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Abstract-This paper presents an architecture for the efficient 
and high-speed realization of morphological filters. Since mor- 
phological filtering can be described in terms of erosion and 
dilation, two basic building units performing these functions are 
required for the realization of any morphological filter. Dual 
architectures for erosion and dilation are proposed and their 
operations are described. Their structure, similar to the systolic 
array architecture as used in the implementation of linear digital 
filters, is highly modular and suitable for efficient very-large-scale 
integration (VLSI) implementation. A decomposition scheme is 
proposed to facilitate the implementation of two-dimensional 
morphological filters based on one-dimensional structuring ele- 
ments constructed using the dual architectures. The proposed 
architectures, which also allow the processing of gray-scale 
images, are appropriate for applications where speed, size, and 
cost are of critical significance. 

I. INTRODUCTION 
HE major requirement on useful image-analysis or ma- T chine-vision systems is that they be both time and cost 

effective. Accordingly, an important parameter in dynamic- 
vision design is the throughput rate R or the corresponding 
cycle time T, = 1/R. One related issue, then, is the notion 
of real-time capability of the vision system. There are many 
definitions of “real-time” processing for vision. One point of 
view is that: “A real-time system should take at most as 
much time as a human system” [l]. Another definition of 
“real-time image processing” is that: “The processing of 
images be done at a speed, such that the data rate of the 
processed images is the same as that of the input images” 
[2]. In terms of the North American TV standard, this is 
equivalent to the capability of processing image data at the 
TV-camera rate of 30 frames/s or about 10 Mpixels/s. 
However, this is a very demanding constraint for a dynamic 
vision system that usually includes not only the task of image 
processing but also the high-level tasks of image analysis and 
image understanding. 

There already exist a variety of machines that are capable 
of performing high-speed morphological or cellular-logic op- 
erations [3]-[lo]. In general, these machines can be divided 
into two main classes: The first basically comprises two-di- 

mensional (2-D) array processors that operate on an entire 
image or subimage in a set of parallel processes. Examples of 
this type of machine are CLIP [3], MPP [4], and PIXIE-5000 
[5]. In general, all of these machines can also be considered 
as being the single instruction multiple data (SIMD) type. 
The main drawback of 2-D array processors is their cost. For 
example, a 512 x 512 array would require a quarter of a 
million processing elements. In addition, due to the inherent 
serial nature of the input-image data, full utilization of the 
processors may not be attained. 

The second class of machines-local-window proc- 
essors-scan an image and perform operations on a small 
neighborhood window. Examples of such machines include 
MITE [6], PIPE [7], Cytocomputer [8], a structure based on 
convolution and table-lookup [9], and the threshold-decom- 
position realization [lo]. Note that, with this type of proces- 
sor, an increase in image size requires a quadratic increase in 
processor speed in order to maintain a constant frame rate. 

Most of the above local-window processors are general 
purpose in nature in that they are programmable. The only 
exception is the architecture based on threshold decomposi- 
tion [lo]. In particular, the Cytocomputer consists of a serial 
pipeline of programmable neighborhood processing stages, in 
which a single neighborhood transformation is performed in 
each stage of the pipeline [8]. The throughput of the Cyto- 
computer is about 1.6 million 8-b pixels/s and programming 
requires about 1 ms/stage [8]. Although these general-pur- 
pose cellular machines are flexible because of their pro- 
grammability, they are relatively slow and they do not pro- 
vide a cost-effective way of implementing specific morpho- 
logical filters and operators. Hence, as the applications of 
mathematical morphology become more and more special- 
ized, the need for dedicated architectures appears inevitable. 

In this paper, a VLSI architecture based on the idea of 
systolic arrays [ll],  [12] is proposed for high-speed morpho- 
logical image processing. This architecture, which consists of 
two basic building units, does not depend on the image 
structure or size. Rather, it is related to the structure or size 
of the structuring element. Hence, structuring elements for 
various morphological filters or operators can be configured 
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using different combinations of the proposed basic building 
units. This approach is inherently modular so that it provides 
a very system for the imp1ementation Of any morpho- 
logical filter or operator. Furthermore, it is capable of han- 
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architecture, which we call the nonlinear pipeline processor 
(NPP), for high-speed morphological transformations. The 
two basic building units of the NPP-the dilation unit and the 
erosion unit-are presented and their operations are de- 
scribed. This is followed by an analysis in terms of hardware 
complexity, cycle time, and latency. In Section IV, we 
introduce a geometrical decomposition procedure. This pro- 
cedure allows any 2-D structuring element to be decomposed 
into different geometrical combinations of simple 1-D struc- 
turing elements for more efficient implementation. Then a 
comparison with the architecture based on threshold decom- 
position [lo] is given. Section V presents some exemplary 
implementations using the proposed architecture of morpho- 
logical image-analy sis schemes including the morphological 
skeleton transform, the pattern spectrum, and the geometrical 
correlation functions. Finally, concluding remarks are pro- 
vided in Section VI. 

II. BASIC MORPHOLOGICAL TRANSFORMATIONS 
Mathematical morphology provides a very effective tool 

for extracting structural information from image signals. In 
brief, there are two basic steps in an image analysis process 
based on mathematical morphology: a geometrical transfor- 
mation and then a measurement. Let X denote the image 
signal under study. According to the procedure indicated 
above, any morphological operation consists of first a trans- 
formation A (by a preselected structuring element B )  from 
one domain to another, followed by a measure I.L [13] (see 
Fig. 1). Examples of transformations A are opening, bound- 
ary extraction, and skeletonization. The measurement 
p[A( X)] is a number that can be a quantity representing 
weight, area, volume, etc. Hence, quantitative information 
about size, shape, spatial distribution, connectivity, convex- 
ity, and orientation can be obtained by geometrically trans- 
forming the object representation using different structuring 
elements and subsequently making an appropriate measure- 
ment. 

