
Laboratory Exercise 4
Latches, Flip-flops, and Registers

The purpose of this exercise is to investigate latches, flip-flops, and registers.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your schematics, Verilog, and simulations for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors using the format shown in the previous lab).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part I

Figure 1 shows the circuit for a gated D latch. In this part, you will build the gated D latch using the 7400
chips (as in Lab 1) and the protoboard (breadboard). Refer back to the Lab 1 handout for the specifications of the
7400 chips.

Figure 1: Circuit for a gated D latch.

As seen in class, two latches placed together form a flip flop. In Verilog, a positive edge-triggered flip flop with an
active low synchronous reset (meaning reset only happens when Reset b is 0 on the rising clock edge) is shown
below:

always @(posedge clock) // triggered every time clock rises
begin

if (Reset b == 1’b0) // when Reset b is 0 (note this is tested on every rising clock edge)
q <= 0; // q is set to 0

else // when Reset b is not 0
q <= d; // value of d passes through to output q

);

Perform the following steps:

1. In your lab book, draw a schematic of the gated D latch using interconnected 7400-series chips. Don’t forget
to hook up the power and ground!

1

pc
Sticky Note
Looks like you missed this one:

Add a bit of space between the equal signs so it is clear that there are two. In Math mode, you can try $=\,=$ or $=\:=$ to see what looks right.

2. Build the gated D latch using the chips and protoboard. Use switches to control the clock and D input. Use
lights to make Qa and Qb visible.

3. Study the behaviour of the latch for different D and clock settings.

4. Demonstrate your latch implementation to the TA.

Part II

Using Lab 3 Part III, remove case 5 and add 3 more cases: a shift, multiply and hold current value. In this
section, you will need to also implement a register at the output of the 8 to 1 multiplexer shown below. The output
of this register will connect back to input B from your previous lab. Input A will now use SW3−0.

always @(*) // declare always block
begin

case (select) // start case statement
begin

0: Addition using Lab 3 Part II of this Lab
1: Addition using ’+’ operator
2: Sign extend value B to 8 bits
3: Find if at least 1 of the 8 bits is 1 using a single OR operation
4: Find it all of the 8 bits are 1 using a single AND operation
5: Left shift B by A
6: Multiply B by A using ’*’ operator
7: Hold current value
default: . . . // default case

end
end

Figure 2: ALU Circuit for Part II.

Perform the following steps.

1. Draw a schematic outlining the hierarchies you will use and explain them to the TA as part of your prelab.

2. Create a new Quartus II project for your circuit.

2

3. Create a Verilog module for the simple ALU. Connect the data input to switches SW3−0. Connect KEY0 to
clock, SW9 to reset and KEY3−1 for select signals. Display the outputs on LEDR7−0; have HEX0 display
output of data and set HEX1, HEX2 and HEX3 to 0. HEX4 and HEX5 should display the sum and carry out
respectively.

4. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part III

Figure 3 shows a positive-edge-triggered flip-flop with several multiplexers. In this part of the lab, you will
use eight instances of the circuit in Figure 3 to design a left/right 8-bit rotating register with parallel load shown
in Figure 4. The LoadLeft input of all eight instances of the circuit in Figure 3 should be tied to a single rotating
register input RotateRight because when you want to rotate the bits right, you have to load the bit to the left. The
loadn input of all eight instances should be tied to a single rotating register input ParallelLoadn. The clock input
of all eight instances should be tied to a single rotating register input clock. Create an 8-bit-wide rotating register
input DATA IN, whose individual wires DATA IN7 to DATA IN0 are tied to the D input of each instance of the
circuit in Figure 3. Likewise, create an 8-bit-wide rotating register output Q, whose individual wires Q7 to Q0 are
tied to the Q output of each instance of the circuit in Figure 3.

The remaining connections between the eight instances of the circuit in Figure 3 should realize the following
behaviour:

1. When ParallelLoadn = 0, the value on DATA IN is stored in the flip-flops on the next positive clock edge
(i.e., parallel load behaviour).

