
Power Estimation for Large Sequential Circuits

Joseph N. Kozhaya and Farid N. Najm†

Abstract – A power estimation approach is pre-

sented in which blocks of consecutive vectors are

selected at random from a user-supplied realistic

input vector set and the circuit is simulated for

each block starting from an unknown state. This

leads to two (upper and lower) bounds on the de-

sired power value which can be quite tight (under

10% difference between the two in many cases).

As a result, the power dissipation is obtained by

simulating only a fraction of the potentially very

large vector set.

Keywords – Power estimation, sequential cir-

cuit, finite state machine (FSM)

I. INTRODUCTION

Maximizing circuit speed and minimizing chip
area used to be the only major concerns of VLSI de-
signers. In recent years, power consumption of in-
tegrated circuits (ICs) has proved to be just as im-
portant of a concern. Thus, VLSI designs nowadays
emerge as a trade-off among three goals: minimum
area, maximum speed, and minimum power dissipa-
tion.

Power dissipation is a major concern of the semi-
conductor industry. This is because excessive power
dissipation causes overheating, which may lead to soft
errors or permanent damage. It also limits battery life
in portable equipment. Thus, there is a need to accu-
rately estimate the power dissipation of an IC during
the design phase. We should note that by power esti-
mation we refer to the problem of average power es-
timation. This is different from the estimation of the
worst case instantaneous power. Chip reliability and
equipment lifetime are directly related to the average
power.

Several approaches have been proposed for power
estimation [1], especially for estimation at the gate-
level. However, even at the gate-level, the problem is
not yet completely solved. At least two open problems
remain: 1. Accurate and fast estimation of the average
power dissipated by individual gates, typically inside
an optimization loop, and 2. Accurate and fast esti-
mation of the total average power dissipation in large
sequential circuits. The words “accurate” and “fast”
are emphasized in both cases to indicate that existing

techniques are either inaccurate and fast or accurate
and slow. The fact that the first problem is not yet
solved has been clearly illustrated in [2]. In this pa-
per, we will argue and demonstrate that the second
problem is also still open, and we offer a new method
which provides accurate and fast estimation of the
total average power of large sequential circuits.

Since the power is pattern-dependent, the aver-
age power dissipation of a circuit is not well-defined
until a specific vector set is chosen. For combinational
circuits, this may not be very critical, because differ-
ent vector sets may dissipate approximately the same
power, provided they have approximately equal values
of switching activity. Thus, using a set of randomly
generated vectors (with the right statistics) may be
appropriate for these circuits. However, this does not
hold for sequential circuits, because a real vector set
(as opposed to a randomly generated, artificial vector
set) may contain specific vector sequences that put
the circuit in specific operational modes or sub-spaces
of its large state space and, in different operational
modes, the circuit may dissipate quite different values
of power. All one has to do is think of all the many
different operational modes of a large micro-processor.
Thus, for sequential circuits, the power may be criti-
cally dependent on the specific vector sequences that
occur during typical operation.

Most existing techniques of power estimation
consider simply the average switching activity and
signal probability of the input signals and use either
static probability propagation methods [3–6] or dy-
namic Monte Carlo simulation using randomly gener-
ated vectors [7, 8]. In either case, one runs the risk of
taking the circuit into parts of its state space where
it does not belong, i.e., into modes of operation that
are unrealistic and may never be exercised in practice.
When this happens, there is no guarantee that the es-
timated power has any relation to what the circuit
will actually dissipate under typical operation.

To illustrate this problem, we have considered a
number of sequential circuits and constructed two sets
of input vectors for each. Both sets of vectors have
the same switching activity and signal probability for
each input node. However, in one vector set, the input
signals were generated at random, without any corre-

† J. Kozhaya is with the ECE Dept., University of Illinois at Urbana-Champaign. F. Najm is with the ECE Dept.,

University of Toronto.

lation between them, and in the other non-zero corre-
lations were considered, both in space (between pairs
of bits in the same vector) and in time (between pairs
of consecutive vectors). The intention is that these
correlations would mimic to some degree the relation-
ships that typically exist between signals, such as sig-
nals resulting from decoded instructions or general
control signals. Note that these correlations are only
the simplest kinds of correlation relations, because
they do not model the temporal correlations that can
exist in vector streams over several clock cycles. We
emphasize this point to indicate that proposed ap-
proaches that use correlation coefficients [9] may be
able to handle pairwise correlations between bits in
a vector or between consecutive vectors, but cannot
handle the variety of other input signal relations that
can exist in sequential circuits. In other words, al-
though sequence compaction methods [9] replace the

realistic, long vector set with a smaller vector set that
satisfies similar statistics, they still run the risk of
taking the sequential circuit into illegal states. This
is because they might introduce new vectors or vector
sequences that take the sequential circuit into illegal
states and thus result in wrong power estimates. Even
with just these simple correlations applied, big differ-
ences are possible in the resulting power values, as
shown in Table I where Pwr(uc) refers to power dissi-
pated under the uncorrelated vector set and Pwr(co)
is the power due to the correlated vector set. The
error (Err) is measured as the difference between the
two power values, divided by the power due to the
correlated set. Note that the power in both cases (un-
correlated and correlated inputs) was measured using
the same simulator, so that the errors are due only
to the presence of the additional correlations in one
vector set but not in the other.

