Laboratory Exercise 2

Multiplexers, Hierarchy, and HEX Displays

The purpose of this exercise is to learn the importance of simulations and hierarchies when writing in Verilog.
We will use switches SWy_g on the DE1-SoC board as inputs to the circuit. We will use light emitting diodes
(LEDs) and 7-segment displays as output devices.

Preparation Before the Lab

You are required to write the Verilog code for Parts II and III of the lab. For marking of preparation by the
teaching assistants, you are required to show the teaching assistants your schematics, Verilog code, and ModelSim
simulations for Parts II and III.

In-lab Work

You are required to implement and test all of Parts II to IIT of the lab. You need to demonstrate both parts to
the teaching assistants.

Part I
Verilog File (.v):

The DE1-SoC board provides 10 toggle switches, called SWqy_g, that can be used as inputs to a circuit, and
10 red lights, called LEDRgy_ ¢, that can be used to display output values.

A Verilog file has been provided by your instructor for a 2 to 1 multiplexer. The top module mux has 3 inputs.
SWIO0] is the input O signal, SW[1] is the input 1 signal, and SW[9] is the select signal. The output is displayed on
LEDRIO].

module mux (SW, LEDR); //module name and port list

The top module, mux, is a very trivial example of using hierarchy where it instantiates a single mux2tol module.
In the more general case, any module can instantiate a number of interconnected modules, just like when you
wired up a number of chips in Lab 1. However, in any circuit you build, there must be only one top-level module.
The .port(connection) matches the port from the mux2tol module to the connection inside the mux module.

mux2tol u0 (

X(SW[0]); /1 assign port SW[O0] to port x
YSWI1])s /I assign port SW[1] to port y
S(SWI[9)); /I assign port SW[9] to port s

.m(LEDR[0]); // assign port LEDR[0] to port m
)

Simulation File (.do):

After examining the file, to verify the code functions properly, we can perform a simulation using a script written
in a .do file. This file is also provided by your instructor.

Inside the .do file, we start off by creating a working directory called work using the vlib command. We then
compile the Verilog file using vlog and load it into the simulation with the vsim command. Lastly, to display all
the signals on the waveform viewer, we put {/*} after add wave.

set the working dir, where all compiled verilog goes
vlib work

compile all verilog modules in mux.v to working dir
could also have multiple verilog files
vlog mux.v

load simulation using mux as the top level simulation module
vsim mux

#log all signals and add some signals to waveform window

log {/*}
add wave {/*} would add all items in top level simulation module
add wave {/*}

Once everything is initiated, we can set the input signals to be a 1 or a 0 with the force command and run the
simulation for x ns with the run command.

set input values using the force command, signal names need to be in brackets
force {SW[0]} 0 # force SW[0] to O
force {SW[1]} 1 # force SW[1] to 1
force {SW[9]} 0 # force SW[9] to 0

run simulation for a few ns
run 10ns # run for 10 ns

When you have familarized yourself with the .do file, open ModelSim, and in the terminal window (near the
bottom) change to the file’s working directory using the ed command and type do wave.do (or the file name you
named your .do file.

Look at the simulation. You might be wondering how the time intervals are determined at this point. If we
open the Verilog file again, we can see that the very first line states the timescale with the time unit and time
precision. All time values are read as the time unit which is rounded to the nearest time precision.

Perform the following steps as part of your prelab.
1. Run the default .do file given by your instructor.
2. Create your own test cases for the .do file and demonstrate that it works.
3. Create a new Quartus II project for the Verilog code provided and test it on the board during your lab session.
4. Compare the output results with the simulations you performed.

5. Did you notice a significant compilation time difference between ModelSim and the actual on board test
results? Also, comment why.

Part I1

Using the code given in part 1, scale the design such that it is a 4 to 1 multiplexer. You must use multiple in-
stantiations of the mux2tol given to you in part 1. This is known as hierarchical designs and is a good practice
especially for larger designs where the Verilog can become more difficult to debug.

In order to complete this section, you will need to create a wire to connect the multiple blocks together.

wire Connection; //creates a wire called conneetion,

pc
Cross-Out

pc
Inserted Text
Connection

The wire created above is called Connection and in order to connect two different blocks together such as shown
below we can replace one of the input and output shown in part one:

module block1(in1, out1); module block2(in2, out?2);

Connection
in1 out1 in2 out2

The following code corresponds to the figure above:

blockl B1 (
Ainl(in); // assign port in to port inl
.outl(Connection); // assign wire connection to port outl
);
block2 B2 (
.in2(Connection); // assign wire connection to port in2
.out2(out); // assign port out to port out2
);

Another way to make a connection is to use the assign statement. For example, if we wanted to connect the wire
called connection to LEDR, we do the following:

assign LEDR][0] = connection; //joins wire connection to LEDR[0]

Now construct a module for the following 4 to 1 multiplexer using the wire construct and multiple instances of the
mux2tol module.

S1 So
u —1 00
v =—1 01
m
W =—of 10
x =1 11

Figure 1. Multiplexer 3 to 1 example. (NOTE: you are doing a 4 to 1 Multiplexer)

Table 1. Multiplexer 4 to 1 output.
Perform the following steps.

1. Draw a schematic outlining the hierarchies you will use and explain them to the TA as part of your prelab.
2. Create a new Quartus II project for your circuit.

3. Include your Verilog file for the circuit in your project. Use switch SWy_g on the DE1-SoC board as the s
input, switches SW5_g as the inputs. Connect the output to LEDR.

4. Simulate your circuit with ModelSim for different values of s, X, and Y. You must show these to the TA as
part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part I11

In this part of the lab, you are to design a decoder for the 7-segment HEX display.

— Di 0
0000 Display HEX value 0
[]
5 1
o o 6
—————— - —
L L
4 2
[[
ca—
1111 =4 Display HEX value F 3

Figure 2. HEX Decoder.

czcacicg | Character

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MO OmE > 00N h W —O

Table 2. HEX character codes.

Perform the following steps:

1.
2.

Draw a schematic and explain it to the TA as part of your prelab.
Create a new Quartus II project for your circuit.

Create a Verilog module for the 7-segment decoder. Connect the c3cacicy inputs to switches SW3_, and
connect the outputs of the decoder to the HEXO display on the DE1-SoC board. The segments in this display
are called HEX0y, HEXO+, . . ., HEXOg. You should declare the 7-bit port

output [6:0] HEXO;

in your Verilog code so that the names of these outputs match the corresponding names in the DE/-SoC
User Manual and the pin assignment DEI_SoC.gsf file.

Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

Compile the project.

Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
SWs3_(switches and observing the 7-segment display.

