
Laboratory Exercise 4 – ECE241 Fall 2014
Latches, Flip-flops, and Registers

The purpose of this exercise is to investigate latches, flip-flops, and registers.

Preparation

You are required to do step 1 of Part I. You are also required towrite and simulate Verilog code for Parts II
and III. For marking by the teaching assistants, you will need to bring with you (pasted into your lab book), your
schematic for Part I, your schematic for Part II, and your Verilog code and simulation output for Parts II and III.
Please comment your simulation output by pointing out (on the timing diagram) what is being tested as the simu-
lation proceeds.

In-lab Work

You are required to implement and test all of Parts I to III of the lab and demonstrate them to the teaching as-
sistant.

Part I

Figure 1 shows the circuit for a gated D latch. In this part, you will build the gated D latch using the 7400
chips (as in Lab 1) and the protoboard (breadboard). Refer back to the Lab 1 handout for the specifications of the
7400 chips.

S

R

Clk

D S_g

R_g

Qa (Q)

Qb

Figure 1: Circuit for a gated D latch.

Perform the following steps:

1. In your lab book, draw a schematic of the gated D latch usinginterconnected 7400-series chips. Don’t forget
to hook up the power and ground!

2. Build the gated D latch using the chips and protoboard. Useswitches to control the clock and D input. Use
lights to makeQa andQb visible.

3. Study the behaviour of the latch for different D and clock settings.

4. Demonstrate your latch implementation to the TA.

1

Part II

Figure 2 shows a positive-edge-triggered flip-flop with several multiplexers. In this part of the lab, you will
use eight instances of the circuit in Figure 2 to design a left/right 8-bit rotating register with parallel load shown
in Figure 3. TheLoadLeft input of all eight instances of the circuit in Figure 2 shouldbe tied to a single rotating
register inputRotateRight because when you want to rotate the bits right, you have to load the bit to the left. The
loadn input of all eight instances should be tied to a single rotating register inputParallelLoadn. Theclock input
of all eight instances should be tied to a single rotating register inputclock. Create an 8-bit-wide rotating register
input DATA_IN, whose individual wiresDATA_IN[7] to DATA_IN[0] are tied to theD input of each instance of
the circuit in Figure 2. Likewise, create an 8-bit-wide rotating register outputQ, whose individual wiresQ[7] to
Q[0] are tied to theQ output of each instance of the circuit in Figure 2.

The remaining connections between the eight instances of the circuit in Figure 2 should realize the following
behaviour:

1. WhenParallelLoadn = 0, the value onDATA_IN is stored in the flip-flops on the next positive clock edge
(i.e., parallel load behaviour).

2. WhenParallelLoadn = 1, RotateRight = 1 andASRight = 0 the bits of the register rotate to the right on each
positive clock edge (notice the bits rotate to the right withwrap around):

Q7Q6Q5Q4Q3Q2Q1Q0

Q0Q7Q6Q5Q4Q3Q2Q1

Q1Q0Q7Q6Q5Q4Q3Q2

. . .

3. WhenParallelLoadn = 1, RotateRight = 1 andASRight = 1 the bits of the register rotate to the right on each
positive clock edge but the most significant bit is replicated. This is called anArithmetic shift right:

Q7Q6Q5Q4Q3Q2Q1Q0

Q7Q7Q6Q5Q4Q3Q2Q1

Q7Q7Q7Q6Q5Q4Q3Q2

. . .

4. WhenParallelLoadn = 1 andRotateRight = 0, the bits of the register rotate to the left on each positive clock
edge.ASRight is ignored:

Q7Q6Q5Q4Q3Q2Q1Q0

Q6Q5Q4Q3Q2Q1Q0Q7

Q5Q4Q3Q2Q1Q0Q7Q6

. . .

!" #"
$"

%"
$"

%"

!
"

&'
(
)
&*
+
"

,'
(
)
-
"

,*+"

./012"

3,'34"

#"

Figure 2: Sub-circuit for Part II.

2

!"#!$%

&
'
(
'
)
*+
,-
./
0%

1
,-
./
0%

2
#
34
35
2
67
8
3%

9:;63%"5<=>6783%

>#34?@7%>576A35>%

B638%C4>4""5"%"#4D%

9%

9%

E
4
>4
""
5
"F
#
4
D
@
%

'
G
2
67
8
3%

Figure 3: Top-level circuit for Part II.