The four most basic morphological transformations are 
dilation, erosion, opening and closing. Binary morphological 
transformations apply to sets of any dimension, whether they 
constitute a Euclidean n-space E" or its discrete or digitized 
equivalent, an integer n-space Z". For simplicity's sake, E" 
is used here to refer to either of the two spaces. Hence, if X 
and B are sets in E", then their elements are x = 
( x I ; - * ,  xn) ,  and b = ( b , , . . . ,  bn),  respectively. Also note 
that the definitions of dilation and erosion used here are based 
on those by Haralick et al. [14], which are slightly different 
from those by Serra [13]. 

A. Dilation and Erosion 
Let us begin with by definiting binary dilation: Binary 

dilation is the morphological transformation that combines 
two sets using the vector sums of set elements. 

Definition I :  Let X E E". The translation of X by b is 
denoted by ( X ) ,  , and is defined by 

( X ) , =  { z ~ E " I z = x + b f o r x ~ X } .  (1) 

Definition 2: Let X C E" and B C E". The binary dila- 
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Fig. 1.  The methodology of mathematical morphology. 

tion of X by B is denoted by X o B and is defined by 

X o B =  { z E E " I z = x + b f o r x E X a n d b E B } .  (2) 

According to the above definitions, we may also write 

X e B =  U ( X ) , .  (3) 
beB 

Erosion is the morphological dual of dilation (or its com- 
plementary operation). For binary images, erosion is a mor- 
phological transform which combines two sets using the 
vector differences of set elements. Erosion is sometimes 
referred to as ''shrinking" in the image-processing literature. 

Definition 3: Let X _C E" and B C E". The binary ero- 
sion of X by B is denoted by X e B and is defined by 

(4) X e B = { z e E " )  z + b e X  for b E B } .  

Similarly, erosion can also be defined as 

x e  B =  n ( x ) ~ , .  ( 5 )  
bcB 

Gray-scale dilation and erosion are defined in a rather 
different way than their binary counterparts. Let us begin by 
definiting gray-scale dilation by introducing the concepts of 
surface of a set and the umbra of a surface in Euclidean n 
space. For a set X, the top surface of X is a function 
defined on the projection of X onto its first ( n  - 1) coordi- 
nates. For each (n - 1)-tuple x ,  the top surface of X at x is 
the highest value y ,  such that the n-tuple ( x ,  y )  E X .  For a 
digital space, a similar idea is used, but in this case, the 
supremum operation is converted into a maximum operation. 

Definition 4: Let X 2 E" and F = ( x e E " - '  I for some 
y E E, ( x ,  y )  E X } .  The top surface of X ,  T [  XI :  F + E, is 
defined by [14] 

T [  X ] ( x )  = max { y  1 ( x ,  y )  E X } .  ( 6 )  

Definition 5: Let F C E"-' and f :  F + E.  The umbra 
of f ,  U[ f 1, U[ f 3 C F x E ,  is defined by [14] 

This implies that the umbra of a function f is a set consisting 
of the surface f and everything below the surface. Hence, a 
function can be considered as the top of its own umbra. 
Having defined the operations of finding the top surface of a 
set and the umbra of a surface, we can now define gray-scale 
dilation. 

Definition 6: Let F, G G E"-' and f: F +  E and g :  
G 4 E. The gray-scale dilation of f by g is denoted by 
f o g ,  f o g :  F o G + E ,  and is defined by 
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Hence, the gray-scale dilation of two functions is defined as 
the top surface of the dilation of their umbras. 

Erosion is the morphological dual of dilation. The defini- 
tion for gray-scale erosion follows in a similar way to the 
definition of gray-scale dilation. 

Definition 7: Let F , G  C E"-' and f :  F +  E and g :  
G -, E. The gray-scale erosion of f by g is denoted by 
f e g ,  f e g :  F e  G + E,  and is defined as 

(9) 

B. Opening and Closing 
In many applications, erosion and dilation are usually used 

in sequence. These types of iterative operations are known to 
have the characteristic of preserving global geometric struc- 
tures of the unsuppressed features. That is, only specific 
image details, which are smaller than the structuring element, 
are eliminated. Specifically, the opening of X by B,  XoB,  
is defined as the eroding of X by B and then dilating the 
result by B,  i.e., 

Definition 8: The opening of an image X by a structuring 
element B is denoted by X o  B and is defined by 

XoB = ( X  e B )  Q B .  (10) 
Geometrically, the opening smooths the contours of X ,  
cutting the narrow isthmuses, and suppressing the small 
islands and the sharp capes of X. Its dual operation is 
closing, which is denoted X o B ,  and is defined as the 
dilating of X by B and then eroding the result by B, i.e., 

Definition 9: The closing of an image X by a structuring 
element B is denoted by X o  B and is defined by 

X o B = ( X e B ) e B .  (11) 
By duality, closing blocks up narrow channels, small 

holes, and thin gulfs of X. One important property of 
morphological opening and closing is that they are idempo- 
tent, meaning that successive openings or closings by the 
same structuring element do not alter the result after the first 
application. 

