
A Monte Carlo Approach for Power Estimation

Richard Burch�, Farid Najm�, Ping Yang�, and Timothy Tricky

�Semiconductor Process & Design Center
Texas Instruments Inc., MS 369

Dallas, Texas 75265

yElectrical Engineering Dept.
University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

Excessive power dissipation in integrated circuits causes overheating and can lead to soft
errors and/or permanent damage. The severity of the problem increases in proportion to the
level of integration, so that power estimation tools are badly needed for present-day tech-
nology. Traditional simulation-based approaches simulate the circuit using test/functional
input pattern sets. This is expensive and does not guarantee a meaningful power value.
Other recent approaches have used probabilistic techniques in order to cover a large set of
input patterns. However, they trade-o� accuracy for speed in ways that are not always ac-
ceptable. In this paper, we investigate an alternative technique that combines the accuracy
of simulation-based techniques with the speed of the probabilistic techniques. The resulting
method is statistical in nature; it consists of applying randomly-generated input patterns to
the circuit and monitoring, with a simulator, the resulting power value. This is continued
until a value of power is obtained with a desired accuracy, at a speci�ed con�dence level.
We present the algorithm and experimental results, and discuss the superiority of this new
approach.

Submitted to the IEEE Transactions on VLSI Systems, 1993.



1. Introduction

Excessive power dissipation in integrated circuits causes overheating and can lead to soft er-

rors and permanent damage. The severity of the problem increases in proportion to the level

of integration. The advent of VLSI has led to much recent work on the estimation of power

dissipation during the design phase, so that designs can be modi�ed before manufacturing.

Perhaps the most signi�cant obstacle in trying to estimate power dissipation is that the

power is pattern dependent. In other words, it strongly depends on the input patterns being

applied to the circuit. Thus the question \what is the power dissipation of this circuit?" is

only meaningful when accompanied with some information on the circuit inputs.

A direct and simple approach of estimating power is to simulate the circuit. Indeed,

several circuit simulation based techniques have appeared in the literature [1-2]. Given the

speed of circuit simulation, these techniques can not a�ord to simulate large circuits for long-

enough input vector sequences to get meaningful power estimates. In order to simplify the

problem and improve the speed, the power supply voltage is often assumed to be the same

throughout the chip. Thus the power estimation problem is reduced to that of estimating

the power supply currents that are drawn by the di�erent circuit components. Fast timing

or logic simulation can then be used to estimate these currents [3].

We call these approaches strongly pattern dependent because they require the user to

specify complete information about the input patterns. Recently, other approaches have been

proposed [4, 5] that only require the user to specify typical behavior at the circuit inputs

using probabilities. These may be called weakly pattern dependent. With little computational

e�ort, these techniques allow the user to cover a huge set of possible input patterns. However,

in order to achieve good accuracy, one must model the correlations between internal node

values, which can be very expensive. As a result, these techniques usually trade-o� accuracy

for speed. The resulting loss of accuracy is a signi�cant issue that may not always be

acceptable to the user.

In this paper, we investigate an alternative approach that combines the accuracy of

simulation-based approaches with the weak pattern dependence of probabilistic approaches.

The resulting approach is statistical in nature; it consists of applying randomly-generated

input patterns to the circuit and monitoring, with a simulator, the resulting power value.

1



This is continued until a value of power is obtained with a desired accuracy, at a speci�ed

con�dence level. Since it uses a �nite number of patterns to estimate the power, which really

depends on the in�nite set of possible input patterns, this method belongs to the general class

of so-called Monte Carlo methods. A most attractive property of Monte Carlo techniques is

that they are dimension independent, meaning that the number of samples required to make

a good estimate is independent of the problem size. We will show that this property indeed

holds for our approach (see Table 4 in section 5).

Both [4] and [5] use probabilities to compute the power consumed by individual gates,

which are then summed up to give the total power. In this context, it was observed in [5]

that it would be too expensive to estimate the individual gate powers using a simulation

with randomly generated inputs. The key to the e�ciency of our new approach is that, if

one monitors the total power directly during the random simulation, su�cient accuracy is

obtained in much less time than is required to compute the individual gate powers. The

excellent speed performance and the simplicity of the implementation make this a very

attractive approach for power estimation.

