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Abstract— Power gating is widely used in large chip design as a
way to manage the total power dissipation and avoid overheating.
It works by turning OFF the power supply to circuit blocks that
are not required to operate in certain operational modes. Many
authors have studied the scheduling of chip workload to manage
total power and temperature. But power gating also has an
impact on the supply voltage levels across the die, because voltage
drop is generated in the grid depending on the combination of
blocks that are ON. We consider the question of how to manage
the chip workload so that supply voltage variations remain within
specs. The worst case voltage drop is the result of two things: the
power budgets that were allocated to the various circuit blocks
during the design process and the combination of blocks that are
turned ON in a given operational mode. In this paper, we propose
a framework to manage this tradeoff between how many blocks
are ON simultaneously and how big the power budgets of the
individual blocks are, assuming resistive and capacitive (RC)
elements in the power grid model. Subject to user guidance,
we generate block-level circuit current constraints as well as an
implicit binary decision diagram (BDD) that helps identify the
safe working modes. If the blocks are designed to respect these
constraints, then the BDD can be used during normal operation
to check whether a candidate working mode is safe or not.

Index Terms— Binary decision diagram (BDD), current
constraints, dark silicon, design objectives, integrated circuits,
optimization, power budgets, power distribution network, power
scheduling, power-gated design, verification.

I. INTRODUCTION

POWER gating [1]–[3] refers to design techniques that
partition the logic circuitry of a chip into functional

blocks that may be selectively powered ON or OFF. Modern
high-performance chips include very large power delivery net-
works (PDNs). While the PDN is mostly a passive RLC struc-
ture, PDNs often also include active devices (e.g., MOSFETs)
that implement power gating to allow the supply currents
(including leakage) of major circuit blocks to be turned OFF

by disconnecting them from the rest of the PDN. Thus, such
a circuit block has its own local grid (as we call it) that may
be cutoff from the rest of the PDN (which we call the global
grid). We refer to a PDN with active devices as an active
PDN; otherwise, it is a passive PDN.

Depending on what blocks that are ON/OFF, the total
power dissipation and temperature may exceed specifica-
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tions, so that there is a need to schedule the chip workload
(which blocks are ON/OFF) in order to remain within the
allowed power/temperature specs. Several authors have looked
at this question, including [4]–[6]. But the chip workload
also impacts the voltage drop on the grid. Depending on the
combination of blocks that are in operation, large amounts of
current may flow through the PDN causing excessive voltage
variations that put both circuit performance and reliability at
risk. Proper design and operation of an active PDN is crucial
to ensure supply integrity to the circuit blocks, and so avoid
timing and signal integrity problems.

Typically, every block may have multiple power states,
which may be as simple as high performance, low power,
standby, or OFF. We assume that each block can either be
turned ON or OFF—this can be easily extended to multipower
states and is not a limitation to this paper. If every circuit block
is in a certain power state, we say that the chip overall is in a
certain working mode. If some circuit blocks are transitioning
from one power state to another, we say that the chip is in a
transition mode. A power-gated PDN should be verified under
both working and transition modes. In this paper, we focus on
analyzing the PDN under different working modes, but we are
working to extend this to transition modes.

Several computer-aided design algorithms have been devel-
oped over the past decade to efficiently analyze and verify a
passive PDN. Typically, verification methods require simulat-
ing the PDN to determine the voltage drop at every node, given
detailed information on the current sources tied to the grid,
which represent currents drawn by the underlying circuitry.
These simulation-based techniques include [7]–[10]. An alter-
native power grid verification scheme, such as in [11]–[15],
relies on information that may be available at an early stage of
the design in the form of current budgets or current constraints.
These methods are referred to as vectorless verification and
consist of finding the worst case voltage fluctuations at all
nodes of the grid under all possible transient current wave-
forms that satisfy user-specified current constraints. The grid
is said to be safe if these fluctuations are below user-specified
thresholds at all grid nodes.

With active PDNs, this verification becomes very difficult
because of the many working modes that the chip can have.
For example, a chip with 20 blocks, with two power states
(i.e., ON and OFF) each, has over a million working modes.
A brute-force approach would require exhaustive transient
simulation under all possible working modes, each covering
a very large number of clock cycles to capture the dynamics
of the circuit. Zhu et al. [16] proposed an efficient transient
analysis approach of the PDN exploiting localized voltage
variations near the active blocks. Such an approach requires
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Fig. 1. Conceptual system-level representation of the proposed runtime
workload scheduler in a power-gated chip. This figure was inspired from [18].

full knowledge of the current waveforms drawn by every
logic block attached to the grid. Thus, it does not allow
for early grid verification, when grid modifications can be
most easily incorporated. Furthermore, the number of current
traces needed to cover the space of voltage drops exhibited on
the grid is intractable for modern designs. Zeng et al. [17]
proposed a technique to drastically reduce the number of full
simulations by modeling the local grids as switchable current
sources. Assuming that the current waveforms representing
the currents drawn by the underlying circuitry are available,
the method determines an approximate set of working modes
that generates the largest average current from the block’s
power taps. Then, the full grid is simulated under this set
of working modes for hundreds of clock cycles. A major
problem in this paper is that the worst case working modes
are determined based on the currents rather than the voltage
drop.

Typically, in a large die, one cannot have all the circuit
blocks turned ON simultaneously, so that there will always
be some circuit blocks that are turned OFF (so-called dark
silicon). During normal chip operation, there is a need to
manage the workload so that voltage variations remain within
specs. The chip will, therefore, include a design component
(a scheduler) to manage the workload of the active PDN,
leading to a safe schedule of workload. In Fig. 1, we show
a conceptual representation of the chip workload scheduler.
This chip component monitors the on-chip hardware resources
required to execute an incoming application issued by the
application repository to ensure that the voltage variations
remain within specs. Developing a scheduler requires, at the
very least, up-front analysis to identify elements or patterns of
workload that represent safe operation; this is a key problem
that is addressed in this paper.

In active PDNs, the worst case voltage drop is the result
of two things: the power budgets that were allocated to the
various circuit blocks during the design process and the com-
bination of blocks that are turned ON in a given working mode.
Intuitively, more blocks can be turned ON simultaneously if
the blocks are constrained to have low current levels, and vice
versa. In this paper, we propose a framework to manage this
tradeoff between how many blocks are ON simultaneously
and how big the power budgets of the individual blocks
are. We focus on RC power grids, but we are working to
extend this to the RLC case. Subject to user guidance, we
generate block-level circuit current constraints that identify the

Fig. 2. Schematic of an active PDN with power-gating transistors.

Fig. 3. Schematic of a power-gated PDN using resistive switches, referred
to as the original grid.

allowable transient current waveforms for the underlying logic
blocks as well as identify the safe working modes that the grid
can safely support. These working modes are captured in a
form of an implicit binary decision diagram (BDD). An on-
chip runtime schedule can then use the BDD as a query engine
to check whether a candidate working mode is safe or not.

A preliminary version of this paper has appeared in [19].
The proofs for all theoretical results in this paper, except
for Lemma 3, are not shown due to lack of space. The rest
of this paper is organized as follows. Section II provides
an overview of our approach. In Section III, we describe
the passive power grid model and give a brief review of
the constraints’ generation problem introduced in [20]. We
then present a detailed description of our proposed method
and the bulk of our theoretical contribution in Section IV.
In Section V, we give two algorithms that generate block-level
current constraints and the corresponding BDD. In Section VI,
we present some test results, based on our implementation
of these algorithms, and describe the various tradeoffs each
algorithm provides. Finally, we give concluding remarks in
Section VII.

II. OVERVIEW

In a power-gated design, functional blocks have their own
local grids that are connected to the global grid via wide
multifingered transistors, referred to as sleep transistors or
power-gating switches. A schematic of a power-gated PDN is
shown in Fig. 2. Typically, a power-gating transistor may be
modeled as an ideal switch in series with a resistor, as in Fig. 3.
We will refer to the PDN model in Fig. 3 as the original grid.
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Fig. 4. Schematic of the equivalent passive grid.

