Laboratory Exercise 4

Latches, Flip-flops, and Registers
The purpose of this exercise is to investigate the fundamental synchronous logic elements: latches, flip-flops,
and registers.
Preparation Before the Lab
Review the instructions in Lab 2 about preparations.
You are required to complete Parts I to IIT of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your schematics, Verilog, and simulations for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors using ModelSim scripts).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

PartI
Figure [I] shows the circuit for a gated D latch. In this part, you will build the gated D latch using the 7400

chips (as in Lab 1) and the protoboard (breadboard). Refer back to the Lab 1 handout for the specifications of the
7400 chips.

’ SFDOSi}— Qa(Q)
Clk L b
%—}}_)

Figure 1: Circuit for a gated D latch.

Perform the following steps:

1. In your lab book, draw a schematic of the gated D latch using interconnected 7400-series chips. Recall from
Lab 1 what a gate-level schematic looks like.

2. Build the gated D latch using the chips and protoboard. Use switches to control the clock and D input. Use
lights to make QQa and Qb visible. Don’t forget to hook up the power and ground on all of your chips!

3. Study the behaviour of the latch for different D and clock settings.

4. Demonstrate your latch implementation to the TA.

Part I1

In modern digital circuit design, latches are rarely used, and only in very special circumstances. The most common
storage element today is the edge-triggered D flip flop. One way to build an edge-triggered D flip flop is to connect
two D latches in series with the two D latches using opposite edges of the clock. This is called a master-slave flip
flop. The output of the master-slave flip flop changes on a clock edge, unlike the latch, which changes according
to the level of the clock. For a positive edge-triggered flip flop, the output changes when the clock edge rises.
The Verilog code for a positive edge-triggered flip flop is shown in Figure[2] This flip flop also has an active-low,
synchronous reset, meaning that the reset only happens when Reset_b = 0 on the rising clock edge. If g is declared
as reg g, then you get a single flip flop. If ¢ is declared as reg[7:0] ¢, then you get eight parallel flip flops, which
is called an 8-bit register. Of course, d should have the same width as g.

always @(posedge Clock) /I triggered every time clock rises
begin
if (Reset.b == 1°b0) /I when Reset_b is 0 (note this is tested on every rising clock edge)
q<=0; /I q s set to 0. Note that the assignment uses <=
else /l when Reset_b is not 0
q<=d; // value of d passes through to output q
end

Figure 2: Verilog for a positive edge-triggered flip flop with active-low, synchronous reset.

Starting with the circuit you built for Lab 3 Part III build an ALU with the eight operations as shown in the pseudo-
code in Figure[3] The output of the ALU is to be stored in an 8-bit register and the four least-significant bits of the
register output are connected to the B input of the ALU. Figure 4] shows the required connections.

always @(*) /Il declare always block
begin
case (function) // start case statement
0: A + B using the adder from Lab 3 Part II
: A + B using the Verilog ‘+° operator
: A XOR B in the lower four bits and A OR B in the upper four bits
: Output 1 (8°b00000001) if at least 1 of the 8 bits in the two inputs is 1 using a single OR operation
: Output 1 (8°b00000001) if all of the 8 bits in the two inputs are 1 using a single AND operation
: Left shift B by A bits
: A x B using the Verilog ‘*’ operator
: Hold current value in the Register
default: ... // default case
endcase
end

AR W

Figure 3: Pseudo-code for ALU.

Data

HEX Display

44
Signal A

4

4
1 Signal B

N
ALU

Register

8 £

HEX Display
LED Display

Figure 4: Simple ALU with register circuit for Part II.

Perform the following steps.

1.

Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Be prepared to
explain it to the TA as part of your preparation.

Create a Verilog module for the simple ALU with register. Use the code in Figure 2] as the model for your
register code. Connect the Data input to switches SW5_. Connect KEY), to the Clock input for the register,
SWy to Reset b and use KEY3_; for the ALU function inputs. Display the outputs on LEDR7_g; have
HEXO display the value of Data and set HEX1, HEX2 and HEX3 to 0. HEX4 and HEXS should display the
least-significant and most-significant four bits of Data respectively.

Create a new Quartus II project for your circuit.

Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your preparation.

Compile the project.

Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part II1

Figure [5] shows a positive edge-triggered flip-flop with several multiplexers. In this part of the lab, you will
use eight instances of the circuit in Figure [5|to design a left/right 8-bit rotating register with parallel load shown
in Figure[q

A rotating register uses the concept of shifting bits in the register. When bits are shifted in a register, it means that
the bits are copied to the next flip flop on the left or the right. For example, to shift the bits left, each flip flop loads
the value of the flip flop to its right when the clock edge occurs. The term rotating comes from how the bits at the
ends of the register are handled. In the left-shift example, the flip flop at the right end of the register has no right
neighbour. One option is to load a zero, but for rotation we load the value of the flip flop at the left end of the
register. The behaviour is as if the register were really a ring because the left and right ends are connected.