An approach similar to this was independently proposed in [6], but the treatment there

is not very rigorous and overlooks some important issues. Furthermore, no comparisons were

performed with other approaches to show the superiority of the approach. In this paper,

we present a rigorous treatment that provides the theoretical justi�cation of this method.

We also present experimental results of our implementation and compare it to probabilistic

approaches.

2. Overview

In this section, we provide an overall view of our technique, and discuss its superiority to

the probabilistic approaches previously proposed [4, 5].

2.1. Overview of Monte Carlo power estimation

The block diagram in Fig. 1. gives an overall view of the technique. The setup and sample

blocks are parts of the same logic simulation run, in which the input patterns are randomly-

generated. The power value at the end of a sampling phase is noted and used to decide

whether to stop the process or to do another setup-sample run. The decision is made based

2



on the mean and standard deviation of the power values observed at the end of a number of

successive iterations.

Stop?

End

Sample

Setup

Start

Y

N

Figure 1. Block diagram overview.

The power is found as the average value of the instantaneous power drawn throughout

the sample phase, and not during the setup phase. However, the setup phase is a critical

component of our approach, and serves two purposes :

(1) In the beginning of the simulation run, the circuit does not switch as often as it typically

would at a later time, when switching activity has had time to spread to all the gates.

Thus, the circuit is allowed to get up to speed during setup. This argument will be made

more precise in section 3, where we also derive an exact value for the setup time.

(2) The values of power observed at the end of successive sample intervals should be samples

of independent random variables. This is required in order for the stopping criterion to

be correct, and is guaranteed by restarting the random input waveforms at the beginning

of the setup phase. The details are given in section 3.

Thus the setup phase guarantees that we are indeed measuring typical power, and ensures

the correctness of the statistical stopping criterion.

2.2. Comparison with probabilistic techniques

There are two distinct advantages of the Monte Carlo approach that make it an excellent

choice for power estimation over probabilistic techniques. These are : (1) it achieves desired

3



accuracy in reasonable time, avoiding the speed/accuracy trade-o� of probabilistic tech-

niques, and (2) the simplicity of the algorithm makes it very easy to implement in existing

logic or timing simulation environments.

Probabilistic methods [4, 5] su�er from a speed/accuracy trade-o� because they must

resolve the correlations between internal circuit nodes. If these correlations are taken into

account, these methods can be very accurate. This, however, is computationally very expen-

sive and impractical. As a result, fast implementations of these techniques are necessarily

inaccurate. It is the aim of this paper to show that the proposed Monte Carlo method is

very fast (solving circuits with thousands of gates in a matter of seconds) and also highly

accurate (easily within 5% of the total power). Tables 3 and 5 compare the accuracy of

Monte Carlo and probabilistic methods for power estimation.

We also should make the point that the accuracy level in our approach is predictable up-

front : the program will work to achieve any level of accuracy desired by the user. Naturally,

as higher accuracy is desired, the computational cost starts to increase. However, we will

show in section 5 that accuracy levels of 5% are easily and e�ciently attainable.

3. Detailed Approach

This section describes the details of the approach. We start out with a rigorous formulation

of the problem and show how it reduces to the well-known problem of mean estimation in

statistics. We then discuss the stopping criterion, and the normality assumption required

for it to work. We conclude with a discussion of the setup and sample phases and the

applicability to sequential circuits.

3.1. Problem formulation

Consider a digital circuit with m internal nodes (gate outputs). Let xi(t), t 2 (�1;+1),

be the logic signal at node i and nxi(T ) be the number of transitions of xi in the time

interval (�T

2
;+T

2
]. If, in accordance with [7], we consider only the contribution of the

charging/discharging current components, the average power dissipated at node i during

that interval is 1
2
V 2
dd
Ci

nxi
(T )

T
, where Ci is the total capacitance at i. The total average power

4



dissipated in the circuit during the same interval is :

PT =
V 2
dd

2

mX
i=1

Ci

nxi(T )

T
(1)

The power rating of a circuit usually refers to its average power dissipation over extended

periods of time. We therefore de�ne the average power dissipation P of the circuit as :

P = lim
T!1

PT =
V 2
dd

2

mX
i=1

Ci lim
T!1

nxi(T )

T
(2)

The essence of our approach is to estimate P , corresponding to in�nite T , as the mean

of several PT values, each measured over a �nite time interval of length T . In order to see

how this mean estimation problem comes about, we must consider a random representation

of logic signals as follows.

