Energy and Peak-Current Per-Cycle Estimation at RTLf

Subodh Gupta

Cadence Design Systems Inc.
555 River Oaks Parkway
San Jose, California 95134, USA

Abstract — We present novel macromodel-
ing techniques for estimating the energy dissi-
pated and peak-current drawn in a logic cir-
cuit for every input vector pair (we call this the
energy-per-cycle and peak-current-per-cycle respec-
tively). The macromodels are based on clas-
sifying the input vector pairs on the basis of
their Hamming distances and using a different
equation-based macromodel for every Hamming
distance. The variables of our macromodel are
the zero-delay transition counts at three logic
levels inside the circuit. We present an auto-
matic characterization process by which such
macromodels can be constructed. The energy-
per-cycle macromodel provides a transient en-
ergy waveform, and can also be used to esti-
mate the moving average energy over any time
window, whereas peak-current-per-cycle macro-
model provides peak-current which can be used
for studying IR drop problems. Some key fea-
tures of this technique are: 1) the models are
compact (linear in the number of inputs), 2)
they can be used for any input sequence, and 3)
the characterization is automatic and requires
no user intervention. These approaches have
been implemented and models have been built
and tested for many circuits. The average er-
rors observed in estimating the energy-per-cycle
and peak-current-per-cycle are under 20%. The

energy-per-cycle model can also be used to

*This research was supported in part by the National
Science Foundation (NSF MIP 97-10235) and by the
Semiconductor Research Corporation (SRC 97-DJ-484
and 99-TJ-682), with technical mentorship from Texas
Instruments, IBM, and Intel.

Farid N. Najm

ECE Department,
University of Toronto
Toronto, Ontario M5S-3G4, Canada

measure the long-term average power, with an

observed error of under 10% on average.

1. INTRODUCTION

With the advent of portable and high-density
micro-electronic devices, the power dissipation of
very large scale integrated (VLSI) circuits has be-
come a critical concern. Modern microprocessors
are hot, and their power consumption can exceed
30 or 50 Watts. Due to limited battery life, reliabil-
ity issues, and packaging/cooling costs, power con-
sumption has become a more critical design concern
than speed and area in some applications. Hence to
avoid problems associated with excessive power con-
sumption, there is a need for CAD tools to help in
estimating the power consumption of VLSI designs.

A number of CAD techniques have been pro-
posed for gate-level power estimation (see [1] for
a survey). However, by the time the design has
been specified down to the gate level, it may be too
late or too expensive to go back and fix high power
problems. Hence in order to avoid costly redesign
steps, power estimation tools are required that can
estimate the power consumption at a high level of
abstraction, such as when the circuit is represented
only by the Boolean equations. This will provide
the designer with more flexibility to explore design
trade-offs early in the design process, reducing the
design cost and time.

In response to this need, a number of high-level
power estimation techniques have been recently pro-
posed (see [2] for a survey). Two styles of techniques
have been proposed, which we refer to as top-down
and bottom-up. In the top-down techniques [3, 4], a
combinational circuit is specified only as a Boolean

function, with no information on the circuit struc-

ture, number of gates/nodes, etc. Top-down meth-
ods are useful when one is designing a logic block
that was not previously designed, so that its inter-
nal structural details are unknown.

In contrast, bottom-up methods [5-10, 12, 17—
20] are useful when one is reusing a previously de-
signed logic block, so that all the internal structural
details of the circuit are known. In this case, one de-
velops a power macromodel for this block which can
be used during high-level power estimation (of the
overall system in which this block is used), in order
to estimate the power dissipation of this block with-
out performing a more expensive gate-level power
estimation on it.

The methods in [5, 6, 8, 10, 12, 16, 17, 18, 19]
target the average power over a long time period.
However, in many applications, the average power
may not be enough. Indeed, it is often important
to know the instantaneous power dissipation, as a
time-waveform, i.e., what one may refer to as a tran-
sient power waveform. The most important applica-
tion where the transient power waveform is needed
is probably the analysis of the power and ground
bus networks for finding IR-drop problems which
lead to reduced circuit speed due to the reduced
power supply voltage. Another obvious application
is noise analysis, because glitches on the power sup-
ply are coupled into the circuit leading to noisy and
possibly erroneous signals. This is especially im-
portant in circuits that are designed with power-
down or sleep modes. When parts of these circuits
are turned on or off, large supply current transients
will result and it is important to understand the
noise and IR-drop implications of these transients.
How can one produce a high-level macromodel for
a logic block that reports the power supply cur-
rent waveform for every possible vector stimulus?
This is very difficult because the number of vectors
and the variability in the shapes of all the different
waveforms is very large. A simpler problem (as-
suming a clocked system) would to be to provide
some important data points of this current wave-

form, in order to have some understanding about

the current waveform. We have considered the av-
erage and peak (or maximum) to be the two signifi-
cant characteristics of the current waveform, which
can be used for studying moving average energy
and IR-drop problem, respectively, over any time
window. This requires building macromodels that
give the energy dissipated and peak-current drawn
in the circuit due to a given vector pair, effectively
the energy-per-cycle and peak-current-per-cycle re-
spectively. For estimating energy-per-cycle at RTL
some solutions [7, 9] have been proposed, but none
has been proposed for estimating peak-current-per-
cycle.

The method in [7] characterizes the power dissi-
pation of circuits based on input transitions rather
than input statistics. Since the number of possi-
ble input transitions for an n-input combinational
circuit is 22", they present a clustering algorithm
to compress the input transitions into clusters of
input transitions that have the same power values
(approximately). They use heuristics to implement
the clustering algorithm, but it is not clear how ef-
ficient the method would be on large circuits.

In [9], the authors presented a macromodel for
estimating the cycle-by-cycle power at the RTL.
The proposed methodology consists of three steps:
module equation form generation and variable selec-
tion, variable reduction, and population stratifica-
tions. The generated macromodel has 15 variables.
They show good accuracy in estimating average and
cycle-by-cycle power. The macromodels are depen-
dent on a training vector set, so that the accuracy
is compromised if the training set is not similar to
the vector set to be applied.

In this paper, we present a novel macromodel-
ing approach that provides the energy-per-cycle and
peak-current-per-cycle without running the risk of
a combinatorial explosion and which has good ac-
curacy even when the applied vectors are different
from the characterization vectors set. We classify
the input vector pairs on the basis of their Ham-
ming distances and use a different equation-based

macromodel for every Hamming distance. The vari-

ables of our macromodel are the zero-delay transi-
tion counts at three logic levels (see section 2.1 for
definition). The energy-per-cycle equation-based
macromodel consist of 10 and 5 coefficients for real-
delay and zero-delay energy respectively. Moreover,
this energy-per-cycle macromodel can be used for
estimating the average energy of the circuit over
any specified time period. In the case of peak-
current-per-cycle we make only real-delay macro-
model, which consists of 10 coefficients. This paper
is an extended version of [24].

This paper is organized as follows. In next
section, we describe the approach for estimating
energy-per-cycle. In section 3, we extend this ap-
proach for estimating peak-current-per-cycle. In
section 4, we give the characterization flow of our
method. In section 5, we present results and some
applications of our macromodels and finally in sec-

tion 6, we give some conclusions.

