Laboratory Exercise 3

The case statement, Adders and ALUs

This is an exercise in designing multiplexers using the case statement, using hierarchy, developing a simple adder
and an ALU.

Preparation Before the Lab
Review the instructions in Lab 2 about preparations.

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your schematics, Verilog, and simulations for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim using reasonable test vectors written in the format used in Lab 2 for the
simulation files.

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part 1

For this part of the lab, you will be learning how to use always blocks and case statements to design a 7-to-1
multiplexer.

Like a module, an always block can have inputs and outputs. A module can contain any number of always
blocks just the same as any module can contain any number of other module instantiations. The difference is that
an always block can only instantiate logic within the module where it is defined. A module can be instantiated in
any other module, i.e., it can be reused.

Any output of an always block must have been declared as a reg type in the module containing the always
block.

The model Verilog code for a 7-to-1 multiplexer built using a case statement is shown below. The seven inputs are
from the signals named Input [6:0]. The output is called Out. The select lines are called MuxSelect [2:0].

reg Out; / declare the output signal for the always block
always @(*) /Il declare always block
begin

case (MuxSelect[2:0]) // start case statement
3’b000: Out = Input[0];// case O
3’b001: Out = Input[1];// case 1
3’b010: Out = Input[2];// case 2

3’b011: ... // case 3

3°’b100: ... // case 4

3°b101: ... // case 5

3°b110: ... // case 6

default: . .. // default case
endcase

end

An always block is triggered to execute in simulation whenever there is a change in the sensitivity list. This list
is denoted by the asterisk character in the above example. This means that whenever any input to the always
block is changed, the code in the always block will be simulated. We can change the asterisk to certain inputs
to limit when this code is triggered, but this can lead to simulations that do not match the real hardware. One of
the (bad) features of the language. The accepted practice today is to always use the asterisk in your always block
for combinational logic, i.e., any logic where the outputs rely strictly on the inputs. You will learn more about
combinational and sequential logic later. For now, use the asterisk in the always block for a case statement as
shown above.

It is important to have a default case to ensure that all cases are covered. Otherwise, you can again have sim-
ulations that do not match the hardware. Yet another Verilog feature! Your goal is to write Verilog that will
generate hardware that exactly matches the simulation, so please put in the default statement.

If you want to know why, read on. When you execute an always block, the use of if and case statements can
take you through different code paths. If you reach the end of the always block and there is an unassigned (reg)
variable, then a memory element, a latch, will be created because the meaning is that the variable keeps its pre-
vious value, so a memory element is inferred. The problem becomes more subtle because if MuxSelect in the
above example is three bits, there are actually more than eight cases! Each bit can be (1, 0, x (unknown value), z
(high-impedance)), so there are really 4> = 64 possible paths. Synthesis tools will likely assume only (1,0) and
create the correct circuit, but the simulator may not do the same. Always, always put in the default statement. If
you did not understand the above, at least you, hopefully, now see how Verilog can have subtle side effects that
can cause problems. To avoid these issues, you will be shown the coding styles that will avoid most problems.

Using SWg_¢ as the data inputs and SWy_7 as the select signals, display on LEDR, the output of a 7-to-1 multi-
plexer using the case statement style as shown above.

1. Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Be prepared to
explain it to the TA as part of your preparation.

2. Create a new Quartus II project for your circuit.

3. Include your Verilog file for the circuit in your project. Use switches SWgy_7 on the DE1-SoC board as the
MuxSelect inputs and switches SWg_q as the Input data inputs. Connect the output to LEDR.

