
Laboratory Exercise 5 – ECE241 Fall 2014
Counters, Arithmetic

Preparation

You are required to write the Verilog code for Parts I to V. Formarking by the teaching assistants, you need
to bring with you (pasted into your lab book) your Verilog code for Parts III, IV and V.

When doing FPGA designs, it is important to understand what makes circuits go faster and how much logic is
being used. How you write your Verilog can have a significant influence on performance and resource usage. Print
out and paste into your lab book, for Part I, the portion of theQuartus II report showing theFmax of your counter
circuit (i.e., the maximum clock frequency at which your counter may be safely operated) and the number of logic
elements (LEs) required to implement the counter. Finally,for Part III, print out a simulation that exercises the
circuit for several clock cycles.

In-lab Work

You are required to implement and test all of Parts I to V of thelab. But you only need to demonstrate to the
teaching assistants Parts III, IV and V. Your mark will be based on these three parts of the lab.

Part I

Consider the circuit in Figure 1. It is a 4-bit synchronous counter which uses four T-type flip-flops. The counter
increments its value on each positive edge of the clock if theEnablesignal is asserted. The counter is reset to 0
by setting theClearsignal low – it is an active-low asynchronous clear. You are to implement an 8-bit counter of
this type.

T Q

QClock

T Q

Q

Enable

Clear

T Q

Q

T Q

Q

Figure 1: A 4-bit counter.

1. Write a Verilog file that defines an 8-bit counter by using the structure depicted in Figure 1. Your code
should include a T flip-flop module that is instantiated 8 times to create the counter (i.e. structural Verilog).
Compile the circuit. How many logic elements (LEs) are used to implement your circuit? What is the
maximum frequency,Fmax, at which your circuit can be operated? (Use TimeQuest in Quartus to determine
the maximum frequencyFmax.)

2. Simulate your circuit to verify its correctness.

3. Augment your Verilog file to use the pushbuttonKEY[0] as theClock input, switchesSW[1] andSW[0] as
EnableandClear inputs, and 7-segment displaysHEX0andHEX1to display the hexadecimal count as your

1



circuit operates. Make the necessary pin assignments needed to implement the circuit on the DE2 board,
and compile the circuit. For this part, you should re-use thehexadecimal-to-7-segment display decoder that
you created for Lab #4.

4. Download your circuit into the FPGA chip and test its functionality by operating the switches.

5. Use the Quartus II RTL Viewer to see how Quartus II softwaresynthesized your circuit. What are the
differences in comparison with Figure 1?

Part II

Another way to specify a counter is by using a register and adding 1 to its value. This can be accomplished using
the following Verilog statement:

Q <= Q+ 1;

Compile an 8-bit version of this counter and determine the number of LEs needed and theFmax that is attainable.
Use the sameKEY, SWand 7-segment displays as in Part I above. Use the RTL Viewer to see the structure of this
implementation versus the design from Part I. Repeat the steps of Part I above for this counter.

Part III
Design and implement a circuit that successively flashes thehexadecimal digits 0 through F on the 7-segment
displayHEX0. You will use two switches,SW[1] andSW[0] to determine the speed of flashing according to the
following table:

SW[1] SW[0] Speed
0 0 Full
0 1 1 Hz
1 0 0.5 Hz
1 1 0.25 Hz

Full speed should use the 50-MHz clock signal provided on theDE2 board. You must design a fully syn-
chronous circuit, which means that every flip flop in your circuit should be clocked by the same 50 MHz clock
signal. To derive the slower flashing rates you should use a counter, call it RateDivider, that is also clocked with
the 50 MHz clock. The output of RateDivider can be used as partof a circuit to create pulses at the required rates.
These pulses can be used to drive anenablesignal on the counter, call it DisplayCounter, that is counting from 0
through F. Recall that anenablesignal determines whether a flip flop, register, or counter will change on a clock
pulse.

1. Write a Verilog file that realizes the behaviour describedabove. Your circuit should have the clock and the
two switches as inputs.

2. Simulate your circuit with QSim to verify its correctness. You will find that it is not realistic to simulate
your final circuit. Why? This is a case where you need to find a way to make your simulations complete
in a realistic time, yet still have confidence that thefinal circuit will be correct. Use your simulation to
demonstrate that the circuit should perform correctly.

3. Include the pin constraints for the DE2 board, and synthesize the circuit with Quartus II.

4. Download your circuit into the FPGA chip and test its functionality.

2



Part IV

Recall the circuit you built in Part I of Lab 3 where you used three of the KEY pushbuttons to rotate a string on six
HEX displays. Modify the circuit you just built in Part III ofthis lab so that it can be used to automatically scroll
the characters instead of using the KEY pushbuttons.

1. Write a Verilog file that realizes the behaviour describedabove. You should use the 50 MHz clock on the
DE2 board as the clock input to your circuit. Your circuit should only have the clock and the two switches
as inputs. As in Part III, the only clock in your design shouldbe the 50 MHz clock.

2. Simulate your circuit with QSim to verify its correctness.

3. Include the pin constraints for the DE2 board, and synthesize the circuit with Quartus II.

4. Download your circuit into the FPGA chip and test its functionality.

Part V

As you have seen in Lab 3, a ripple-carry adder circuit can be implemented by instantiating full adders. However,
an adder circuit can likewise be implemented using a ‘+’ signin Verilog. For example, the following code fragment
addsn-bit numbersA andB to produce outputssumandcarry. Note how the left hand side of the assign statement
is one bit wider than the operands on the right hand side to accommodate the generation of the carry bit:

wire [n-1:0] sum;
wire carry;
. . .
assign {carry, sum} = A + B;

The curly braces in the example above ({ }) are used to implementconcatenation. Use this construct to implement
the circuit shown in Figure 2. Here the carry bit is used to signify when an overflow has occurred, i.e., that the
value of the result cannot be represented as an 8-bit number so that the resulting value atS is incorrect.

Design and compile your circuit with the Quartus II software, download it onto a DE2 board, and test its op-
eration as follows:

1. Create a new Quartus II project.

2. Write Verilog code that describes the circuit in Figure 2.You are encouraged to use procedural Verilog.

3. Connect inputA to switchesSW[7:0], useKEY[0] as an active-low asynchronous reset for all flip-flops in
the circuit andKEY[1] as a manual clock input. The sum output should be displayed onthe redLEDR[7:0]
lights and theOverflowshould be displayed on the redLEDR[8] light.

4. Assign the pins on the FPGA to connect to the switches, keysand 7-segment displays.

5. Compile your design and use timing simulation to verify the correct operation of the circuit. Once the
simulation works properly, download the circuit onto the DE2 board and test it by using different values of
A. Be sure to check that theOverflowoutput works correctly.

6. Open the Quartus II Compilation Report and examine the results reported by the Timing Analyzer. What is
the maximum operation frequency,Fmax, of your circuit? What is the longest path in the circuit in terms of
delay?

3



+

S

8

8

R

Q

R

Q

0DQ

Overflow

A

S

8

8

R

Q

R

Q

0DQ

Overflow

Clock

cinoverflow

Figure 2: An eight-bit accumulator circuit.

4