The LoadLeft input of all eight instances of the circuit in Figure [5] should be tied to the single rotating register
input RotateRight because when you want to rotate the bits right, you have to load the bit to the left. The loadn
input of all eight instances should be tied to the single rotating register input ParallelLoadn. The clock input of all
eight instances should be tied to the single rotating register input clock. Create an 8-bit-wide rotating register input
DATA_IN, whose individual wires DATA_IN7 to DATA _IN, are tied to the D input of each instance of the circuit in
Figure 5] Likewise, create an 8-bit-wide rotating register output Q, whose individual wires Q7 to Qy are tied to
the @ output of each instance of the circuit in Figure 3]

LoadLeft

right

left

clock

reset

Figure 5: Sub-circuit for Part III.

[7:0]

ParallelLoadn
RotateRight

DATA_IN
©

ASRight

clock
— 8-bit left/right

rotating register
with parallel load

Ts

Figure 6: Top-level circuit for Part III.

reset

Q[7:0]

The remaining connections between the eight instances of the circuit in Figure [5] should realize the following
behaviour:

1. When ParallelLoadn = 0, the value on DATA_IN is stored in the flip-flops on the next positive clock edge
(i.e., parallel load behaviour).

2. When ParallelLoadn = 1, RotateRight = 1 and ASRight = 0 the bits of the register rotate to the right on each
positive clock edge (notice the bits rotate to the right with wrap around):

Q7Q6Q5Q4Q3Q2Q1Q0
QoQ7QsQ5Q4Q3Q2Q1
Q1QoQ7QcQ5Q1Q3Q2

3. When ParallelLoadn = 1, RotateRight = 1 and ASRight = I the bits of the register rotate to the right on each
positive clock edge but the most significant bit is replicated. This is called an Arithmetic shift right:

Q7Q6Q5Q4Q3Q2Q1Q0
QrQ7Q6Q5Q1Q3Q201
QrQ7Q7Q6Q5Q1Q3Q2

4. When ParallelLoadn = 1 and RotateRight = 0, the bits of the register rotate to the left on each positive clock
edge. ASRight is ignored:

Q7QeQ5Q4Q30Q2Q1Q0
QeQ5Q1Q3Q2Q1Q0Q7
QR5Q4Q3Q201Q0Q7Qs

Do the following steps:

1. Draw a schematic for the 8-bit rotating register with parallel load. Your schematic should contain eight
instances of the sub-circuit in Figure [5] and all the wiring required to implement the desired behaviour.
Label the signals on your schematic with the same names you will use in your Verilog code.

2. Starting with the code in Figure [2] for a flop flop, modify it to have an active-high synchronous reset.
Combine this new flip flop with instances of the mux2fol module from Lab 2 to build the sub-circuit shown
in Figure[5] To get you started, Figure[7} is a sample of hierarchical code showing the D flip flop with one
of the 2-to-1 multiplexers connected to it.

7.
8.

mux2tol M1(//instantiates 2nd multiplexer

X(rotatedata) //output from left most multiplexer
.y(data_D) //data D coming in
.S(parallel loadn) /Iselects input D or rotate
.m(datato_dff) /loutputs to flip flop
);
flipflop FO(/finstantiates flip flop
.d(datato_dff) /finput to flip flop
.q(out_Q) /loutput from flip flop
.clock(clock) //clock signal
.reset(reset) //synchronous active high reset
);

Figure 7: Part of the code for the sub-circuit in Figure 5]

. Create a new Quartus II project.

Write a Verilog module for the rotating register with parallel load that instantiates eight instances of your
Verilog module for Figure 5] This Verilog module should match with the schematic in your lab book.
Use SWr;_q as the inputs DATA_IN;_y and SWy as a synchronous active high reset. Use KEY; as the
ParallelLoadn input, KEY as the RotateRight input and KEY5 as the ASRight input. Use KEY), as the clock,
but read the important note below about switch bouncing. The outputs Q- _(should be displayed on the
LEDs (LEDR7_g).

Include the Verilog code in your project.

Compile your Verilog code and simulate the design with ModelSim. In your simulation, you should perform
the reset operation first. Then, clock the register for several cycles to demonstrate rotation in the left and right
directions. (NOTE: If you do not perform a reset first, your simulation will not work! Try simulating
without doing reset first and see what happens. Can you explain the results?)

Download your circuit on the DE1-SoC board.

Test the functionality of your rotating register.

Note: If you run into bounce problems with KEY|, for your clock you are welcome to try using any of the keys.
All mechanical switches, such as a push/toggle button, will often make contact several times due the electrical
contacts bouncing. This happens quickly in human time, but not in electrical time. With a bouncing switch you
can observe multiple high-frequency toggles making it difficult to create single clock edges.