2. ENERGY-PER-CYCLE

We assume that a circuit block is given that
is described at a low level of abstraction (say, at
the gate level). We assume this circuit is clocked
and, for simplicity, we assume that a single clock
drives all the memory elements (registers or flip-
flops), but this is not a limitation of this technique.
Upon every new cycle of the clock a new primary
input vector is applied, and the combinational part
of this circuit block is presented with a new logic
vector x;. In general, x; consists of primary input
bits and of state bits. We are required to build a
macromodel for this circuit that gives the energy
consumed in every clock cycle, given the primary
inputs vector sequence.

We assume that the macromodel is intended to
be used in a high-level analysis in which the tran-
sient power dissipation characteristics of this block
are to be examined under some vector stimulus. As
part of this analysis, this block will be simulated to
determine its outputs. By a “high-level” of abstrac-
tion, we mean that the simulation is at higher than

a gate level. Specifically, for purposes of this high

level analysis, we assume that the the circuit block
under consideration would be specified as sets of
Boolean functions (representing combinational logic
blocks) that exist between banks of clocked mem-
ory elements (flip-flops). This level of abstraction
is sometimes referred to as a structural RTL, i.e.
a Register Transfer Level description that includes
complete information on the memory elements but
only functional (Boolean) information about every-
thing else.

Since the inputs and outputs of the flip-flops
are known, it is easy to estimate the energy-per-
cycle due to each flip-flop, using some cell-level
model for them. The main difficulty lies in model-
ing the energy-per-cycle for the combinational logic
parts so that their energy and can be found with-
out having to perform detailed gate-level simula-
tion. For this reason, in the remainder of this paper,
we will focus on combinational circuits.

Consider a combinational circuit with N nodes.
Let C; be the capacitance associated with node
and n; (x1,X2) be the number of transitions at node
i due to the input vector pair (x;,x2) (we use bold
letters to denote vector quantities). Then, the en-

ergy dissipated for the input vector pair (x1,x2) is

given by:
N
E(Xl,XQ) = 05Vd2dZC'lnl (Xl,XQ) (1)
i=1

We refer to E(x1,x2) as the energy-per-cycle. A
brute-force way of modeling E(x;,x2) is to simu-
late the circuit, say at the gate-level, for all possible
input vectors and store the energy value correspond-
ing to each vector pair (x1,X2) in a look-up table.
But for a circuit with M primary inputs, the total
number of possible input vector pairs is 4™ which
grows exponentially with /. Hence, the complexity
of this approach is exponential in M (O(4*)), mak-
ing it practically infeasible for all but the smallest
circuits.

Therefore, the goal of macromodeling is to find
a function E (x1,x2) which would be a good approx-

imation to (1) over all possible input vector pairs

(x1,x2) and which would be less complex. Our ap-

proach, which aims to achieve this, is a two step

process:
Step 1. Identify a number of variables
vy (X1,X2), 02 (X1,X2),*,vr (X1,%X2) which

best represent the dependence of the energy-
per-cycle on the vector pair (x1,x2). We call
this step wvariable selection and is described in

section 2.1.
Step 2. If M is the number of bits in the vectors

Therefore, our final macromodel is:

x;, let h € {0,1,---, M}, be the Hamming dis-
tance between x; and x» (i.e., h is the number
of bits that are different). Then, choose a poly-
nomial model (linear or quadratic) Ej, (x1,Xs),
for every Hamming distance, in terms of the
variables chosen in step 1. Determine the coef-
ficients of the model using the method of Re-
cursive Least Squares (RLS) [18,21]. We call
this step macromodel construction and is de-

scribed in section 2.2.

By (x1,%2) = fp (v1 (x1,%2) ,02 (X1,%2) "+, 0L (X1,%2)) (2)

Since the Hamming distance can take M pos-
sible values (0 is not considered, as the energy-per-
cycle is zero for no input transition), we will have M
such macromodels. We will show later in section 4,
that the complexity of our approach is linear in M
(O (M)).

For example, if L = 1 and f5 (:) is a linear

function, then the macromodel becomes:
En (x1,%2) = co (h) + c1 (B) vy (x1,%2) (3)

where ¢y (h) and ¢; (h) are the coefficients for the
corresponding Hamming distance h, found using
RLS [18,21].

In the next section we will describe an approach
for choosing the variables v; (x1,X2).

2.1 Variable Selection

A combinational circuit can always be levelized
so that its gates are tagged with the level values
that represent their distance from the primary in-
puts. Thus every gate whose inputs are all primary
inputs is said to have level 1. Every other gates
whose inputs are either outputs of level 1 gates or
are primary inputs is said to have level 2, etc. The
levelization algorithm [20] has linear time complex-
ity and is standard in most logic/timing simulation
systems. The largest level number K used in lev-
elizing a circuit is called the circuit depth. More-

over, the output nodes of a gate have the same level

number as that of the gate. By grouping the nodes

which are at the same level, (1) can be rewritten as:

K G;

E (Xl,XQ) = 05Vd2d Z Z C'jnj (Xl,XQ) (4)

i=1 j=1

where GG; is number of nodes that are outputs of
gates at level i. Moreover, the G;s satisfy the fol-

lowing condition:

N=> G (5)

Since we are trying to estimate the energy-per-cycle
at RTL, some approximations seem inevitable. We
start with the simplifying assumption that the ca-
pacitance of a node at a certain level is approxi-
mately equal to the average capacitance of all the
nodes at that level. Therefore, (4) modifies to:

K G
E (x1,%x2) = 0.5V, Z Q; Z nj (X1,X2) (6)
i=1 Jj=1

where

Qi = fZCj (7)

It turns out that this is a very good approximation
in practice, as seen in Fig. 1 which show a scatter

plot of energy-per-cycle obtained from (6) (x-axis)

and that obtained from (4) (y-axis), for c6288, one
of the ISCAS-85 [13] benchmark circuits. The num-
ber of input vector pairs in the plot are 15000, which
were generated randomly and the energy-per-cycle
was estimated using [14]. It can be seen from the fig-
ure that energy-per-cycle values correlate very well
and this behavior was observed for all the ISCAS-
85 [13] benchmark circuits, which supports the ap-

proximation made in (6).

6.0

4.0

20

Real-Delay Energy (nJ), using Eqn. (4)

0.0 L L
0.0 20 4.0 6.0

Real-Delay Energy (nJ), using Eqn. (6)

Figure 1. Plot of energy-per-cycle from (6)
and (4), for ¢6288.

Substituting N; (x1,x2) for 230221 nj (x1,X2),

(6) can be rewritten as:

K
E (x1,%3) ~ 0.5V Z QiN; (x1,%2) (8)

i=1
In (8), Q; is known, as it can be obtained from the
gate-level net-list and stored in a look-up table, to
be used at RTL. But N; (x1,x2) in (8) is unknown
at RTL, as determining it requires the real-delay
simulation of the whole circuit, which is prohibitive
at RTL. One possibility is to estimate the real-delay
energy-per-cycle from the zero-delay transitions at
every level, i.e., from a simulation of the circuit that
uses a zero-delay model for all the gates. In this case

the macromodel would be:

K
B (x1,%2) # 0.5V Y QN7 (x1,%2) (9)
i=1
where the superscript z signifies that the transi-

tions are measured from a zero-delay simulation. To

check the accuracy of this macromodel, input vec-
tor pairs were randomly generated and energy-per-
cycle, E (x1,%2), was estimated using [14] which
also provides an estimate of N7 (x1, x2). Using this,
E (x1,%3), was also estimated using (9) and the
relative error between the two energy values was
computed. Table 1 shows the average of this error,
for the ISCAS-85 [13] benchmark circuits, which is

computed as:

P
1 |Ei (x1,
Avg. Error = 2 Z

X3) — Ej (x1,%2) |
i—1 @

— Ly
E; (x1,%2)
(10)
where P is the number of input vector pairs (in this
case, we used P = 100,000).

