
Laboratory Exercise 3 – ECE241 Fall 2014
Combinational Logic and Displays

This is an exercise in designing combinational circuits that can drive 7-segment displays, and perform a variety
of different functions.

Preparation

You are required to complete Parts I to IV of the lab by writingand testing Verilog code and compiling it with
Quartus II. Show your Verilog for Parts II and IV to the teaching assistants (pasted into your lab book). For Parts II
and III, you must simulate your circuit with QSim (using reasonable test vectors) and show the teaching assistant
a printout of your timing diagrams annotated with your tests. For Part III, you must also show the TA your K-map,
the optimized logic function, and the list of prime implicants and essential prime implicants.

In-lab Work

You are required to implement and test all of Parts I to IV of the lab, and demonstrate Parts I and IV to the
teaching assistants.

Part I

In this part of the lab, you will extend the work you did in Lab 2. In particular, you will use six 7-segment displays
to show a word whose characters can be rotated. You will need to use six instances of the circuit shown in Figure
7 of Lab 2. You should have your word displayed onHEX5, HEX4, HEX3, HEX2, HEX1, andHEX0. This is an
exercise in reusing modules that you have previously constructed and tested. You will only bewiring up those
modules. No extra logic is required. To get the correct wiring, you will find that drawing a schematic diagram of
the full circuit will help.

You are to complete the skeleton code shown in Figure 1 so thatit uses six 7-segment displays. Note that you
can just copy your code from Lab 2. You do not need to use the same signal names as shown in Figure 1.

The purpose of your circuit is to display a word on the six displays that is composed of the characters in Table
1 of Lab 2, and be able to rotate this word in a circular fashionacross the displays when the keysKEY2−0 are
toggled. That is, your circuit should produce the output patterns illustrated in Table 1.

KEY2 KEY1 KEY0 Character pattern

000 L E A F 6 7
001 E A F 6 7 L
010 A F 6 7 L E
011 F 6 7 L E A
100 6 7 L E A F
101 7 L E A F 6

Table 1: Rotating the word LEAF67 on six displays fromHEX5 down toHEX0

Perform the following steps.

1. Create a new Quartus II project for your circuit.

2. Include your Verilog module in the Quartus II project.

3. Include the required pin assignments for the DE2 board forall switches, LEDs, and 7-segment displays.
Compile the project.

1



module part1 (SW, KEY, HEX0, HEX1, HEX2, HEX3, HEX4, HEX5);
input [17:0] SW; // toggle switches
input [2:0] KEY; // keys
output [6:0] HEX0; // 7-seg displays
output [6:0] HEX1;
output [6:0] HEX2;
output [6:0] HEX3;
output [6:0] HEX4;
output [6:0] HEX5;

// instantiate six of the modules from Figure 7 of Lab 2.

. . . code not shown

endmodule

// implements a 3-bit wide 6-to-1 multiplexer
module mux 3bit 6to1 (S, U, V, W, X, Y, Z, M);

input [2:0] S, U, V, W, X, Y, Z;
output [2:0] M;

. . . code not shown

endmodule

// implements a 7-segment decoder for L,E,A,F,6,7
module char7seg (C, Display);

input [2:0] C; // input code
output [6:0] Display; // output 7-seg code

. . . code not shown

endmodule

// implements a circuit to select and display one of six characters
module displayoneofsix (SW,KEY,Display);

input [17:0] SW; // toggle switches
input [2:0] KEY; // keys
output [6:0] Display; // output 7-seg code

. . . code not shown

endmodule

Figure 1: Verilog code skeleton.

2



4. Download the compiled circuit into the FPGA chip. Test thefunctionality of the circuit by setting the proper
character codes on the switches SW17−0 and then togglingKEY2−0 to observe the rotation of the characters.

Part II

Figure 2a shows a circuit for afull adder, which has the inputsa, b, andci, and produces the outputss andco.
Partsb andc of the figure show a circuit symbol and truth table for the fulladder, which produces the two-bit
binary sumcos = a+ b+ ci. Figure 2d shows how four instances of this full adder module can be usedto design
a circuit that adds two four-bit numbers. This type of circuit is usually called aripple-carry adder, because of
the way that the carry signals are passed from one full adder to the next. Write Verilog code that implements this
circuit, as described below.

