
Laboratory Exercise 3
Combinational Logic and Displays

This is an exercise in designing combinational circuits that can drive 7-segment displays, and perform a variety of
different functions.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your Verilog, simulations and schematics for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors using the format shown in the previous lab).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate both parts to
the teaching assistants.

Part I

For this part of the lab, you will be learning how to use always blocks and case statements to design a 7 to 1
multiplexer.

always @(*) // declare always block
begin

case (select) // start case statement
begin

0: . . . // case 0
1: . . . // case 1
2: . . . // case 2
3: . . . // case 3
4: . . . // case 4
5: . . . // case 5
6: . . . // case 6
default: . . . // default case

end
end

An always block is trigger whenever there is a change in the sensitivity list. This list is denoted by the asterisks
character in the above example. This means that whenever any input is changed, the following code will trigger.
Similarly, we can change the asterisks to certain inputs to limit when this code is triggered.

The case statement is similar to that of C programming. It is important to have a default case to ensure that
all cases are covered.

Using SW6−0 as the data inputs SW9−7 as the select signals. Display on LEDR0 the output of a 7 to 1 multi-
plexer using the case statement shown above.

1. Create a new Quartus II project for your circuit.

2. Include your Verilog file for the circuit in your project. Use switch SW9−7 on the DE1-SoC board as the
select input, switches SW6−0 as the data inputs. Connect the output to LEDR0.

1

pc
Inserted Text
but this can lead to simulations that do not match the real hardware. One of the (bad) features of the language. The accepted practice today is to always use the asterisk.

pc
Inserted Text
ed

pc
Cross-Out

pc
Inserted Text
asterisk

pc
Cross-Out

pc
Inserted Text
be simulated

pc
Cross-Out

pc
Inserted Text
asterisk

pc
Inserted Text
Otherwise, you can again have simulations that do not match the hardware. Yet another Verilog feature! Your goal is to write Verilog that will generate hardware that exactly matches the simulation, so please put in the {\em default} statement.

If you want to know why, read on. When you execute an always block, the use of {\em if} and {\em case} statements can take you through different code paths. If you reach the end of the always block and there is an unassigned (reg) variable, then a memory element, a latch, will be created because the meaning is that the variable keeps its previous value, so a memory element is inferred. The problem becomes more subtle because if {\em select} in the above example is three bits, there are actually more than eight cases! Each bit can be (1,0,X,Z), so there are really 64 possible paths. Synthesis tools will likely assume only (1,0) and create the correct circuit, but the simulator may not do the same. Always, always put in the {\em default} statement.

pc
Inserted Text
A module can contain any number of {\em always} blocks just the same as any module can contain any number of other module instantiations. The difference is that an {\em always} block can only instantiate logic within the module where it is defined. A module can be instantiated in any other module, i.e., it can be reused.

Some constructs, like {\em case} statements, must be instantiated inside an {\em always} block.

pc
Cross-Out

pc
Inserted Text
I wouldn't try to make any connections to C programming. We don't want them to start thinking they are writing C programs. I always say that the only connection is that both languages use semicolons and parentheses :-)

pc
Sticky Note
Some labs use LEDR[0] and some use LEDR_0. Do we want to make this consistent? If it has not been an issue in the past, then I'm okay with leaving the inconsistency.

pc
Sticky Note
Should we provide more of a template for this code, i.e., include the code for the top-level module and even fill out one or two of the cases? This would be more in the spirit of Part I being more of an example of what the code should look like and reduces the prep work required.

3. Simulate your circuit with ModelSim for different values of select and data. You must show these to the
TA as part of your prelab.

4. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part II

Figure 2a shows a circuit for a full adder, which has the inputs a, b, and ci, and produces the outputs s and
co. Parts b and c of the figure show a circuit symbol and truth table for the full adder, which produces the two-bit
binary sum cos = a+ b+ ci. Figure 2d shows how four instances of this full adder module can be used to design
a circuit that adds two four-bit numbers. This type of circuit is usually called a ripple-carry adder, because of
the way that the carry signals are passed from one full adder to the next. Write Verilog code that implements this
circuit, as described below.

Figure 2. A ripple-carry adder circuit.

Perform the following steps.

1. Create a new Quartus II project for the adder circuit. Write a Verilog module for the full adder subcircuit
and write a top-level Verilog module that instantiates four instances of this full adder.

2. Use switches SW7−4 and SW3−0 to represent the inputs A and B, respectively. Use SW8 for the carry-in
cin of the adder. Connect the outputs of the adder, cout and S, to the green lights LEDR9 and LEDR3:0

respectively.

2

pc
Inserted Text
Be sure to use what you learned about hierarchy in Lab 2.

3. Simulate your adder with ModelSim for intelligently chosen values of A and B and cin. You must show
these to the TA as part of your prelab.

4. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part III

Using Parts I and II from this lab and the HEX decoder from Lab 2 Part III, you will implement a simple Arith-
metic Logic Unit (ALU). This unit can perform multiple operations such as addition, sign extension, etc. The
output result of each operation is sent to the multiplexer. If selected by the multiplexer, the operation result will
display at the output.

Shown in the case statement blow are the following operations for each case. The multiplexer has an 8 bit in-
put and 8 bit output.

always @(*) // declare always block
begin

case (select) // start case statement
begin

0: Addition using Part II of this Lab
1: Addition using ’+’ operator
2: Sign extend value B (SW[3:0]) to 8 bits
3: Find if at least 1 of the 8 bits is 1 using a single OR operation
4: Find it all of the 8 bits are 1 using a single AND operation
5: Display the values on the switches
default: . . . // default case

end
end

Note that in this part of the lab, you will need to learn concatenation for the additions, sign extension, and
reduction operations for ORing and ANDing multiple bits without typing ever single bit out.

Perform the following steps:

1. Create a new Quartus II project for your circuit.

2. Create a Verilog module for the simple ALU. Connect the A and B inputs to switches SW7−4 and SW3−0

respectively, and connect KEY2−0 for select signals. Display the outputs on LEDR7−0; have HEX0 and
HEX2 display output of A and B respectively and set HEX1 and HEX3 to 0. HEX4 and HEX5 should
display the sum and carry out respectively.

3. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

4. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

3

pc
Inserted Text
Note that as circuits get more complicated, you will not be able to simulate or test all possible cases. This means that you have to test only a subset. Here {\em intelligently chosen} means to find particular {\em corner cases} that exercise all aspects of the circuit. Be prepared to explain why your test cases are good enough.

pc
Cross-Out

pc
Inserted Text
xx

pc
Cross-Out

pc
Inserted Text
-

8-bit

pc
Cross-Out

pc
Inserted Text
-