Gray-scale opening and closing are defined in an analogous 
way to opening and closing in the binary case. Specifically, 
the gray-scale opening of f by the structuring function g ,  
f o g  , is defined as the eroding of f by g and then the dilating 
of the result by g ,  i.e., 

f o g  = ( f  e g )  Q g .  (12) 
Its dual operation is closing, which is denoted f g ,  and is 
defined as the dilating of f by g and then eroding the result 
by g ,  i.e., 

f o g  = ( f  g )  e g .  (13) 
Note that the idempotent property of binary morphological 
opening and closing also holds for the gray-scale case. 

LU. NONLINEAR PIPELINE ARCHITECTURES 

In this section, a systolic-array-based architecture, called 
N P P ,  as defined earlier, is proposed for performing morpho- 
logical operations. Since the basic operations in mathematical 

morphology are dilation and erosion, it is necessary only to 
construct two basic building blocks-the dilation unit and the 
erosion unit. Thereafter, any other morphological operation 
can be implemented using these two basic building blocks 
plus other appropriate logic gates. One advantage of this 
approach is that maximum utilization of processing elements 
is attained through reuse inherent in the pipelined nature of 
the architecture. Another advantage of the proposed architec- 
ture is that it is well suited for VLSI implementation. 

A .  Gray-Scale Architectures 
In the previous section, the concept of the surface of a set 

and the related concept of the umbra of a surface are used to 
define gray-scale morphological operations. These defini- 
tions, however, do not provide us with efficient ways of 
computing gray-scale dilation and erosion. In this section, 
alternative definitions of gray-scale morphological transfor- 
mations are employed that will lead to more practical struc- 
tures. 

From Section 11, it was shown that gray-scale dilation ((8)) 
can be computed by taking the top surface of the dilation of 
the umbras of the image f and the structuring function g .  
However, according to the definition of top surface, basically 
this is equivalent to performing a maximum operation. 
Specifically, if we apply the definitions of binary dilation (3) 
and umbra (7) in (8), after some algebraic manipulation, it 
can be shown that gray-scale dilation is equivalent to taking 
the maximum of a set of sums [14]. 

Proposition 10: Let f :  F + E and g :  G -, E. Then 
f Q g :  F e G + E can be computed by 

( f  @ g ) ( 4  = mm { f ( X  - 2 )  + g ( z ) )  

V Z E G ,  x - Z E F .  (14) 

Proposition 10 leads naturally to what we call a direct-form 
implementation of gray-scale dilation. The direct-form repre- 
sentation implies that gray-scale dilation can be modeled 
using a structure similar to that employed in linear digital 
filtering. The exception is that in this case the operations 
involved are shifting, addition, and maximum, instead of the 
operations of conventional convolution, i.e., shifting, multi- 
plication, and addition as used in linear digital filtering. 

The direct-form structure described by (14) is shown in 
Fig. 2(a). However this structure is still not practical for 
VLSI implementation due to its inherent reliance on nonlocal 
data transfers. Hence, in the process of creation of the 
architectures to be described here, it was conjectured that by 
localizing the data transfers, a more practical structure could 
be created. One result, based on the idea of systolic arrays as 
used in linear digital filtering, is proposed here. A diagram of 
such a structure, which we call a dilation unit, is shown in 
Fig. 3(a). A cascade of identical dilation units can be used to 
implement a dilation operation. 

As seen from Fig. 3(a), the dilation unit is composed 
basically of four single-stage b-b shift registers, one adder, 
and one comparator. Due to the pipelined nature of these 
units, the cycle time T, of this architecture is determined by 
the longest operation undertaken between two shift-register 
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utput characteristic of the NPP, an extra bit is needed to accommo- 

date the initial conditions of + 1 and - 1 for the dilation and 
erosion units respectively. In other words, for signal levels 
equal to 2'-', a wordlength of b-b is required for the 
hardware components. 

The rationale underlying the erosion unit is similar to that 
of the dilation unit: The structure derives from the direct-form 
representation for gray-scale erosion. As for dilation, this is 

output created by applying the definitions of binary erosion and 
umbra to (9). After some algebraic manipulation, it can be 

mum of a set of differences. In fact, we can think of erosion 
as equivalent to correlation, where the summation operation 
is replaced by a minimum operation, and multiplication be- 
comes subtraction. 

The corresponding direct-form representation for gray- 
scale erosion is given by the following proposition [14]: 

Proposition 11: Let f: F + E and g: G + E. Then 
f e g: F e G -+ E can be computed by 

( f e g) ( x ,  = min { f ( 

utput 

(a) (b) 

Input 

utput 

(C) (4 

binary dilation unit. (d) A binary erosion unit. 
Fig, 3, (a) A gray-scale dilation unit. (b) A gray-scale erosion unit, (c) A shown that erosion is equivalent to taking a mini- 

elements. In this case, it is equal to one addition time, or, 
more precisely, to one comparison time, since the compara- 
tor is implemented using an adder plus other logic. Hence, 
the cycle time, TP = To + Tpd, where Tu is the time for one 
addition, and Tpd is the propagation delay of a logic gate. 
This implies that very high throughput rates can be attained 
after an initial latency period required to fill up the pipeline. 
Furthermore, it is easily shown that the latency of this 

-k ') - ( ') 1 
v Z E G ,  x + Z E F .  (15) 

pipeline architecture is given by TP = ( N  + 3)Tc, where N 
is the length of the structuring function. 

