
Laboratory Exercise 6
Finite State Machines

The purpose of this exercise is to learn how to create and use finite state machines.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your schematic, Verilog, and simulations for Parts I to III and state diagrams for Parts II and III
to the teaching assistants. You must simulate your circuit with ModelSim using reasonable test vectors.

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part I

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or the sequence 1101. Thereis an inputw and an outputz. Wheneverw = 1 for
four consecutive clock pulses, or when the sequence1101 appears onw across four consecutive clock pulses, the
value ofz has to be 1; otherwise,z = 0. Overlapping sequences are allowed, so that ifw = 1 for five consecu-
tive clock pulses the outputz will be equal to 1 after the fourth and fifth pulses. Figure 1 illustrates the required
relationship betweenw andz. A state diagram for this FSM is shown in Figure 2.

!"#$%&

'&

(&

Figure 1: Required timing for the outputz.

1

!"#$

%"#$

&"#$

'"

#$

(")$

*"#$

+"

)$

,-.-/$

01)$

01)$

01)$ 01#$

01)$

01#$

01#$

01#$

01)$

01)$

01#$

01#$

01)$

01#$

Figure 2: A state diagram for the FSM.

Figure 3 shows a partial Verilog file for the required state machine. Study and understand this code as it provides
a model for how to clearly describe a finite state machine thatwill both simulate and synthesize properly.

The toggle switchSW0 on the DE1-SoC board is an active-low synchronous reset input for the FSM,SW1 is
the w input, and the pushbuttonKEY0 is the clock input that is applied manually. The red LEDLEDR9 is the
outputz, and the state flip-flop outputs are assigned toLEDR3−0.

2

//SW[0] reset when 0
//SW[1] input signal

//KEY[0] clock signal

//LEDR[3:0] displays current state
//LEDR[9] displays output

module sequence_detector(SW, KEY, LEDR);
input [9:0] SW;
input [3:0] KEY;
output [9:0] LEDR;

wire w, clock, reset_b;

reg [3:0] y_Q, Y_D; // y_Q represents current state, Y_D repr esents next state
wire out_light;

parameter A = 4’b0000, B = 4’b0001, C = 4’b0010, D = 4’b0011, E = 4’b0100, F = 4’b0101, G = 4’b0110;

assign w = SW[1];
assign clock = ˜KEY[0];
assign reset_b = SW[0];

// State table
// The state table should only contain the logic for state tra nsitions
// Do not mix in any output logic. The output logic should be ha ndled separately.
// This will make it easier to read, modify and debug the code.

always @(*)
begin: state_table

case (y_Q)
A: begin

if (!w) Y_D = A;
else Y_D = B;

end
B: begin

if(!w) Y_D = A;
else Y_D = C;

end
C: ???
D: ???
E: ???
F: ???
G: ???
default: Y_D = A;

endcase
end // state_table

// State Registers

always @(posedge clock)
begin: state_FFs

if(reset_b == 1’b0)
y_Q <= 4’b0000;

else
y_Q <= Y_D;

end // state_FFS

// Output logic
// Set out_light to 1 to turn on LED when in relevant states

assign out_light = ((Y_D == ???) | (Y_D == ???));

// Connect to I/O

assign LEDR[9] = out_light;
assign LEDR[3:0] = y_Q;

endmodule

Figure 3: Verilog code for the FSM.

Perform the following steps:

1. Copy the code into a file and name itsequence_detector.v .

3

2. Complete the state table and the output logic.

3. Draw a schematic describing the circuit and explain it to the TA as part of your prelab.

4. Simulate your circuit with ModelSim for a variety of inputsettings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test thefunctionality of the circuit.

Part II

Most non-trivial digital circuits can be separated into twomain functions. One is thedatapathwhere the data flows
and the other is thecontrol paththat manipulates the signals in the datapath to control the operations performed
and how the data flows through the datapath. In previous labs,you learned how to construct a simple ALU, which
is a common datapath component. In Part I of this lab you have already constructed a simplefinite state machine
(FSM), which is the most common component used to implement acontrol path. Now you will see how to im-
plement an FSM to control a datapath so that a useful operation is performed. This is an important step towards
building a microprocessor as well as any other computing circuit.