Figure 3 shows the inputs and outputs of the top-level left/right rotating register circuit with parallel load,
which will contain eight instances of the circuit in Figure 2.

Do the following steps:

1. Draw a schematic for the 8-bit rotating register with parallel load. Your schematic should contain eight
instances of the circuit in Figure 2. Paste the schematic into your lab book. Label the signals on your
schematic.

2. Create a new Quartus II project.

3. Write a Verilog module for the circuit in Figure 2.

4. Write a Verilog module for the rotating register with parallel load that instantiates eight instances of your
Verilog module for Figure 2. This Verilog module should match with the schematic in your lab book. Use
SW[7:0] as the inputsDATA_IN[7:0]. UseSW[8] as theRotateRight input,SW[9] as theASRight input and
SW[10] as theParallelLoadn input. UseKEY[0] as the clock, butread the important note below about
switch bouncing. The outputsQ[7:0] should be displayed on the red LEDs (LEDR[7:0]).

5. Include the Verilog code in your project.

6. Compile your Verilog code and simulate the design with QSim. In your simulation, you should use the
parallel load to initialize the rotating register to 0xBE (hexadecimal) at the start of the simulation. Then,
clock the register for several cycles to demonstrate rotation in the left and right directions.

7. Download your circuit into the Cyclone II FPGA on the DE2 board.

8. Test the functionality of your rotating register.

3

Note: If you run into bounce problems withKEY_0 for your clock you are welcome to try using any of the keys.
All mechanical switches, such as a push/toggle button, willoften make contact several times due the electrical
contacts bouncing. This happens quickly in human time, but not in electrical time. With a bouncing switch you
can observe multiple high-frequency toggles making it difficult to create single clock edges. Although the DE2
keys/switches are supposed to be debounced it doesn’t seem to work.

Part III

You will use the ALU you designed in Part IV of Lab 3 to build thecircuit shown in Figure 4. The circuit
contains an 8-bit register that drives theB input of the ALU. Design your register with an active-low synchronous
reset. Observe that at each positive clock edge, the data on the ALU output is stored in the register, and as
such, it becomes an operand in the next computation. This circuit can do a variety of computations, based on
the “instruction” appearing on the 3-bit-wideOPCODE input, and where the result of a computation is stored in
memory (the 8-bit register).

!"#$%&'($")*$+$

,$,$,$

-$

-$

-$

!$.$

/!0!$

1231/4$ 5$

.678$

9:;$

<=>?@$

A?9'A?&>$

&?>?B$

<=>?@$

A?9'A?&>$

Figure 4: Circuit for Part III.

We wish to display the hexadecimal value of the 8-bit numberB_IN on the two 7-segment displays,HEX[1:0].
Likewise, we wish to display the hexadecimal value of the 8-bit numberDATA on the two 7-segment displays,
HEX[3:2]. You will need to design a 7-segment decoder that displays the correct hexadecimal digit for a 4-bit
binary input. Your design will instantiate four instances of your decoder.

UseKEY[0] for the clock input. UseSW[11] for the reset input. UseSW[7:0] for theDATA input. UseSW[10:8]
for theOPCODE input.

1. Create a new Quartus II project which will be used to implement the desired circuit on the Altera DE2 board.

2. Write a Verilog module that provides the necessary functionality.

3. Include the Verilog file in your project and compile the circuit.

4. Simulate the circuit with QSim for a few cycles to ensure your circuit is working properly. You should use
the reset input to clear the register to0x00 (hexadecimal) at the beginning of the simulation.

5. Assign the pins on the FPGA to connect to the switches and 7-segment displays, as indicated in the User
Manual for the DE2 board.

6. Recompile the circuit and download it into the FPGA chip.

7. Test the functionality of your design by toggling the switches, keys, and observing the output displays.

8. For those with time to spare, you can try this. This will notbe marked. Increase the functionality of your
ALU by adding shifting capability. Replace the register in Part III with the shifter from Part II. You will
need to extend theOPCODE to add the shifter functions. Think about how thereset can be done.

4

