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Abstract
In this paper, we make the case for building high-performance
Asymmetric-Cell Caches (ACCs) that employ recently-
proposed asymmetric SRAMs to reduce leakage proportionally
to the number of resident zero bits. Because ACCs target
memory value content (independent of cell activity and access
patterns), they complement prior proposals for reducing cache
leakage that target memory access characteristics. Through
detailed simulation and leakage estimation using a commercial
0.13μ CMOS process model, we show that: (1) on average
75% of resident data cache bits and 64% of resident
instruction cache bits are zero; (2) while prior research
carefully evaluated the fraction of accessed zero bytes, we
show that a high fraction of accessed zero bytes is neither a
necessary nor a sufficient condition for a high fraction of
resident zero bits; (3) the zero-bit program behavior persists
even when we restrict our attention to live data, thereby
complementing prior leakage-saving techniques that target
inactive cells; (4) ACCs can reduce leakage on the average to
23% compared to a conventional data cache without any
performance loss, and to 11% at the cost of a 5% increase in
overall cache access latency.

1  Introduction
In this work, we study methods that exploit the memory bit-
value behavior of programs to drastically reduce leakage or
static power dissipation in caches without sacrificing
performance. Leakage power, or simply leakage, is already
a significant fraction of overall power dissipation and is
expected to grow by a factor of five every chip generation
[3]. It is estimated that in a 0.10μ technology, leakage
power will account for about 50% of all on-chip power [9].
This increase in leakage is an unwanted side-effect of
technological trends: successive processor generations
have used more transistors clocked at higher frequencies to
improve performance. Keeping the resulting increase in
dynamic (or switching) power within limits is possible by
scaling down the supply voltage. But, to maintain high
operating frequency it is also necessary to scale the
transistor threshold voltage (Vt), giving rise to
subthreshold leakage current and hence leakage power
dissipation when the transistor is off [3].
Because leakage is proportional to the number of on-chip
transistors and caches account for the dominant fraction of
transistors in high-performance designs, in this paper we
focus on leakage-aware cache design. There are a number
of recent proposals for reducing leakage in caches. Circuit-
level only techniques typically trade off performance for
reduced leakage power where this is acceptable — e.g., L2

caches [7]. Proposals to reduce leakage in high-
performance caches (e.g., L1 caches in high-performance
processors) often use combined circuit- and architectural-
level methods to reduce leakage. These techniques exploit
the spatial (how much data) and temporal (for how long)
characteristics of the memory reference stream of typical
programs to reduce leakage in those parts of the cache that
are left unused for long periods of time [6,8,10,15,16]. 
In this paper, we look beyond the time and space
characteristics of program memory behavior. We offer a
new degree of freedom in reducing leakage by exploiting
the memory value content at the bit level. We evaluate
Asymmetric-Cell Caches (ACCs) that drastically reduce
leakage even when most of the cache is actively used. At
the core of ACCs is a set of asymmetric SRAMs that are
designed to drastically reduce leakage when they store a
zero (bit) while maintaining high performance. A circuit-
level analysis of a family of asymmetric SRAMs was
presented recently [1,2]. While asymmetric SRAMs
provide the means to reduce leakage in any generalized
SRAM-based structure (e.g., cache memories, register files,
TLBs, etc.), it is the memory value behavior of programs
that determines the actual potential for leakage reduction in
cache memories using ACCs. In this paper we study the
cache-resident memory value behavior of ordinary
programs and show the leakage benefits possible in various
applications. This work complements the previous studies
that looked only at the circuit-level aspects of ACCs.
A number of studies have shown that the data processed
and the instructions fetched by processors contain many
zeros, e.g., [4,5,14]. These studies have focused on the
dynamic memory stream (i.e., the values read or written by
the processor) and at larger than a bit granularities (e.g.,
bytes). But all cache cells contribute to leakage equally
independently of how often they are accessed by the
processor. In this paper, we show that a high dynamic
frequency of zero bytes is neither a necessary nor a
sufficient condition for reducing leakage using ACCs, and
the potential for ACCs is greater than that indicated by the
fraction of zero bytes in the dynamic memory stream.
 The rest of this paper is organized as follows. In section 2
we comment on related work. In section 3 we discuss the
rationale behind ACCs, explain how they relate to existing
leakage reduction methods and present our analysis of
memory value behavior. In section 4, we review the
asymmetric SRAM cell family that forms the core of the
ACCs and present leakage reduction results. Finally, in
section 5 we summarize our findings.

