
Laboratory Exercise 5
Clocks and Counters

The purpose of this exercise is to learn how to create counters and to be able to modify the speed of the 50MHz
clock to be able to control circuits you build.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your Verilog, simulations and schematics for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors using the format shown in the previous lab).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate both parts to
the teaching assistants.

Part I

Consider the circuit in Figure 1. It is a 4-bit synchronous counter which uses four T-type flip-flops. The counter
increments its value on each positive edge of the clock if the Enable signal is asserted. The counter is reset to 0
by setting the Clear signal low – it is an active-low asynchronous clear. You are to implement an 8-bit counter of
this type.

Figure 1: A 4-bit counter.

Perform the following steps:

1. Write a Verilog file that defines an 8-bit counter by using the structure depicted in Figure 1. Your code
should include a T flip-flop module that is instantiated 8 times to create the counter (i.e. structural Verilog).
Compile the circuit. How many logic elements (LEs) are used to implement your circuit? What is the
maximum frequency, Fmax, at which your circuit can be operated? (Use TimeQuest in Quartus to determine
the maximum frequency Fmax.)

2. Simulate your circuit to verify its correctness, draw the circuit and have both ready as prelab.

3. Augment your Verilog file to use the pushbutton KEY0 as the Clock input, switches SW1 and SW0 as Enable
and Clear inputs, and 7-segment displays HEX0 and HEX1 to display the hexadecimal count as your circuit
operates. Make the necessary pin assignments needed to implement the circuit on the DE1-SoC board, and
compile the circuit. For this part, you should re-use the hexadecimal-to-7-segment display decoder that you
created for Lab 2.

1

pc
Cross-Out

pc
Inserted Text
This sounds like you are changing the clock speed.

... and to be able to control when operations occur when the actual clock rate is much faster.

pc
Cross-Out

pc
Inserted Text
you can justify.

"previous lab" doesn't apply here.

pc
Cross-Out

pc
Inserted Text
all

pc
Cross-Out

pc
Inserted Text
that

pc
Cross-Out

pc
Inserted Text
Active low signals should have names that indicate that. Suggest Clear_b (Clear bar)

pc
Inserted Text
Suggest adding more directions on how to use TimeQuest so the students don't have to figure it out. Trying to reduce prep time.

pc
Cross-Out

pc
Inserted Text
Clear_b

4. Download your circuit into the FPGA chip and test its functionality by operating the switches.

5. Use the Quartus II RTL Viewer to see how Quartus II software synthesized your circuit. What are the
differences in comparison with Figure 1?

Part II

Another way to specify a counter is by using a register and adding 1 to its value. This can be accomplished
using the following Verilog statement:

Q <= Q+ 1;

Design and implement a circuit using the statement above that successively flashes the hexadecimal digits 0
through F on the 7-segment display HEX0. You will use two switches, SW1 and SW0 to determine the speed
of flashing according to the following table:

SW[1] SW[0] Speed
0 0 Full
0 1 1 Hz
1 0 0.5 Hz
1 1 0.25 Hz

Full speed should use the 50-MHz clock signal provided on the DE1-SoC board. You must design a fully syn-
chronous circuit, which means that every flip flop in your circuit should be clocked by the same 50 MHz clock
signal. To derive the slower flashing rates you should use a counter, call it RateDivider, that is also clocked with
the 50 MHz clock. The output of RateDivider can be used as part of a circuit to create pulses at the required rates.
These pulses can be used to drive an enable signal on the counter, call it DisplayCounter, that is counting from 0
through F. Recall that an enable signal determines whether a flip flop, register, or counter will change on a clock
pulse.

Perform the following steps.

1. Write a Verilog file that realizes the behaviour described above. Your circuit should have the clock and the
two switches as inputs.

2. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

3. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part III

In this part of the exercise you are to implement a Morse code encoder using a lookup table (hard coded mul-
tiplexer) (LUT) and a rate divider similar to Part II. The Morse code uses patterns of short and long pulses to
represent a message. Each letter is represented as a sequence of dots (a short pulse), and dashes (a long pulse).
For example, starting from A, eight letters of the alphabet have the following representation:

2

pc
Inserted Text
the

pc
Sticky Note
I'd suggest showing the complete code for a counter with an enable and clear_b. Give a bit of an explanation on how it works. It's essentially the counter they built in Part I.

pc
Sticky Note
As this is Part II, I'd like to give sample RateDivider code, maybe one that divides by N, where can be defined as a constant. Show a timing diagram of what the expected output looks like.

pc
Inserted Text
You will also need to think about how to simulate this kind of circuit. For example, how many 50MHz clock pulses will you need to simulate to show that the RateDivider is properly outputting a 1 Hz pulse?

pc
Cross-Out

pc
Inserted Text
(LUT), which can be implemented as a multiplexer with hard-coded inputs.

A • —
B — • • •
C — • — •
D — • •
E •
F • • — •
G — — •
H • • • •

Design and implement a Morse code encoder circuit a LUT and a rate divider. Your circuit should take as input
one of the eight letters of the alphabet starting from A (as in the table above) and display the Morse code for it on a
red LED, LEDR0. Use switches SW2−0 and pushbuttons KEY1−0 as inputs. When a user presses KEY1, the circuit
should display the Morse code for a letter specified by SW2−0 (000 for A, 001 for B, etc.), using 0.5-second pulses
to represent dots, and 1.5-second pulses to represent dashes. The time between pulses is 0.5 seconds. Pushbutton
KEY0 should function as an asynchronous reset.

Hint: Since your minimum time is 0.5 second, set each 0 or 1 to be 0.5 seconds. This means that a 0 is a
pause, a 1 is a dot, and 111 is a dash. Then read each 0 or 1 individually out of a shift register at 0.5 seconds per
read.

Perform the following steps.

1. Write a Verilog file that realizes the behaviour described above.

2. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

3. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

3

pc
Inserted Text
using

pc
Inserted Text
s

pc
Sticky Note
I think the functionality needs a bit more description.

LUT stores the patterns for each letter.
When a letter is selected, the appropriate pattern is loaded from the LUT into the shift register via parallel load. Pattern is then shifted out the shift register one bit at a time.