2. When ParallelLoadn = 1, RotateRight = 1 and ASRight = 0 the bits of the register rotate to the right on each
positive clock edge (notice the bits rotate to the right with wrap around):

Q7Q6Q5Q4Q3Q2Q1Q0

Q0Q7Q6Q5Q4Q3Q2Q1

Q1Q0Q7Q6Q5Q4Q3Q2

. . .

3. When ParallelLoadn = 1, RotateRight = 1 and ASRight = 1 the bits of the register rotate to the right on each
positive clock edge but the most significant bit is replicated. This is called an Arithmetic shift right:

Q7Q6Q5Q4Q3Q2Q1Q0

Q7Q7Q6Q5Q4Q3Q2Q1

Q7Q7Q7Q6Q5Q4Q3Q2

. . .

4. When ParallelLoadn = 1 and RotateRight = 0, the bits of the register rotate to the left on each positive clock
edge. ASRight is ignored:

Q7Q6Q5Q4Q3Q2Q1Q0

Q6Q5Q4Q3Q2Q1Q0Q7

Q5Q4Q3Q2Q1Q0Q7Q6

. . .

3

Figure 3: Sub-circuit for Part III.

Using code for a flop flop we saw in Part I and the mux2to1 module from Lab 2, we can build the circuit shown
above. Below, is sample hierarchical code showing the D flip flop with one 2 to 1 multiplexer connected to it. Add
the proper connections and the remaining multiplexer to the Verilog below:

mux2to1 M1(//instantiates 2nd multiplexer
.x(rotatedata) //output from left most multiplexer
.y(data D) //data D coming in
.s(parallel loadn) //selects input D or rotate
.m(datato dff) //outputs to flip flop

);

flipflop F0(//instantiates flip flop
.d(datato dff) //input to flip flop
.q(out Q) //output from flip flop
.clock(clock) //clock signal
.reset(reset) //synchronous active high reset

);

Figure 4: Top-level circuit for Part III.

4

Figure 4 shows the inputs and outputs of the top-level left/right rotating register circuit with parallel load, which
will contain eight instances of the circuit in Figure 3.

Do the following steps:

1. Draw a schematic for the 8-bit rotating register with parallel load. Your schematic should contain eight
instances of the circuit in Figure 3. Label the signals on your schematic.

2. Create a new Quartus II project.

3. Write a Verilog module for the circuit in Figure 3.

4. Write a Verilog module for the rotating register with parallel load that instantiates eight instances of your
Verilog module for Figure 3. This Verilog module should match with the schematic in your lab book.
Use SW7−0 as the inputs DATA IN7−0 and SW9 as a synchronous active high reset. Use KEY1 as the
ParallelLoadn input, KEY2 as the RotateRight input and KEY3 as the ASRight input. Use KEY0 as the clock
and SW0 as a synchronous active high reset, but read the important note below about switch bouncing.
The outputs Q7−0 should be displayed on the red LEDs (LEDR7−0).

5. Include the Verilog code in your project.

6. Compile your Verilog code and simulate the design with ModelSim. In your simulation, you should perform
the reset operation first. Then, clock the register for several cycles to demonstrate rotation in the left and right
directions. (NOTE: If you do not perform a reset first, your simulation will not work! Try simulating
without doing reset first and see what happens. Can you explain the results?)

7. Download your circuit on the DE1-SoC board.

8. Test the functionality of your rotating register.

Note: If you run into bounce problems with KEY0 for your clock you are welcome to try using any of the keys.
All mechanical switches, such as a push/toggle button, will often make contact several times due the electrical
contacts bouncing. This happens quickly in human time, but not in electrical time. With a bouncing switch you
can observe multiple high-frequency toggles making it difficult to create single clock edges. Although the DE2
keys/switches are supposed to be debounced it doesn’t seem to work.

5

pc
Cross-Out

pc
Inserted Text
We had trouble with switch bouncing on the previous DE2 boards and have no experience with these DE1-SoC boards. We are leaving this note just in case there is still an issue. Let us know if you think you encounter switch bounce.