TABLE I.

Differences in power values (in mW) due to presence of correlation in the vector set.
Circuit #inputs #latches #gates Power (uncorrelated) Power (correlated) Error (%)

s27 4 3 13 0.1405 0.1212 15.9
s298 3 14 119 0.3152 0.2615 20.5
s344 9 15 160 0.3865 0.3115 24.1
s349 9 15 161 0.3924 0.3181 23.4
s382 3 21 158 0.2021 0.1651 22.4
s386 7 6 159 0.4122 0.3591 14.8
s400 4 21 164 0.1988 0.1597 24.5
s444 3 21 181 0.2085 0.1692 23.3
s526 3 21 193 0.3319 0.2561 29.6
s526n 3 21 194 0.3375 0.2545 32.6
s641 35 19 379 0.3232 0.2982 8.4
s713 35 19 393 0.3240 0.3034 6.8
s820 18 5 289 0.4912 0.3998 22.9
s832 18 5 287 0.4679 0.3921 19.3
s1196 14 18 529 1.4719 1.7009 −13.5
s1238 14 18 508 1.5742 1.8381 −14.4
s1423 17 74 657 0.3461 0.2308 50.0
s1488 8 6 653 0.3729 0.1796 107.7
s1494 8 6 641 0.3648 0.1657 120.2
s35932 35 1728 16065 13.8721 12.2942 12.8

It would seem, therefore, that the only truly ac-
curate power estimation method for sequential cir-
cuits is to simulate the circuit for a specific realistic
and typical vector set. We refer to such a vector set
as the power vector set. If one has a power vector set
which is short enough to simulate in its entirety, then
this would certainly be the method of choice. How-
ever, in practice it is very hard (almost impossible) to

specify a power vector set which is both short-enough
for simulation and long-enough to cover all the inter-
esting operational modes of a large sequential circuit.
Micro-processor designers will usually agree that mil-
lions of vectors may be needed in order to satisfacto-
rily exercise their large designs.

To solve this problem, we propose a method of
power estimation that takes a (potentially very long)

power vector set and provides an estimate of the total
power by simulating only a fraction of the vector set.
The vectors to be simulated are selected by repeatedly
choosing blocks of consecutive vectors at random, un-
til certain accuracy criteria are met. We call this a
block-sampling approach. From the repeated simula-
tions of the blocks, we collect statistics on the mean
upper bound and mean lower bound for the power per
block. Using standard Monte-Carlo mean estimation
techniques, the two means can be estimated with user-
specified accuracy and confidence without having to
simulate all blocks. The net effect is that only a frac-
tion of the total vector set is simulated and accurate
tight bounds on the total power are estimated, yield-
ing a viable accurate power measure.

II. PROBLEM FORMULATION

Let u1, u2, . . . , um be the primary input nodes of
a sequential logic circuit and let x1, x2, . . . , xn be the
present state lines. For simplicity of presentation, we
have assumed that the circuit contains a single clock
that drives a bank of edge-triggered flip-flops. On
the falling edge of the clock, the flip-flops transfer the
values at their inputs to their outputs. The inputs
ui(k) and the present state values xi(k) determine the
next state values xi(k + 1) and the circuit outputs,
where k denotes the clock cycle, so that the circuit
implements a finite state machine (FSM).

Suppose a power vector set is provided which
consists of the input vectors U(1), U(2), . . . , U(M),
where U(k) = [u1(k) u2(k) . . . um(k)] is the input
vector applied during cycle k, and M is the total
number of vectors in the vector set. We assume
that the initial state vector X(1) is well-defined, so
that there exists a well-defined resulting sequence of
state vectors X(1), X(2), . . . , X(M), where X(k) =
[x1(k) x2(k) . . . xn(k)]. The initial state need not be
known, it only needs to be well-defined, i.e., not arbi-
trary or variable, in order for the power (due to this
vector set) to be well-defined.

The total energy dissipated in the circuit in the
kth cycle, denoted e(k), is a function of X(k − 1),
X(k), U(k−1), and U(k). For e(1), because X(0) and
U(0) are not defined, we arbitrarily define e(1) = 0.
Over a block of K consecutive input vectors, starting
at cycle i, the average power dissipated is (where T is
the clock period):

PK(i) =
1

KT

i+K−1∑

k=i

e(k) (1)

If K is a constant, the same for any i, then the
total power dissipation P (over the whole vector set)

is given by:

P =
1

MT

M∑

k=1

e(k) =
1
M

M∑

i=−K+2

PK(i) (2)