The block diagram of an exemplary system, which imple- 
ments a 1 X 3 structuring function for gray-scale dilation, is 
depicted in Fig. 4. The operations of the associated morpho- 
logical transformation are described in the space-time dia- 
gram of Table I. It is assumed that both the input signal f 
and the structuring function g are represented in two's-com- 
plement code, and are bounded between -0.5 and 0.5. That 
is, -0.5 5 f < 0.5 and -0.5 I g < 0.5. Note that unlike a 
similar linear structure proposed in [15], the proposed non- 
linear structure will not produce the correct initial output by 
simply using zero initial conditions and setting the registers 
to their zero state. The main difficulty is to ensure that the 
initial output samples, such as fo + go (see Table I), are 
propagated to the output register without alteration by the 
comparators. For example, if the initial value of the register 
R,,, X in Table I (row 4, column 8), is larger than fo + go, 
then the correct value fo + go will not be propagated to the 
next stage and an erroneous output will result. Note that this 
problem is an initial transient and does not exist once the 
NPP is totally filled. 

One solution is to ensure that the initial value of all the 
X's  is less than that of the correct comparand. This can be 
done (for example) by setting the initial state of all the 
registers to - 1 and restricting the signal range between 
-0.5 and 0.5. In this situation, the maximum value of X is 
-0.5, which is the minimum value of the signal range. The 
only problem with this solution is that overflow may occur if 
a component of the structuring function gi is negative. This, 
however, can be circumvented by detecting the Occurrence of 
overflow, and using the overflow information to set the 
output of the appropriate registers (e.g., R, , ,  R,,, and R,,) 
to their minimum value. The additional hardware required to 
handle this problem is fairly simple and involves only the use 
of a few logic gates. Note also that because of this nonlinear 
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Fig. 4. An NPP implementation of a 1 x 3 structuring function for gray- 
scale dilation. 

TABLE I 
A SPACE-TIME DIAGRAM FOR GRAY-SCALE DILATION USING THE NPP OF FIG. 4 

hput R I ,  R I ,  RI, RI4 R22 Rz3 R X  R31 R 3 2  R33 R M  

-1 -1 -1 -1  -1  -1 
-1 - 1  - 1  x - 1  -1 

X x - 1  - 1  x X 
X X X 

fo - 1  - 1  - 1  -1 -1 -1 - 1  
f i  fo - 1  x - 1  - 1  - 1  x 
f2 f l  fo f o + g o  - 1  - 1  - 1  x 
f3 f2 f l  fl + g o  - 1  fo - 1  x f o + g o  -1  - 1  
f4 f 3  fz f 2  +go - 1  fl fo fo + g ,  f l  + g o  - 1  - 1  x fo + go x 
f, f4 f 3  f 3  + g o  - 1  f 2  f1 f l  + g, f 2  + g o  f o  - 1  MAX fo + go 
f 6  fs f4 f4 + go - 1  f 3  f 2  f 2  + g, f 3  + g o  f l  fo fo + g2 MAX* -3  
f7 f6 f, fs + g o  - 1  f4 f3 f 3  + g, f 4  + g o  f2 f l  f l  + g2 MAX4 MAX5 
fe f7 fp f 6 t g O  y 1  fs f 4  f 4 t g l  f 5 t g o  f3  f2 f 2 t g 2  Me6 Me7 

where 
MAX 1 = U [ f o  + g l ,  f i  
MAX 2 = = tf* + go, fl + gi1 
M A X 3 = M A X l  
MAX 4 = m a x t f z  + g l ,  f 3  + 801 
MAX 5 = ~MX[MAX 2, fo + g21 
MAX 6 = t f 3  +&‘I, f 4  +go]  
MAX 7 = =[MAX 4, f1 + g2I 
X = “don’t care” condition. 

go] 

The block diagram of the direct form implementation of 
erosion is depicted in Fig. 2(b). Note that this is very similar 
to the one for dilation wherein maximum operations are 
replaced by minimum operations, and additions become sub- 
tractions. Note also that the order of the structuring function 
gi is reversed. Similarly, based on the systolic-array idea, a 
pipelinable unit, which we call an erosion unit, is derived. 
The internal structure of such a unit is shown in Fig. 3(b). 

As Fig. 3(b) shows, the erosion unit is composed of four 
single-stage b-b shift registers, one adder, and one compara- 
tor. The cycle time in this case is the same as that for the 
dilation unit, i.e., T,’ = T, + Tpd. The corresponding la- 
tency is Tf = 2( N + 1) T,‘. Note that latency for the erosion 
unit is always greater than that for the dilation unit. This 
follows, since erosion, being a shrinking operation, will 
require a longer delay for the appearance of the first output 
data (of the shrunken object). 

Similarly, the block diagram of an exemplary system that 
implements a 1 x 3 structuring function for gray-scale ero- 
sion, is shown in Fig. 5 .  The operations of this erosion 
transformation are described in the space-time diagram of 
Table II. In this case, the initial state of all the registers are 
set to + 1. Again, this is done to ensure that the initial 
samples (f,, - g, and MIN 3), which appear at the output 
port before the NPP is filled, are correct. Also, a b-b 
wordlength is required for the hardware components to 
achieve 2 b- signal levels. 

B. Binary Architectures 
The precision of the dilation unit is b b. If b is equal to 1, 

the structure should degenerate into a binary dilation unit. 
However, this is not the case here because of the nonlinear 
character of morphological operations, Unlike linear-filter 
structures, where superposition holds at the bit level, gray- 
scale morphological operations do not obey this law. Instead, 
they satisfy a different superposition property called threshold 
decomposition [ 161, [ 171. Specifically, f ’( m) , the threshold 
decomposition of a 2 levels sequence of length L, is the set 
of binary sequences 

1, i f f ( m )  r i  
0, i f f ( m )  < i ( 16) f i ( m )  = 

where 1 5 m 5 L and 1 5 i I 2 b  - 1.  This property al- 
lows gray-scale signals to be decomposed into multiple bi- 
nary signals. Since the gray-scale signals in our case are not 
threshold decomposed, it is not surprising that the degener- 
ated structure does not correspond to a binary structure. 
However, we show in Section IV that this approach is more 
efficient than the threshold-decomposition realization of [ 101 
for gray-scale morphology, especially for cases when the 
wordlength b is large. 