2  Related Work
Numerous architectural techniques for reducing power in
high-performance caches have been proposed. We restrict
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our attention to those proposals that target leakage. Many
recent proposals to reduce leakage in caches employ a supply-
gating circuit-level mechanism called gated-Vdd [15] to
effectively “turn off” cache cells that remain inactive for long
execution periods. Yang et al., proposed the DRI cache [12]
which dynamically resizes and turns off portions of a cache.
Kaxiras et al., proposed Cache Decay [10] which turns off
individual blocks using expiration counters. Zhou et al., extend
cache decay by dynamically extracting the expiration count
value during runtime [16]. With all aforementioned methods,
care must be taken to avoid disabling blocks that are live since
doing so will increase miss rate and potentially dynamic power
dissipation (misses will be serviced by the much larger higher
levels of the memory hierarchy). Flautner et al., propose
Drowsy Caches [6] a variation on cache decay that obviates the
need to turn off and evict cache blocks by putting potential
dead blocks into “sleep” using supply-voltage-scaling. Heo et
al., propose floating the bitlines in unused subarrays of a
sequentially-precharged cache to reduce bitline leakage [8]. As
we show in section 3.4, our technique is orthogonal to all
aforementioned methods. Even if it was possible to perfectly
predict which blocks are not live, ACCs can reduce leakage
significantly. Moreover, even when most cache blocks hold
live data ACCs can reduce leakage power significantly. 
To the best of our knowledge, no previous proposals on using
bit values to reduce leakage power dissipation exists. Villa et
al., present dynamic zero compression [13] where zero values
are exploited to reduce dynamic power dissipation. ACCs
attack leakage dissipation and rely on bit values. As we show
in section 3.3, even if zero bytes were completely disabled, our
method could still reduce leakage significantly. Moreover, we
show that the behavior exploited by the two techniques is
fundamentally different. Several circuit-level only proposals
for reducing leakage power in caches exist. These exploit
multiple or dynamic threshold voltages and/or supply voltages
and transistor stacking. In their majority, these techniques
trade-off performance for reduced power dissipation and are
oblivious to application behavior. 

3  Exploiting Data Values to Reduce Leakage
Ideally, cache cells would be as fast as possible consuming as
little leakage power as possible. Unfortunately, this
requirement is increasingly at odds with a fundamental
technology trade off: as the supply voltage gets smaller, fast
transistors tend to dissipate high leakage power. One of the key
circuit-level mechanisms for reducing leakage is to use
“weaker” transistors (e.g., having higher threshold voltage (Vt)
or higher length to width ratio). Unfortunately, “weaker”
transistors are also slower and the resulting performance loss is
unacceptable for high-performance caches.
Asymmetric-Cell Caches (ACCs) exploit memory value
content to reduce leakage in high-performance caches. ACCs
are built using a family of novel SRAM cells (proposed in
[1,2]) built on the following premise: weaken (asymmetrically)
only those transistors necessary to drastically reduce leakage
when the cell stores a zero while maintaining high
performance. Compared to conventional, high-performance
SRAM cells, the asymmetric cells dissipate lower leakage in
both states. However, the reduction in leakage is much higher
when they store a “zero” as opposed to when they store a
“one”. In section 4, we review the SRAM cell family and
extend the previous analysis by evaluating four ACCs under
realistic program workloads. A detailed, circuit-level analysis
of asymmetric SRAM appears in [1,2] and is beyond the scope
of this paper.

What makes ACCs successful is the fraction of resident zero
bits in typical program behavior. In the rest of this section, we
carefully analyze the bit-value program behavior and show that
most (but not all) of the programs we studied exhibit a strong
bias towards zero bits. 