The second equality is true because for any given cy-
cle k = k0, the energy e(k0) due to that cycle will
occur in K different blocks and therefore will be part
of K different terms PK(i). Note that for the last
K − 1 blocks, for which i + K − 1 > M , one should
use e(k) = 0 in (1) for all k = M + 1, . . . , M + K − 1.
The same applies to the first K − 1 blocks, e(k) = 0
for k = −K + 2, . . . , 0. This is required in order
for the average power per block to be equal to the
average power per cycle, leading to (2). If we now
consider a probability experiment in which a block
of vectors is chosen at random from the power vec-
tor set so that all blocks are equi-probable, then
the average power per block becomes a random vari-
able, denoted PK, which takes values in the set
{PK(−K + 2), PK(−K + 3), . . . , PK(M)}. We will
use bold font to denote random quantities. From (2),
it becomes clear that the total power is the following
mean or expected value:

P = E[PK] (3)

where E[·] denotes the expected value operator.
If Pu

K(i) and P l
K(i) are upper and lower bounds

on PK(i), respectively, then we can also talk about the
random variables Pu

K (random upper-bound value)
and Pl

K (random lower-bound value), so that Pl
K ≤

PK ≤ Pu
K, which leads to:

E[Pl
K] ≤ P ≤ E[Pu

K] (4)

In the next section, we propose a practical method for
estimating the two bounds in (4).

III. SINGLE BLOCK POWER ANALYSIS

If it were possible to obtain sample values of
PK(i) for a sufficient number of values i, it would then
be possible to estimate P based on (3) to any desired
accuracy (with some specified confidence) using tradi-
tional statistical methods of mean estimation. How-
ever, since the FSM state at the start of a block is
unknown, this cannot be done. Instead, our approach
is based on (4) and involves using mean-estimation
techniques to find two bounds on the unknown power
value.

Briefly stated, we make N random choices for the
block start index i (let these constitute a set of indices
I) from which we compute by simulation N sample

values of each of the random variables Pu
K and Pl

K.
We then compute the two means:

E[Pu
K] ≈ 1

N

∑

i∈I

Pu
K(i) and E[Pl

K] ≈ 1
N

∑

i∈I

P l
K(i)

(5)
which we can use as bounds on the desired power
value P , based on (4). It remains to describe how to
perform the simulation in order to obtain P u

K(i) and
P l

K(i), and discuss the behavior of Pu
K(i) and P l

K(i)
as a function of the vectors simulated. Furthermore,
we need to describe how we choose values for K and
N . These topics are covered below and in the next
section.

A. Block Simulation
The simulation of a block of vectors is compli-

cated by the fact that the state of the FSM at the
beginning of that block is not known. Any wrong
choice made for the state at that time can have the
effect that the simulation of this block takes the FSM
into states that never occur in practice. Therefore,
we set the FSM to an all-X state (all state bits are in
the unknown state) and perform three-valued gate-
level simulation, with the values (0, 1, X). During
the simulation of the block, we compute two bounds
on the power due to that block. The upper (lower)
bound is found by assuming that every signal transi-
tion containing an X value actually occurs with the
X replaced by either a 0 or a 1, whichever leads to
the larger (smaller) power dissipation for that transi-
tion. For instance, if the output of a gate makes an
X → 1 transition, then it is assumed to be a 0 → 1
transition for purposes of computing the upper bound
and a 1 → 1 transition for purposes of computing the
lower bound. For purposes of continuing the simula-
tion, the transition is kept as X → 1. Likewise, when
the output of a gate makes an X → X transition, it is
assumed to be a 0 → 1 (or 1 → 0) transition for pur-
poses of computing the upper bound and a 0 → 0 (or
1 → 1) transition for purposes of computing the lower
bound. For continuing the simulation, it is kept as an
X → X transition. In this way, the true (unknown)
signals in the circuit are guaranteed to be sub-sets
of the simulated signals, and the true power for that
block is guaranteed to be between the two resulting
bounds P u

K(i) and P l
K(i).

The reason that this method can be useful in
practice is that in many cases, many of the X val-
ues become definite 0 or 1 values during three-valued
simulation. In fact, we have found that sufficiently
many X values become known that the two bounds
resulting from the simulation of one vector block can
be very close, close enough to constitute a viable mea-

sure of power. A related issue of importance at this
point is the initializability of circuits. A circuit is said
to be functionally initializable if, once implemented,
it can always be initialized to a definite state. On the
other hand, a circuit is said to be logically initializ-
able if, when started from an all-X state (unknown
initial state), there exists a vector sequence that can
drive it into a definite state using three-valued logic
simulation.

For logically initializable circuits, we have ob-
served that simulating a few vectors typically takes
the circuit from an unknown initial state (all Xs) to a
known state. The word few is emphasized to indicate
that although the actual number of vectors varies as
a function of both, the circuit and the vector stream
simulated, it is typically a small fraction of the total
vector stream.

We verified the above observation for all the cir-
cuits of the ISCAS-89 [12] benchmark circuits which
are known to be logically initializable as given by [13].
This is illustrated with the histogram shown in Fig 1.
We will refer to the simulation of a specific circuit for
a specific vector stream as one test case. Also, we will
refer to the number of vectors simulated before the
state of the circuit becomes known as the length of
an initializing sequence. The histogram shows that
of the 600 test cases (20 circuits, each simulated for
30 vector streams), 573 had an initializing sequence
of less than 10 vectors and only 8 required an ini-
tializing sequence larger than 50 (these eight cases,
which are not shown in the figure, are: 51, 55, 59, 73,
96, 109, 109, and 267). This leads to our claim that
typically, simulating a logically initializable circuit for
a few vectors is enough to take the circuit from an
unknown initial state to a known state.