Table 1. Error in estimating real-delay

energy-per-cycle using macromodel given by (9)

Circuit | Avg.Error || Circuit | Avg.Error
c499 76.49% c5315 83.48%
c880 104.29% c2670 | 104.28%

c1355 81.52% c3540 | 103.49%
c1908 43.20% €7552 86.22%
c432 92.13% c6288 | 818.98%

It is clear from the table that the simple model
of (9) is not good enough for estimating the real-
delay energy-per-cycle as the glitches are not ac-
counted for in (9). Another possibility is to con-

struct the model as follows:
R K
E(x1,%2) = co+ Y N7 (x1,%5) (11)
i=1

where the regression coefficients ¢; would be deter-
mined using least squares fitting. Note that Q; does
not appear in (11), as it is contained in the regres-
sion coefficient ¢;. In fact, we have found that the
accuracy of (11) can be significantly improved if we
generate different coefficients for every Hamming
distance. One reason for this is that the energy per
cycle depends strongly on the Hamming distance, as
shown in Fig. 2 for ¢3540, an ISCAS-85 [13] bench-
mark circuit. Fig. 2 shows the energy-per-cycle for

each Hamming distance, averaged over 1000 ran-
domly generated input vector pairs for each Ham-

ming distance.

0.50

0.40

0.30

0.20

Real-Delay Energy (nJ)

0.10

000 ki I I I I
1.0 11.0 21.0 31.0 41.0

Hamming Distance

Figure 2. Showing the variation in energy

for different Hamming distances, for ¢3540.

With this modification, the model of (11) be-
comes:
K
B (x1,%2) = co () + > ci (W) N7 (x1,%2) (12)

i=1

where the regression coefficients c¢;(h) are deter-
mined for each Hamming distance using RLS [21].

We call the macromodel of (12), the golden
model. To check the accuracy of this model, 100, 000
input vector pairs were generated randomly. For
each input vector pair, the actual energy-per-cycle
was obtained using [14], which also provides es-
timate of N7 (x1,%x2). Energy-per-cycle was also
estimated using (12) and the relative error was
computed for every input pair. Table 2, shows
the average of this error, for ISCAS-85 [13] bench-
mark circuits, which is computed using (10) with
P =100,000. Also, shown in Fig. 3 is the real-delay
energy-per-cycle waveform for c¢1908, an ISCAS-
85 [13] benchmark circuit, where one trace was mea-
sured from simulation and the other was predicted
from our model. The simulation was performed
using a real-delay (not zero-delay) gate-level tim-
ing model, so that multiple transitions per cycle
(glitches) were not ignored during the simulation.

In order to generate this figure, we applied a low

activity vector sequence for a while and then im-
mediately applied a high activity vector sequence.
While the agreement demonstrated in Fig. 3 is not
exact (one would not expect that in a high-level
model), it is clear that the accuracy is good enough
to permit one to closely track the changes in power
dissipation over time. Furthermore, the model has
no time lag, it immediately reflects the change in
power, which is a useful feature in practice. We
consider this capability to be a major strength of
this approach.

Table 2. Error in the golden model while
estimating real-delay energy-per-cycle

Circuit | Avg.Error || Circuit | Avg.Error

c499 3.27% cd315 8.25%
c880 9.18% €2670 13.17%
c1355 5.76% ¢3540 14.71%
c1908 8.91% €7552 7.14%

c432 8.15% c6288 13.33

T
Energy from Simulation
"""" = Energy from Macro-Model

0.20
’,_?
=
>
=
<
f=4
w
>
&
& o0
o
9]
o

0.00 : ! ;

0.0 50.0 100.0 150.0

Clock Cycle
Figure 3. Energy waveform predicted

using golden model for c¢1908.

Using the golden model requires one to perform
a functional (zero-delay) simulation of the circuit,
while monitoring the Boolean values at its internal
nodes. Granted, for RTL simulation, we would have
to simulate the circuit functionally anyway, but we
normally would not evaluate the Boolean functions
at every internal nodes. Thus the golden model
probably requires more work than one is willing to
do at RTL.

To resolve this problem, we propose to sim-
plify (12) so that it does not require one to evaluate
the Boolean functions at all the circuit nodes, but
only at some. Specifically, we identify three logic
levels inside the circuit, and require the user to mea-
sure the number of transitions only at the nodes in
these levels. We have found experimentally, that
by choosing only three levels, the percentage aver-
age error (10), over a large number of input vec-
tor pairs, was within 20% (see section 5.1), so that
we lose only 5% in accuracy relative to our golden
macromodel (12), for most of the circuits that we
tested. Hence in our approach, E (x;,x3) for the
given input vector pair (xi,x2), is determined from
the zero-delay transitions at the chosen three lev-
els. We use a stepwise regression procedure [23]
to find these three levels. Stepwise regression is a
well known variable selection method based on F™
statistics from regression theory [23].

Before explaining the algorithm, we begin with

some useful terms for regression analysis:

1. Sum of squares error: ,
SSE=Y1 (Ej (x1,%:) — B (x1, x2))

2. SSE(vp,...,uy) is defined as SSE when
E(x1,%3) is formulated as a regression equa-
tion on only the variables vp,...,v,, where
v; = N7 (x1,%2) are the variables of the re-
gression equation (12).

3. Mean squares error:

MSE('Ul,...,Uk) = W

4. Regression sum of squares: ,

SSR=y" (Ej (x1,%2) — E (xl,xz))

where E (x1,X2) = 5 Zle Ej(x1,X%2).

5. SSR (v | vp,---,vq) = SSE (vp,--+,vq)

—SSE (vp,--+,vq,Uk).

Given the model (12), the aim of stepwise re-
gression is to select 3 of the K variables v; =
N7 (x1,x2) that would be sufficient to compute
E (x1,%3) with good accuracy. Stepwise regression
is a heuristic procedure that considers only a lim-
ited number of the large (2¥ — 1) number of pos-

sibilities. It does this by iteratively adding (and

removing) selected variables to (and from) a pool
of candidate variables. The method is not optimal
and is not flawless but is considered to be one of
the best available. It is based on hypothesis test-
ing, and requires one to select a level of significance
which is used to check if a certain variable should
be added to or removed from the pool. In [23],
this is selected according to a percentile of the F-
distribution, which depends on a specified level of
confidence (we chose 95%) and on the number of
variables in the pool. Since we are interested in
selecting a pool of 3 variables only, the three result-
ing percentiles of the F-distribution are F; = 3.84,
F; = 3.00, and F3 = 2.60. Finally, we used P = 500
as the number of data points to be used for com-
puting the regression coefficients and for computing
SSE and the other statistics - this proved to be a
good number to use in practice.