Fig. 5. Relative error of the maximum voltage drop using original grid versus
the equivalent passive grid based on the HSPICE simulations of a 400k nodes’
grid with 49 blocks.

Verifying the original grid for voltage drop is difficult
because of the large number of working modes that the grid
can have. A brute-force approach would be to verify the
passive PDN corresponding to every possible working mode.
Clearly, this method is prohibitively expensive as it requires
the verification of an exponential number of passive PDNs,
corresponding to the exponential number of possible working
modes. Instead, in this paper, we verify a slightly simplified
model of the grid, which we call the equivalent passive grid,
as shown in Fig. 4. The simplification consists of simply
moving the switches down to the bottom of the grid, as shown
in the figure. The key benefit of this simplification is that as
a result, as we will see in Section IV-B, the voltage integrity
verification of the equivalent passive grid requires only one
verification “run” for each local grid in isolation, combined
by means of a type of superposition in order to identify the
set of safe working modes for the full grid.

These benefits of using the equivalent passive grid come
with a very small accuracy cost. Fig. 5 shows the relative
error (below ±0.6 mV) in the maximum voltage drop on the
“nodes of interest” of the ON blocks, resulting from using
the equivalent passive grid instead of the original grid. Here,
and throughout this paper, the “nodes of interest” are the
bottom-most nodes of the local grids that are tied directly to
the underlying chip circuitry, i.e., to the current sources shown
in the figures. Clearly, these are the only nodes whose voltage
drop “matters” because they directly affect circuit operation.

In this paper, we will use the notion of a current container,
introduced in [20], to capture the block-level power budgets.

Fig. 6. Example of a current container F for i1(t) and i2(t).

Fig. 7. Block in isolation.

A container is usually expressed as a set of constraints on
the currents drawn by the underlying logic circuitry. Fig. 6
shows the idea of a container for a simple case of two current
waveforms. Because the trace of these current waveforms
belongs to the polygon F , for all time instants, we say that F
contains i(t) = [i1(t) i2(t)]T .

Taken in isolation, a block (local grid), as shown in Fig. 7,
can be analyzed separately using the inverse problem (con-
straints’ generation) approach for passive grids [20] to give
a container (or set of containers) that respects the maximum
allowable voltage drop, referred to as a voltage drop threshold,
at all the nodes of interest in the block; this approach will be
reviewed in Section III. Because we expect lower levels of the
grid to have less than ideal voltages, suppose that the supply
value applied at every block’s power taps is parameterized by
an artificial variable α. Specifically, for a block k with uniform
voltage drop threshold at all its nodes of interest, i.e., the
nodes of interest in that block have the same voltage drop
threshold γk , suppose the supply value is Vdd − (1 − αk)γk .
There is no need to actually relate this supply value to any
actual supply value that the full chip may experience at certain
layers. In fact, we will see that these variables α1, α2, . . . , and
αq (corresponding to block 1, …, block q) can be viewed
as parameters that become “knobs” of sorts by which we
can have the local containers that expand when the supply
voltage is increased or contract when it is decreased. The
safety of these containers is not assumed based on the choice
of α1, α2, . . . , and αq . Rather, safety will be enforced as
part of the subsequent analysis of the full grid, from which
we will capture the set of safe working modes of the grid,
represented by a set of safe assignments of a Boolean vector β
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Fig. 8. Passive RC grid model.

corresponding to any α1, α2, . . . , and αq . This safe space of β
will be captured with a BDD.

III. BACKGROUND FOR PASSIVE GRIDS

In this section, we describe a passive power grid model that
will be used throughout this paper and we review some key
theoretical results that were established for the constraints’
generation approach for passive power grids [20]. The results
of this section apply to any passive grid and will be invoked
to describe the power grid of each block in isolation as well
as the full grid. Thus, for ease of extension and to avoid
repetition, we will define a passive power grid “problem” P(·)
that includes the description of the grid model in Section III-A
and the results presented in Sections III-B and III-C.

A. Passive Power Grids

Consider an RC model of a passive power grid. Some
nodes of the top level layers of the grid may be connected
to ideal voltage sources representing the connection to the
external voltage supply Vdd. Assuming flip-chip technology,
we will refer to an ideal supply voltage source as a C4 with
the understanding that any parasitics that are part of a true
C4 pad structure have already been modeled and included in
the grid description. Note that, in this paper, we assume that
a C4 pad is modeled with resistive and capacitive components
only, because we focus on RC power grids. Some nodes of
the bottom-most layers have ideal current sources (to ground)
representing the currents drawn by the logic circuits tied to
the grid. There exists also a capacitor from every grid node to
ground. We assume that there are no node-to-node capacitors
in the grid.

Excluding the ground node, let the power grid consist
of n + s nodes, where nodes 1, 2, . . . , n are the nodes not
connected to a voltage source, while the remaining nodes
(n +1), (n +2), . . . , (n + s) are the nodes where the s voltage
sources are connected. Let i(t) be the nonnegative vector of
all the m current sources connected to the grid, whose positive
(reference) current direction is from node to ground. Let H
be an n ×m matrix of 0 and 1 entries that identifies (with a 1)
which node is connected to which current source, and let
is(t) = Hi(t). Fig. 8 is an example of an RC grid model.

Let v(t) be the n × 1 vector of time-varying voltage drops
(difference between Vdd and the true node voltages). We can

write the RC model for the power grid using nodal analysis,
as [11]

Gv(t) + C v̇(t) = is(t) (1)

where C is an n ×n diagonal nonnegative capacitance matrix,
which is nonsingular because every node is attached to a
capacitor; G is the n × n conductance matrix, which is
known to be symmetric and diagonally dominant with positive
diagonal entries and nonpositive off-diagonal entries. With
this, it can be shown that G is a so-called M-matrix, so that
G−1 exists and is nonnegative, G−1 ≥ 0, i.e., its every entry
is nonnegative.

Using a finite-difference approximation for the derivative,
such as a backward Euler scheme v̇(t) ≈ (v(t)−v(t−�t))/�t ,
the grid system model (1) leads to

v(t) = A−1 Bv(t −�t)+ A−1 Hi(t) (2)

where B = C/�t is an n × n diagonal matrix with bii > 0,
∀i , and A = G + B . It can also be shown that A, just like
G, is an M-matrix, so that A−1 ≥ 0. Let M = A−1 ≥ 0 and
define the n × m matrix M ′ = M H ≥ 0.

We assume that a certain number of grid nodes d ≤ n
(the “nodes of interest”) are required to satisfy certain
user-provided voltage drop threshold specifications, captured
in the d ×1 vector Vth ≥ 0. These would typically be nodes at
the lower metal layers, where the chip circuitry is connected.
Thus, we assume that these nodes are internal to the blocks.
Let P be a d × n matrix consisting of 0 and 1 elements only,
specifying (with a 1 entry) the nodes that are subject to a
voltage drop threshold specification. Note that P ≥ 0 and has
exactly one 1 entry in every row, otherwise 0s, and that no
column of P has more than a single 1 entry.

With this, let P(n,m, d,G,C, H, P) denote a passive
power grid problem as described above.

B. Safe Containers

For completeness of presentation, we review some termi-
nology introduced in [20] that is crucial to this paper. The
following definition introduces the notion of a container for
a vector of current waveforms, which will help us express
constraints that guarantee grid safety.

Definition 1 (Container): Let t ∈ R, let i(t) ∈ R
m be a

function of time, and let F ⊂ R
m be a closed subset of R

m . If
i(t) ∈ F , ∀t ∈ R, then we say that F contains i(·), represented
by the shorthand i(·) ⊂ F , and we refer to F as a container
of i(·).

Definition 2 (Safe Grid): A grid is said to be safe for a
given function i(t), defined ∀t ∈ R, if the corresponding
Pv(t) ≤ Vth, ∀t ∈ R.