0 10 20 30 40 50
Length of Initializing Sequence

0

100

200

300

N
um

be
r

of
 T

es
t C

as
es

Fig. 1. Histogram for the length of an initializing
sequence.

We should point out that any type of simulation
model may be used - the measured power will be as
accurate as the simulation model. Because we are
computing the total power of the circuit (and not the
powers of individual gates), we find that a logic sim-
ulator with a good timing model is sufficient. In our
implementation, every gate has a scalable delay value,
depending on the output loading capacitance due to
its drain capacitance and the MOSFET gate capaci-
tance of the logic gates on the fanout branches. Al-
though three-valued logic simulation is usually asso-
ciated with zero delay simulation, our simulator is ac-
tually a three-valued event driven scalable delay logic
simulator. It is three-valued to account for unknown
logic values since the initial state of the sequential cir-
cuit is unknown. Furthermore, it is event driven and
uses scalable delay (so that different gates can have
different delays), so that the estimated power includes
the power due to glitches. Hence, if for two consecu-
tive input vectors, one input of an AND gate is logic
1 while the other input undergoes an X → 1 transi-
tion at time t , then the output of the AND gate will
undergo an X → 1 transition at time t + D where D
is the delay of the gate. Then X is assumed to be
0 or 1 for purposes of computing the bounds on the
number of transitions. However, for continuing the
simulation, X is maintained as an X .

Let nl
k(j) and nu

k(j) be lower and upper bounds
on the number of logic transitions made by node j in
clock cycle k, respectively. These are computed dur-
ing the simulation by simply considering that signal
transitions involving an X value can be interpreted
in two ways as explained above, with one way repre-
senting more actual transitions and another way rep-
resenting less. Thus, for example, upon observing a
0 → X transition at node j, we would increment nu

k(j)
(due to the 0 → 1 possibility) and not increment nl

k(j)
(due to the 0 → 0 possibility). From this, the to-
tal energy dissipated in clock cycle k is bounded by
el(k) ≤ e(k) ≤ eu(k), where the energy bounds are
computed as follows:

el(k) =
1
2

∑

j

V 2
ddCjn

l
k(j) (6)

eu(k) =
1
2

∑

j

V 2
ddCjn

u
k(j) (7)

respectively, where Cj is the node capacitance and
the summations are taken over all gate/latch output
nodes in the circuit. The reason for the 1/2 coeffi-
cient is that, on average, half the transitions will be
low-to-high and the other half will be high-to-low. As

pointed out above, one does not have to use this par-
ticular power model (6, 7), and any number of more
accurate power modeling approaches can be used. All
that is required is that the energy bounds el(k) and
eu(k) be computable during the simulation. In this
work, this model was deemed sufficiently accurate
in order to illustrate the feasibility of the approach.
From this, the block upper/lower bound values Pu

K(i)
and P l

K(i) are computed in a way similar to (1), as
follows:

P l
K(i) =

1
KT

i+K−1∑

k=i

el(k) (8)

Pu
K(i) =

1
KT

i+K−1∑

k=i

eu(k) (9)

To illustrate the process of block simulation, con-
sider the circuit shown in Fig. 2. The circuit is sim-
ulated for the vectors shown, v0, v1, v2, v3, and v4,
starting from an unknown initial state. Note that af-
ter simulating vectors v0 and v1, the state of the cir-
cuit is completely known. Thus, the lower and upper
bounds on the number of transitions at every node are
equal for vectors v2, v3, and v4. Considering node Z,
this node undergoes an X → 0 transition when vec-
tors v0 and v1 are simulated. Thus, the lower bound
on the number of transitions for this node would be
0 (assuming 0 → 0) while the upper bound would be
1 (assuming 1 → 0). Therefore, the lower and upper
bounds on the power value are initially different but
then start converging to the same value after the state
of the circuit becomes known.

0 1 1 0 0

0 1 0 X X 0 1 0 0 0

1 0 1 1 X

1 0 1 0 X
1 1 0 1 1

1 1 1 0 1

S
 1

 0
S

V V V V V
 2 1 0

1 0 1 0 1
 4 3

1 0 1 0 XZ

Fig. 2. Block simulation.

B. Choice of Block Size, K

The choice of block size, K, can affect the tight-
ness of the bounds in (4). This is because the larger
the block, the more probable it is that more X val-
ues will be converted to definite 0 or 1 values during
the simulation. On the other hand, K should not be
too large because beyond some point there will typi-
cally be very little or no reduction in the number of
X values. In our implementation, K was chosen em-
pirically, by looking at a large number of simulations,
and we found that a value of K = 500 is appropriate.

A typical plot for a circuit with around 16000 gates
is shown in Fig. 3. In practice, say for a micropro-
cessor design, the value of K would probably have to
depend on the instruction set and on the number of
instructions that may be required to constitute mean-
ingful processing tasks. In any case, the choice of K
will only affect the tightness of the bounds, not their
correctness.