Corresponding to every logic signal xi(t), t 2 (�1;+1), we construct a stochastic

process xi(t) as a family of the logic signals xi(t + � ), where � is a random variable. This

process has been called the companion process of xi(t) in [8], where the reader may �nd

more details on its construction. For each � , xi(t+ � ) is a shifted copy of xi(t). Therefore,

observing PT for xi(t + � ) corresponds to measuring the power of xi(t) over an interval of

length T centered at � , rather than at 0. We can then talk of the random power of xi(t) over

the interval (�T

2
;+T

2
], to be denoted by :

PT =
V 2
dd

2

mX
i=1

Ci

nxi(T )

T
(3)

where nxi(T ) is now a random variable. It was shown in [8] that xi(t) is stationary [12] so

that, for any T , the expected average number of transitions per second is a constant :

D(xi) = E

�
nxi(T )

T

�
= lim

T!1

nxi(T )

T
(4)

where E[�] denotes the expected value (mean) operator. In [5] and [8], D(xi) was called the

transition density of xi(t); it is the average number of transitions per second, equal to twice

the average frequency. As a result of (4), E[PT] is the same for any T , and the average

power can be expressed as a mean :

P = E[PT] (5)

5



Thus the power estimation problem has been reduced to that of mean estimation, which is

a frequently encountered problem in statistics.

In order to apply the above theory, we must ensure that the signals xi(t) observed

throughout the (�T
2
; +T

2
] interval are samples of the stationary processes xi(t). This require-

ment will be addressed in section 3.4.

3.2. Stopping criterion

Let us assume that PT is normally distributed for any T . The theoretical justi�cation and

experimental evidence for this assumption will be discussed in the next section. Suppose

also that we perform N di�erent simulations of the circuit, each of length T , and form the

sample average �T and sample standard deviation sT of the N di�erent PT values found.

Therefore, we have (1 � �) � 100% con�dence that j�T � E[PT]j < t�=2sT =
p
N , where t�=2

is obtained from the t distribution [9] with (N � 1) degrees of freedom. This result can be

rewritten as :
jP � �T j

�T
<

t�=2sT

�T
p
N

(6)

Therefore, for a desired percentage error � in the power estimate, and for a given con�-

dence level (1� �), we must simulate the circuit until :

t�=2sT

�T
p
N

< � (7)

We can use this relation to illustrate the important dimension independence property of this

approach, common to most Monte Carlo methods, as follows. If N� is the (smallest) number

of iterations that satis�es (7), then :

N� �
�
t�=2sT

� �T

�2
(8)

By dimension independence, we mean that N� should be roughly independent of the circuit

size (number of nodes). In equation (7), t�=2 is a small number, typically between 2.0

and 5.0, and � is a constant. We therefore look to the ratio s2
T
=�2

T
to learn of the general

behavior of N�. There is very little one can say in general about this ratio. Nevertheless,

and in view of (3), it is instructive to consider the following. If y =
P

m

i=1
xi is the sum of m

independent identically distributed (iid) random variables, then �2
y
=�2

y
= (�2

xi
=�2

xi
)� (1=m),

where � and �2 denote the mean and variance. Thus if the Cinxi(T )=T terms of (3) are iid,

6



then N� should decrease with circuit size. Even when the xis are not independent, we have

�2
y
=�2

y
� (�2

xi
=�2

xi
), a constant, which suggests that N� should typically decrease or remain

constant with increasing circuit size. This is indeed the observed behavior in Table 4.

An important consequence of this result is that, since each iteration of the Monte Carlo

approach takes roughly linear time (in the size of the circuit), then the overall process should

also take linear time. Probabilistic methods that do not take correlation into account also

depend linearly on circuit size. However, if correlation is taken into account in order to

improve the accuracy, their dependence is frequently super-linear.

In order to use the stopping criterion in practice, we must ensure that the observed

PT values are samples from independent PT random variables. This requirement will be

addressed in section 3.4.