To check if a power grid is safe, one would typically be
interested in the worst case voltage drop at some grid node k,
at some time point τ ∈ R, over a wide range of possible
current waveforms. Using the above notation, and given a
container F that contains a wide range of current waveforms
of interest, we can express this as maxi(·)⊂F (vk(τ )). Clearly,
because F is the same irrespective of time and applies at all
time points t ∈ R, then this worst case voltage drop must be
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time-invariant, independent of the chosen time point τ . There-
fore, one way to check grid safety is to compute the worst
case voltage drop attained by each component of v(t), denoted
as v∗(F) = emaxi(·)⊂F (v(τ )), where the “emax(·)” notation
denotes elementwise maximization, as in [20]. Najm [11] pro-
vides an exact expression for the worst case voltage drop
v∗(F) that requires an infinite sum of emax(·) operations.
Thus, requiring the exact v∗(F) is prohibitively expensive and
so we will instead use an upper bound on v∗(F) based on the
following.

Definition 3: For any F ⊂ R
m , define

v(F) 
= G−1 A emax
I∈F

(M ′ I ) (3)

with the convention that emaxI∈F (M ′ I ) = 0, if F = φ.
Note that, in (3), I ∈ R

m is a vector of artificial variables,
with units of current, that is used to carry out the emax(·)
operation.

In [11], it has been shown that v(F) is an upper bound on
v∗(F)

v∗(F) ≤ v(F) ∀F ⊂ R
m . (4)

Furthermore, Fawaz and Najm [21] show that, for a certain
range of the discretization time-step �t , the accuracy of this
upper bound relative to v∗(F) is quite good.

Definition 4 (Safe Container): A container F is said to be
safe if Pv(F) ≤ Vth.

Thus, a safe container F is useful because, due to (4),
it guarantees that Pv∗(F) ≤ Vth, so that the grid is safe for
that container. A safe container F can be expressed as a set of
constraints on the circuit currents that load the grid, thereby
providing a set of linear current constraints that are sufficient to
guarantee grid safety. In previous work [11], current containers
were specified and the corresponding worst case voltage drop
was found by a process of optimization. In later work [20],
these containers were generated for passive grids so that,
if the circuit is designed to respect these constraints, the grid
becomes safe by design. In this paper, we build on and extend
the work of [20] to the case of active grids. Some of the major
results in [20] are restated below, as they are necessary to
understand the flow of this paper.

C. Maximal Containers

Let u ∈ R
n and define the sets U , F(u), and S as follows:

U 
= {u ∈ R
n : u ≥ 0, Pu ≤ Vth} (5)

F(u) 
= {I ∈ R
m : I ≥ 0, M ′ I ≤ MGu} (6)

S 
= {F(u) : u ∈ U} (7)

where U is effectively a set of safe voltage drop assignments
u, F(u) is a special kind of container constructed based on
u ∈ U , and S is the set of all containers F(u) corresponding to
u ∈ U . It turns out that it is enough to consider only containers
of the form (6) due to the following necessary and sufficient
condition.

Lemma 1 [20]: A container J ⊂ R
m+ is safe if and only

if it is a member of S or a subset of a member of S.

The importance of this lemma is twofold: 1) F(u) is safe
for any u ∈ U and 2) all interesting safe containers J may be
found as either specific F(u) for some u ∈ U or as subsets of
such F(u). Moudallal and Najm [20] show that if Vth,k = 0,
for some k, then the only nonempty container in S is the trivial
one F(0) = {0}. Therefore, throughout this paper, we will
assume that Vth > 0.

Note that, if J ⊆ F(u), for some u ∈ U , with J �= F(u),
then clearly F(u) is a better choice than J . Choosing J
would be unnecessarily limiting, while F(u) would allow
more flexibility in the circuit loading currents. Therefore, it is
enough to consider only containers of the form F(u) with
u ∈ U . Going further, if F(u1) ⊆ F(u2) with F(u1) �= F(u2),
then clearly F(u2) is a better choice than F(u1). Thus, in a
sense, the “larger” the container, the better, because it allows
flexibility to the underlying logic blocks. Therefore, we are
interested in safe containers that are not fully contained in
any other safe container. These containers are referred to as
maximal containers.

IV. PROPOSED APPROACH—THEORY

Given the equivalent passive model in Fig. 4, our approach
consists of two stages: 1) we perform isolated block analysis
to generate block-level current containers by adapting the
standard inverse problem (constraints generation) approach
introduced in [20]—this will be discussed in Section IV-A; and
2) these block-level containers will then be used to identify
the behavioral patterns of the whole chip that are safe based
on the voltage analysis of the full grid, which we capture as
an implicit BDD—this will be discussed in Section IV-B.
Our approach uses an internal parameter αk for every block k.
These parameters become “knobs” of sorts by which we can
have these block-level containers expand or contract, and in
turn, the BDD will either allow for less or more blocks to
operate simultaneously.

This section includes the bulk of our theoretical contribu-
tion, culminating in the result of Theorem 1 that leads to
the computational efficiency of our approach. This theorem
follows from the results of Lemma 5, which establishes a
scalability property for the upper bound on the worst case
voltage drop in terms of the internal parameters α1, α2, . . . ,
and αq , and Lemma 6, which establishes the principle of super-
position for the equivalent passive grid. In addition, we show
that the block-level current containers (in Lemma 3) also have
a scalability property in terms of these internal parameters.
These results allow us to easily manage the tradeoff between
the power budgets of the blocks and the number of blocks that
are ON simultaneously. Throughout the rest of this section,
we will refer to the example in Fig. 9 to help the reader better
understand our approach.

A. Isolated Block Analysis

In this section, we prove some key results that are applicable
to any passive grid, and thus will be used for every block in
isolation. Every block k has a uniform voltage drop threshold
γk and an internal parameter αk . Throughout the remainder
of this section, we will omit the subscript k for notational
simplicity as we are considering a block in isolation.
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Fig. 9. Simple example of a power grid with two blocks.

Fig. 10. Simple example of a power grid with a supply value
of Vdd − (1 − α)γ .

1) Safety Condition: Grid safety relates to the voltage drop
at every node, i.e., the difference between the ideal supply
voltage value Vdd and the true node voltage, denoted v̂i (t) at
every node i . Note that the voltage drop Vdd − v̂i (t) is relative
to the ideal Vdd, and that when we say that node i has a user-
specified voltage drop threshold γ , we implicitly mean that
γ is the threshold relative to Vdd, so that the node is safe
if Vdd − v̂i (t) ≤ γ . For a block in isolation, and because we
expect lower levels of the grid to have less than ideal voltages,
suppose that its power taps are connected to a parameterized
ideal voltage supply of Vdd − (1 − α)γ , with 0 ≤ α ≤ 1,
as shown in the example in Fig. 10. When α = 1, this supply
value is Vdd and it decreases all the way to Vdd −γ for α = 0.
For any node i in that block, [Vdd − (1 − α)γ ] − v̂i (t) is the
voltage drop relative to Vdd − (1 − α)γ , and it is easy to see
that the node safety condition Vdd − v̂i (t) ≤ γ is equivalent to
[Vdd−(1−α)γ ]−v̂i(t) ≤ αγ . Thus, the voltage drop threshold
relative to the supply value Vdd − (1 −α)γ is simply αγ . It is
in this sense that the α parameter is simply a “knob” that,
when reduced, exerts a more stringent safety conditions on
grid nodes, which would naturally result in a smaller container
for the local blocks, allowing more blocks to be turned ON

simultaneously and vice versa. This α becomes an internal
parameter that represents the tradeoff between the sizes of
local grid containers and the number of full grid working
modes that will be deemed to be safe.