For a circuit which is logically initializable, then
(as pointed out above) in all cases that we observed,
the circuit state becomes completely known after a
few vectors (see Fig. 1). Once that happens, then the
upper and lower bounds on energy per cycle (eu(k)
and el(k)) become identical (equal to the true e(k)).
Based on this, one can easily prove (see appendix)
that from then on, the power bounds for that block
are guaranteed to converge to the same value. This
accounts for the observed tightness in our results. If
the circuit is not logically initializable, then the circuit
state may remain mostly unknown (most of the state
bits remain X) and therefore the bounds may remain
quite different, and not tight.

0 100 200 300 400 500
Clock Cycles

0

5

10

15

20

P
ow

er
(m

W
)

Fig. 3. Upper and lower power bounds under a cor-
related vector set for circuit s35932 (1728 latches and
16,065 gates).

C. Choice of Sample Size, N

The choice of sample size, N , affects the qual-
ity of the approximations in (5). It should be clear
that the larger N is, the better the approximation,
but how much should N be for a certain desired er-
ror tolerance? This is the classical problem of mean-
estimation in statistics. We will briefly review the
mean-estimation procedure with reference to an ar-
bitrary random variable x whose mean E[x] is to be

estimated from N sample values x1, . . . , xN , using:

E[x] ≈ µN =
x1 + · · ·+ xN

N
(10)

which is what is done in (5). Basically, x corresponds
to the average power per block and thus, by estimat-
ing its mean, the total average power dissipated in
the circuit is estimated as given in (3). In our work,
the start of a block is chosen completely at random
every time, independently of all prior block positions,
using a uniform random number generator that gives
a value between −K + 2 and M . Hence, the values
x1, . . . , xN are guaranteed to be samples of indepen-
dent random variables. Furthermore, all blocks are
of the same size, and thus, x1, . . . , xN are samples of
identically distributed random variables.

C.1 Using the t-distribution
Therefore, x1, . . . , xN are samples of indepen-

dent, identically distributed (iid) random variables.
Thus, µN as given in (10) is a sample of a random vari-
able called the sample mean [10], whose mean is equal
to E[x] and whose variance is equal to σ2/N , where
σ2 is the variance of x. If the sample values x1, . . . , xN

are taken from a normal population having the mean
E[x] and the variance σ2, then t = µN−E[x]

sN /
√

N
is the

value of a random variable having the t-distribution
with ν = N − 1 degrees of freedom [11], where sN is
the standard deviation of the observed N data values
x1, . . . , xN . Consequently, with (1− α) confidence, it
follows that [11]

−tα/2 ≤ µN − E[x]
sN/

√
N

≤ tα/2 (11)

where 0 < α < 1 and where tα/2 is defined so that
the area to its right under the t-distribution curve is
equal to α/2. The value of tα/2 for a given α can be
easily found using standard statistical tables. As for
sN , it is measured as follows:

s2
N =

1
N − 1

N∑

i=1

(xi − µN)2 (12)

Therefore, with confidence (1 − α), we have:

|µN − E[x]|
µN

≤ tα/2sN

µN

√
N

(13)

If ε1 is a small positive number, and if N is large
enough to achieve:

sN

µN

√
N

≤ ε1
tα/2

(14)

then ε1 places an upper bound on the relative error of
the sample, with (1− α) confidence:

|µN − E[x]|
µN

≤ tα/2sN

µN

√
N

≤ ε1 (15)

This may also be expressed as the relative deviation
from the mean E[x]:

|µN − E[x]|
E[x]

≤ ε1
1− ε1

= ε (16)

Here, ε > 0 is defined as the user-specified error tol-
erance, and α (or 1 − α) is the user-specified confi-
dence. Thus (14) provides a stopping criterion that
determines when to stop sampling in order to yield
the accuracy specified in (16) with confidence (1−α).
Notice that the required number of samples N is not
known a priori, but is determined only when (14) is
first met.

We should note here that it is not always the
case that the sample values, x1, . . . , xN , come from
a normal population. In order to account for the
case when the distribution of the random variable
x is not normal, we make the following observation.
Based on the Central Limit Theorem [11], the dis-
tribution of the sample mean approaches the nor-
mal distribution for large N . The minimum num-
ber of samples, N , to satisfy near-normality is typ-
ically about 30 [11]. Thus, if we define an N -sample
as yk = x30(k−1)+1+···+x30k

30 , where x30(k−1)+1, . . . , x30k

are samples of a non-normal distribution, then yk is
a sample of a random variable yk whose distribution
is near-normal. Consequently, one option in handling
non-normal populations is to take the sample mean
of 30 iid samples of the non-normal population, and
consider it as one N -sample. Then, repeat the pro-
cess to obtain as many N -samples as needed. This
way, it is guaranteed that the obtained N -samples
are samples of a near-normal distribution. Hence, we
can apply the previous technique of stopping the sim-
ulation when the user-specified accuracy and error-
criteria are satisfied with some approximation. Note
here that a minimum of 60 samples of the non-normal
distribution are needed for convergence. This is be-
cause a minimum of 2 N -samples (or sample means)
are needed to satisfy the accuracy and error criteria
specified in (16).

