated.

Circuit RMS.Error Average Error Max.Error Time
c432 0.868% 5.56% 22.56% 11.75hrs
c880 0.647% 3.73% 14.64% 6.24hrs
c1908 0.729% 3.85% 16.89% 4.59hrs
c2670 0.738% 3.08% 11.52% 14.23hrs
c3540 0.802% 3.61% 16.53% 21.32hrs
c5315 0.612% 2.48% -14.58% 16.21hrs
c6288 4.14% 3.75% 18.23% 34.4hrs
c7552 0.847% 3.03% -16.58% 58.4hrs
c499 0.497% 4.05% 16.4% 2.3hrs
c1355 0.5167% 4.19% 15.6% 2.09hrs
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Figure 12. Agreement between the 4-d table
and accurate power estimation, when total

power is estimated.

For completeness, the accuracy of the macromod-
els when zero-delay power is estimated is shown in
Table 8 and in the scatter plot in Fig. 14. Over a
wide range of signal statistics, the RMS error is below
0.60%, the average error is under 5% and the maxi-
mum error is under 18%. The scatter plot also shows
excellent agreement.
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Figure 13. Agreement between the 4-d table
and accurate power estimation, when total

power is estimated.

Table 8. Accuracy of the 4-d look-up tables,
when zero-delay power is estimated.

Circuit RMS.Error Average Error Max.Error
c432 0.428% 4.409% 17.35%
c880 0.519% 3.62% 13.97%
c1908 0.461% 3.73% 15.69%
c2670 0.307% 2.18% 10.16%
c3540 0.413% 3.22% 15.55%
c5315 0.29% 2.08% -12.20%
c6288 0.332% 2.218% 17.37%
c7552 0.23% 2.65% -14.32%
c499 0.45% 3.95% 16.34%
c1355 0.383% 4.03% 15.04%
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Figure 14. Agreement between the 4-d table
and accurate power estimation, when zero-delay

power is estimated.

5. CONCLUSION

Since gate-level power estimation can be
time-consuming and because power estimation from
a high level of abstraction is desirable so as to re-
duce design time and cost, we have proposed a power
macromodeling approach for combinational circuits
with synchronous inputs. Our macromodel consists
of a 4-dimensional look-up table with axes for aver-
age input signal probability, average input transition
density, average input spatial correlation coefficient
and average output (zero-delay) transition density. A

novel and significant aspect of this approach is that we
use the same model template for all types of combi-
national circuits, and no specialized analytical expres-
sions are required. Another important fact is that this
model works for all possible signal switching statistics.

We have shown why it is advantageous to use a
4-d table, and described an automatic procedure for
building the 4-d macromodel, without the need for
user intervention. Once the model for a combinational
block has been built, it can be used to estimate power
during high-level power estimation, based on signal
statistics that are computed from a high-level func-
tional simulation. Over a wide range of input/output
signal statistics, we have shown that this model gives
very good accuracy, with an RMS error of about 4%.
Except for one out of about 10,000 cases, the largest
error observed was under 20%. The average error was
under 6%. If one ignores the glitching activity, then
the RMS error becomes under 0.60%, the average er-
ror under 5% and the largest maximum error under
18%.

APPENDIX A

We will derive the values of n1 (k), for which SCN
in

and hence SCin takes its minimum value, in support
of the result (28). We start by writing (24) as:

N∑
k=1

n2
1 (k)−

N∑
k=1

n1 (k) = n (n− 1)NSCN
in (A.1)

From (26) we have:

N∑
k=1

n1 (k) = nNP N
in (A.2)

which is a constant. Therefore, the minimization
problem becomes:

minimize

N∑
k=1

n2
1 (k)

s.t.

N∑
k=1

n1 (k) = nNP N
in

(A.3)

Proposition A1. If n1(k) are allowed to take
real non-integer values, then the minimum value of∑N

k=1 n2
1 (k), subject to (A.2), occurs when for all k:

n1 (k) = nP N
in (A.4)

Proof: The problem given by (A.3) is a constrained
minimization problem. Because it is a convex problem



it can be solved by converting it (by introducing a La-
grangian) into an unconstrained problem [16], leading
to:

minimize

N∑
k=1

n2
1 (k)− λ

(
nNP N

in −
N∑

k=1

n1 (k)

)

(A.5)
where λ is a constant. Differentiating

∑N
k=1 n2

1 (k) −
λ
(
nNP N

in −
∑N

k=1 n1 (k)
)

with respect to n1 (k) and
setting it equal to 0 we get:

n1 (k) = −λ

2
(A.6)

Plugging this value of n1 (k) in (A.2), we get

λ = −2nP N
in (A.7)

⇒ n1 (k) = nP N
in (A.8)

Hence proved.
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