We can then easily extend and rederive the theory of the
passive grids from Section III so that it is parameterized
by 0 ≤ α ≤ 1. Consider the generic passive power grid
problem, denoted earlier as P(n,m, d,G,C, H, P), which we
will apply to an isolated block. We assume that the voltage
drop threshold specification is uniform within every block,
i.e., all the “nodes of interest” in that block have the same
voltage drop threshold γ > 0, relative to Vdd. We capture
this by the d × 1 vector γ1d , where 1d is a d × 1 vector
whose every entry is 1. Assuming that the power taps of the
isolated passive grid are connected to an ideal voltage source

Fig. 11. (a) Current container F1(α1) for the left block in Fig. 9 for different
values of α1. (b) Current container F2(α2) for the right block in Fig. 9 for
different values of α2. (c) Set of safe working modes W(α) for different values
of α = [α1 α2]T under the containers generated for each block in isolation,
i.e., F1(α1) and F2(α2). The dashed polygons correspond to α1 = 0.4 and
for different values of α2 and the solid polygons correspond to α2 = 0.4 and
for different values of α1. (d) Set W(α) for different values of α.

of Vdd − (1 − α)γ , let v(t) be the vector of voltage drops
relative to [Vdd − (1 − α)γ ] at all nodes in the block, then as
we saw above, a safe voltage drop assignment for the block
in isolation must satisfy

Pv(t) ≤ αγ1d . (8)

For any α ∈ [0, 1], define the sets U(α), L(u), and S(α) as
follows, motivated by (8):

U(α) 
= {u ∈ R
n : 0 ≤ Pu ≤ αγ1d } (9)

L(u) 
= {I ∈ R
m : I ≥ 0, M ′ I ≤ MGu} (10)

S(α) 
= {L(u) : u ∈ U(α)}. (11)

Lemma 2 shows that, for any α > 0, S(α) always has a
current container that allows a nonzero current. This will be
useful later on.

Lemma 2: For any α ∈ (0, 1], S(α) always has a nonempty
member L(u) with L(u) �= {0}.

2) Scalability of Current Containers: Moudallal and
Najm [20] proposed several algorithms for passive grids that
generate a container L(u) ⊆ R

m+ that is both safe and maximal.
These algorithms target specific design objectives, such as the
total peak power that a grid can safely support, the uniformity
of current distribution across the die area, or a combination
of both objectives. The peak power algorithm in [20], once
extended and parameterized by α as above, then applied to the
grid in Fig. 10, for different values of α, generates the current
containers shown in Fig. 11(a). Generating current containers
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for different values of α requires solving an optimization prob-
lem for every required value of α, which is computationally
expensive. In this section, we show that, under a certain mild
condition on the design objective, the resulting containers can
be found by “scaling” the container corresponding to α = 1,
as we will see in Lemma 3, which is clearly much faster than
generating the containers for every required value of α.

Typically, these algorithms, such as in [20], can be
expressed in the following general form:

max
u∈U(α)

(
max

I∈L(u)
f (I, u)

)
(12)

where f (I, u) : R
m × R

n → R is some real-valued objective
function. For example, the peak power algorithm in [20] can
be expressed in the form of (12) where f (I, u) = ∑

∀ j I j .
Notice that, for any u ∈ R

n , the inner maximization finds the
maximum value of f (I, u) over all possible current assign-
ments I ∈ L(u). Thus, the result of the inner maximization is
a function of u, denoted as

g(u) = max
I∈L(u)

f (I, u) (13)

and referred to as the design objective. The largest g(u)
achievable over all possible safe voltage drop assignments
u ∈ U(α) is found using the outer maximization, the result
of which is a function of α, denoted as g∗(α), i.e.,

g∗(α) = max
u∈U(α)

g(u) = max
I∈L(u)
u∈U(α)

f (I, u). (14)

For any α ∈ [0, 1], let u∗(α) be a vector function that eval-
uates to a value of u for which the outer maximization attains
its maximum, i.e., g(u∗(α)) = g∗(α), ∀α ∈ [0, 1]. In general,
u∗(α) may not be unique. The vector u∗(α) produced in (14)
can be used to construct the current container L(u∗(α)), where
L(·) is defined in (10). Note that the optimization problem (14)
is always feasible, because 0 ∈ U(α) and 0 ∈ L(0), so that
u∗(α) is well defined and the resulting container L(u∗(α)) is
nonempty.

Lemma 3 is a key theoretical result that gives a suffi-
cient condition under which L(u∗(α)) for any supply value
Vdd − (1 − α)γ can be found by simply scaling u∗(1) to
get u∗(α), which will then be used to construct L(u∗(α)) as
in (10). This will be useful for the full grid analysis.

Lemma 3: If g(cu) = cg(u), for any real number c > 0
and u ∈ R

n , then u∗(α) = αu∗(1), ∀α ∈ [0, 1].
Proof: Recall that for any α ∈ [0, 1], g∗(α) can be found

using the following optimization problem:
g∗(α) = Max g(u)

s.t. Pu ≤ αγ1d

u ≥ 0 (15)

where u ∈ R
n is a vector of artificial variables with the units

of volts that is used to carry out the above maximization.
Notice that if α = 0, then the constraints of the optimization

problem (15) become Pu ≤ 0 and u ≥ 0; because P ≥ 0 and
has exactly one 1 in each row, it follows that u = 0 is the
only vector satisfying those constraints. Also, recall that for
any α ∈ [0, 1], u∗(α) is defined to be a vector function that

evaluates to a value of u for which (15) attains its maximum.
It follows that u∗(α) = 0 = αu∗(1), and the last step is due
to α = 0.

Consider the case where α > 0. Using the following change
of variable:

u = αu′ (16)

we can rewrite (15) as

g∗(α) = Max g(αu′)
s.t. Pαu′ ≤ αγ1d

αu′ ≥ 0. (17)

Notice that α > 0, so that g(αu′) = αg(u′), because
g(cu′) = cg(u′), for any c > 0. Furthermore, αu′ ≥ 0 is
equivalent to u′ ≥ 0, and Pαu′ ≤ αγ1d is equivalent to
Pu′ ≤ γ1d . With this, we can rewrite (17) as follows:

g∗(α) = Max αg(u)

s.t. Pu ≤ γ1d

u ≥ 0. (18)

It follows that g∗(α) = αg∗(1).
Let u = αu∗(1) ≥ 0, because α > 0 and u∗(1) ≥ 0. Notice

that

Pu = αPu∗(1) ≤ αγ1d (19)

the second step due to Pu∗(1) ≤ γ1d and α > 0, so that
u ∈ U(α), and

g∗(α) = αg∗(1) = αg(u∗(1)) = g(αu∗(1)) (20)

where in the last step we used the fact that cg(u) = g(cu),
for any c > 0 and u ∈ R

n . Thus, g∗(α) = g(u). Therefore,
we can let u∗(α) = u = αu∗(1) and the proof is complete.

Thus, for any α ∈ [0, 1], we have

L(u∗(α)) = {I ≥ 0 : M ′ I ≤ αMGu∗(1)}. (21)

It can be shown that the design objectives used in [20]
satisfy the condition of the above lemma, so that the condition
of the lemma is indeed mild and practical, leading to the
above very useful scalability property. Referring to the grid
in Fig. 10, the peak power algorithm in [20] for α = 1 gives
u∗(1) = [100 100]T mV. Thus, for α = 0.6, we immediately
have u∗(α) = αu∗(1) = [60 60]T mV. This gives us a scaled
container L(u∗(α)), so that for any α ∈ [0, 1], we have

L(u∗(α)) =
{[

I1
I2

]
≥ 0 :

[
1.01 0.65
0.65 1.01

][
I1
I2

]
≤ α

[
0.084
0.084

]}
.