3.3. Normality

A su�cient condition for the normality of PT is that (i) m is large and (ii)
nx

i
(T )

T
are

independent. This is true under fairly general conditions irrespective of the individual
nx

i
(T )

T

distributions (see [10], pp. 188{189), and for any value of T .

Another su�cient condition that holds even for small m, but for large T , is as follows. If

(i) the consecutive times between identical transitions of xi(t) are independent (which, using

renewal theory (see [11], pp. 62{63), means that
nxi

(T )

T
is normally distributed for large T )

and (ii) the
nx

i
(T )

T
are independent (so that they are also jointly normal (see [12], p. 126)

for large T ) then PT is normal for large T (see [12], p. 144).

To the extent that these conditions are approximately met in practice, the power should

be approximately normal. We have found that for a number of benchmark digital circuits [13],

the normality assumption is very good, as shown in the normal scores plots [9] in Fig. 2. The

plot for each circuit corresponds to 1000 evaluations of the average power over a 2.5 �sec

interval. Each evaluation covered an average of 50 transitions per primary input. The

consequences of deviations from normality are discussed in section 4.

3.4. Setup and sample

This section deals with the mechanics of how the input patterns are to be generated, when

to start and stop measuring a PT value, and how di�erent PT values should be obtained.

We start by observing that, by stationarity of xi(t), the (�nite) intervals of width T , over

7



Figure 2. Normal scores plot for the ISCAS-85 circuits.

which the PT values will be measured, need not be centered at the origin. A PT value may

be obtained from any interval of width T , henceforth called a sampling interval. However,

the following two requirements must be met :

(i) Throughout a sampling interval, the signals xi(t) must be samples of the stationary

processes xi(t).

(ii) The di�erent PT samples must be samples from independent PT random variables.

We will now describe a simulation process that guarantees both of these requirements.

Suppose that the circuit primary inputs are at 0 from �1 to time 0, and then become

samples of the stationary processes xi(t) in positive time. Consider a primary input driving

an inverter with delay td. Since its input is a stationary process for t � 0, its output must

be stationary for t � td. By using a simpli�ed timing model for every gate as in [5], we

can repeat this argument enough times to obtain the following conclusion: If the maximum

delay (along any path) from the primary inputs to node i is Tmax;i, then the process xi(t)

becomes stationary for t � Tmax;i.

If the maximum delay (along any path) in the circuit is Tmax = max
i

(Tmax;i), then the

sampling interval may start only after t � Tmax. This guarantees that requirement (i) is

met. From that time onwards, all internal processes are stationary, and the circuit is in

(probabilistic) steady state. We will call the time interval from 0 to Tmax the setup phase.

8



Intuitively, the circuit needs to get up to speed before a reliable sample of power may be

taken and, as we have shown, the minimum time required to achieve that is Tmax. Finding

Tmax in combinational circuits is straightforward; the case of sequential (feedback) circuits

is discussed in section 3.5.

In order to guarantee requirement (ii), we simply restart the simulation (with an empty

event queue) at the beginning of every setup phase. As a result, the time axis is divided into

successive regions of setup and sampling, as shown in Fig. 3.

Tmax Tmax

t=0
T T

Sample

Setup

Figure 3. Successive setup and sample phases.

The only remaining task is to describe how the inputs are to be generated. This has

to be done in such a way that the input processes, after the start of every setup phase, are

independent of the past. This can be done as follows, for every input signal xi. At the

beginning of a setup phase, we use a random number generator to select a logic value for

xi, with appropriate probability P (xi). We then use another random number generator to

decide how long xi stays in that state before switching. This must assume some distribution

for the duration of stay in that state. Once xi has switched, we use another random number

generator to decide how long it will stay in the other state, again using some distribution.

Let F 1
xi
(t) be the distribution of times spent in the 1 state, and F 0

xi
(t) be that of the 0

state. Since computer implementations of random number generators produce sequences

of independent random variables, independence between the successive sampling phases is

guaranteed.