Although the architecture of Fig. 3(a), (b) does not apply 
directly when b = 1, a binary structure can be obtained by 
simply replacing the adder by an AND gate and the compara- 
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Fig. 5. An NPP implementation of a 1 x 3 structuring function for gray- 
scale erosion. 

tor by an OR gate. The resulting arrangement becomes a 
binary equivalent of the gray-scale dilation unit. We call this 
a binary-dilation unit and its internal structure is depicted in 
Fig. 3(c). In this case, the cycle time reduces to simply one 
gate delay, i.e., Tp = Tpd, where Tpd is the propagation 
delay of a single logic gate. 

Corresponding to the dilation situation, a binary-erosion 
unit can be constructed based on the configuration of Fig. 
3(b) in which the subtractor is replaced by an OR gate with a 
complement input for the corresponding component of the 
structuring element, and the comparator (minimum) is re- 
placed by an AND gate. The internal structure of the result- 
ing binary erosion unit is shown in Fig. 3(d). Special atten- 
tion should be given here to whether the zeros of the structur- 
ing element imply a “don’t care” condition or not. If zero 
does not imply a “don’t care” condition, then the erosion 
units should be modified. The modification can be done by 
simply replacing the OR gate with an XNOR gate. In either 
case, hardware cost is drastically reduced, while the cycle 
time is also reduced to one gate propagation delay, i.e., 
T,’ = Tpd. 

C. Analysis 
In this section, the hardware complexity and the through- 

put analysis of the proposed architecture are presented. 
Specifically, a cost function is developed for making quantita- 

tive comparisons between different digital implementations. 
This cost function provides an efficient tool allowing different 
implementations of the same algorithm, and different algo- 
rithms for the same function, to be compared. The cost 
function is chosen to reflect the functional design or logic 
design independently of the technology used as accurately as 
possible. This implies that technology issues can be intro- 
duced separately in designing a practical system. Certainly 
the only true comparison is one in which the details of the 
implementing technology are incorporated. 

Let us begin with hardware complexity. Assume that the 
precisions of both the input and output signals are b b. Since 
only addition and comparison operations are performed, the 
internal precision can also remain as b b. Also assuming that 
full-carry-lookahead adders are used, the typical number of 
logic gates for such an adder is approximately 12 b + 1 [ 181. 
Hence, for the implementation of a 4-b full-carry-lookahead 
adder, a total of approximately 49 logic gates is required. A 
basic magnitude comparator can be constructed using an 
adder and a complementer [19]. However, since only the 
carry-out bit of a full adder is required to determine the 
magnitude of the two comparands, the logic gates related to 
the sum output can be eliminated. Hence, a simpler compara- 
tor can be constructed using a modified full adder and a 
maximum selector. Specifically, the carry-out signal of the 
modified adder will be used to control the maximum selector. 
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The logic gate count for this comparator is estimated as 
(121, + 1)(2/3) + b = 9 b  where the factor of 2/3 accounts 
for the deletion of the summing gates, and b is the gate count 
for the maximum selector which can be constructed using a 
simple pass transistor. The b-b parallel-access latches are 
assumed to have a gate complexity of 10b logic gates [20]. 

According to the foregoing discussion, the complexity of 
the proposed dilation or erosion unit is given approximately 
by C = 12b + 1 + 9 b  + 4(10b) = 61b + 1. Using a 1 x 
9 structuring element with b = 8 as an example, the logic- 
gate count is approximately equal to (61(8) + 1)(9) = 4401. 
Assuming that both the input signals and the structuring 
functions have the same number of gray-levels, the complex- 
ity functions C are shown in Fig. 6 in relation to the size of 
the 1-D structuring function for different gray levels. Note 
that the graphs of Fig. 6 apply to both the dilation and the 
erosion structures since they have basically the same hard- 
ware configuration. Also the hardware complexity is directly 
a linear function of both the precision b and the structuring 
function size N.  

The cycle times of the proposed gray-scale and binary 
architectures for both dilation and erosion have been deter- 
mined in the previous section. Specifically, for gray-scale 
dilation or erosion, T, T, + T/ where T, is the addition 
time and T, is the latch delay time. For the corresponding 
binary units, the cycle time reduces approximately to T, = 
2Tpd + T, where Tpd is a logic-gate propagation delay. 

If we consider a 1.5-pm CMOS technology, the typical 
dynamic D latch has a delay of around 4ns including setup 
( - 1.4 ns) and hold times (- 0 ns). The propagation delay 
of a logic gate is approximately 1.5 ns. Hence, if b = 8, the 
logic-gate depth of a carry-look-ahead adder is about 10 [18], 
this implies an internal throughput rate of 1 /( 10( 1.5 ns) + 4 
ns) Q 50 MHz. For the binary unit, an internal throughput 
rate of up to 1/(2(1.5 ns) + 4 ns) z 140 MHz is possible. 
These high throughput rates can be attained after an initial 
latency period required to fill up the pipeline. It has also been 
shown that the latency of the NPP for dilation is TP = ( N  + 
3)Tc, where N is the length of the structuring function. The 
corresponding latency for the erosion module is Ti? = 2 ( N  

The cycle time and the latency for both the dilation and 
erosion structures, as a function of the size of the structuring 
function, are shown in Fig. 7. Subscripts c and 1 stand for 
cycle time and latency, while the superscripts gd, ge, bd, 
and be stand for gray-scale dilation, gray-scale erosion, 
binary dilation, and binary erosion, respectively. Note that 
the cycle time is independent of the size of the structuring 
function for both the gray-scale and binary structures. How- 
ever, the latency is a linear function of the size of the 
structuring function. 