B. Full Grid Analysis

In this section, we apply the results of Section IV-A to
every block of the grid. Every block k has its own current
container that has the above scalability property in terms of
its parameter αk . The importance of this section is twofold:
1) we show that the worst case voltage drop contribution at
the nodes of interest in the full grid due to the activity of each
individual block k also has a scalability property in terms of
αk , as presented in Lemma 5; and 2) we show that the upper
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bound on the worst case voltage drop on the nodes of interest
in the full grid due to the activity of a set of blocks is equal to
the sum of the individual contributions of each block in that
set, as presented in Lemma 6. Thus, an upper bound on the
worst case voltage drop contribution on the nodes of interest in
the full grid due to the activity of a set of blocks for some value
of their internal parameters can be simply found by adding the
scaled contribution of every block k in that set for αk = 1,
culminating in the result of Theorem 1. For example, consider
the example of Fig. 9 and suppose that an upper bound on the
worst case voltage drop at node 1 due to the activity of block 1
for α1 = 1 is 189 mV. Also, an upper bound on the worst case
voltage drop at node 1 due to the activity of block 2 for α2 = 1
is 71 mV. Then, an upper bound on the worst case voltage drop
at node 1 due to the activity of both blocks, for α1 = 0.5 and
α2 = 0.25, is simply 189 × 0.5 + 71 × 0.25 = 112.25 mV.

1) Definitions: In isolation, each block is a separate pas-
sive power grid, and P(nk,mk, dk,Gk ,Ck, Hk, Pk) denotes
its passive grid problem. Furthermore, let Bk = Ck/�tk
be the nk × nk capacitance matrix resulting from the back-
ward Euler numerical integration scheme on block k, so that
Ak = Gk + Bk . Also, let Mk = A−1

k ≥ 0 and M ′
k = Mk Hk .

We assume that the voltage drop threshold specification is
uniform within a block, so that all nodes of interest within the
same block have the same threshold specification, i.e., Vth,k =
γk1dk , where γk > 0 and 1dk is a dk × 1 vector of ones. This
assumption does not limit this paper but allows for several
scalability properties, as we will see below, that lead to the
computational efficiency of our approach.

For every block k in isolation, let uk be a voltage drop
assignment [relative to (Vdd − (1 − αk)γk)] at all nodes in
block k. For every isolated block k and for any αk ∈ [0, 1],
define the sets Uk(αk), Lk(uk), and Sk(αk), based on the
analysis in Section IV-A, as follows:

Uk(αk)

= {uk ∈ R

nk : 0 ≤ Pkuk ≤ αk Vth,k} (22)
Lk(uk)


= {Ik ∈ R
mk : Ik ≥ 0, M ′

k Ik ≤ Mk Gkuk} (23)
Sk(αk)


= {Lk(uk) : uk ∈ Uk(αk)}. (24)

For every αk ∈ [0, 1] and for any uk ∈ Uk(αk), let gk(uk)
be a design objective for block k satisfying the conditions of
Lemma 3, and let g∗

k (αk) be defined as follows:

g∗
k (αk) = max

uk∈Uk(αk)
gk(uk). (25)

Let u∗
k(αk) be a vector function that evaluates to a value of

uk for which the above maximization attains its maximum:
gk(u∗

k(αk)) = g∗
k (αk), ∀αk ∈ [0, 1]. Then, using Lemma 3,

u∗
k(αk) can be expressed as

u∗
k(αk) = αku∗

k(1), ∀αk ∈ [0, 1]. (26)

It is important to note that u∗
k(αk) depends on the choice of

gk(uk) so that Lk(u∗
k(αk)) depends on gk(uk) as well. For ease

of notation, let Fk(αk)

= Lk(u∗

k(αk)), again keeping in mind
that Fk(αk) depends on the choice of the design objective
gk(uk).

During chip design, we can set the internal parameters
αk , k ∈ {1, . . . , q}, to ensure the chip currents respect the
desired power budgets for the individual blocks. Thus, in the

discussion below, we assume the chip is designed to respect
these local containers, so that an ON block draws a current
that is consistent with Fk(αk), i.e., Ik ∈ Fk(αk), and an OFF

block does not draw any current, i.e., Ik = 0.
We will use the notation B and B

q to denote the Boolean
spaces B = {0, 1} and B

q = {0, 1}q . Let βk ∈ B denote the
mode of operation of block k, i.e., βk = 1 if block k is ON,
otherwise βk = 0. Also, let β = [β1 · · · βq ] ∈ B

q denote a
working mode for the chip, and α = [α1, · · · , αq ] ∈ R

q denote
a vector, where the kth entry represents the internal parameter
for block k. Note that αk ∈ [0, 1], ∀k ∈ {1, . . . , q}, so that
0 ≤ α ≤ 1q , which will be denoted using the shorthand α ∈
[0,1q ]. Furthermore, we will use the shorthand α ∈ (0,1q ]
to denote that 0 < α ≤ 1q , i.e., αk > 0, ∀k ∈ {1, . . . , q}.

Define F(α, β) ⊂ R
m as follows:

F(α, β) =

⎧⎪⎨
⎪⎩

⎡
⎢⎣

I1
...
Iq

⎤
⎥⎦ ∈ R

m : Ik ∈
{Fk(αk), if βk = 1

{0}, if βk = 0

⎫⎪⎬
⎪⎭ . (27)

Notice that F(α, β) denotes a current container for all the
current sources attached to the grid under the working mode β
and for the parameter α.

With this, we can define υ(α, β) to be an upper bound on the
worst case voltage drop experienced by the nodes of interest
in the equivalent passive grid under the given α and β, based
on the passive grid analysis in (3), as follows:

υ(α, β) = Pv(F(α, β)) = PG−1 A emaxI∈F(α,β)(M ′ I ).
(28)

Notice that the current vector I that is used to carry out the
maximization in (28) has the vector form defined in (27),
i.e., its components I1, I2, . . . , Iq correspond to the current
sources attached to block 1, block 2, …, and block q . The
columns of M ′ in (28) correspond to the different components
of I , so that we can partition M ′ as follows:

M ′ = [Z1 Z2 · · · Zq ] (29)

where Zk is an n ×mk matrix that is multiplied by Ik in (28).
For any α ∈ [0,1q ], let

υk(αk)

= PG−1 A emaxIk∈Fk (αk)(Zk Ik) (30)

and

V (α) = [υ1(α1) · · · υq(αq)]. (31)

Notice that for any α ∈ [0,1q ], we have Ik ≥ 0, ∀Ik ∈ Fk(αk),
and Zk ≥ 0, because M ′ ≥ 0. Furthermore, we have G−1 A =
In + G−1(A − G) = In + G−1 B ≥ 0, where In is the n × n
identity matrix, and P ≥ 0, so that υk(αk) ≥ 0. Therefore,
V (α) ≥ 0, ∀α ∈ [0,1q ]. Furthermore, Lemma 4 shows that if
α > 0, then V (α) > 0. This will be useful in Section V.

Lemma 4: For any α ∈ (0,1q ], we have V (α) > 0.
2) Scalability: It is expensive to compute V (α) for different

values of α, as this would require solving q emax(·) operations
as in (30), i.e., q × n linear programs (LPs). Lemma 5 shows
that, under a certain mild condition on gk(·), V (α) has a
scalability property in terms of α.
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For any q × 1 vector x , let D(x) denote the q × q diagonal
matrix with the vector x on the main diagonal, i.e.,

D(x)

=

⎡
⎢⎢⎢⎣

x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xq

⎤
⎥⎥⎥⎦ . (32)

Lemma 5: If gk(cu) = cgk(u) for any real number c > 0,
u ∈ R

nk , and k ∈ {1, . . . , q}, then V (α) = V (1q)D(α), ∀α ∈
[0,1q ].

Based on Lemma 5, for any α ∈ [0,1q ], we have

V (α) = V (1q)D(α) (33)

which is clearly much faster to compute than solving q
instances of (30) for every required value of α.

For the example in Fig. 9, we have

V (α) =

⎡
⎢⎢⎣

189 71
194 78
106 218
106 221

⎤
⎥⎥⎦

[
α1 0
0 α2

]
=

⎡
⎢⎢⎣

189α1 71α2
194α1 78α2
106α1 218α2
106α1 221α2

⎤
⎥⎥⎦

where the units are in mV.
3) Superposition: It is practically impossible to solve (28)

for every required β, as this could lead to combinatorial
explosion in the required values of β. Lemma 6 establishes
the principle of superposition for the equivalent passive grid.