In this part, you will be given a block diagram of a datapath. You are to implement the datapath and an FSM
that performs the quadratic function:

Ax
2
+Bx+ c

using the given datapath. The values ofx, A, B andC will be preloaded before the computation begins.

Figure 4 shows the block diagram of the datapath you will build. Resets are not shown. The datapath will
carry 8-bit unsigned values. Assume that the input values are small enough to not cause any overflows at any
point in the computation, i.e., no results will exceed28 − 1 = 255. The ALU needs only to perform addition and
multiplication, but you could use a variation of the ALU you built previously to have more operations available for
solving other equations if you wish to try some things on yourown. There are four registersRx, RA, RB andRC

used at the start to store the values ofx, A, B andC, respectively. The registersRA andRB can be overwritten
during the computation. There is one output register,ROUT, that captures the output of the ALU and displays the
value in binary on the LEDs and in hex on the Hex displays. Two 4to 1 multiplexers at the inputs to the ALU,
MuxAandMuxB, are used to select which register values are input to the ALU.

All registers have enable signals to determine when they areto load new values and an active high synchronous
reset.

The circuit operates in the following manner. After an active high synchronousReseton KEY0, you will preload
registersRx and andRA whenKEY1 is pushed and then registersRB andRC are loaded whenKEY2 is pushed.
After KEY2 is released, the computation is performed and the circuit returns to wait for new values to be loaded.
The final result should be loaded intoROUT for display.

UseSW3−0 for the initial values ofx andB andSW7−4 for the initial values ofA andC. Note that the reg-
isters are 8-bits and you only have four switches to specify the value. You should load the upper nybble (upper
four bits) with 0’s, i.e., you can only initialize with values in the range 0 to 15.

The final result is displayed onLEDR7−0 in binary andHEX0andHEX1in hex.

You will useCLOCK 50as your clock.

4

Figure 4: Block diagram of datapath.

5

Structuring Your Code

At the top level you will have two separate modules for the datapath and the control path. The main connections
between the datapath and control path modules will be the control signals coming from the control path and enter-
ing the datapath. You will also instantiate your hex decoders at this level.

From Figure 4 you can see that there are five registers that aresimilar in structure. Write a generic register
module that you can instantiate with the appropriate inputsand outputs for the five registers. Also write modules
for the 2 to 1 and 4 to 1 multiplexers since you need more than one of them as well.

Build your datapath module by instantiating and connectingthe registers and multiplexers according to Figure 4.
You can write your ALU as an always block, or also instantiatea module, such as the one you built in a previous
lab. You may use the add and multiply operator symbols, i.e.,you do not have to build your own operator logic.

The control path module should use a structure similar to what you were provided in Figure 3 for Part I. The
main difference will be for theOutput logicbecause there are many more output signals. You can use a similar
style as in Figure 3 by creating a number ofassign statements. A better approach in this design is to use a
second case statement that has the same states as the case statement for theState table, but assign the outputs
instead of the next states. The example code fragment shown in Figure 5 computesAx2 in two cycles of the state
machine. In this style, it is easy to see what the control signals are set to in each state.

You could be lazy and combine the state table and the output logic case statements. However, this makes the
code more difficult to read, and worse, it makes it much more difficult for the synthesis tool to figure out what you
want to do. This may lead to unexpected interpretation of your code by the tool and bugs that can be hard to find.
The result is that being lazy often results in a lot more work and frustration as you try to debug your code, thus
defeating the goal of being lazy in the first place! The choiceis yours. . .

6

// Some of the states:
// RESET_S : reset state
// AX_S : A * X
// AXX_S : (A * X) * X
// BX_S : B * X
//
// Some of the control signals as labeled on Figure 4
// LD_A : load RA
// LD_B : load RB
// load : select for Mux_RA and Mux_RB
// selectA : MuxA select
// selectB : MuxB select
// ALU_OP : select ALU operation

// Part of the State table

always @(*)
begin: state_table

case (PresentState)
...
AX_S: // Compute A * X

NextState = AXX_S;
AXX_S: // Compute (A * X) * X

NextState = BX_S;
...
default: NextState = RESET_S;

endcase
end // state_table

// Part of the Output logic

always @(*)
begin: output_logic

case (PresentState)
// In each state assign a value to all control signals

...