+ l)Tc. 

IV. 
In morphological image processing and analysis, the struc- 

turing elements are usually two dimensional. In particular, in 
the implementation of morphological shape descriptors such 
as the skeleton transform, the pattern spectrum, and the 
geometrical correlation functions, the requirement is for re- 

IMPLEMENTATION OF 2-D STRUCTURING ELEMENTS 

/ 
21000t P / 
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Size of structuring humion 
3 

Fig. 6. Complexity of the dilation or erosion unit versus size of 1-D 
structuring function at a different gray level. 
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Fig. 7.  Cycle time T, and latency T, of the dilation and erosion unit versus 
the size of a 1-D structuring function. 

peated operations with a structuring element of increasing 
size or scale. Hence, a means of decomposing a complex 
structuring element into a few simpler structuring elements 
will help to reduce hardware complexity, as well as imple- 
mentation cost. In this section, we describe the implementa- 
tion of 2-D structuring elements based on the proposed NPP, 
as well as the issue of efficient decomposition of 2-D structur- 
ing elements. Then a comparison is made to the threshold-de- 
composition realization [ 101 in terms of hardware complexity 
for 2-D structuring elements. 

A 2-D structuring element can be implemented by using a 
2-D extension of the proposed NPP. This 2-D NPP basically 
comprises a parallel combinations of 1-D NPP’s. For exam- 
ple, the structure of a NPP implementation of a 2-D structur- 
ing element for dilation is depicted in Fig. 8 where Bk,, 
denotes either a gray-scale or binary dilation unit (see Figs. 
3(a) or 3(c)). This structure assumes that all the delayed 
samples of the input Xi,  are available at the input of the 
individual NPP. This can be realized by using (K - 1) 
N-stage b-b shift registers where K is the number of parallel 
1-D NPP’s, and N is the number of samples in a scan line, 
or, equivalently, the horizontal dimension of the input image. 
The output of the 2-D NPP dilation is obtained by ORing the 
outputs from the individual 1-D NPP’s. The total processing 
time required for these logic operations is log, K. If K is 
large, multiple-input OR gates may be used. Alternatively, 
each of these output OR gates may be pipelined to reduce the 
effective cycle time. 

The structure for the implementation of 2-D erosion is 
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similar to that of Fig. 8. One difference is that the output OR 
gates are replaced by AND gates in this case. The corre- 
sponding structure is shown in Fig. 9. It should be noted that 
the erosion units are arranged in an order that is reversed 
compared to the dilation structure of Fig. 8. This is necessary 
for the implementation of the 1-D NPP in which the erosion 
units are pipelined in reverse order. Thus, this is simply the 
2-D extension of the 1-D configuration. Furthermore, the 
boundary of the input image can be handled effectively by 
simply surrounding the image with fixed-value pixels that 
may be discarded after processing. 

The hardware complexity of the architecture based on the 
proposed systolic array is on the order of K x L where K 
and L are the maximum sizes of the structuring element in 
the vertical and horizontal directions. When either K or L is 
large, the hardware size, i.e., the number of erosion and 
dilation units, increases very rapidly and makes the imple- 
mentation unattractive. Thus, in order to reduce the size of 
2-D morphological filters of large dimension, an approach 
based on geometrical decomposition of structuring elements 
is proposed. 

The idea of geometrical decomposition is very similar to 
that of the matrix decomposition used for 2-D linear digital 
filters [15], [21] and nonlinear digital filters [22]. In that 
case, the kernel matrix of a 2-D digital filter is decomposed 
into a finite and converging sum of other block matrices. It is 
shown that these matrices can always be decomposed into a 
product of 1-D polynomials, each one of which is a function 
of one variable only [21]. Thus the 2-D implementation 
problem is reduced to a set of 1-D problems. 

As noted, in morphological image processing, the notion 
of structuring element is analogous to that of the kernel 
matrix of 2-D linear digital filtering. Therefore, if a complex 
structuring element can be decomposed into the Minkowski 
sum of several much simpler 1-D structuring elements in this 
case, the 2-D morphological image-processing problem can 
again be reduced to a 1-D problem. A large number of 
practical and useful structuring elements can be decomposed 
geometrically in the Minkowski sense. In this work, we 
propose the following decomposition structure that can be 
used to realized any structuring element in the digital space 
Z 2  : 

Proposition 12: Suppose that B is a structuring element 
in Z 2 .  It is possible to decompose B geometrically into the 
following form: 

r n ~  

(17) 

where U denotes set union and each Bij may be chosen as a 
1-D substructuring element. In fact, if B is continuous and 
convex, it is infinitely decomposable, i.e., 

Proposition 12 can be thought of as a generalization of the 

idea of parallel and serial decompositions [13]: 
Parallel Decomposition: 

x e ( B ,  U * .  * U B,) = ( X  (B B , )  U * * .  U (x e B M )  
( 1 9 4  

(19b) 
x e  ( ~ , u . . . u ~ , ) = ( x ~ ~ , ) n . . . n ( x e ~ , )  

Serial Decomposition: 

X @  ( B ,  e . . -  e B,) 

xe ( B ,  e . * .  (B B,) 

= ( - - e  ((xe B, )  a B,) - - -  e B,) (20a) 

= ( * . *  ( ( X  e B,) e B,) e B M ) .  (20b) 

Note that the equations above also apply when X and B are 
gray-scale signals. Hence, the decomposition in (19) corre- 
sponds to the case of Ni = 0, 1 5 i 5 m in (17), whereas 
the decomposition in (20) corresponds to the case of m = 1 
in (17). However, the advantage of using (17) is that it allows 
the decomposition of nonconvex structuring elements that 
contain certain substructures that can be decomposed serially 
via (20). 