4. Simulate your circuit with ModelSim for different values of MuxSelect and Input. You must show
these to the TA as part of your preparation.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part I1

Figure 2a shows a circuit for a full adder, which has the inputs a, b, and ¢;, and produces the outputs s and
. Parts b and c of the figure show a circuit symbol and truth table for the full adder, which produces the two-bit
binary sum c,s = a + b + ¢;. Figure 2d shows how four instances of this full adder module can be used to design
a circuit that adds two four-bit numbers. This type of circuit is called a ripple-carry adder, because of the way that
the carry signals are passed from one full adder to the next. Write Verilog code that implements this circuit, as
described below. Be sure to use what you learned about hierarchy in Lab 2.

a) Full adder circuit b) Full adder symbol
bac| c s by aj c5 b, a, c, by a, c by ay ¢y
cooloo J i A b E]
010 01
011] 10 FA FA FA FA
100 01
101 | 10
L [I S A
L1l I C S S S S
out °3 2 1 0
c¢) Full adder truth table d) Four-bit ripple-carry adder circuit

Figure 2. A ripple-carry adder circuit.

Perform the following steps.

1. Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Be prepared to
explain it to the TA as part of your preparation.

2. Create a new Quartus II project for the adder circuit. Write a Verilog module for the full adder subcircuit
and write a top-level Verilog module that instantiates four instances of this full adder.

3. Use switches SW;_4 and SW3_ to represent the inputs A and B, respectively. Use SWj for the carry-
in, ¢;,, of the adder. Connect the outputs of the adder, c,,: and S, to the LEDs LEDRg and LEDRj3.,
respectively.

4. Simulate your adder with ModelSim for intelligently chosen values of A and B and ¢;,,. You must show
these to the TA as part of your preparation. Note that as circuits get more complicated, you will not be able
to simulate or test all possible cases. This means that you can test only a subset. Here intelligently chosen
means to find particular corner cases that exercise key aspects of the circuit. An example would be a pattern
that shows that the carry signals are working. Be prepared to explain why your test cases are good enough.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part II1

Using Parts I and II from this lab and the HEX decoder from Lab 2 Part III, you will implement a simple Arithmetic
Logic Unit (ALU). An ALU has two inputs and can perform multiple operations on the inputs such as addition,
subtraction, logical operations, etc. The output of the ALU is selected by function bits that specify the function to
be performed by the ALU. The easiest way to build an ALU is to implement all required functions and connect

the outputs of the functions to a multiplexer. Choose the output value for the ALU using the ALU function in-
puts to drive the multiplexer select lines. The output of the ALU will be displayed on the LEDs and HEX displays.

Shown in the case statement below are the operations to be implemented in the ALU for each function value.
The ALU has two 4-bit inputs, A and B and an 8-bit output, called ALUout[7:0]. Note that in some cases, the
output will not require the full 8 bits so do something reasonable with the extra bits, such as making them 0 so that
the value is still correct.

always @(*) /l declare always block
begin
case (function) // start case statement
: A + B using the adder from Part II of this Lab
: A + B using the Verilog ‘+’ operator
: A XOR B in the lower four bits and A OR B in the upper four bits
: Output 1 (8°b00000001) if at least 1 of the 8 bits in the two inputs is 1 using a single OR operation
: Output 1 (8’b00000001) if all of the 8 bits in the two inputs are 1 using a single AND operation
: Display the inputs at the output with A in the most significant four bits and B in the least significant four bits.
default: ... //default case
endcase
end

N hEWN=O

Note that in this part of the lab, you will need to learn about Verilog concatenation for the additions, sign exten-
sion, and the Verilog reduction operations for ORing and ANDing multiple bits without typing out the operation
for each bit individually.

The A and B inputs connect to switches SW;_4 and SW3_q respectively. Use KEY>_ for the function inputs.
Display ALUout[7:0] in binary on LEDR;_q; have HEX0 and HEX?2 display the values of A and B respectively
and set HEX1 and HEX3 to 0. HEX4 and HEX5 should display ALUout[3:0] and ALUout[7:4] respectively.

Perform the following steps:

1. Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Be prepared to
explain it to the TA as part of your preparation.

2. Write a Verilog module for the ALU including all inputs and outputs.
3. Create a new Quartus II project for your circuit.

4. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your preparation.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Note: In your simulation, KEY3_(are inverted. Remember that the DE1-SoC board recognizes an unpressed
pushbutton as a value of 1 and a pressed pushbutton as a 0.