The flow of the stepwise regression procedure
is as follows:
Step 1. Consider the possibility of using only a sin-
gle variable v; = N7 (x1,x2) in the regression equa-
tion. Find the regression coefficients and compute
the errors in every case vi,vs,...,vg. For every
case, compute the F* statistic:

F]: _ SSR (’Uk)

MSE (vg)
The variable v; with the largest F™* value is a can-
didate for addition to the pool. If this F* exceeds

a threshold value (Fy, in this case), the variable is

(13)

added. Otherwise, terminate with failure.

Step 2. Assume v; is the variable selected in step
1. Now calculate all regressions with two variables,
with v; being one of the pair, and compute F™* for

each case:
P SSR (v, | vi)

7 MSE (v,)
Choose the variable with largest F* value as the

(14)

candidate for addition at the second stage. If this
F* value exceeds a threshold value (F5, in this case),
the new variable is added. Otherwise, terminate
with failure.

Step 3. Suppose v; is added at the second stage.

Now the stepwise regression routine examines

whether any of the other variables already in the
pool should be removed. For our illustration, there
is at this stage only one other variable in the model,

v;, so that only one F'* statistic is obtained:

o SSR(vi | vy)

L MSE (’Uj,’Ui) (15)

At later stages there would be a number of these
F* statistics, for each of the variables in the pool
besides the last added, given all the other variables
in the pool. The variable for which this F™* value is
the smallest is the candidate for deletion. If this F™*
value falls below a threshold value (either Fy, Fb,
or F3), the new variable is removed from the pool;
otherwise it is retained.

Step 4. Suppose v; is retained, so that both v; and
v; are now in the pool. The stepwise regression rou-
tine now examines which variable is the next can-
didate for addition (repeat step 2), then examines

whether any of the variables already in the pool

should now be removed (repeat step 3), and so on
until no further variables can be added or removed,
at which point the search terminates. We actually
terminate the search as soon as three variables have
been added to the pool.

Let us denote the three variables chosen by
the stepwise regression procedure, by N7 (x1,x2),
N5(x1,%x2), and NZ(x1,%x2). In order to deter-
mine these variables at RTL, for the given input
vector pair (x1,x2), we have to perform fast func-
tional simulation of the Boolean functions at the
selected three levels. Note that we have employed
a linear regression equation (12) in the stepwise re-
gression procedure, in order to select the desired
variables. We excluded cross-product terms and
powers of the independent variables in order to keep
the selection problem computationally inexpensive.
However, one should keep in mind that he selection
accuracy may be improved if one considers these

additional terms.

Given any Hamming distance h, (2) now reduces to:

A

Ep (x1,%2) = fn (N§ (x1,%2) , N (x1,%2) N3 (x1,%2)) (16)

where the function f(+) is still unknown. In
the next section, a methodology for determining

this function will be presented.
2.2 Macro-Model Construction

We fit an analytical equation to the function
fn(:) in (16), due to it’s ease of use and mini-
mal memory requirements. The general equation is
fixed for all the circuits. This works because, even
though the function f;(-) is non-linear, it turns out
that in practice it is “not too non-linear” to defy fit-
ting, and a general polynomial template turns out
to be sufficient. Moreover, we generate two different
analytical equations, one for estimating the zero-
delay energy-per-cycle and another for estimating
the real-delay energy-per-cycle.

Now we will describe the choice of the poly-
nomial function for estimating real-delay and zero-

delay energy-per-cycle.

2.2.1 Macro-Model for Real-Delay Energy-Per-Cycle
One would like to choose the lowest order polyno-
mial equation that works well. One option is the

linear function:

Ej (x1,%2) = co(h) + c1 (RN (x1,%2)
+ ea(R)NZ, (x1,%32) (17)
+ c3(h)Ng (x1,%2)

where the coefficients ¢;(h),i = 0,1,2,3 are un-
known and are to be determined during the char-
acterization using RLS [18,21]. In RLS, the coeffi-
cients ¢;(h) are determined such that they minimize

the following error term:

P

e=> (E(xi,x) - B (x1,><2))2 (18)

Jj=1

where P is the number of input vector pairs used

for fitting and E (x1, x2) is obtained using real-delay

gate-level simulator [14], which also provides zero-
delay transitions at all levels for the given input
vector pair (x1,x2). One advantage of using RLS
is that we do not have to predefine the value of
P, because it stops computing the coefficients when
some user defined accuracy is reached.

But our goal is to reduce the relative error
(|E(x1’};();i’;()xhx2)|), therefore (18) should be mod-
ified to incorporate this. Considering relative error

instead of absolute error, (18

P N 2
e

j=1

) becomes:

where the subscript m stands for modified. This
simplifies to:

P
em =Y (1— Ry (x1,%2))° (20)
j=1
where R, (x1,X2) = % We rewrite (20) as
P
E€m = Z (ynew (X17 X2) - gnew (X17 X2))2 (21)
j=1

M P
LAvg.Error = Z Z

where P = 500. It is clear from the table that
the linear model works well for some circuits but

not for all. Therefore, we have to go to the higher

where Ynew (X1,%2) = 1.0 and Fpew (x1,%X2) =
Ry (x1,X3).
dard RLS [18,21] problem. Since we are monitor-

The above equation (21), is a stan-

ing relative error, we have found that by minimiz-
ing (21) instead of (18
by 5%. Hence while using RLS to estimate the re-

), the accuracy is improved

gression variables ¢;(h) for each Hamming distance,

the modified error criteria (21) is used.

To test the accuracy of the fit, 500 input vec-
tor pairs having Hamming distance equal to h, were
randomly generated, and F (x1,X2), N7 (x1,X2),
N7 (x1,x2), and N (x1,%2) were estimated for
every input vector pair (x1,x2) using [14]. Also,
E), (x1,%2) was estimated for every input vector
pair using (17) and the relative error was computed.
This procedure was carried out for all Hamming
distances h € H. The average of this error over
all Hamming distances, is shown for ISCAS-85 [13]
benchmark circuits, in Table 3 under the column
“L Avg.Error”, Which is calculated as:

h,j (x1,%2) — E; (x1,%2) |

E] (X17 X2) (22)

order polynomial function.

Another option is to choose the quadratic func-

tion:

B (x1,%2) = co(h) + Cl(h’)Nsl (x1,%x2) + c2(W)Ng (x1,%2) + c3(h)N g (x1,%2)

(RN
+ ce(h)NG (x1,%x2) N5 (x1,%2) + ez (h){
(h)

5 (x1,x2) N5 (%1, %x2)

(23)
sl (Xl) X2) }2

+ es(M){NG (x1,%2)}? + co(W){NG (x1,%2)}°

The accuracy of the quadratic function was es-
timated using the same approach as above. The
results are shown in Table 3, under the column
“Q Avg.Error’ - It can be seen that the average er-
ror for all of the circuits is less than 20%. We

also investigated the general cubic model. It is not

shown here, due to space limitations, as it consists
of 20 regression variables. The error for the cu-
bic function is shown in Table 3, under the column
marked “Cayg.Error”- It can be seen from the ta-
ble that there is little or no improvement, in going

from quadratic to cubic model. Therefore, while us-

ing RLS we start with a linear model in (16) and
change to quadratic model if the desired user accu-
racy is not satisfied. We do not go beyond quadratic
model. Hence the highest order polynomial chosen
n (16), while estimating the real-delay energy-per-

cycle, was quadratic.

