
Laboratory Exercise 2
Multiplexers, Hierarchy, and HEX Displays

The purpose of this exercise is to learn the importance of simulations and hierarchies when writing in Verilog.
We will use switches SW9−0 on the DE1-SoC board as inputs to the circuit. We will use light emitting diodes
(LEDs) and 7-segment displays as output devices.

Preparation Before the Lab

You are required to write the Verilog code for Parts II and III of the lab. For marking of preparation by the
teaching assistants, you are required to show the teaching assistants your Verilog code for Parts II & III, and Mod-
elSim simulations & schematics for all the parts.

In-lab Work

You are required to implement and test all of Parts II to III of the lab. You need to demonstrate both parts to
the teaching assistants.

Part I

Verilog File (.v):

The DE1-SoC board provides 10 toggle switches, called SW9−0, that can be used as inputs to a circuit, and
10 red lights, called LEDR9−0, that can be used to display output values.

A Verilog file has been provided by your instructor for a 2 to 1 multiplexer. The top module mux has 3 inputs.
SW[0] is the input 0 signal, SW[1] is the input 1 signal, and SW[9] is the select signal. The output is displayed on
LEDR[0].

module mux (SW, LEDR); //module name and port list

The top module mux calls a mux2to1 module. The .port(connection) matches the port from the mux2to1 module
to the connection inside the mux module.

mux2to1 u0 (
.x(SW[0]); // assign port SW[0] to port x
.y(SW[1]); // assign port SW[1] to port y
.s(SW[9]); // assign port SW[9] to port s
.m(LEDR[0]); // assign port LEDR[0] to port m

);

Simulation File (.do):

After examining the file, to verify the code functions properly, we can perform a simulation using a script written
in a .do file. This file is also provided by your instructor.

Inside the .do file, we start off by creating a working directory called work using the vlib command. We then
compile the Verilog file using vlog and load it into the simulation with the vsim command. Lastly, to display all
the signals on the waveform viewer, we put {/*} after add wave.

1

set the working dir, where all compiled verilog goes
vlib work

compile all verilog modules in lab2 pt1.v to working dir
could also have multiple verilog files
vlog mux.v

load simulation using lab2 pt1 as the top level simulation module
vsim mux

#log all signals and add some signals to waveform window
log {/*}
add wave {/*} would add all items in top level simulation module
add wave {/*}

Once everything is initiated, we can set the input signals to be a 1 or a 0 with the force command and run the
simulation for x ns with the run command.

set input values using the force command, signal names need to be in brackets
force {SW[0]} 0 # force SW[0] to 0
force {SW[1]} 1 # force SW[1] to 1
force {SW[9]} 0 # force SW[9] to 0

run simulation for a few ns
run 10ns # run for 10 ns

When you have familarized yourself with the .do file, open ModelSim, and in the terminal window (near the
bottom) change to the file’s working directory using the cd command and type do wave.do (or the file name you
named your .do file.

Look at the simulation. You might be wondering how the time intervals are determined at this point. If we
open the Verilog file again, we can see that the very first line states the timescale with the time unit and time
precision. All time values are read as the time unit which is rounded to the nearest time precision.

Perform the following steps as part of your prelab.

1. Run the default .do file given by your instructor.

2. Create your own test cases for the .do file and demonstrate that it works.

3. Create a new Quartus II project for the Verilog code provided.

4. Compare the output results with the simulations you performed.

5. Did you notice a significant compilation time difference between ModelSim and the actual on board test
results? Also, comment why.

Part II

Using the code given in part 1, scale the design such that it is a 4 to 1 multiplexer. You must use multiple in-
stantiations of the mux2to1 given to you in part 1. This is known as hierarchical designs and is a good practice
especially for larger designs where the Verilog can become more difficult to debug.

2

Figure 1. Multiplexer 3 to 1 example. (NOTE: you are doing a 4 to 1 Multiplexer)

s1s0 m

00 u
01 v
10 w
11 x

Table 1. Multiplexer 4 to 1 output.

Perform the following steps.

1. Create a new Quartus II project for your circuit.

2. Include your Verilog file for the circuit in your project. Use switch SW9−8 on the DE1-SoC board as the s
input, switches SW3−0 as the inputs. Connect the output to LEDR0.

3. Simulate your circuit with ModelSim for different values of s, X , and Y . You must show these to the TA as
part of your prelab.

4. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part III

In this part of the lab, you are to design a decoder for the 7 segmented HEX display.

3

Figure 2. HEX Decoder.

c3c2c1c0 Character

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Table 2. HEX character codes.

Perform the following steps:

1. Create a new Quartus II project for your circuit.

2. Create a Verilog module for the 7-segment decoder. Connect the c3c2c1c0 inputs to switches SW3−0, and
connect the outputs of the decoder to the HEX0 display on the DE1-SoC board. The segments in this display
are called HEX00, HEX01, . . ., HEX06. You should declare the 7-bit port

output [6:0] HEX0;

in your Verilog code so that the names of these outputs match the corresponding names in the DE1-SoC
User Manual and the pin assignment DE1 SoC.qsf file.

3. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

4

4. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
SW3−0 switches and observing the 7-segment display.

5