AX_S: // Compute A * X and store in A
begin

LD_A = 1; // Store result in RA
LD_B = 0;
load = 0; // Select ALU output
selectA = RA; // ALU A input gets RA
selectB = RX; // ALU B input gets RX
ALU_OP = MULT;
// Set values for rest of control signals

end
AXX_S: // Compute (A * X) * X and store in A

begin
LD_A = 1; // Store result in RA
LD_B = 0;
load = 0; // Select ALU output
selectA = RA; // RA now has A * X
selectB = RX;
ALU_OP = MULT;
// Set values for rest of control signals

end

...

default:
begin

LD_A = 0;
LD_B = 0;
load = 0;
selectA = RX;
selectB = RX;
ALU_OP = ADD;
// Set values for rest of control signals

end
endcase

end // output_logic

Figure 5: Verilog code fragments for the controller

7

Figure 6 shows a code fragment for the controller output logic usingassign statements.

// Alternate code for output logic
// It’s ugly, so won’t do too much here.

assign LD_A = ((PresentState == AX_S) | (PresentState == AXX _S) | ...);
assign selectA = (PresentState == AX_S) ? RA :

((PresentState == AXX_S) ? RA :
...
RX);

Figure 6: Verilog code fragments for the controller usingassign statements

Perform the following steps.

1. Draw a state diagram for your controller.

2. Draw a schematic outlining the hierarchies you will use and explain them to the TA as part of your prelab.

3. Write a Verilog file that realizes the required circuit.

4. Simulate your circuit with ModelSim for a variety of inputsettings, ensuring the output waveforms are cor-
rect. You must show this to the TA as part of your prelab. It is recommended that you start by simulating the
datapath and controller modules separately. Only when you are satisfied that they are working individually
should you combine them into the full design. Why is this approach better? (Hint: Consider the case when
your design has 20 different modules.)

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test thefunctionality of the circuit.

Part III

Division in hardware is the most complex of the four basic operations. Add, subtract and multiply are much easier
to build in hardware. For this part, you will be designing a 4-bit restoring divider using a finite state machine.

Figure 7 shows an example of how the restoring divider works.The restoring divider starts withRegister A
set to0. TheDividend is shifted left and the bit shifted out of the left most bit of theDividend(called the most
significant bit or MSB) is shifted into the least significant bit (LSB) of Register Aas shown in Figure 8.

8

Figure 7: An example of functionality of restoring divider.

Figure 8: Block diagram of restoring divider.

TheDivisor is then subtracted fromRegister A. If the MSB ofRegister Ais a1, then we restoreRegister Aback to
its original value by adding theDivisor back toRegister A, and set the LSB of theDividendto 0. Else, we do not
perform the restoring addition and immediately set the LSB of theDividendto 1.

This cycle is performed until all the bits of theDividendhave been shifted out. Once the process is complete,
the new value of in theDividendregister is theQuotient, andRegister Awill hold the value of theRemainder.

9

To implement this part, you will useSW3−0 for the divisor value andSW7−4 for the dividend value. Use
CLOCK 50 to for the clock signal,KEY0 as a synchronous active high reset, andKEY1 as theGo signal to start
computation. The output of theDivisor will be displayed onHEX0, theDividendwill be displayed onHEX2, the
QuotientonHEX4, and theRemainderonHEX5. Set the remaining HEX displays to0. Also display theQuotient
onLEDR.

Structure your code in the same way as you were shown in Part II.

Perform the following steps.

1. Draw a schematic for the datapath of your circuit. It will be similar to Figure 8. You should show how you
will initialize the registers, where the outputs are taken,and include all the control signals that you require.

2. Draw the state diagram to control your datapath.

3. Draw a schematic that describes the hierarchies you will use.

4. Write a Verilog file that realizes your circuit.

5. Simulate your circuit with ModelSim for a variety of inputsettings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

6. Compile the project.

7. Download the compiled circuit into the FPGA chip. Test thefunctionality of the circuit.

10