Table 3. Error in the various models while

estimating real-delay energy-per-cycle

Circuit | Lavg. Error | QAvg.Error | Cavg. Brror
c499 4.46% 4.43% 5.42%
c880 15.83% 13.47% 14.25%
c1355 12.02% 8.92% 9.36%
c1908 13.61% 12.46% 14.61%
c432 18.56% 15.68% 15.10%
cb315 13.33% 9.65% 9.79%%
c2670 21.91% 17.72% 18.09%
c3540 21.69% 19.23% 20.22%
c7552 16.53% 14.64% 15.82%
c6288 21.72% 17.06% 17.86%

2.2.2 Macro-Model for Zero-Delay Energy-Per-Cycle
Similar experiments, as that for real-delay, were

carried out for zero-delay. It was found that the lin-

ear function is “good enough”. Hence for estimating

zero-delay energy-per-cycle, the macromodel is:

E;’;d (X1 , X2) (h) +c1 (h)N 1 (Xl, X2)

+ e (NG (%1, %) (24)

+ e3(h) NG (x1,%2)

where the superscript zd signifies zero-delay energy-
per-cycle. Therefore, highest order polynomial cho-
sen for RLS while estimating zero-delay energy is

linear.

3. EXTENSION TO PEAK-CURRENT-PER-CYCLE
ESTIMATION

So far, we have presented a macromodeling ap-
proach for estimating energy-per-cycle. But in some
applications information about the peak-current
drawn from the logic circuit in every clock cy-

cle may be desired. The prominent application of

peak-current is the analysis of IR-drop problem and
the design of the power grid. In order to analy-
sis these problems at high-level of abstraction, we
need macromodels which can provide peak-current
for every input vector pair (xi,xX3), which we re-
fer to as peak-current-per-cycle. In this section we
will extend our energy-per-cycle macromodel to es-
timate peak-current-per-cycle.

Peak-current-per-cycle (I, (x1,x2)) is defined
as the maximum current drawn from the logic cir-
cuit for the input vector pair (x1,x2). Estimating
I, (x1,x2) is a difficult task as apart from depending
upon the logic circuit, it depends upon the rise/fall
times of the waveforms at the primary inputs [22].
Furthermore, it depends upon how many gates are
switching simultaneously and what kind of transi-
tion they are undergoing [22]. Since, we want to
estimate I (x1,X2) at RTL, and due to the depen-
dence of peak-current on many factors, some as-
sumptions are to be made in-order to make macro-
model at RTL. We assume that all the primary in-
puts switch simultaneously and the waveforms ap-
plied at the primary inputs are ideal (step input),
i.e., they have no rise/fall times. This is not a very
crude assumption as some might think, because at
high-level it is difficult to find rise/fall times of the
waveforms as delay values of different gates are not
available.

As before, for making the macromodel for
peak-current-per-cycle we target the combinational
parts of a given circuit block, for reasons as given
while making the macromodel for energy-per-cycle.
Therefore, the goal of macromodeling is to find a
function fp (x1,x2) which would be a good approx-
imation to I (x1, X2).

Apart from many factors, prominent factors on
which I, (x1,x2) depends are the switching activity
of the gates and how many of them are switching
simultaneously [22]. This is due the fact that when-
ever output node of a gate makes a transition, it
either draws the current from the supply voltage or
supplies it to the ground and whenever the gates

switch simultaneously the current waveforms get

added and hence the current, which may result in

peak-current. Therefore, we can model I, (x1,X2)

as some function of number of transitions at every

node:

Iy (x1,%2) = g (n1 (x1,%2),n2 (%1,%X2), -+, nN (X1,X2)) (25)

where g is some unknown function, n; (x1,X2)
is the number of transitions at node i due to the
input vector pair (x;,x2), and N is the number of
nodes. Note that, while choosing the variables, we
did not consider the direction of the transition, as it

leads to a more complex model (requiring more vari-

A

ables). Later, in the results section, we will show
that, even though we did not consider the direc-
tion of transitions, the average error, for all of the
circuits that we considered, was less than 20%.

By combining the transition of the nodes at the

same level, (25) is given by:

I, (x1,%2) = (N1 (x1,X2) , N2 (x1,X2) , -+, Nk (%1, %2)) (26)

where r is the new unknown function and K
is the number of levels. Determining the value

of N; (x1,x2) requires real-delay simulation of the

whole circuit, which is prohibitive at RTL. Another
possibility would be to construct the model as the

function of zero-delay transitions at every level. Un-

fp (x1,X2) = S(Nf (x1,%2) ;sz (X17X2)7"'7NIZ((x1,%2)) (27)

where s is another new unknown function. For

the reasons as given in the case of energy-per-cycle,

we will have different model for each hamming dis-
tance. With this modification, the model of (27)

I (h;x1,%2) = s, (NF (x1,%2) , N3 (x1,%2), -, N (X1,%X2)) (28)

Since this requires performing a functional sim-
ulation of the whole circuit, we choose three levels

inside the circuit, using stepwise regression proce-

fp (h;Xl,Xz) = fh (./\/Zsl (Xl,Xz) s

p

Notice that the levels s1, 52,53 chosen in (23)
are different from the three selected levels of (29).
Again, the type of polynomial function to be fit-
ted to the function F(-) is determined by using the
procedure described in section 2.2. We found that
quadratic function works well for all the circuits
that we tested. The only difference in characteri-
zation of the function F(-) from that of f(-) is that
now we do tramsistor-level (SPICE) simulation, to

dure, as explained in section 2.1. Denoting ps1, ps2,
and ps3 to be three selected levels, the macro-

model (28) becomes:

Nysz (%1, %2) , N5 (%1, %2)) (29)
find I, (x1,x2), instead of doing gate-level simula-

tion.

4. CHARACTERIZATION FLOW

Once we have chosen the functions f5(-), and
F(-) the macromodels are complete for estimating
both energy-per-cycle (real-delay and zero-delay)
and peak-current-per-cycle. Now we will explain
the characterization flow for constructing and using

the macromodels.

The complete characterization flow for con-
structing the macromodel is as follows:

Step 1. Choose the three levels, using the approach
described in section 2.1. Store their Boolean
descriptions as a function of primary inputs, in
the form of Boolean equations.

Step 2. Find the polynomial model type and the
regression coefficients using RLS [18,21], for all
Hamming distances.

Step 3. Store the analytical equations for using at
RTL.

Now a word about the complexity of our ap-
proach. For building our macromodel suppose we
have to perform W RLS iterations and W real-delay
simulation (gate-level or transistor-level) for each
Hamming distance. Note that for every RLS itera-
tion we have to perform one real-delay simulation.
Assuming the cost of energy and peak-current esti-
mation for a input vector pair is T} and 15 respec-
tively and that for one RLS iteration is T3, the to-
tal cost of our approach for energy-per-cycle (peak-
current-per-cycle) is given by:

Cost = WMT; (T») + W MTs (30)

which is linear in M. In other words the complexity

of our approach is O(WM). Here W is really a

constant number and we found that for most of the

circuits W was less than 1000.