3.1  Methodology
We use Simplescalar v3.0 to simulate a state-of-the-art
superscalar processor with a two-level cache hierarchy. Table
1 depicts our base processor configuration. We assume split
level-one data (L1D), level-one instruction (L1I) caches and a
unified level-two (L2) cache. We present results for systems
with an L1I and an L1D of 32Kbytes each (32-byte blocks, 2-
way set-associative) and an L2 of 1 Mbytes (64-byte blocks, 4-
way set-associative). We only present results on bit-value
characterization in the data arrays of level-one caches. We
have also experimented with characterizing bit values in L2
and found the L2 results quite similar to L1D results due to: (a)
SPEC2000’s tiny instruction footprints allowing the data
streams to dominate occupancy in L2, and (b) SimpleScalar
v3.0 only simulating a uniprogrammed environment with a
single application’s footprint in L2. Similarly, we do not
present a bit-value characterization for the cache tag arrays
despite finding the values to be highly skewed. This is because
SimpleScalar v3.0 does not simulate address translation and
hence tag values are artificially skewed towards zero. We used
the following SPEC CPU2000 benchmarks: gzip, swim, applu,
vpr, gcc, mesa, art, mcf, equake, ammp, parser, gap, vortex,
bzip, and twolf. We also included mpeg2encode from
mediabench. The binaries were compiled for the Alpha 21264
architecture using Compaq’s compilers and for the Digital
Unix V4.0F. We simulated two billion committed instructions
or to completion (whichever happened first) after skipping the
initialization. To account for variations in bit-value
distributions across compilations and instruction sets, we also
present results for binaries compiled for PISA, the MIPS-like
instruction set simulated by Simplescalar v3.0. We used gcc
version 2.7.2 and we also ported GNU’s g77 FORTRAN
compiler to produce PISA binaries for the FORTRAN
benchmarks we studied. In all experiments we consider only
cache lines that have been touched at least once by the
program.  

3.2  Bit-Value Distribution
Figure 1(a) illustrates the bit-value distribution in L1 caches
including a breakdown in terms of the address space these bits
belong to. On average, almost 75% and 64% of bit values are
zero in the data and instruction caches respectively. Not
surprisingly, the instruction cache does not exhibit much
variation in the distribution of zeros across applications.
Furthermore, while zero is the common bit value, there is not a
strong bias. Unlike instruction caches, data caches exhibit a
large variation in the skew towards zero. The breakdown of
bits across the data, heap, and stack segments indicate that
except for three applications, gzip, applu, and swim, the

Table 1. Processor configuration. 
 Branch Predictor Fetch Unit

16k GShare+16K bi-modal 
with 16K selector

Up to 8 instr. per cycle. 
64-entry Fetch Buffer

10 cycles misprediction penalty.
Scheduler Issue/Decode/Commit 

128 insts and 64 loads/stores
Perfect Disambiguation

Any 8 instructions / cycle
4 loads/stores per cycle

L1/UL2 Access Latencies Main Memory
3/16 cycles Infinite, 100 cycles



majority of zero-bit distributions are from the heap. Gzip
maintains its main data structures statically in the data
segment. Applu and swim are FORTRAN77 applications and
therefore do not use the heap. The rest of the applications
dynamically allocate their data structures. 

The data cache results can be divided into three groups: (1) the
applications with predominantly dynamic data structures and a
significant skew towards a high fraction of zero bits, (2) the
compression applications, and (3) the dense numerical
(floating-point) applications. Vpr, gcc, mesa, art, mcf, equake,
parser, gap, vortex, and twolf all heavily use dynamic memory
allocation. Many of the heap objects are heavily biased
towards zero and are actively used. Heap objects often contain
small positive integer values and pointers. Also compilers
often align aggregates of structures to prevent misaligned
accesses, padding aggregates with fields that remain zero. The
second group of applications, bzip, gzip and mpeg2encode,
compress the input streams and as such reduce the longevity of
large sequences of zero bits in the data cache during execution.
The third group of applications, amp, applu, and swim are
dense numerical computations, in which bit values are more
uniformly distributed across zeros and ones. In the extreme
case, swim bit values are almost equally distributed across
zeros and ones. While we do not show these results we note
that using 64K L1 caches resulted in very similar distribution
of zero bits.
The next experiment was set up to identify how sensitive the
cache bit-value behavior of programs is to the specific
instruction set architecture. Figure 1 (c) shows the bit-value
distributions for L1D caches for PISA binaries. We do not
compare the bit-value distributions in the instruction cache

because PISA uses a 64-bit instruction format that is highly
skewed towards zero. The results indicate a slight increase in
the skew towards zero when using the Alpha binaries. Unlike
PISA, Alpha uses 64-bit integer and floating-point values.