FA

0

1

c
i

a) Full adder circuit

a

b

c
o

s c
i

a

b
c

o

s

b) Full adder symbol

FA

a
0

b
0

s
0

FA

c
1

a
1

b
1

s
1

FA

c
2

a
2

b
2

s
2

FA

c
3

a
3

b
3

s
3

c
out

d) Four-bit ripple-carry adder circuit

c
in

0

0

c) Full adder truth table

a c
i

b

0 0

0 1

0

0

1 0

1 1

1 0 0

1

1

0 1

1 0

1 1 1

0

0

sc
o

0

1

0

1

1

0

0 1

1

1

0

0

1 1

Figure 2. A ripple-carry adder circuit.

1. Create a new Quartus II project for the adder circuit. Write a Verilog module for the full adder subcircuit
and write a top-level Verilog module that instantiates fourinstances of this full adder.

2. Use switchesSW7−4 andSW3−0 to represent the inputsA andB, respectively. UseSW8 for the carry-in
cin of the adder. Connect theSW switches to their corresponding red lights LEDR, and connect the outputs
of the adder,cout andS, to the green lights LEDG.

3. Simulate your adder with QSim for intelligently chosen values ofA andB andcin. Print the simulation
waveforms and paste them into your lab book.

4. Include the necessary pin assignments for the DE2 board, compile the circuit, and download it into the
FPGA chip.

5. Test your circuit by trying different values for numbersA, B, andcin.

3



Part III

Given the following 4-variable Boolean function expressedin canonical sum-of-products (SOP) form:

f(x1, x2, x3, x4) =
∑

m(2, 3, 5, 7, 8, 9, 13, 15) (1)

For example, minterm 5 isx1x2x3x4.

Optimize the function using a Karnaugh map (K-map) to find itsminimized SOP form. Implement your opti-
mized function as a circuit in hardware using the DE2 board.

1. Draw the K-map forf and use it to optimize the functionf .

2. List theprime implicants of the functionf .

3. List theessential prime implicants of the functionf .

4. Create a new Quartus II project for the circuit. Write a Verilog module for the optimized circuit.

5. Use switchesSW1−4 to representx1, x2, x3, andx4, respectively. UseLEDR[0] to represent the value of
f .

6. Simulate your circuit using QSim with intelligently chosen values ofx1, x2, x3, andx4. Print the simulation
waveforms and paste them into your lab book.

7. Include the necessary pin assignments for the DE2 board, compile the circuit, and download it into the
FPGA chip.

8. Test your circuit by trying different values forx1, x2, x3, andx4.

4



Part IV

Design anarithmetic logic unit (ALU) circuit with two 8-bit wide inputsA andB, a 3-bit wide inputQ, and
an 8-bit wide outputZ. InputQ controls the value that is computed by the circuit (based onA andB) and placed
on outputZ. See Table 2 below for the different computations that can beperformed by the circuit. The logical
operations (OR, AND, NOT) in the table arebitwise operations.

Q2 Q1 Q0 OutputZ

000 A⊕B

001 A⊕B

010 A AND B

011 A AND B

100 A+B + 1 (addition)
101 A XNORB

110 Number of0’s in A (in binary)
111 Number of0’s in A plus number of1’s in B (in binary)

Table 2. Functions that can be performed by the ALU.

Use Verilog to implement your circuit. You do not need to worry about arithmetic overflow for the case when
A andB are too large such thatA + B (addition) does not fit within 8 bits. (Later on in ECE241, youwill learn
about how to detect that.) Note: you will re-use this ALU circuit in Lab 4, so do not delete your Verilog imple-
mentation!

1. Create a new Quartus II project for the configurable logic unit circuit. Write a Verilog module for the ALU
circuit. You are encouraged to use procedural Verilog for this part of the lab (see Appendix A.11 in Brown
and Vranesic 3rd edition), though it is not mandatory.

2. Use switchesSW15−8 andSW7−0 to represent the inputsA andB, respectively. Use the red lights,
LEDR7−0, to represent the value ofZ. UseKEY2−0 to represent the inputQ.

3. Simulate your circuit with QSim for differentA, B, andQ values. Ensure the output functionality matches
that specified in Table 2.

4. Include the necessary pin assignments for the DE2 board, compile the circuit, and download it into the
FPGA chip.

5. Test your circuit by trying different values for numbersA, B, andQ.

Copyright c©2006 Altera Corporation.

5


