
Laboratory Exercise 5
Clocks and Counters

The purpose of this exercise is to learn how to create counters and to be able to and to be able to control when
operations occur when the actual clock rate is much faster.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your Verilog, simulations and schematics for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors you can justify).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part I

Consider the circuit in Figure 1. It is a 4-bit synchronous counter that uses four T-type flip-flops. The counter
increments its value on each positive edge of the clock if the Enable signal is asserted. The counter is reset to 0
by setting the Clear b signal low – it is an active-low asynchronous clear. You are to implement an 8-bit counter
of this type.

Figure 1: A 4-bit counter.

Perform the following steps:

1. Write a Verilog file that defines an 8-bit counter by using the structure depicted in Figure 1. Your code
should include a T flip-flop module that is instantiated 8 times to create the counter (i.e. structural Verilog).
Compile the circuit. How many logic elements (LEs) are used to implement your circuit? What is the
maximum frequency, Fmax, at which your circuit can be operated? (Use TimeQuest in Quartus to determine
the maximum frequency Fmax – Refer to Using TimeQuest Timing Analyzer document found on the Altera
website.)

2. Simulate your circuit to verify its correctness, draw the circuit and have both ready as prelab.

3. Augment your Verilog file to use the pushbutton KEY0 as the Clock input, switches SW1 and SW0 as Enable
and Clear b inputs, and 7-segment displays HEX0 and HEX1 to display the hexadecimal count as your
circuit operates. Make the necessary pin assignments needed to implement the circuit on the DE1-SoC
board, and compile the circuit. For this part, you should re-use the hexadecimal-to-7-segment display
decoder that you created for Lab 2.

1

pc
Cross-Out

pc
Inserted Text
xxx

pc
Sticky Note
Clear_b

I realized you probably don't have the original and it looks like it is done in framemaker. I've edited the pdf directly to fix it and will attach the corrected figure.

pc
Inserted Text
the

4. Download your circuit into the FPGA chip and test its functionality by operating the switches.

5. Use the Quartus II RTL Viewer to see how the Quartus II software synthesized your circuit. What are the
differences in comparison with Figure 1?

Part II

Another way to specify a counter is by using a register and adding 1 to its value. This can be accomplished
using the following Verilog statement:

Q <= Q+ 1;

An example code is shown below of a counter which counts from hexidecimal values 0 to F

always @(posedge clock) // triggered every time clock rises
begin

if (clear b == 1’b1) // when reset is 1
q <= 0; // q is set to 0

else if (q > 4’b1111) // when q is maximum value
q <= 0; // q reset to 0

else if (enable == 1’b1) // increment q only when enable is 1
q <= q + 1; // increment q

end

Design and implement a circuit using the statement above that successively flashes the hexadecimal digits 0
through F on the 7-segment display HEX0. You will use two switches, SW1 and SW0 to determine the speed
of flashing according to the following table:

SW[1] SW[0] Speed
0 0 Full
0 1 1 Hz
1 0 0.5 Hz
1 1 0.25 Hz

0.25 Hz

0.50 Hz

1.00 Hz

Figure 2: Timing diagram for slower frequencies.

Full speed should use the 50 MHz clock signal provided on the DE1-SoC board. You must design a fully syn-
chronous circuit, which means that every flip flop in your circuit should be clocked by the same 50 MHz clock
signal. To derive the slower flashing rates you should use a counter, call it RateDivider, that is also clocked with

2

pc
Cross-Out

pc
Inserted Text
that

pc
Cross-Out

pc
Inserted Text
hexadecimal

pc
Cross-Out

pc
Inserted Text
0

pc
Cross-Out

pc
Inserted Text
Clear_b is 0

to be consistent with previous part

pc
Cross-Out

pc
Inserted Text
Clear_b

Also, spacing of == in this code

pc
Cross-Out

pc
Inserted Text
Enable

pc
Cross-Out

pc
Inserted Text
Enable

pc
Sticky Note
Observe that q is declared as a 4-bit value making this a 4-bit counter. The check for the maximum value is not necessary in the example above. Why? If you wanted this 4-bit counter to count from 0-9, what would you do?

pc
Sticky Note
We'll need to show q declared to be precise about how this example works.

reg [3:0] q;

pc
Cross-Out

pc
Inserted Text
==

pc
Inserted Text
 for the counter

pc
Cross-Out

pc
Inserted Text
counters

pc
Sticky Note
Sorry, should have given you an example of what I wanted.