The probability P (xi) and distributions F 1
xi
(t) and F 0

xi
(t) should be supplied by the

user. In fact, these parameters represent the way in which the approach is weakly pattern

dependent. They also provide the mechanism by which the user can specify any information

about typical behavior at the circuit inputs. In order to simplify the user interface, our

current implementation does not require the user to actually specify distributions. Rather,

9



we require only two parameters : the average time that an input is high, denoted by �1
xi
, and

the average time that it is low, denoted by �0
xi
. Based on this, it can be shown [8] that P (xi) =

�1
xi
=(�1

xi
+�0

xi
) and D(xi) = 2=(�1

xi
+�0

xi
). As for the distributions, our implementation uses

exponential distributions [12] so as to allow the comparisons with probabilistic methods to

be given in section 5. We emphasize, however, that the stopping criterion and the overall

Monte Carlo algorithm are valid for any distribution. In fact, in our implementation, the

choice of distribution can be easily modi�ed by the user.

3.5. Sequential circuits

The Monte Carlo method presented in this paper is valid for both combinational and

sequential circuits. The only aspect of the problem that is speci�c to sequential circuits is

the computation of the setup time Tmax. Strictly speaking, since Tmax is the longest delay

along any path, then Tmax =1 for sequential circuits. Recall that it is su�cient to wait for

Tmax before starting a sampling interval in order to guarantee stationarity. It is not clear,

however, whether that condition is also necessary. In practice, it seems that we should be

able to compute an approximate Tmax for these circuits by, for example, opening feedback

connections. The quality of such a heuristic could be tested by examining the expected

power for di�erent sampling regions. If the expected power is constant, then the heuristic

does a good job of predicting the length of the setup region. Table 1 shows that this is

true for combinational circuits, which agrees with our assertion in section 3 that the power

would be stationary after Tmax. Future implementations of this approach will include such

heuristics to allow it to handle sequential circuits.

4. Deviations From Normality

We have found that the Monte Carlo method can be applied to circuits that have non-normal

power distributions without adversely a�ecting the accuracy of the results. In cases of severe

deviations from normality, some modi�cations of the basic approach may be required.

It is important to note at the outset that the normality assumption was required only

to formulate the stopping criterion. Given enough samples, one ultimately converges to the

desired power value, whatever the power distribution. This is true because of equation (5)

and the strong law of large numbers (see [11], page 26). Furthermore, we are only concerned

10



Table 1. If the setup region is chosen correctly, then the pro-
cess is stationary and the expected power is the same for any
sampling region. This is illustrated for combinational circuits
with sampling regions of 625ns, 1.25�s, and 2.5�s.

Circuit Power

Name T = 625ns T = 1.25�s T = 2.5�s

c432 1.13 mW 1.13 mW 1.12 mW

c499 2.04 mW 2.04 mW 2.05 mW

c880 2.75 mW 2.74 mW 2.75 mW

c1355 5.45 mW 5.45 mW 5.45 mW

c1908 9.23 mW 9.25 mW 9.22 mW

c2670 10.78 mW 10.79 mW 10.80 mW

c3540 14.57 mW 14.62 mW 14.64 mW

c5315 23.14 mW 23.10 mW 23.10 mW

c6288 70.38 mW 70.36 mW 70.32 mW

c7552 37.57 mW 37.50 mW 37.50 mW

with deviations from normality for small values of T . For large T , and since PT tends to

a constant as T ! 1, the variance of PT goes to 0, and its distribution must become

bell-shaped, approaching a normal distribution.

Circuits do exist that have non-normal power for small T . An example would be a

circuit with an enable signal whose value strongly a�ects the power drawn by the whole

circuit. When the enable signal is low, the circuit would have one power distribution, and

when it is high it would have a di�erent distribution. If these two distributions had di�erent

means, then over a small T interval the overall distribution would not be normal, but would

be a so-called bimodal distribution, as shown in Fig. 4. When each of the two distributions

is normal, we will refer to the overall distribution as a double normal.

As a concrete example, consider the simple XOR circuit in Fig. 5. The enable signal

allows the output stage to switch, drawing muchmore power than otherwise. If the transition

density (see equation (4)) at the enable line is low compared to the other two inputs, then,

over a short time interval, only one of the two modes of operation would be observed. Using

a density of 2e7 at the inputs and 2e5 at the enable line, a sampling interval of T = 2:5�sec,

and with 11000 samples, we get the histogram shown in Fig. 6.

11



Figure 4. A bimodal distribution.

In1

In2

Enable

Out

Figure 5. A circuit with enable.