Finally, the proposed NPP realization is compared to the 
threshold-decomposition realization in terms of hardware 
complexity. A criterion based on the number of gates re- 
quired to implement a n x n structuring element is used for 
comparison. The results are tabulated in Tables III and IV for 
dilation and erosion transformations, respectively. Note that 
the NPP realization is different from the implementation of 
[lo] where the complexity, as measured by the number of 
logic gates for gray-scale erosion, is always about twice the 
number for dilation. It is found that the hardware complexity 
of the threshold-decomposition approach increases in an ex- 
ponential fashion for large values of the signal precision b. 
On the other hand, as we have seen, the hardware complexity 
of the NPP approach increases only linearly. Nevertheless, 
for small values of b, the hardware complexity of the 
threshold-decomposition realization is slightly less than that 
of the NPP realization. However, it should be noted that the 
structure based on threshold decomposition is not regular due 
to the extensive routing required to access data in different 
internal storage registers (see Fig. 6 of [lo]). In addition, if 
the size of the structuring element changes, the routing has to 
be changed completely, and additional logic gates, which 
must be added to the layout, might require extensive rewiring. 
This, then, does not allow modular expansion of the architec- 
ture once a particular size of structuring element is imple- 
mented. In the case of the NPP realization, structuring-ele- 
ment-size changes can be handled very easily by simply 
appending additional units to the original structure, and no 
rerouting is required. 

V, SOME IMPLEMENTATION EXAMPLES 
A .  Morphological-Skeleton Transform 

Let us begin with the morphological-skeleton transform. A 
skeleton of a binary object is defined to consist of the loci of 
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Fig. 8. An NPP implementation of a 2-D structuring element for dilation. 
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Fig. 9. An NPP implementation of a 2-D structuring function for erosion. 

TABLE III 
A COMPARISON OF HARDWARE COMPLEXITY FOR GRAY-SCALE DILATION 

Approx. No. Threshold Decomposition 
of Gates Realization [lo] NPP Realization 

structuring Bits of Gray Level Bits of Gray Level 
Element Size 4 6 8 4 6  8 

3 x 3  1214 20.2K 326.7K 2205 3303 4401 
4 x 4 2054 34.3K 555.1K 3920 5872 7824 
5 x 5  3134 52.53 848.9K 6125 9175 12.2K 

TABLE Iv 
A COMPARISON OF HARDWARE COMPLEXITY FOR GRAY-SCALE EROSION 

A structure for implementing the algorithm above is de- 
picted in Fig. 10. Each of the dilation and erosion modules of 
Fig. 10 can be implemented using various combinations of 
the respective dilation and erosion units presented in Section 
III. Of course, the types of combination depend on the shape 
of the structuring element. A more efficient architecture can 
be achieved if the structuring element is decomposable (using 
(17)). Since X e mB is always larger than (X e mB)oB in 
(21), the set difference can be implemented using XOR gates, 
provided that proper synchronization is maintained. 

B. Pattern Spectrum 
Approx. No. Threshold Decomposition 

NPP Realization 

Structuring Bits of Gray Level Bits of Gray Level 
Element Size 4 6 8 4 6  8 

The second example is the implementation of pattern spec- 
trum (or pecstrum). The pattern spectrum of a binary image 
is given by the following equation C241, 1251 : 

P ( m )  = Mes [ XomB] - Mes [ X o ( m  + 1)B]  

Realization [ 101 of Gates 

3 x 3 2294 38.4K 620.4K 2205 3303 4401 
4 x 4 3974 66.6K 1077.4K 3920 5872 7824 m = 0 , 1 ; . . , M  (22) 
5 x 5 6134 102.9K 1664.9K 6125 9175 12.2K 

where M = min { m: XomB = 0}, and Mes denotes the 
measure, which is assumed to be the area in this case. Since 
XomB is always larger than Xo(m + 1)B, the subtraction 
can be replaced by set difference if proper synchronization is 
maintained. In that case, (22) becomes 

the centres of the maximally inscribable disks in the object. 
The skeleton S K ( X )  of a binary image X is defined as the 
union of the loci S,(X) ,  m = 1 , -  * * ,  M of the maximally 
inscribable disks mB of radius m [23]. The formula for 
S K ( X )  and S J X )  are given as follows: P ( m )  = Mes [ XomB \ X o ( m  + 1)B] 

m = 0 ,  l ; . . ,  M .  (23) 
The implementation described by (23) is shown in Fig. 1 1 .  

M 
U ( X  e mB) ‘ [ ( X  e mB>OB] (21) 

where M = max { m: X e mB # 0) and \ denotes set 
difference. 

The setdifference can be implemented by a simple XOR gate 
as in the skeleton transform. Each of the erosion and dilation 
modules in Fig. 1 1  can be implemented using different 
combinations of the proposed binary erosion and dilation 
units. If the structuring element B is a “line” (i.e., 1-D), 

= 
m=O 
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Fig. 10. An implementation of the morphological-skeleton transform. 