These timing diagrams should represent the enable pulses. We should not imply that these are the clocks going into the flip flops. Regardless, you have the labels incorrect. 1 Hz is faster than .5 Hz. :-)

Let me try describing the diagram in words. There are just two waveforms. One is the 50 MHz clock. One is the 1Hz Enable pulse. Show two pulses of the 1Hz Enable pulse and for the clock show a bunch of smaller pulses, ... (gap with 3 dots to show stuff is omitted), another bunch of smaller pulses. Label the distance between the 1Hz Enable pulses to be 50 million pulses of the clock. The Enable pulse should be only 1 clock cycle wide. Caption this as "Timing diagram for a 1Hz enable signal".

the 50 MHz clock. The output of RateDivider can be used as part of a circuit to create pulses at the required rates.
These pulses can be used to drive an enable signal on the counter, call it DisplayCounter, that is counting from 0
through F. Recall that an enable signal determines whether a flip flop, register, or counter will change on a clock
pulse.

Perform the following steps.

1. Write a Verilog file that realizes the behaviour described above. Your circuit should have the clock and the
two switches as inputs.

2. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab. You will also need to think about how to
simulate this kind of circuit. For example, how many 50 MHz clock pulses will you need to simulate to
show that the RateDivider is properly outputting a 1 Hz pulse?

3. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part III

In this part of the exercise you are to implement a Morse code encoder using a lookup table (LUT), which can be
implemented as a multiplexer with hard-coded inputs, and a rate divider similar to Part II. The Morse code uses
patterns of short and long pulses to represent a message. Each letter is represented as a sequence of dots (a short
pulse), and dashes (a long pulse). For example, starting from A, eight letters of the alphabet have the following
representation:

A • —
B — • • •
C — • — •
D — • •
E •
F • • — •
G — — •
H • • • •

Design and implement a Morse code encoder circuit using a LUT and a rate divider. The LUT stores the patterns
for each letter. When a letter is selected, the appropriate pattern is loaded from the LUT into the shift register via
parallel load. Pattern is then shifted out the shift register one bit at a time.

Your circuit should take as input one of the eight letters of the alphabet starting from A (as in the table above)
and display the Morse code for it on a red LED, LEDR0. Use switches SW2−0 and pushbuttons KEY1−0 as inputs.
When a user presses KEY1, the circuit should display the Morse code for a letter specified by SW2−0 (000 for A,
001 for B, etc.), using 0.5-second pulses to represent dots, and 1.5-second pulses to represent dashes. The time
between pulses is 0.5 seconds. Pushbutton KEY0 should function as an asynchronous reset.

Hint: Since your minimum time is 0.5 seconds, set each 0 or 1 to be 0.5 seconds. This means that a 0 is a
pause, a 1 is a dot, and 111 is a dash. Then read each 0 or 1 individually out of a shift register at 0.5 seconds per
read.

Perform the following steps.

3

pc
Cross-Out

pc
Inserted Text
The pattern

pc
Inserted Text
of

pc
Inserted Text
 Figure 2 shows a timing diagram for a 1 Hz enable signal with respect to a 50 MHz clock.

Put figure 2 here.

pc
Sticky Note
Just an FYI. Your example code does not realize a multiplexer. The cascaded if/else if structure is a priority encoder. The case statement generates a mux. The functional behaviour for this example will be the same. Resource use and timing delays will be different.

You implement a barrel shift for each step rather than a simple shifter. The resource use will be very different. You will have a much larger circuit.

It doesn't look like you did much simulation. At least the .do file does not do much...

pc
Cross-Out

pc
Inserted Text
You will design

pc
Inserted Text
 or off

pc
Inserted Text
 You should have observed that the codes are different lengths. You may assume that all letters can be stored using a single pattern length, i.e., all patterns stored in the LUT use the same number of bits.

1. Write a Verilog file that realizes the behaviour described above.

2. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

3. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

4

pc
Cross-Out

pc
Inserted Text
module