This is one of many ways in which the distribution can deviate from normality. We have

also considered two other ways in which the distribution can be distorted. We will refer to

distributions with elongated tails, as shown in Fig. 7a, as tailed normal distributions. Those

with chopped tops, as in Fig. 7b, will be called chopped normal distributions.

We have examined the performance of our stopping criteria for each of the above va-

rieties of distorted normals. The non-normal power values were arti�cially obtained from

customized random number generators. The parameters for the stopping criterion were set

12



Figure 6. Power distribution for the XOR circuit.

(a) (b)

Figure 7. Distortions of the distributions : (a) tailed normal,

and (b) chopped normal.

to 5% accuracy (� = 0:05) with 99% con�dence (� = 0:01).

Since the distributions were not normal, one would expect the resulting accuracy to be

somewhat worse than 5%. In all but a few cases, better than 10% accuracy was achieved with

99% con�dence. The only examples that showed worse than 10% accuracy were distributions

with very long tails, and double normal distributions with widely separated means. Even

the distributions with very long tails had better than 15% accuracy with 99% con�dence.

The double normal distributions, however, had very large errors if the �rst few samples were

all centered around one hump of the distribution. When this occurred, the stopping criteria

13



erroneously terminated the simulation.

In the cases of the drastic double normal distributions, we feel that they can be treated as

follows. When a node has a high fanout, making it a potential cause of the double normal,

then the length of each sampling region should be changed so that that node transitions

several times in a sampling region. This will prevent the problems associated with an enable

signal and should prevent problems with any double normal distributions.

Having said all this, and before leaving this section, it is important to reiterate that the

normality assumption holds very well for all the benchmark circuits that we have considered,

as discussed in section 3 and shown in Fig. 2.

5. Experimental Results

The Monte Carlo methods presented in this paper were implemented based on a simple

variable delay logic simulator. This program will be referred to as McPOWER. The test

circuits to be used in this section are the benchmarks presented at ISCAS in 1985 [13].

These circuits are combinational logic circuits and Table 2 presents the number of inputs,

outputs, and gates in each.

Table 2. The ISCAS-85 benchmark circuits.

Circuit #inputs #outputs #gates

c432 36 7 160

c499 41 32 202

c880 60 26 383

c1355 41 32 546

c1908 33 25 880

c2670 233 140 1193

c3540 50 22 1669

c5315 178 123 2307

c6288 32 32 2406

c7552 207 108 3512

We will compare the performance of McPOWER to that of probabilistic methods and

substantiate the claims of section 2.2 that McPOWER has better accuracy and competitive

simulation times. DENSIM [5, 8] is an e�cient probabilistic simulation program that gives

14



the average switching frequency (called transition density in [5, 8]) at every circuit node.

These density values can be used to give an estimate of the total power dissipation. DENSIM

does not take into account the correlation between internal circuit nodes. While it is known

that this causes inaccuracy in the density values, it is prohibitively expensive to take all

correlation into account for large circuits.

Table 3 compares the performance of DENSIM, when used to estimate total power, to

that of McPOWER. In both programs, every primary input had a signal probability of 0.5

and a transition density of 2e7 transitions per second (corresponding to an average frequency

of 10MHz). For McPOWER, a maximum error of 5% with 99% con�dence was speci�ed.

As mentioned in section 3, McPOWER performs one long simulation that is broken into

setup and sampling regions. The delays of the circuit determine the length of each setup

region; however, the length of a sampling region is speci�ed by the user. For Table 3, the

sampling region was set to 2.5 micro-seconds (abbreviated �s), which allows an average of 50

transitions per sampling interval on each input. The column labeled LOGSIM gives our best

estimates of the power dissipation of these circuits, obtained from very long logic simulation

runs. As seen from the table, McPOWER is consistently and highly accurate, while DENSIM

has signi�cant errors for some circuits. Although DENSIM is frequently faster, McPOWER's

reliable accuracy makes it a more attractive approach for power estimation.

Typical convergent behavior of McPOWER is shown in Fig. 8. The �gure shows the

power from three di�erent iterations converging to the average power for c6288, one of the

most complex ISCAS circuits. A similar plot is shown for c5315 in Fig. 9.