3.3  Dynamic vs. Cache Resident Bit-Value 
Behavior

Prior work carefully evaluates the dynamic occurrence of zeros
in the memory access stream [11,14] and the datapath [4,5].
Our key observation is that unlike prior work, ACCs target: (1)
the behavior of cache resident (rather than accessed) values,
and (2) a high fraction of zero bits even if an application’s
cache-resident data exhibit a small fraction of zero bytes. In
this section, we make the case that a high dynamic occurrence
of zeros is neither necessary nor sufficient for ensuring a large
fraction of zero bits in the cache. 
Figures 2(a) and 2(b) show a breakdown of the cache data byte
values in terms of the number of their bits that are “one” (range
0 to 8). Part (a) shows this breakdown for all cache resident
data values while part (b) does the same for the dynamic data
reference stream. To understand the cache resident metric
consider that in the trivial example of a cache with one line
with the value all ones for one cycle and all zeroes for nine
cycles, the cache-resident percentage of zero-bits is 90%. The
dynamic frequency of zero bytes is not correlated to the
fraction of zero bytes in the data cache. In some programs the
fraction of zero bytes seen by the processor is much larger than
that of the data stored in the cache. In other programs, the
reverse is true. For example in twolf, 41% of the bytes accessed
is zero, while 61% of the bytes in the cache are zero. The
relatively frequency of static vs. dynamic zero bytes is
reversed for gzip where 40% of the bytes accessed vs. only
20% of the cache bytes are zeros. 
There are applications such as swim, bzip and mpeg2encode
that have very few zero bytes in the data cache and that access
very few zero bytes also. Still, even in these applications a
large fraction of cache bits are zero suggesting that there is
great potential for ACCs. For example, in swim more than half
of the cache bits are zero while only 4% of the bytes are zero.
Figure 2 parts (c) and (d) illustrate the same byte-level
distribution for instruction caches. The graphs indicate that
zero distributions across bytes are more uniform in instruction
caches than data caches limiting the opportunity for zero-byte
compression.
Figure 3 shows a breakdown of the zero bits in the various
memory segments for the data cache. Two bars are shown per
program. The left bar is for the cache resident values while the
right is for the dynamic memory reference stream. At first it
may seem that the dynamic fraction of zeros follows closely
the fraction of zero bits in the cache. However, these
measurements show that the relative importance of various
data values is different across the two streams. This can be
clearly seen for stack data. In virtually all programs, stack data
have a negligible impact on the fraction of zero bits in the data
cache. In the dynamic stream, however, stack values are
responsible for many of the zero bits.

3.4  Bit Values in Live Data
Recent architectural/circuit cache leakage reduction techniques
[10,15] have used supply-gating [12] or supply-voltage-scaling
[6] to reduce leakage in the inactive or “dead” cache lines.
Asymmetric cells can be used in conjunction with these
techniques to reduce leakage in both the “live” and “dead”
cache lines. Figure 4 illustrates the fraction of zero bits in L1D
and L1I in the live cache lines — i.e., lines that will be
accessed again prior to being evicted. The graphs indicate that,

Figure 1: (a) Fraction of cache bits that are zeroes for L1D and 
L1I for the ALPHA binaries for 32-Kbyte caches. (b) Same for 

PISA binaries and for 32-Kbyte L1D caches. These PISA 
experiments do not include the benchmark gap, because the PISA 
capable gcc compiler cannot produce code for this benchmark.
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as expected, there is little change in the distribution of zeros in
the instruction stream. 

4  Asymmetric SRAM
The key enabling mechanism for value-based leakage
optimization is a set of asymmetric SRAM cells. Here we
review their principle of operation. The interested reader can
find a detailed, circuit-level analysis of the complete
asymmetric SRAM family in [1,2]. Let us first review where
leakage is dissipated in the conventional high-performance six
regular-Vt transistor cell shown in Figure 5(a). The cell
comprises two inverters (MP2, MN2) and (MP1,MN1) and two
pass transistors MN3 and MN4. In the inactive state, the
wordline (WL) is held at “0” so that the two pass transistors
are off isolating the cell from the two bitlines BL and BLb. At
this stage the bitlines are also typically charged at Vdd (e.g.,
logical one). The cells spend most of their time in the inactive
state. In this state, most of the leakage is dissipated by the
transistors that are off and that have a voltage differential
across their drain and source. Which are those transistors
depends on the value stored in the cell. When the cell is storing
a zero (left side) the leaking transistors are MP2, MN1 and
MN3 (figure 5(a)). Figure 5(b) shows an asymmetric cell
where the MP2, MN1 and MN3 have been replaced with high-
Vt transistors. The leakage of this cell is comparable to the

high-Vt cell in the preferred state and comparable to the
regular-Vt cell otherwise.