Lemma 6: For any α ∈ [0,1q ] and β ∈ B
q , we have

υ(α, β) =
q∑

k=1

βkυk(αk) = V (α)β. (34)

The importance of Lemma 6 is that, for a given value
of α ∈ [0,1q ], υ(α, β) can be found for different working
modes β by a simple matrix-vector multiplication between
V (α) and β, which is significantly faster than solving (28) for
every required β.

This leads to our main theoretical result and the main reason
behind the computational efficiency of this paper, as stated in
Theorem 1.

Theorem 1: If gk(cu) = cgk(u) for any real number c > 0,
u ∈ R

nk , and k ∈ {1, . . . , q}, then for any α ∈ [0,1q ] and
β ∈ B

q , we have

υ(α, β) = V (1q)D(α)β. (35)

The importance of the above result is that it allows us to find
an upper bound on the worst case voltage drop experienced
by the nodes of interest in the full grid υ(α, β) for any
α ∈ [0,1q ] and β ∈ B

q by solving υk(1), defined in (30),
∀k ∈ {1, . . . , q}, constructing V (1q), defined in (31), and
performing two matrix-vector multiplications, as in (35). Note
that we only need to find V (1q) once, which will then be
used to find υ(α, β), for any α ∈ [0,1q ] and β ∈ B

q . This is
clearly much faster than solving (28) for every required value
of α and β.

For the example in Fig. 9, we have

υ(α, β) =

⎡
⎢⎢⎣

189α1 71α2
194α1 78α2
106α1 218α2
106α1 221α2

⎤
⎥⎥⎦

[
β1
β2

]
mV. (36)

4) Safe Working Modes: In a power-gated PDN, the power-
gating switches of a block are turned OFF when the logic
circuitry underlying that block is in “idle” or “sleep” state.
Clearly, the voltage levels inside an OFF block do not affect
the voltage integrity of the PDN and the only nodes whose
voltage drop “matters” are the nodes of interest inside the
ON blocks as they are connected to switching logic circuitry.
In this section, we provide a formal definition for the safety of
the equivalent passive grid that is based on the voltage drops
at the nodes of interest inside the ON blocks. Furthermore,
we provide an equivalent mathematical condition that captures
this safety criterion.

We start by defining the safety condition for the full grid.
Definition 5: The equivalent passive grid is said to be safe

under F(α, β), if for every node of interest i that belongs to
an ON block j , we have υi (α, β) ≤ γ j .

In the following lemma, we will provide an equivalent math-
ematical condition that captures the safety of the equivalent
passive grid. We will introduce a new voltage drop threshold
vector that is a function of the working mode β, denoted as
vth(β), which will then be used to check if the grid is safe by
comparing υ(α, β) to vth(β), as we will prove in Lemma 7.
Based on the working mode β, the entries of vth(β) that
correspond to the nodes of interest that belong to OFF blocks
will become very large, so that the voltage drop at those nodes
does not impact the safety of the grid, whereas the entries of
vth(β) that correspond to the nodes of interest that belong
to ON blocks will have the original voltage drop threshold
specification.

Let T be a d × q matrix of 0 and 1 entries that identifies
(with a 1) which node of interest belongs to which block,
i.e., Ti j = 1 if the i th node of interest belongs to the j th block,
otherwise Ti j = 0. Also, let vth(β) = Vth +ρT (1q −β), where
ρ > 0 is a large number. It is enough for ρ to be larger than
‖V (1q)1q‖∞. Notice that for any β ∈ B

q , we have β ≤ 1q ,
so that 1q − β ≥ 0 which, because ρ ≥ 0 and T ≥ 0, gives
ρT (1q − β) ≥ 0. Thus, we have

vth(β) = Vth + ρT (1q − β) ≥ Vth > 0. (37)

Lemma 7: For any α ∈ [0,1q ] and β ∈ B
q , the equivalent

passive grid is safe if and only if V (α)β ≤ vth(β).
For any β ∈ B

q such that V (α)β ≤ vth(β), β is said to be
a safe working mode. Define the set W(α) to be the set of all
safe working modes under the blocks’ containers Fk(αk), i.e.,

W(α)

= {β ∈ B

q : V (α)β ≤ vth(β)} (38)

which is captured by a BDD.
For the example in Fig. 9, W(α) is⎧⎪⎪⎨

⎪⎪⎩
β ∈ B

2 : V (α)β ≤

⎡
⎢⎢⎣

100
100
70
70

⎤
⎥⎥⎦ + 327

⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ (1q − β)

⎫⎪⎪⎬
⎪⎪⎭
.

(39)

To better visualize this, consider again the example of Fig. 9.
In Fig. 11(c), we show the set W ′(α) = {x ∈ R

q : V (α)x ≤
vth(x)} for different values of α. Notice that, for any α ∈
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Fig. 12. (a) 3-D plot and (b) contour plot of the percentage of safe working
modes for different values of α on a 5k node grid with 16 blocks. Color bar:
percentage of safe working modes.

[0,1q ], W(α) consists of the Boolean vectors β ∈ B
q that lie

inside the space W ′(α). So, as shown in Fig. 11(c)

W
([

0.2
0.4

])
=

{[
0
0

]
,

[
1
0

]}
(40)

W
([

0.4
0.2

])
=

{[
0
0

]
,

[
1
0

]
,

[
0
1

]}
. (41)

So far, any α ∈ [0,1q ] will give us the required block-
level current containers Fk(αk) = Lk(u∗

k(αk)) and the corre-
sponding set of safe working modes W(α), as defined in (23)
and (38).

V. APPLICATION

Referring again to the example of Fig. 9, notice that larger
α1 corresponds to a larger F1(α1) [as shown in Fig. 11(a)],
and hence, a larger power budget for block 1. Similarly, larger
α2 corresponds to a larger F2(α2) [as shown in Fig. 11(b)],
and hence, a larger power budget for block 2. On the other
hand, larger local power budgets result in larger voltage drops
at the grid nodes, and hence, a smaller number of safe working
modes [as shown in Fig. 11(d)]. To better illustrate this,
consider two different values of α: α(1) = [0.4 0.2]T and
α(2) = [0.2 0.2]T . Notice that F1(α

(1)
1 ) ⊃ F1(α

(2)
1 ), as shown

in Fig. 11(a), and F2(α
(1)
2 ) = F2(α

(2)
2 ), because α(2)1 = α

(2)
2 .

Furthermore, W(α(1)) ⊂ W(α(2)), as shown in Fig. 11(d).
Therefore, α(1) allows larger power budget for block 1 but
allows less flexibility in terms of the number of safe working
modes, as compared to α(2). There is a clear tradeoff for
different values of α. The tradeoff is between the local power
budgets allocated to individual blocks (based on the generated
local containers) and the number of safe working modes.
In fact, as we will see below, the local power budget of block k
is directly proportional to αk , and hence, we can think of α as
the allocated power budgets for the individual blocks which,
in turn, determine the safe working modes. In Fig. 12, we show
the tradeoff achieved for different values of α on a 5k node
grid with 16 blocks. Fig. 12(a) and (b) corresponds to different
values of α1 and α2 between 0 and 0.4, while α3, α4, . . . ,
and α16 are fixed to 0.85. Again, because the power budget of
block k is directly proportional to its parameter αk , we present
the percentage of safe working modes as a function of the
power budgets for blocks 1 and 2 [the corresponding values

of α1 and α2 are shown at the right and top axes of Fig. 12(b),
respectively]. Some values of α allow for large local power
budgets but a small number of safe working modes, whereas
other values of α allow small local power budgets but a large
number of safe working modes. Thus, the question becomes,
which α should we choose?