C.2 An alternative approach
To avoid the minimum requirement of 60 sam-

ples, the following approximation proves useful. For
large sample sizes (N larger than 30 or so), one may
approximate σ/

√
N by sN/

√
N [11] where σ2 is the

variance of x and sN is the standard deviation of the
observed N data values x1, . . . , xN , measured as given
in (12). Because the distribution of the sample mean
µN approaches the normal distribution for large N (30
or more), it follows that with (1 − α) confidence [11]

−zα/2 ≤ µN − E[x]
σ/
√

N
≤ zα/2 (17)

where 0 < α < 1 and where zα/2 is defined so that
the area to its right under the standard normal dis-
tribution curve is equal to α/2. The value of zα/2 for
a given α can be easily found using standard statis-
tical tables. In other words, we simply take N sam-
ples from the given distribution (whether normal or
not). Then we simply check if (17) satisfied, replacing
σ/
√

N by sN/
√

N . Hence,

−zα/2 ≤ µN − E[x]
sN/

√
N

≤ zα/2 (18)

Therefore, with confidence (1 − α), we have:

|µN − E[x]|
µN

≤ zα/2sN

µN

√
N

(19)

If ε1 is a small positive number, and if N is large
enough to achieve:

sN

µN

√
N

≤ ε1
zα/2

(20)

then ε1 places an upper bound on the relative error of
the sample, with (1− α) confidence:

|µN − E[x]|
µN

≤ zα/2sN

µN

√
N

≤ ε1 (21)

This may also be expressed as the relative deviation
from the mean E[x]:

|µN − E[x]|
E[x]

≤ ε1
1− ε1

= ε (22)

Here, ε > 0 is defined as the user-specified error toler-
ance, and α (or 1−α) is the user-specified confidence.

We verified that replacing σ/
√

N by sN/
√

N is
indeed a valid approximation by implementing both
of the above techniques and comparing the results.

The above discussion is applicable for estimating
both the mean upper and lower bounds on the power
dissipation, E[Pu

K] and E[Pl
K]. Because the num-

ber of iterations required to estimate E[Pu
K] may be

different from that required for E[Pl
K], we continue

the sampling until the condition in Equation (14) has
been met for both means.

IV. EXPERIMENTAL RESULTS

The technique proposed above has been imple-
mented and tested on a number of sequential bench-
mark circuits. All the results to be presented were
performed with 5% error-tolerance (ε = 0.05) and
95% confidence (α = 0.05). All the circuits were
derived from the ISCAS-89 benchmark circuits [12],
after mapping them to a gate library with delay and
capacitance values typical of 0.5µ CMOS technology.
We have restricted our results to the subset of the
ISCAS-89 circuits that are known to be logically ini-
tializable. This is because according to [13], almost all
circuits that are functionally initializable are also log-
ically initializable and practical circuits will always be
functionally initializable. Other than this, no special
considerations were used in picking the circuits below.
Only two circuits were shown in [13] to be function-
ally but not logically initializable and, on these two
circuits, our method does not work very well (mean-

ing that although the bounds are correct, they are not
tight). While more circuits may need to be tested, this
may mean that the method is best suited to circuits
that are known to be logically initializable.

Because no input vector sets are available for
these benchmarks, we have tried to mimic the cor-
relations that exist in real vector sets by generating
a long correlated vector set consisting of 100,000 vec-
tors. The correlation coefficients were changed arbi-
trarily every M vectors where M is chosen randomly.
That is, randomly pick a number M1, then generate
M1 vectors with certain correlation coefficients (sig-
nal probability, spatial and temporal correlation fac-
tors), then randomly pick another number M2, and
generate M2 vectors with different correlation coef-
ficients. Repeat until the whole 100,000 vectors are
generated. Thus, the statistical properties of the vec-
tors vary widely depending on where they are in the
100,000 vector stream. For each circuit, we first es-
timated the power due to the whole 100,000 vectors
by simulation, and then used our block sampling ap-
proach to estimate the power, with 5% error-tolerance

TABLE II.

Performance under correlated input vectors. Execution time was measured on a SUN Sparc 10.

Circuit LB (mW) UB (mW) Power (mW) Tightness (%) #cycles Time (cpu sec)
s27 0.101191 0.101686 0.101439 0.49 15000 16.39
s298 0.357693 0.371610 0.364651 3.82 15000 129.60
s344 0.224243 0.228208 0.226226 1.75 15000 138.17
s349 0.339687 0.343261 0.341474 1.05 15000 165.53
s382 0.193261 0.198155 0.195708 2.50 15000 139.38
s386 0.285662 0.288900 0.287281 1.13 15000 207.40
s400 0.161781 0.164517 0.163149 1.68 18000 168.16
s444 0.211823 0.220167 0.215995 3.86 15000 166.59
s526 0.286471 0.299796 0.293134 4.55 15000 174.90
s526n 0.286778 0.297763 0.292271 3.76 15000 172.55
s641 0.283713 0.286737 0.285225 1.06 15000 487.67
s713 0.283585 0.288619 0.286102 1.76 15000 516.58
s820 0.273369 0.275380 0.274375 0.73 15000 411.95
s832 0.273695 0.278676 0.276185 1.80 15000 417.65
s1196 1.107530 1.108178 1.107854 0.06 15000 820.82
s1238 1.202244 1.202886 1.202565 0.05 15000 848.12
s1423 0.380139 0.386585 0.383362 1.68 17500 923.46
s1488 0.488430 0.505220 0.496825 3.38 17500 981.44
s1494 0.395587 0.407266 0.401427 2.91 15000 745.79
s35932 12.368276 13.015934 12.692105 5.10 15000 29538.44