Care must be taken in drawing conclusions from a single run of McPOWER. Since it

uses random input vectors, the speed of convergence and the error in the power estimate

depend on the initialization of the random number generator. This is illustrated in Table 4,

which shows the statistics obtained from one thousand McPOWER runs. The minimum,

maximum, and average number of iterations required per run for 5% accuracy with 99%

con�dence are given. Notice that the average number of iterations required to converge does

not increase with the circuit size. This con�rms the dimension independence property of this

approach which, as pointed out in the introduction, is a common feature of Monte Carlo

methods. Also shown in the table are the percentage number of runs for which the error was

greater than 5%, which, as expected, is less than 1% in all cases.

15



Table 3. Power and Time results for the ISCAS-85 circuits.
Time is in cpu seconds on a SUN SparcStation1. McPOWER is
based on 5% error, 99% con�dence, & 2.5�s sampling region.

Circuit Power Cpu Time

Name DENSIM LOGSIM McPOWER DENSIM McPower

c432 0.974 mW 1.165 mW 1.17 mW 0.7 sec 2.5 sec (3.6X)

c499 1.977 mW 2.048 mW 2.13 mW 0.8 sec 2.2 sec (2.8X)

c880 2.086 mW 2.829 mW 2.81 mW 1.4 sec 3.8 sec (2.7X)

c1355 3.695 mW 5.735 mW 5.65 mW 1.9 sec 3.6 sec (1.9X)

c1908 5.154 mW 9.734 mW 9.77 mW 3.1 sec 5.6 sec (1.8X)

c2670 7.319 mW 11.438 mW 11.24 mW 4.5 sec 7.1 sec (1.6X)

c3540 9.235 mW 15.328 mW 15.25 mW 5.8 sec 12.2 sec (2.1X)

c5315 15.471 mW 24.102 mW 23.66 mW 8.5 sec 21.9 sec (2.6X)

c6288 31.941 mW 78.883 mW 75.53 mW 7.5 sec 40.4 sec (5.4X)

c7552 23.156 mW 40.006 mW 38.78 mW 12.4 sec 24.7 sec (2.0X)

Figure 8. McPOWER convergence results for c6288.

Even smaller execution times are possible if the desired accuracy and con�dence levels

are relaxed. Table 5 compares DENSIM to a single run of McPOWER with 95% con�dence,

20% accuracy, and a sampling region of 625 nano-seconds. As in Table 3, each input has a

signal probability of 0.5 and a transition density of 2e7 transitions per second. With these

16



Figure 9. McPOWER convergence results for c5315.

Table 4. Statistics from 1000 McPOWER runs.

Name Min Max Avg %>5% Err Avg Cpu Time

c432 3 15 8.0 0.9% 3.2 sec

c499 3 7 3.9 0.0% 2.9 sec

c880 3 14 6.7 0.4% 3.9 sec

c1355 3 7 4.0 0.0% 4.8 sec

c1908 3 11 5.6 0.3% 10.3 sec

c2670 3 10 5.2 0.1% 12.4 sec

c3540 3 13 6.0 0.0% 18.3 sec

c5315 3 7 4.1 0.0% 22.4 sec

c6288 3 6 3.8 0.0% 50.4 sec

c7552 3 10 5.5 0.0% 44.4 sec

parameters, McPOWER shows competitive speed and still exhibits superior accuracy.

6. Conclusions

We have presented a Monte Carlo based power estimation method. Randomly generated

input waveforms are applied to the circuit using a logic/timing simulator and the cumulative

value of total power is monitored. The simulation is stopped when su�cient accuracy is

17



Table 5. Power and Time results for the ISCAS-85 circuits.
Time is in cpu seconds on a SUN SparcStation1. McPOWER is
based on 20% error, 95% con�dence, & 625ns sampling region.

