
Laboratory Exercise 6 – ECE241 Fall 2012
Finite State Machines

This is an exercise in using finite state machines.

Preparation

You are required to write the Verilog code for Parts I to IV. For marking by the teaching assistants, you need
to bring with you (pasted into your lab book) your Verilog code for Parts I to IV, a simulation output for your
designed-circuits for Part I, a print-out from the RTL Viewer and State Machine Viewer of your compiled circuits
for Part II, and a print-out of the RTL Viewer for Parts III and IV.

In-lab Work

You are required to implement and test all of Parts I to IV of the lab. But you only need to demonstrate to
the teaching assisants Parts II and IV. Your mark will be based on these two parts of the lab.

Part I

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or four consecutive 0s. There is an input w and an output z. Whenever w = 1 or
w = 0 for four consecutive clock pulses the value of z has to be 1; otherwise, z = 0. Overlapping sequences are
allowed, so that if w = 1 for five consecutive clock pulses the output z will be equal to 1 after the fourth and fifth
pulses. Figure 1 illustrates the required relationship between w and z.

1

!"#$%&

'&

(&

Figure 1: Required timing for the output z.

A state diagram for this FSM is shown in Figure 2. For this part you are to manually derive an FSM circuit that
implements this state diagram, including the logic expressions that feed each of the state flip-flops. To implement
the FSM use nine state flip-flops called y8, . . . , y0 and the one-hot state assignment given in Table 1.

2

!"#$

%"#$

&"#$

'"

#$

(")$

*"#$

+"

)$

,-.-/$

01)$

01)$

01)$ 01#$

01)$

01#$

01#$

01#$

01)$

01)$

01#$

01#$

01)$

01#$

Figure 2: A state diagram for the FSM.

3

State Code
Name y8y7y6y5y4y3y2y1y0

A 000000001

B 000000010
C 000000100
D 000001000
E 000010000
F 000100000
G 001000000
H 010000000
I 100000000

Table 1: One-hot codes for the FSM.

Design and implement your circuit on the DE2-series board as follows:

1. Create a new Quartus II project for the FSM circuit. Select the appropriate target chip that matches the
FPGA chip on the Altera DE2-series board.

2. Write a Verilog file that instantiates the nine flip-flops in the circuit and which specifies the logic expressions
that drive the flip-flop input ports. Use only simple assign statements in your Verilog code to specify the
logic feeding the flip-flops. Note that the one-hot code enables you to derive these expressions by inspection.

Use the toggle switch SW0 on the DE2-series board as an active-low synchronous reset input for the FSM,
use SW1 as the w input, and the pushbutton KEY0 as the clock input which is applied manually. Use the
green light LEDG0 as the output z, and assign the state flip-flop outputs to the red lights LEDR8 to LEDR0.

3. Include the Verilog file in your project, and assign the pins on the FPGA to connect to the switches and the
LEDs, as indicated in the User Manual for the DE2-series board. Compile the circuit.

4. Simulate the behavior of your circuit.

5. Once you are confident that the circuit works properly as a result of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing
the output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs,
and that it produces the correct output values on LEDG0.

6. Finally, consider a modification of the one-hot code given in Table 1. When an FSM is going to be imple-
mented in an FPGA, the circuit can often be simplified if all flip-flop outputs are 0 when the FSM is in the
reset state. This approach is preferable because the FPGA’s flip-flops usually include a clear input, which
can be conveniently used to realize the reset state, but the flip-flops often do not include a set input.

Table 2 shows a modified one-hot state assignment in which the reset state, A, uses all 0s. This is accom-
plished by inverting the state variable y0. Create a modified version of your Verilog code that implements
this state assignment. (Hint: you should need to make very few changes to the logic expressions in your
circuit to implement the modified state assignment.) Compile your new circuit and test it both through
simulation and by downloading it onto the DE2-series board.

4

State Code
Name y8y7y6y5y4y3y2y1y0

A 000000000

B 000000011
C 000000101
D 000001001
E 000010001
F 000100001
G 001000001
H 010000001
I 100000001

Table 2: Modified one-hot codes for the FSM.

Part II

For this part you are to write another style of Verilog code for the FSM in Figure 2. In this version of the code you
should not manually derive the logic expressions needed for each state flip-flop. Instead, describe the state table
for the FSM by using a Verilog case statement in an always block, and use another always block to instantiate
the state flip-flops. You can use a third always block or simple assignment statements to specify the output z. To
implement the FSM, use four state flip-flops y3, . . . , y0 and binary codes, as shown in Table 3.

State Code
Name y3y2y1y0

A 0000

B 0001
C 0010
D 0011
E 0100
F 0101
G 0110
H 0111
I 1000

Table 3: Binary codes for the FSM.

A suggested skeleton of the Verilog code is given in Figure 3.