The basic asymmetric cell of figure 5(b) serves to illustrate the
idea behind asymmetric cells but suffers in terms of stability
and access latency. A family of asymmetric cells with various
performance, leakage and stability characteristics is presented
in [2]. The characteristics of the better cells are summarized in
table 2 normalized over the Regular-Vt cell (first row). We
consider four cells: (i) Leakage-Enhanced (LE), (ii) Speed-
Enhanced (SE), (iii) Stability-Leakage Enhanced (SLE), and
(vi) Stability-Speed Enhanced (SSE). Compared to the basic

Figure 2: Per-byte bit distribution. The figures show the breakdown of bytes with respect to the number of their bits that are one (range is 0 
to 8). (a) Data cache resident bytes. (b) Data cache bytes as read by the processor. (c) Instruction cache resident bytes. (d) Instruction cache 

bytes as accessed by the processor.
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Figure 5: (a) A conventional regular-Vt SRAM cell. (b) An 

asymmetric, dual-Vt cell. 
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asymmetric cell, these cells offer different performance vs.
leakage reduction ratios. We report leakage reduction in both
states (20% means a reduction of 5X), increase in latency and
two metrics of stability: signal to noise margin (SNM) and the
current necessary to trip the cell’s value. In the last two
characteristics, a positive percentage suggests an increase in
stability while a negative percentage a decrease. There is no
clear best asymmetric cell if we consider all characteristics.
For example, stability-wise SSE is best, however, leakage-wise
LE is far better. None of these cells introduces an area
overhead. We should note that SE and LE exhibit a relative
asymmetry in their stability characteristics. While they
improve one stability metric over the conventional cell, they
exhibit reduced stability in the other metric. Overall, the
stability differences are minor and all cells are usable under
worst-case assumptions and for the commercial 0.13μm
process that we used. 

4.1  Leakage Power Reduction
Figure 6 shows the leakage power dissipation for the four
ACCs. Due to space limitations we report results only for the
data cache. We report leakage power as a fraction of the
leakage power dissipation of the regular-Vt cell cache. This
metric includes only the power dissipated by the data array
cells. This is appropriate given that Simplescalar does not
model a multiprogrammed environment and as a result tag bits
are strongly skewed towards zero. We also measured leakage
in the decoder and found that it represents a very small fraction
of overall cache leakage power. Furthermore, the leakage
dissipated by the decoder array is the same for the
conventional cache and the ACCs. As expected, on the
average, the LE cell offers the highest average savings (11% or
about 10X) but these come at the expense of a 5% increase in
cache latency. SE and SLE perform similarly (22.9% and
21.2% respectively). Finally, the SSE that has the best stability
characteristics offers only a 2X reduction in leakage. 

5  Conclusion

Contrary to existing architectural techniques for reducing
cache leakage power that focus on the time and space
characteristics of the memory reference stream we targeted its
value content. The key enabling technology for our work is a
set of asymmetric SRAM cells that dissipate drastically
reduced leakage when they store a “zero”. This work
complements the recent work on the circuit-level design of
ACCs [1,2] by demonstrating that the memory value behavior
of programs is such that asymmetric cell caches can effectively
reduce leakage power without impacting performance.
Moreover, we demonstrated ACC’s utility for a broad
spectrum of applications and even if it would be possible to
accurately identify those cache parts that are left unused. One

of the major insights of this work is that the behavior exploited
by ACCs is not the same as the one exploited by recent zero
value related work for reducing dynamic power in various
parts of processors. 
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Table 2. Characteristics of Asymmetric Cells.
Leakage (0) Leakage (1) Δ Delay Δ SNM Δ Itrip/Iread

Regular-Vt 100% 100% 0% 0% 0%

LE 1% 14% 5% 7% -5%

SE 14% 50% 0% -6% 15%

SLE 14% 43% 5% 23% -7%

SSE 50% 53% 0% 9% 13%

Figure 6: Data cache leakage power with the asymmetric cells 
relative to the regular-Vt conventional cache. Lower is better. 
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