In the first set of experiments, with results shown
in Table II, we explored the tightness of the power
bounds and the speed of convergence. For some de-

tails of these circuits (gate count, etc.), the reader is
referred to Table I in section II. The table lists the
power upper and lower bounds in mW, and the aver-

age of the two under the “Power” column. The tight-
ness of the bounds was measured as the difference
between them divided by their average, expressed as
a percentage. The values illustrate that the bounds
can be quite tight in most cases. The table also lists
the number of cycles (i.e., vectors) that were required
for convergence and the CPU time required. Note
that the number of vectors required for convergence
is different for different circuits. This illustrates the
importance of having a convergence check (a stopping
criterion). It would not be sufficient, for instance, to

simulate all circuits for the same number of vectors.
It is also notable that the required number of cycles
is not necessarily larger for larger designs.

Then, the power estimated by our block sampling
approach (average of the two bounds) was compared
to that computed by simulation of the whole 100,000
vector set. The results are shown in Table III where
the power values are expressed in mW. It is clear that
the errors are very small and that all are below the
specified 5% error tolerance.

TABLE III.

Error between simulation of all 100,000 correlated vectors and using the Block Sampling (BS) scheme.

Circuit Power(All Vectors) Power (BS) error(%) Compaction
s27 0.1016 0.1014 0.20 0.15000
s298 0.3615 0.3647 −0.89 0.15000
s344 0.2228 0.2262 −1.53 0.15000
s349 0.3420 0.3415 0.15 0.15000
s382 0.1941 0.1957 −0.82 0.15000
s386 0.2909 0.2873 1.24 0.15000
s400 0.1657 0.1631 1.57 0.18000
s444 0.2129 0.2160 −1.46 0.15000
s526 0.2855 0.2931 −2.66 0.15000
s526n 0.2891 0.2923 −1.11 0.15000
s641 0.2853 0.2852 0.04 0.15000
s713 0.2828 0.2861 −1.17 0.15000
s820 0.2774 0.2744 1.08 0.15000
s832 0.2802 0.2762 1.43 0.15000
s1196 1.1080 1.1079 0.01 0.15000
s1238 1.1933 1.2026 −0.78 0.15000
s1423 0.3948 0.3834 2.89 0.17500
s1488 0.5056 0.4968 1.74 0.17500
s1494 0.3857 0.4014 −4.07 0.15000
s35932 12.5638 12.6921 −1.02 0.15000

Table III also includes a column named “Com-
paction.” This is the ratio of the total number of
vectors simulated by the block sampling method to
the total number of vectors (100,000) in the power
vector set. For most of the circuits, it turns out to
be enough to simulate around 15% of the total vector
set. Note that this is the minimum number of cycles
required for the approximations made in section III.C
to be valid. The approximations hold if 30 samples or
more are obtained. Thus, for our choice of block size
K = 500, this would require the simulation of a mini-
mum of 15000 cycles which is 15% of the total 100,000
vectors. For some of the circuits, more samples are re-
quired but note that, in all the circuits, it was enough
to simulate at most 18% of the total vector set. Thus,

the net effect is that the power is estimated by sim-
ulating only a small fraction of the total vector set.
This feature is essential for simulation of large sequen-
tial circuits. Effectively, an implicit compaction of the
vector set has been achieved. The adjective “implicit”
denotes the fact that this was done on the fly, dur-
ing the simulation, rather than up-front. We feel that
this is the only correct way of performing compaction,
mainly because, as observed in relation to Table II,
the number of vectors required for convergence de-
pends very much on the special characteristics of the
circuit and is not determined simply by signal statis-
tics or by circuit size. In fact, as was pointed out
above, sometimes smaller circuits will require more

cycles to converge.
Looking at the last column of Table III, some

readers may conclude that perhaps simply simulating
the first 18% (or whatever the fraction may be, ac-
cording to the compaction ratio) of the vectors in the
long vector set, in the order in which they occur, may
be enough. This is not correct because the first sec-
tion of the vector set may be biased for some reason–it
may, for instance, have much lower switching activity
than the rest of the vector set. The random choice of
the blocks from anywhere in the vector set is essential
in order to guarantee that the result is representative
of all the various modes of operation in the long vector
set. Granted, the random sampling does not explore
all the vectors, but it does explore enough of them,
and in the right way, in order to provide the desired
result with the specified accuracy and confidence.