Our macromodel is also easy to use and the
flow for using the macromodel is given as:

Step 1. For a given input vector pair (x1,X2), per-
form fast functional simulation to determine
zero-delay transitions at the three selected lev-
els. Note that the user does not has to perform
the zero-delay simulation of the whole circuit.
The user has to only perform the functional
simulation of the boolean equations derived at
the nodes of the three levels.

Step 2. Substitute the values determined in step 1,
in (23) and (24) for estimating real-delay and
zero-delay energy-per-cycle and in (29) for es-
timating peak-current-per-cycle corresponding

to Hamming distance h.

In next section we will demonstrate the accu-

racy of our macromodeling approaches.

5. RESULTS

First, we will present the results for estimat-
ing energy-per-cycle and then for estimating peak-

current-per-cycle.
5.1 Energy-Per-Cycle

We constructed macromodels for a number of
circuits, using our approach as described in sec-
tion 4. In order to test the accuracy of our ap-
proach, we randomly generated around 100,000 in-
put vector pairs. Let us describe how these vectors
were generated randomly. Firstly, for each Ham-
ming distance we choose number of zero-to-one and
one-to-zero transitions randomly, such that their
sum is equal to Hamming distance. Secondly, we
choose number of zero-to-zero and one-to-one tran-
sitions randomly. Finally, we randomly choose the
primary inputs which will have zero-to-one, one-to-
zero, one-to-one and zero-to-zero transitions. With
these three degrees of randomness added, it is highly
unlikely that characterization vectors and testing
vectors will be same. Therefore, by high degree of
randomness in vector generation we ensure that the
characterization vectors and testing vectors are dif-
ferent.

Energy-per-cycle (E; (x1,x2)) was estimated,
for every input pair (x;,X2), using the flow de-
scribed in section 4. Energy-per-cycle (E; (x1,X2))
was also estimated using [14]. Table 4 (under the
column “Real-delay) shows the average error, for
the ISCAS-85 [13] benchmark circuits, a 16-bit rip-
ple carry adder (Adder 16), and a 10x 10-bit Baugh-
Wooley (BW10) multiplier, under the column

“CEAvg.Error”. This error is calculated as:

P N

1 E b ¢ 7X _E X 7X‘

CEavg.Error = P Z b Ej)(Xl P:z() s
i=1 ’

(31)
where P = 100,000 is the number of test points. It
is clear from the table, that the error is less than

20% for all the circuits, that we tested. Moreover,

column “AFEg;ro-”, shows the relative error, while
estimating the average energy, which is computed
as:
P P
| 2im1 B (x1,%2) = D25 B (x1,%2) |
AEError = P
Zi:l Ez (X17 X2)

(32)
where P = 100,000. Again, the error is less than
10% for all the circuits. In Table 4, the columns
marked “#17, “#0”, and “#L”, show the number
of inputs, number of outputs and number of levels
in the circuit respectively. Also, shown in Table 4 is
the time taken to construct the macromodel. The
execution times are on a SUN Ultra Sparc 1 with
64MB of RAM. The longest time is taken by c7552

which has the highest number of primary inputs. It
took only a couple of hours to build the macromodel
for most of the circuits.

Similar experiments were carried out for zero-
delay energy-per-cycle and the results are also
shown in Table 4, under the column “Zero-delay”.
The average error in estimating energy-per-cycle
and average power is less than 15% and 5% respec-
tively, for all the circuits. Note that the execution
times are the same as that for real-delay energy-
per-cycle macromodel, because both the real-delay
and zero-delay energy-per-cycle macromodels were

constructed simultaneously.

Table 4. Error in the approach while estimating real-delay and zero-delay energy

Circuit | #I | #0 | #£L Real-delay Zero-delay Time (in hours)
CEpvg.Error | AEError | CEAvg.Error | AEError

c499 41 | 32 | 11 4.41% 1.01% 4.10% 0.58% 1.56
c880 60 | 26 | 24 13.43% 4.14% 11.89% 1.94% 3.99
cl355 |41 | 32| 24 9.15% 1.87% 5.77% 0.19% 2.83
cl1908 | 33 | 25 | 40 12.45% 7.6% 8.96% 1.02% 2.41
c432 36| 7 |17 15.69% 7.30% 13.41% 5.03% 1.75
c5315 178|123 | 49 10.33% 1.73% 6.40% 0.33% 8.72
c2670 |[157|140| 32 17.77% 5.83% 9.54% 1.42% 8.04
c3540 | 50 | 22 | 47 19.32% 6.53% 11.04% 0.99% 2.69
c7552 [207|108| 43 14.53% 4.38% 6.45% 0.3% 11.73
c6288 | 32 | 32 | 124 17.18% 3.43% 7.58% 0.7% 4.59

Adder16| 32 | 16 | 33 11.64% 2.65% 9.79% 0.86% 2.21
BW10 | 20 | 20 | 50 14.04% 3.19% 9.17% 1.19% 1.57

Shown in Fig. 4 are various error measures for
c1908, while estimating the real-delay energy-per-

cycle. In Fig. 4a, we show the relative absolute er-

|E(X17XQ)7EA'}L(X1,X2)|
E(x1,%x2)

vector pairs generated randomly for each Hamming

ror (), averaged over 1000 input
distance, and the standard deviation of this error.
It can be seen from the figure that the error de-
creases as the Hamming distance increases. For low
Hamming distances, the error is high as the energy-

per-cycle values are very small and a small deviation

from the actual value leads to a very large relative
error. This is demonstrated in Fig. 4b, where we
show, the absolute error (|E(x1,x2) — E(x1,%2)]),
averaged over 1000 input vector pairs generated
randomly for each Hamming distance, and stan-
dard deviation of this error. It is apparent from
this figure that even though the relative error was
high for small Hamming distances, the absolute er-
ror is actually low. Also, the absolute error levels

off for high Hamming distances. Fig. 4c shows the

energy, averaged over 1000 input vector pairs gen-
erated randomly for each Hamming distance, which
supports the behavior of errors in Figs. 4a, and 4b.
Finally, Fig. 4d shows the error histogram while es-
timating the energy-per-cycle for 100,000 input vec-
tor pairs. The error distribution is centered around
zero, and the bulk of the distribution is in a nar-
row region around zero, but the tails (a very small
fraction of cases) are further out than one would
like. Further work may help to narrow this distri-
bution. In any case, the power of this approach
becomes clear when one considers Fig. 5, which was
generated by first applying a low-activity vector se-
quence, followed by a high activity sequence, as was
done for Fig. 3. Fig. 5 shows the real-delay and
zero-delay transient energy waveforms respectively,
for c1908 and c5315. This behavior is similar to
what was shown in Fig. 3 for the golden model.
This shows that the model is very useful for track-
ing changes in the power dissipation over time, and
it has no lag time, so that it reacts immediately to
a change in the characteristics of the input stream.