(X OMB ) QMB 

Fig. 11. An implementation of the pattern spectrum. T = delay element, 
C = counter. 

the structure of the module becomes a simple cascade of the 
appropriate units. As Fig. 11 shows, the value of the pec- 
strum, P(m)  is given by the output of the corresponding 
counter. The delay elements used around the XOR gate are 
for synchronization purposes. The number of unit delays N,,, 
(see Fig. 11) depends on the shape of the structuring element. 
For example, if a line structuring element of length N is 
used, N,,, = (M - rn)[TP + T 3  = (M - rn)[3N + 51. In 
general, the discrete-pecstrum calculation requires that only a 
small number of openings be performed before one of them 
reduces the measure to zero. 

C. Geometrical Correlation Functions 
The third example is the implementation of the geometri- 

cal correlation functions (GCF’s) [26], [27]. The family of 
GCF’s has been shown to possess very interesting character- 
istics that are very useful for shape representation and recog- 
nition. Specifically, the GCF, K,(h)  of a binary image 
signal X is given by the following equation: 

Mes [ X e Bf’] 
Mes [ Y]  

K , ( h )  0 5 q5 < ?r (24) 

where Bf‘ is a structuring element that is composed of two 
single points separated by a distance h at an angle q5 relative 
to 0” , Mes [ X I  is a measure that is defined as the digital area 
of the image X, and Y is a predefined standard binary shape 
(e.g., a square of size 200 x 200 pixels). The structuring 
element Bf’, in fact, is an example of nonconvex structuring 
elements. The GCF can be restricted to a particular direction, 
for instance, horizontal. In this situation, the unnorrnalized 
GCF becomes 

K , ( h )  = Mes [ X e S ( h ) ]  h = 0 , 1 , 2 ,  (25) 

and the structuring element is given by 

s ( h )  = (1* . * -  *1) (26) 
where h is the distance separating the two “1” elements and 
* denotes a “don’t care” condition. One decomposition 
based on (17), that allows repeated applications of structuring 
elements of increasing size, as well as ease of implementa- 
tion, is described as follows: Let 

A , =  1 ,  B o = l  (274 

A, = 1* B, = *l. (27b) 

(284 

Then s(h) can be written as 

s(0) = A, or Bo 

~ ( h )  = {Ah- . ,  e A , }  U {Bh-i BI) h 2 1 (28”) 

where A, = A,,- ,  e A, and B, = Bhp1 e B,. Hence, 
substituting (28) into (25) yields 

K,(O) = Mes [ X e A,] = Mes [ X] (29a) 

K o ( h )  = Mes { [ X e A , - , ]  e A , )  

n { [ x e  B , - ] ]  e ~ , } h  L 1. (29b) 

Equation (29) can now be implemented using the structure 
depicted in Fig. 12. All of the modules Af of Fig. 12 are 
identical due to the decomposition of (28). The same applies 
to all modules Bf. Each of these two module types can be 
implemented using an NPP that consists of a cascade of two 
binary erosion units of Fig. 3(d). Consider the processing of 
a 512 x 512 image for a 200-point GCF with M = 20: The 
total processing time, Tp = 200/M x 512 x 512 x Tpd = 
10 X 512 x 512 X 1 ns = 2.62 ms, which is well below the 
1/30 s (or 33.3 ms) constraint for video-rate processing. 
This, of course, also assumes that an input frame buffer is 
available so that the output samples from the final output port 
(the right-most AND gate) can be circulated back to the input 
for further processing. 

The operation of the morphological correlator of Fig. 12 is 
described by example, as follows. Consider an input X = 
1011100 where we want to calculate the first two points of 
the GCF starting at h = 1. According to (26), the two 
structuring elements are given by s( 1) = 11 and s(2) = 1 *1, 
respectively. From (28b), we have 

X e s(1) = X e ( A ,  U B , )  = ( X  e A , )  n ( X  e B l ) .  
(30) 
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Substituting X = 1011100 into (30) yields 

X e ~ ( 1 )  = ( X  e A , )  n ( X  e B , )  

= 1011 n 0111 = 0011 (31) 

which is the expected result. Now let us proceed to calculate 
X e s(2), which is given by 

x ~ s ( ~ ) = ( ( x ~ A , ) ~ A , ) ~ ( ( x ~ B , ) ~ B , ) .  

(32) 

Equation (32) implies that X e s(2) can be obtained by 
eroding the previous results, X e A, and X e B,, one 
more time. The output of these operations is given by 

x e  4 2 )  = io1 n 111 = 101. (33) 

Bi 
1- - 

VI. SUMMARY 
In summary, this paper has presented high-speed and 

modular nonlinear pipeline architectures for the efficient VLSI 
implementation of gray-scale and binary morphological filters 
or operators. Two standard building units-the dilation unit 
and the erosion unit-can be used to realize any required 
morphological transformation. This approach provides a very 
cost-effective way of designing dedicated morphological fil- 
ters for image processing, as well as morphological operators 
for image analysis. The advantage of the systolic approach 
suggested is that maximum utilization of processing elements 
is attained through pipelining. 

In comparison to the approach based on threshold decom- 
position [lo], this design scheme is much simpler, requires 
less hardware, and is, thereby, more cost effective. Further- 
more, due to unit modularity, corresponding architectures 
can be utilized directly to design any morphological-related 
function. This fact was illustrated by the flexibility exhibited 
in implementing three different morphological shape-repre- 
sentation schemes, including the morphological skeleton 
transform, the pattern spectrum, and the geometrical correla- 
tion functions. In addition, this paper also introduced the idea 
of geometrical decomposition, a process by which the imple- 
mentation of large convex or nonconvex 2-D structuring 
elements can be made practical using 1-D structuring ele- 

B i+l ... 
- - . I  

ments. This procedure is utilized for example in’the efficient 
implementation of the geometrical correlation functions. 
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