V. CONCLUSION

We have proposed a simulation-based method for
estimating the power dissipation of sequential circuits.
The method works by sampling blocks of consecutive
vectors from a user-supplied (potentially very long)
power vector set and simulating them. Because the
state of the circuit at the beginning of each block is
unknown, we initialize the circuit to an all-X state
and simulate it for one block using three-valued logic
simulation. The simulator includes delay information,
so that it does capture glitching activity.

The proposed method is very efficient in provid-
ing accurate results for logically initializable circuits;
that is, circuits whose state becomes known after sim-
ulating a few vectors starting from an initial unknown
(all-X) state. However, if one finds that, for a given
circuit, the circuit state remains unknown, then it
would seem that the only fall-back position is to do a
full simulation starting from a known initial state.

The major advantage of the method is that the
state of the sequential circuit is always guaranteed to
be valid–the FSM never goes outside its valid state
space. Thus, the estimated power corresponds to re-
alistic typical circuit operation. Another advantage
of the method is that only a fraction of the vectors
(around 15% for the circuits tested) in the (poten-
tially huge) power vector set needs to be simulated.

REFERENCES

[1] F. Najm, “A survey of power estimation tech-
niques in VLSI circuits,” IEEE Transactions on
VLSI Systems, vol. 2, no. 4, pp. 446–455, Decem-
ber 1994.

[2] D. Brand and C. Visweswariah, “Inaccuracies in

power estimation during logic synthesis,” in In-
ternational Conference on Computer-Aided De-
sign, 1996, pp. 388–394.

[3] A. A. Ismaeel and M. A. Breuer, “The probabil-
ity of error detection in sequential circuits using
random test vectors,” Journal of Electronic Test-
ing, vol. 1, pp. 245–256, January 1991.

[4] G. D. Hachtel, E. Macii, A. Pardo, and F.
Somenzi, “Probabilistic analysis of large finite
state machines,” Design Automation Conference,
pp. 270–275, June 1994.

[5] J. Monteiro and S. Devadas, “A methodology for
efficient estimation of switching activity in se-
quential logic circuits,” Design Automation Con-
ference, pp. 12–17, June 6–10, 1994.

[6] C-Y Tsui, M. Pedram, and A. M. Despain, “Ex-
act and approximate methods for calculating sig-
nal and transition probabilities in FSMs,” Design
Automation Conf., pp. 18–23, June 6–10, 1994.

[7] F. Najm, S. Goel, and I. Hajj, “Power Estima-
tion in Sequential Circuits,” Design Automation
Conf., pp. 635–640, 1995.

[8] T-L. Chou and K. Roy, “Statistical estimation
of sequential circuit activity,” Int’l Conf. on
Computer-Aided Design, pp. 34–37, 1995.

[9] R. Marculescu, D. Marculescu, and M. Pedram,
“Sequence compaction for power estimation: the-
ory and practice,” IEEE Transactions on Com-
puter Aided Design, vol. 18, no. 7, pp. 973-993,
July 1999.

[10] M. H. DeGroot, Probability and Statistics, 2nd
Edition. Reading, MA: Addison-Wesley, 1986.

[11] I. R. Miller, J. E. Freund, and R. Johnson, Prob-
ability and Statistics for Engineers, 4th Edition.
Englewood Cliffs, NJ: Prentice-Hall Inc., 1990,
pp. 210–211.

[12] F. Brglez, D. Bryan, and K. Koźmiński, “Com-
binational profiles of sequential benchmark cir-
cuits,” IEEE International Symposium on Cir-
cuits and Systems, pp. 1929–1934, 1989.

[13] J. Wehbeh, D. G. Saab, “On the Initialization
of Sequential Circuits,” IEEE Int’l Test Conf.,
Altoon, PA, pp. 233–239, 1994.

APPENDIX

Let P l
M (i) and P u

M (i) be the lower and upper
bounds obtained by simulating M vectors of a block
whose starting index is i. Defining ∆PM (i) as the
difference between the upper and lower bounds and

using equations (8) and (9) results in:

∆PM (i) = P u
M (i)−P l

M (i) =
1

MT

i+M−1∑

k=i

(eu(k)−el(k))

(A.1)
Similarly, let P l

M+1(i) and P u
M+1(i) be the lower and

upper bounds obtained by simulating M + 1 vectors
of a block whose starting index is i. From (A.1), this
leads to:

∆PM+1(i) =
M

M + 1
∆PM (i)

+
eu(i + M)− el(i + M)

(M + 1)T
(A.2)

As presented in section III.A, we have observed
that for logically initializable circuits, the state of the

circuit is driven from an initial unknown state to a
known state by simulating a few vectors. This obser-
vation was verified for all the circuits of the ISCAS-89
benchmark which are known to be logically initializ-
able. Once M is larger than the few vectors required
to get to a known state, then eu(i + M) = el(i + M)
so that the last term in (A.2) becomes 0, which leads
to:

∆PM+1(i) < ∆PM (i)

by virtue of (A.2), since M > 0, so that the two
bounds converge to the exact power value as more
vectors are simulated. On the other hand, for circuits
that are not logically initializable, the bounds may or
may not converge, depending on the vector sequence.
Note that for all circuits, the estimated bounds are
correct upper and lower bounds of the exact power
value even if they don’t converge to the same value.