Finally, the energy-per-cycle macromodels can
be used for estimating the average energy over m in-
{(x1,%2), (x2,%3), -,

(Xm, Xm+1)}. The actual and predicted energy, av-

put vector pairs

eraged over m input vector pairs, are given by the

following expressions:

1 m
Ep =— > B (xi,xi41) (33)
i=1
. 1 = -
Ep = — > Bn (xi,%it1) (34)
i=1

Shown in the Figs. 6a, 6b, and 6c are the scatter
plots of the moving average real-delay energy, for
m = 1, m = 5 and m = 15 respectively, for c880,
one of the ISCAS-85 [13] benchmark circuit. The
number of data points in each plot is 10,000. As the
value of m increases, the accuracy in the estimation

increases.

5.2 Peak-Current-Per-Cycle

We constructed macromodels for a number of

circuits, using our approach as described in sec-

tion 4. In order to test the accuracy of our ap-
proach, we randomly generated around 10,000 input
vector pairs. Peak-current-per-cycle (I, (i;%1,%s))
was estimated, for every input pair (xi,Xs), us-
ing the flow described in section 4. Peak-current-
per-cycle (I, (i;x1,%x2)) was also estimated using
SPICE, for three ISCAS-85 [13] and some of the
MCNC benchmark circuits. Note that constructing
macromodels for rest of the ISCAS-85 [13] circuits
were not feasible due to the long run-time of SPICE.
Shown in Fig. 7 is the combined scatter plot. It can
be seen from the figure that the fit is good and it is
indeed possible to estimate peak-current-per-cycle
at RTL. Table 5 shows the average error which is
calculated as:

Ip (i;X17X2) |

L G~ M (651, %2) =
Avg.Error = Iz ; T, (%1, %)

(35)
where P = 10,000 is the number of test points.
It is clear from the table, that the error is less
than 20% for all the circuits, that we tested. In
table 5, the columns marked “#I”, “#07”, “#L”,
and "#G” show the number of inputs, number of
outputs, number of levels, and number of gates in
the circuit respectively. Also, shown in Table 5 is
the time taken to construct the macromodel. The
execution times are on a SUN Ultra Sparc 1 with
64MB of RAM. It can be seen from the table that it
took days to build macromodel for the circuits with
modest size of netlist, due to the long run-time of
SPICE. In practice, one can use faster transistor-
level simulators, such as PowerMill or iRSIM. In

any case, that this is only a one-time cost.

Shown in Fig. 8 are various error measures for
c880, while estimating the peak-current-per-cycle.
This figure is similar to the Fig. 4. In Fig. 8a, we

show the relative
|1, (x1,%2) — I (hix1,%2)|
(Ip(x1,%2)

tor pairs generated randomly for each Hamming

absolute error

), averaged over 100 input vec-

distance, and the standard deviation of this error.
It can be seen from the figure that the error de-

creases as the Hamming distance increases. For low

Hamming distances, the error is high as the peak-
current-per-cycle values are very small and a small
deviation from the actual value leads to a very large
relative error. This is demonstrated in Fig. 8b,
where we show, the absolute error (|Ip(x1,X2) —
fp(xl,xQ)D, averaged over 100 input vector pairs
generated randomly for each Hamming distance,
and standard deviation of this error. It is apparent
from this figure that even though the relative error
was high for small Hamming distances, the abso-
lute error is actually low. Fig. 8c shows the peak-

current, averaged over 100 input vector pairs gen-

40.0 T T
—% Relative Absolute Error

K G—oO Std. of Error

1.0 11.0 21.0 31.0
Hamming Distance

(a)

Real-Delay Energy (nJ)

1.0 11.0 21.0 31.0
Hamming Distance

(c)

erated randomly for each Hamming distance, which
supports the behavior of errors in Figs. 8a, and 8b.
Finally, Fig. 8d shows the error histogram while es-
timating the peak-current-per-cycle for 10,000 in-
put vector pairs. The error distribution is centered
around zero, and the bulk of the distribution is
in a narrow region around zero, but the tails (a
very small fraction of cases) are further out than
one would like. But, this much error is acceptable
considering the fact that we are estimating peak-
current at RTL. However, future work may lead to

the improvement in the macromodel.

0.020 T T
*——% Absolute Error
G—oO Std. of Error
0.015 -
5
£
0.010 -
0.005 - . .
1.0 11.0 21.0 31.0
Hamming Distance
(b)
15000.0
9 100000 1 -
<]
o
]
S ERERS
kS
@
Q
€
3
Z 50000 [q
0.0
-100.0 -50.0 0.0 50.0 100.0

% Error

(d)

Figure 4. Showing various error measures for c1908.

Real-Delay Energy (nJ)

Energy, from Simulation (nJ)

T
~—— Energy from Simulation
=< Energy from Macro-Model

0.10

0.10

Zero-Delay Energy (nJ)

I
101.0

‘
151.0 10

~—— Energy from Simulation
=< Energy from Macro-Model

| |
1.0 51.0 51.0 101.0 151.0
Clock Cycle Clock Cycle
(a) (b)
Figure 5. Showing transient energy waveforms for ¢1908.
Energy, for Every Cycle Energy, Average Over 5 Cycles
0.10 .
*ophk g
* * %
PE &
012 - g ¥ 1 * i
RTINS 008 | o]
Jﬁf&ﬁ +; f /?-:\ * o
* *x ~ * ¥
010 f W f 1 5 % o
3 T L 4
008 | A " 1 7 < *
* 5 K I3
H ¥k 5 *
* £ 004 1
0051 xndle * 1 3 *
* @
fk K ﬁ
0.02 - 1
0.03 ¥ 1
0.00 0.00
0.00 0.03 0.05 0.08 0.10 0.12 0.00 0.02 0.04 0.06 0.08 0.10
Energy, from Macro-Model (nJ) Energy, from Macro-Model (nJ)
(a) (b)
Energy, Average Over 15 Cycles
*
*
0.080 & b
P 5
::; *
(=
-~ *
s ¥
8
2 0060 . ,
E
£ *
<]
[} |- |
2 0.040 y
£
*
0.020 ! ! !
0.020 0.040 0.060 0.080

Energy, from Macro-Model (nJ)

()

Figure 6. Scatter plots of moving average energy for c880.

Peak Current (A)

50.0

0.04

0.03

0.02

0.01

0.00

0.0

0.06

o

o

g
T

o
o
)

Peak Current from Macromodel (A)
*

0.02 0.04
Peak Current from SPICE (A)

0.06

Figure 7. Scatter plot for ISCAS-85 and MCNC benchmark circuits.

+—+ Relative Absolute Error
o0 Std. of Error

Hamming Distance

(a)

200 400
Hamming Distance

()

60.0

0.005

0.004

0.003

0.002

0.001 r#

0.000

#+——+ Absolute Error
o0 Std. of Error

1.0

800

210 410
Hamming Distance

(b)

o

o

[s]
T

400

Number of Vectors

200 -

0
-100.0

-50.0 0.0

% Error

(d)

50.0 100.0

Figure 8. Showing various error measures for ¢880 while estimating peak-current-per-cycle.

Table 5.