In this section, we will describe two design objectives: 1) the
maximum peak-power dissipation that each block can safely
support; and 2) the largest number of safe working modes.
In Section V-A, we will describe some types of user-specified
constraints that our approach can handle, basically constraints
on the peak power that each block can safely support and
the allowable working modes, and we will see that these
constraints can be represented as linear inequalities on α,
resulting in a feasible space of α, denoted as A. The proposed
algorithms will each be formulated as a maximization of the
corresponding design objective, overall α ∈ A, resulting in
an α that allows large local power budgets at the cost of a
small number of safe working modes, or an α that allows
more blocks to turn ON simultaneously at the cost of smaller
local power budgets. Or, as probably the most useful case, an
intermediate value of α between the two limits will be chosen
to achieve some objective on the size of the local containers
or the percentage of safe working modes.

A. User-Specified Constraints

In this section, we will examine two approaches for users
to influence the space of α based on any specifications that
may be known about the design at an early stage, thus
achieving different tradeoffs for chip operation. In a sense,
these specifications will help reduce the space of α to a space
that reflects design knowledge.

The user can enforce some working modes to be allowed
during chip operation, which we can incorporate as in (47).
Also, the user can enforce any local current/power budgets
to satisfy some constraints, which we can incorporate as
in (56). Assuming that the working mode constraints and the
current/power constraints are consistent and feasible, so that
there exists an α ∈ [0,1q ] that satisfies (47) and (56), then
we can define the feasible space of α as follows:

A 
= {α ∈ [0,1q ] : Wα ≤ w, plb ≤ Rα ≤ pub}. (42)

Fig. 13 shows an example of A for the simple grid in Fig. 9
corresponding to the user-specified constraints in (44), (45),
and (53)–(55).

1) Working Modes’ Constraints: Suppose we have some
knowledge about the working modes of the circuit, for exam-
ple, if there exist some dependences among the blocks, i.e., a
subset of the blocks are required to be ON at the same time.
In general, let W0 denote the set of user-specified working
modes that are required to be safe. This type of constraint can
be easily embedded into our framework by searching for α that
satisfies W0 ⊆ W(α). We will see below that this constraint
can be represented as a set of linear constraints on α, i.e.,

Wα ≤ w. (43)
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Fig. 13. Feasible space of α in Fig. 9 as a result of some user-specified
constraints.

Referring to the example of Fig. 9, we can impose a
constraint that each block is safe to turn ON separately. In other
words, we are interested in the values of α ∈ [0,12] such that
β(1), β(2) ∈ W(α), where β(1) = [1 0]T and β(2) = [0 1]T .
Thus, based on (39), we have

V (α)β(1) ≤ vth(β
(1)) ⇐⇒ α1 ≤ 0.52 (44)

V (α)β(2) ≤ vth(β
(2)) ⇐⇒ α2 ≤ 0.32. (45)

In Fig. 13, we show the above two constraints; (44) is
numbered 1 and (45) is numbered 2.

For any β ∈ W0, let W (β) = V (1)D(β). Assuming that a
total of ζ working modes are required to be safe, i.e., W0 =
{β(1), β(2), . . . , β(ζ )}, let W and w be a (ζd)× q matrix and
a (ζd)× 1 vector, respectively, such that

W =
⎡
⎢⎣

W (β(1))
...

W (β(ζ))

⎤
⎥⎦, w =

⎡
⎢⎣
vth(β

(1))
...

vth(β
(ζ))

⎤
⎥⎦ . (46)

Lemma 8 transforms the constraint W0 ⊆ W(α) into a set
of linear inequalities on α.

Lemma 8: If gk(cu) = cgk(u), for any real number c > 0,
u ∈ R

nk , and ∀k ∈ {1, . . . , q}, then for any α ∈ [0,1q ],
W0 ⊆ W(α) if and only if

Wα ≤ w. (47)

2) Current/Power Constraints: A broad range of power
bounds can be imposed on the resulting containers, given
specifications about the design at an early stage. In the
following, we will discuss several examples of such constraints
that could be embedded in our framework and we will show
in Lemma 10 that these constraints can be represented as a
set of linear inequalities on α, i.e.,

plb ≤ Rα ≤ pub. (48)

Define ψk(αk) to be the largest instantaneous peak power
dissipation achievable under Fk(αk), i.e.,

ψk(αk) = Vdd max
Ik ∈Fk(αk)

(
1T

mk
Ik

)
. (49)

Recall that for any α ∈ [0,1q ], Fk(αk) is nonempty, so that
ψk(αk) ≥ 0 is well defined.

The simplest bounds are on the minimum peak power,
referred to as local constraints, such as ψlb ≤ ψ(α) ≤ ψub,
where ψ(α) = [ψ1(α1) · · · ψq (αq )]T is a q × 1 vector of the
peak-power dissipation that each block can safely support and
ψlb and ψub are the vectors of user-specified lower and upper
bounds on the peak-power dissipation of the blocks. Another
bound commonly available from design specification is the
peak total power dissipation of a group of blocks, referred to
as global constraints, that is available at an early stage of the
design, then assuming we have a total of κ global constraints,
we can incorporate these constraints as clb ≤ Fψ(α) ≤ cub,
where F is a κ × q matrix that consists only of 0s and
1s, which indicate which block is present in each constraint,
so that F ≥ 0 has no row with all zeros, and clb and cub are
κ × 1 vectors representing the lower and upper bounds on the
peak-power dissipation. We can represent the local and global
constraints compactly as

plb ≤ Uψ(α) ≤ pub (50)

where

plb =
[
ψlb

clb

]
, pub =

[
ψub

cub

]
, and U =

[
Iq

F

]
.

Lemma 9 establishes the scalability of ψ(α), which will be
useful to prove Lemma 10.

Lemma 9: If gk(cu) = cgk(u), for any real number c > 0,
u ∈ R

nk , and ∀k ∈ {1, . . . , q}, then ψ(α) = D(α)ψ(1q ),
∀α ∈ [0,1q ].

Based on Lemma 9, for any α ∈ [0,1q ], we have

ψ(α) = D(α)ψ(1q ) (51)

which is clearly much faster to compute than solving q
instances of (49) for every required value of α.

For the example in Fig. 9, we have

ψ(α) =
[
α1 0
0 α2

] [
100
70

]
=

[
100α1
70α2

]
mW (52)

which allows us to impose power constraints on the blocks.
For example, the peak power of blocks 1 and block 2 is larger
than 15 and 7 mW, respectively, and the total peak power
that both blocks can dissipate simultaneously is larger than
30 mW. In other words, we are only interested in the values
of α ∈ [0,12] such that

ψ1(α1) ≥ 15 mW ⇐⇒ α1 ≥ 0.15 (53)

ψ2(α2) ≥ 7 mW ⇐⇒ α2 ≥ 0.1 (54)

ψ1(α1)+ ψ2(α2) ≥ 30 mW ⇐⇒ α1 + 0.7α2 ≥ 0.3. (55)

In Fig. 13, we show the above three constraints; (53) is
numbered 3, (54) is numbered 4, and (55) is numbered 5.

Lemma 10 transforms the user-specified power constraints
into a set of linear inequalities on α.