5

module part2 (. . .);
. . . define input and output ports

. . . define signals
reg [3:0] y_Q, Y_D; // y_Q represents current state, Y_D represents next state
parameter A = 4’b0000, B = 4’b0001, C = 4’b0010, D = 4’b0011, E = 4’b0100,

F = 4’b0101, G = 4’b0110, H = 4’b0111, I = 4’b1000;

always @(w, y_Q)
begin: state_table

case (y_Q)
A: if (!w) Y_D = B;

else Y_D = F;
. . . remainder of state table
default: Y_D = 4’bxxxx;

endcase
end // state_table

always @(posedge Clock)
begin: state_FFs

. . .
end // state_FFS

. . . assignments for output z and the LEDs
endmodule

Figure 3: Skeleton Verilog code for the FSM.

Implement your circuit as follows.

1. Create a new project for the FSM.

2. Include in the project your Verilog file that uses the style of code in Figure 3. Use the toggle switch SW0 on
the DE2-series board as an active-low synchronous reset input for the FSM, use SW1 as the w input, and the
pushbutton KEY0 as the clock input which is applied manually. Use the green light LEDG0 as the output
z, and assign the state flip-flop outputs to the red lights LEDR3 to LEDR0. Assign the pins on the FPGA to
connect to the switches and the LEDs, as indicated in the User Manual for the DE2-series board.

3. Before compiling your code it is necessary to explicitly tell the Synthesis tool in Quartus II that you wish to
have the finite state machine implemented using the state assignment specified in your Verilog code. If you
do not explicitly give this setting to Quartus II, the Synthesis tool will automatically use a state assignment
of its own choosing, and it will ignore the state codes specified in your Verilog code. To make this setting,
choose Assignments > Settings in Quartus II, and click on the Analysis and Synthesis item on the left
side of the window, then click on the More Setting button. As indicated in Figure 4, change the parameter
State Machine Processing to the setting User-Encoded.

4. To examine the circuit produced by Quartus II open the RTL Viewer tool. Double-click on the box shown
in the circuit that represents the finite state machine, and determine whether the state diagram that it shows
properly corresponds to the one in Figure 2. To see the state codes used for your FSM, open the Compilation
Report, select the Analysis and Synthesis section of the report, and click on State Machines.

5. Simulate the behavior of your circuit.

6. Once you are confident that the circuit works properly as a result of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing

6

the output LEDs. Make sure that the FSM properly transitions between states as displayed on the red LEDs,
and that it produces the correct output values on LEDG0.

7. In step 3 you instructed the Quartus II Synthesis tool to use the state assignment given in your Verilog
code. To see the result of removing this setting, open again the Quartus II settings window by choosing
Assignments > Settings, and click on the Analysis and Synthesis item, then click on the More Setting
button. Change the setting for State Machine Processing from User-Encoded to One-Hot. Recompile
the circuit and then open the report file, select the Analysis and Synthesis section of the report, and click
on State Machines. Compare the state codes shown to those given in Table 2, and discuss any differences
that you observe.

Figure 4: Specifying the state assignment method in Quartus II.

Part III

The sequence detector can be implemented in a straightforward manner using shift registers, instead of using
the more formal approach described above. Create Verilog code that instantiates two 4-bit shift registers; one
is for recognizing a sequence of four 0s, and the other for four 1s. Include the appropriate logic expressions in
your design to produce the output z. Make a Quartus II project for your design and implement the circuit on the
DE2-series board. Use the switches and LEDs on the board in a similar way as you did for Parts I and II and
observe the behavior of your shift registers and the output z. Answer the following question: could you use just
one 4-bit shift register, rather than two? Explain your answer.

7

figures/fig_morse_code_circuit_schematic.pdf

Figure 5: High-level schematic diagram of the circuit for part IV.

Part IV

In this part of the exercise you are to implement a Morse code encoder using an FSM. The Morse code uses
patterns of short and long pulses to represent a message. Each letter is represented as a sequence of dots (a short
pulse), and dashes (a long pulse). For example, the first eight letters of the alphabet have the following represen-
tation:

A • —
B — • • •
C — • — •
D — • •
E •
F • • — •
G — — •
H • • • •

Design and implement a Morse code encoder circuit using an FSM. Your circuit should take as input one of the first
eight letters of the alphabet and display the Morse code for it on a red LED. Use switches SW2−0 and pushbuttons
KEY1−0 as inputs. When a user presses KEY1, the circuit should display the Morse code for a letter specified by
SW2−0 (000 for A, 001 for B, etc.), using 0.5-second pulses to represent dots, and 1.5-second pulses to represent
dashes. Pushbutton KEY0 should function as an asynchronous reset.

A high-level schematic diagram of the circuit is shown in Figure 5. Your FSM should replace the part of the
circuit labeled “Logic”.

Copyright c©2010 Altera Corporation.

8