Circuit Power Cpu Time

Name DENSIM LOGSIM McPOWER DENSIM McPower

c432 0.974 mW 1.165 mW 1.10 mW 0.7 sec 0.7 sec (1.0X)

c499 1.977 mW 2.048 mW 2.04 mW 0.8 sec 0.9 sec (1.1X)

c880 2.086 mW 2.829 mW 2.91 mW 1.4 sec 1.0 sec (0.7X)

c1355 3.695 mW 5.735 mW 5.41 mW 1.9 sec 1.5 sec (0.8X)

c1908 5.154 mW 9.734 mW 9.27 mW 3.1 sec 2.2 sec (0.7X)

c2670 7.319 mW 11.438 mW 10.83 mW 4.5 sec 2.7 sec (0.6X)

c3540 9.235 mW 15.328 mW 14.28 mW 5.8 sec 4.8 sec (0.8X)

c5315 15.471 mW 24.102 mW 22.65 mW 8.5 sec 6.4 sec (0.8X)

c6288 31.941 mW 78.883 mW 71.48 mW 7.5 sec 13.2 sec (1.8X)

c7552 23.156 mW 40.006 mW 37.88 mW 12.4 sec 9.2 sec (0.7X)

obtained with speci�ed con�dence. The statistical stopping criterion was discussed, along

with experimental results from our prototype implementation McPOWER.

We have shown that Monte Carlo methods are, in general, better than probabilistic

methods for the estimation of power since they achieve superior accuracy with comparable

speeds. They are also easier to implement and can be added to existing timing or logic

simulation tools. Furthermore, the accuracy can be speci�ed up-front with any desired

con�dence.

Feedback circuits present a severe problem for probabilistic methods. Monte Carlo meth-

ods are based on simple timing or logic simulation techniques and, therefore, experience very

few di�culties with feedback circuits. The only unresolved problem is to determine the length

of the setup region, but we feel that good heuristics can be developed for this. Future re-

search will focus on developing such heuristics, thus generalizing the Monte Carlo technique

to handle any logic circuit.

Although we have clearly demonstrated the superiority of Monte Carlo methods for

power estimation, it is not clear that they will be better than probabilistic methods for other

applications, such as estimating the power supply current waveforms. Future research will

be aimed at exploring this and other applications of the Monte Carlo approach.

18



References

[1] S. M. Kang, \Accurate simulation of power dissipation in VLSI circuits," IEEE Journal

of Solid-State Circuits, vol. SC-21, no. 5, pp. 889{891, Oct. 1986.
[2] G. Y. Yacoub and W. H. Ku, \An accurate simulation technique for short-circuit power

dissipation based on current component isolation," IEEE International Symposium on

Circuits and Systems, pp. 1157{1161, 1989.
[3] A-C. Deng, Y-C. Shiau, and K-H. Loh, \Time domain current waveform simulation

of CMOS circuits," IEEE International Conference on Computer-Aided Design, Santa
Clara, CA, pp. 208{211, Nov. 7{10, 1988.

[4] M. A. Cirit, \Estimating dynamic power consumption of CMOS circuits," IEEE Inter-

national Conference on Computer-Aided Design, pp. 534{537, Nov. 9{12, 1987.
[5] F. Najm, \Transition density, a stochastic measure of activity in digital circuits," 28th

ACM/IEEE Design Automation Conference, San Francisco, CA, pp. 644{649, June 17{
21, 1991.

[6] C. M. Huizer, \Power dissipation analysis of CMOS VLSI circuits by means of switch-
level simulation," IEEE European Solid State Circuits Conference, pp. 61{64, Grenoble,
France, 1990.

[7] H. J. M. Veendrick, \Short-circuit dissipation of static CMOS circuitry and its impact
on the design of bu�er circuits," IEEE Journal of Solid-State Circuits, vol. SC-19, no. 4,
pp. 468{473, Aug. 1984.

[8] F. Najm, \Transition density, a new measure of activity in digital circuits," To appear

in IEEE Transactions on Computer-Aided Design, 1992.
[9] I. R. Miller, J. E. Freund, and R. Johnson, Probability and Statistics for Engineers.

Englewood Cli�s, NJ: Prentice Hall, 1990.
[10] A. Hald, Statistical Theory with Engineering Applications. New York: John Wiley &

Sons, 1952.
[11] S. M. Ross, Stochastic Processes. New York: John Wiley & Sons, 1983.
[12] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd Edition. New

York, NY: McGraw-Hill Book Co., 1984.
[13] F. Brglez and H. Fujiwara, \A neutral netlist of 10 combinational benchmark circuits and

a target translator in Fortran," IEEE International Symposium on Circuits and Systems,
pp. 695{698, June 1985.

19