Error in the approach while estimating peak-current-per-cycle

Circuit |#I|#0 | #L | #G | Avg. Error| Time
c499 41 32 | 11 | 202 6.95% 3.32days
c880 60| 26 | 24 | 383 15.51% |4.51days
c432 36| 7 |17] 160 14.77% 1.58days
alu2 10| 4 | 40 | 368 13.40% 21.94hrs

cu 141 8 | 12| 63 17.91% 3.65hrs
f51m 8 1 |33 &4 14.89% 3.11hrs
mux |21 1 |10 | 47 19.82% 5.07hrs
parity |16 1 | 12| 75 9.21% 4.17hrs
pcler8 | 27| 17 | 11 | 101 | 17.06% 10.5hrs
random8| 8 | 1 [16 |158| 13.75% 5.77hrs
sct 19| 7 (41| 83 14.87% 5.81hrs

x2 101 3 | 14| 50 17.92% 2.5hrs
z4ml 71 1 (20| 44 15.30% 1.36hrs
vdao |17 27 | 15 |341| 15.57% |2.95days

6. CONCLUSION

We presented a novel macromodeling approach
for estimating the energy and peak-current for ev-
ery input vector pair (energy-per-cycle and peak-
current-per-cycle). This capability is useful in order
to study the changes over time in the power dissipa-
tion of logic circuits, with applications in power grid
analysis (IR-drop, noise, inductive kick), thermal
analysis, etc. Some key features of this technique
are: 1) the model is compact (linear in the number
of inputs), 2) it can be used for any input sequence
and does not require tuning or the use of a training
set, and 3) the characterization is automatic and
requires no user intervention. The discussion has
focused on combinational circuits, mainly because
they represent the most difficult challenge, from a
modeling standpoint. It is trivial to combine our
model with cell level models of the registers or flip-
flops in order to model the energy-per-cycle of large

sequential systems.

The macromodel is based on classifying vec-
tor pairs on the basis of their Hamming distances

and using equation-based macromodels for every

Hamming distance. The equations are in terms of
three variables, namely the transition counts result-
ing from evaluation of Boolean functions at three
internal logic levels. The equations contain coeffi-
cients that are determined using least squares fit-
ting, during an automatic characterization process.

The average error in estimating peak-current-
per-cycle was under 20%. Furthermore, the aver-
age error while estimating the energy-per-cycle was
found to be under 20% and if one ignores glitches,
the average error becomes under 15%. The energy-
per-cycle model can also be used to measure the
long-term average power, with an observed error of
under 10%, on average and if glitches are ignored,
this becomes 5%. But the power of this technique
becomes evident in figure like Fig. 5 which shows
that the method is very good at tracking changes
in the power dissipation over time, with a zero lag

time.

REFERENCES

[1] F. N. Najm, “A survey of power estimation
techniques in VLSI circuits,” IEEE Transac-
tions on VLSI Systems, pp. 446-455, Dec.

1994.

P. Landman, High-level power estimation, “In-
ternational Symposium on Low Power Elec-
tronics and Design,” pp. 29-35, Monterey, CA,
August 12-14, 1996.

M. Nemani and F. N. Najm, “Towards a High-
Level Power Estimation Capability,” [EEFE
Transactions on CAD, vol. 15 pp. 588-598,
June 1996.

D. Marculescu, R. Marculescu and M. Pedram,
“Information Theoretic Measures of Energy
Consumption at Register Transfer Level,”
IEEE Transactions on CAD, vol. 15 pp. 599-
610, June 1996.

S. R. Powell and P. M. Chau, “ Estimating
Power Dissipation of VLSI signal Processing
Chips: The PFA technique,” VLSI Signal Pro-
cessing IV, pp. 250-259, 1990.

P. E. Landman and J. M. Rabaey, “Archi-
tectural Power Analysis: The Dual Bit Type
Method,” IEEFE Transactions on VLSI, vol. 3
pp- 173-187 June 1995.

H. Mehta, R. M. Owens and M. J. Irwin, “En-
ergy Characterization based on Clustering,”
33rd ACM/IEEE Design Automation Confer-
ence, pp. 702-707, June 1996.

A. Raghunathan, S. Dey and N. K. Jha,
“Register-Transfer Level Estimation
Techniques for Switching Activity and Power
Consumption,” IEFEE International

Conference on Computer-Aided Design,
pp. 158-165, November 1996.

Q. Qiu, Q. Wu, Chih-S. Ding, and M. Pe-
dram, “Cycle-accurate macro-models for RT-
level power analysis,” IEEE Trans. VLSI Sys-
tems, vol. 6, pp. 520-528, no. 4, December
1998.

A. Bogliolo and L. Benini, “Node Sampling:
a Robust RTL Power Modeling Approach,”
IEEFE International Conference on Computer-
Aided Design, pp. 461-467, November 1998.

F. N. Najm, “Transition Density: A New Mea-
sure of Activity in Digital Circuits,” [EFE
Trans. on CAD, vol. 12, pp. 310-323, Feb.
1993.

S. Gupta and F. N. Najm, “Power Macromod-
eling for High Level Power Estimation,” IEEE
Transactions on VLSI Systems, vol. 8 no. 1,
pp- 18-29, Feb. 2000.

[13]

F. Brglez and H. Fujiwara, “A neutral netlist of
10 combinational benchmark circuits and a tar-
get translator in Fortran,” IFEE International
Symposium on Circuits and Systems, pp. 695-
698, June 1985.

M. Xakellis and F. N. Najm, “Statistical Es-
timation of the Switching Activity in Digital
Circuits,” 81st ACM/IEEE Design Automa-
tion Conference, pp. 728-733, June 1994.

G. Seber, Linear Regression Analysis. New

York: John Wiley & Sons, 1977.

Z. Chen and K. Roy, “A Power Macromod-
eling Technique based on Power Sensitivity,”
35th ACM/IEEE Design Automation Confer-
ence, pp. 678-683, June 1998.

A. Bogliolo, L. Benini, and G. D. Micheli,
“Characterization-Free Behavioral Power Mod-
eling,” Design Automation and Test in Europe
(DATE), pp. 767-773, Feb. 1998.

S. Gupta and F. N. Najm, “Analytical Model
for High Level Power Modeling of Combina-
tional and Sequential Circuit,” in IEEE
Alessandro Volta Memorial International
Workshop on Low Power Design, Como, Italy,
March 4-5, 1999.

Z. Chen and K. Roy, “Estimation of Power
Sensitivity in Sequential Circuits with Power
Macromodeling Application,” IEEE Interna-
tional Conference on Computer-Aided Design,
pp. 468-472, November 1998.

S. Even, Graph Algorithms.
Computer Science Press, 1979.

Rockville, MD:

L. Ljung, System Identification: theory for the
user. Engelwood Cliffs, NJ: Prentice Hall,
1987.

H. Kriplani, F. N. Najm, and I. Hajj, ”Pat-
tern independent maximum current estimation
in power and ground buses of CMOS VLSI cir-
cuits: algorithms, signal correlations, and their
resolution,” IEFE Transactions on Computer-
Aided Design, vol. 14, no. 8, pp. 998-1012,
August 1995.

S. Neter and W. Wasserman, Applied Linear
Statistical Models. Homewood, IL: Richard D.
Irwin, Inc., 1974.

S. Gupta and F. N. Najm, ”Energy-per-cycle
estimation at RTL,” IEEE International Sym-
posium on Low Power Electronics and Design,
San Diego, CA, pp. 121-126, Aug. 16-17, 1999