Lemma 10: If gk(cu) = cgk(u), for any real number c > 0,
u ∈ R

nk , and ∀k ∈ {1, . . . , q}, then we have plb ≤ Uψ(α) ≤
pub if and only if

plb ≤ Rα ≤ pub (56)

where R = U D(ψ(1q )).
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B. Maximum Local Power

The design team may be interested in a workload scheduler
that allows as much local power dissipation as possible to
the underlying circuit. We refer here to the instantaneous
power dissipation, which is conservatively approximated by
Vdd

∑mk
j=1 ik, j (t) for every block k, where ik, j (t) is the

time-varying current waveform representing the current drawn
by the j th current source in block k. Recall that ψk(α) defines
the peak-power dissipation that block k can safely support in
the underlying circuit. Thus, we are interested in an α that
allows the highest possible

∑
∀k ψk(α), while satisfying the

user-specified requirements on the resulting local containers
and working modes, i.e., (42). We can formulate this as the
following optimization problem:

σ ∗ = Max 1T
q ψ(α)

s.t. α ∈ A. (57)

Let α(p) be a vector at which the above maximization
attains its maximum. In other words, α(p) ∈ A such that
1T

q ψ(α
(p)) = σ ∗. Because A is nonempty, it follows that α(p)

is well defined. Therefore, the resulting block-level containers
are Fk(α

(p)
k ), which describe the following current constraints:

ik(t) ≥ 0 (58)

M ′
k ik(t) ≤ α

(p)
k Mk Gku∗

k(1) (59)

for every k ∈ {1, . . . , q}, where ik(t) is the time-varying
current waveform representing the current drawn by the kth
block. Furthermore, the resulting set of safe working modes
is

W(α(p)) = {β ∈ B
q : V (1q)D(α

(p))β ≤ vth(β)}. (60)

In the following, we will show that the optimization problem
in (57) is equivalent to the LP in (64), and hence, we will
be solving (64) instead of (57). Notice that, due to Lemma 9,
we have

1T
q ψ(α) = 1T

q D(α)ψ(1q ). (61)

Also, notice that

D(α)ψ(1q ) = [α1ψ1(1) · · · αqψq(1)]T (62)

= D(ψ(1q ))α. (63)

Therefore, we have 1T
q ψ(α) = 1T

q D(ψ(1q ))α = ψT (1q)α.
Thus, we can rewrite (57) as follows:

Max ψT (1q)α

s.t. α ∈ A. (64)

C. Maximum Working Modes

Another approach that the design team might be interested
in is a workload scheduler that allows as much flexibility
for the blocks to turn ON simultaneously as possible, while
still satisfying the user-specified requirements. Let |W(α)|
denote the cardinality of the set W(α). Thus, we are interested
in α that maximizes |W(α)| and satisfies the user-specified

requirements. We can find such an α by solving the following
optimization problem:

Max |W(α)|
s.t. α ∈ A. (65)

Solving (65) is computationally expensive. For one thing,
|W(α)| is a nonconvex function of α. Alternatively, we pro-
pose a simpler optimization problem in (69), in fact an LP,
motivated by Lemma 11. Lemma 11 establishes a sufficient
condition that maximizes |W(α)|; to maximize |W(α)|, it is
enough to minimize all the elements of α. In a sense, it is
sufficient to “minimize” α. Typically, this can be achieved by
minimizing some norm of α (e.g., Euclidean norm, sum norm,
and infinity norm). In this paper, we will be minimizing the
infinity norm of α, i.e., ‖α‖∞; this will be formulated as the
LP in (69).

Lemma 11: If gk(cu) = cgk(u) for any real number c > 0,
u ∈ R

nk , and k ∈ {1, . . . , q}, then for any α, α′ ∈ [0,1q ] with
α ≤ α′, we have |W(α)| ≥ |W(α′)|.

For any α ∈ A, let ξ(α)

= ‖α‖∞ denote the infinity norm

of α, i.e.,

ξ(α) = max∀i
|αi | = max∀i

αi (66)

the last step due to α ≥ 0. Notice that ξ(α) is the smallest
real number greater than αi , ∀i , so that

ξ(α) = min
ξ1q≥α ξ. (67)

We define ξ∗ to be the smallest ξ(α) achievable over all
possible α ∈ A, i.e.,

ξ∗ 
= min
α∈A

(ξ(α)). (68)

Let α(w) be a vector at which the above maximization attains
its minimum. In other words, α ∈ A such that ξ(α(w)) = ξ∗.
Because A is nonempty, it follows that α(w) is well defined.
We can express the combined (67) and (68) as the following
LP:

ξ∗ = Min ξ

s.t. ξ1q ≥ α

α ∈ A. (69)

Therefore, the resulting block-level containers are Fk(α
(w)
k ),

which describe the following current constraints:

ik(t) ≥ 0 (70)

M ′
k ik(t) ≤ α

(w)
k Mk Gku∗

k(1) (71)

for every k ∈ {1, . . . , q}. Furthermore, the resulting set of safe
working modes is

W(α(w)) = {β ∈ B
q : V (1q)D(α

(w))β ≤ vth(β)}. (72)
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TABLE I

POWER GRID PROPERTIES AND THE RUNTIME BREAKDOWN

TABLE II

USER-SPECIFIED CONSTRAINTS’ PARAMETERS AND COMPARISON OF THE TWO DESIGN OBJECTIVES

VI. EXPERIMENTAL RESULTS

The approach discussed in Section IV has been implemented
in C++. We conducted tests on a set of power grids that
were generated based on user specifications, including grid
dimensions, metal layers, a number of blocks, a number of
metal layers in the global grid, pitch and width per layer,
and C4 and current source distributions. The technology
specifications were consistent with 1-V 45-nm CMOS tech-
nology. Table I shows the characteristics of a number of test
grids. All results were obtained using a hyperthreaded 12-core
3-GHz Linux machine with 128-GB RAM. The optimizations
were performed using MOSEK optimization package [22].
All the linear systems are solved using Cholmod [23] from
SuiteSparse [24]. In our implementation, we use Pthread to
parallelize the computation and take advantage of the 12-core
machine. The runtime breakdown of our approach, i.e., the
isolated block analysis, the full grid analysis, LP (64), and
LP (69), is shown in columns 6–9 of Table I, which represent
the wall clock time for the parallel Pthread implementation.
Recall that in the isolated block analysis, the block-level
containers are generated based on a choice of the design
objective gk(·). In our tests, we used the peak power algorithm
in [20] and the uniform current distribution algorithm in [25]
as design objectives for all the blocks.

Table II compares the results of using α(p) (see Section V-B)
and α(w) (see Section V-C) based on user-specified constraints.
In column 2, we describe the user-specified constraints on the

local power. Specifically, we require the average of the peak
powers of all the blocks to be larger than the specification
in column 2. Furthermore, in columns 3 and 4, we describe
the user-specified constraints on the working modes, i.e., the
number of user-specified working modes as well as the max-
imum number of blocks that are ON in those working modes.
Denote by P(α) the average of the peak powers of all the
blocks under the block containers Fk(αk). Also, denote by
ω(α) the percentage of the working modes that are safe under
block containers Fk(αk). To study the difference between the
generated block containers and W(·) using α(p) and α(w),
we found the average of the peak powers of all the blocks
under Fk(α

(p)
k ) and Fk(α

(w)
k ), which are P(α(p)) and P(α(w)),

and the percentage of safe working modes in W(α(p)) and
W(α(w)), which are ω(α(p)) and ω(α(w)). For instance, on a
52 950 node grid with 25 blocks, the average of the peak
powers for all blocks under Fk(α

(p)
k ) and Fk(α

(w)
k ) are 155 and

77 mW, respectively, and the percentage of safe working
modes under W(α(p)) and W(α(w)) are 0.2% and 96.75%,
respectively. The results show that P(α(p)) � P(α(w)) and
ω(α(p)) � ω(α(w)). Therefore, each approach provides a
distinct tradeoff for the design team.

VII. CONCLUSION

Power-gating design technique introduces active devices,
such as MOSFETs, in the chip’s power distribution network
to disconnect circuit blocks that are not required to operate
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from the rest of the PDN. Analysis and verification of active
PDNs are crucial to ensure voltage integrity. In this paper,
we focus on analyzing RC active grids under different working
modes, but we are working to extend this to handle RLC grids
under both working and transition modes. With active devices,
most traditional techniques are ill-equipped to verify the PDN.
The worst case voltage drop is the result of two things: the
power budgets that were allocated to the various circuit blocks
during the design process and the combination of blocks that
are turned ON in a given operational mode. We propose a
framework to generate block-level circuit current constraints
as well as an implicit BDD that helps identify the safe working
modes. Subject to user guidance, we then propose two design
objectives that exploit the tradeoff between how many blocks
are ON simultaneously and how big the power budgets of
individual blocks are.
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