Laboratory Exercise 3 — ECE241 Fall 2014

Combinational Logic and Displays

This is an exercise in designing combinational circuits tiaa drive 7-segment displays, and perform a variety
of different functions.

Preparation

You are required to complete Parts | to 1V of the lab by writangd testing Verilog code and compiling it with
Quartus Il. Show your Verilog for Parts Il and IV to the teaahassistants (pasted into your lab book). For Parts Il
and Ill, you must simulate your circuit with QSim (using reaable test vectors) and show the teaching assistant
a printout of your timing diagrams annotated with your teBta Part 111, you must also show the TA your K-map,
the optimized logic function, and the list of prime impli¢caand essential prime implicants.

In-lab Work

You are required to implement and test all of Parts | to IV of thb, and demonstrate Parts | and IV to the
teaching assistants.

Part |

In this part of the lab, you will extend the work you did in Labl@ particular, you will use six 7-segment displays
to show a word whose characters can be rotated. You will reeadd six instances of the circuit shown in Figure
7 of Lab 2. You should have your word displayeddBX5, HEX4, HEX3, HEX2, HEX1, andHEXO. This is an
exercise in reusing modules that you have previously cootstd and tested. You will only bsiring up those
modules. No extra logic is required. To get the correct wiriyou will find that drawing a schematic diagram of
the full circuit will help.

You are to complete the skeleton code shown in Figure 1 satthsgs six 7-segment displays. Note that you
can just copy your code from Lab 2. You do not need to use the ségnal names as shown in Figure 1.

The purpose of your circuit is to display a word on the six l@igp that is composed of the characters in Table
1 of Lab 2, and be able to rotate this word in a circular fastdoross the displays when the kegEY,_ are
toggled. That is, your circuit should produce the outputgras illustrated in Table 1.

KEY; KEY; KEY, | Character pattern
000 L E A F 6 7
001 E A F 6 7 L
010 A F 6 7 L E
011 F 6 7 L E A
100 6 7 L E A F
101 7 L E A F 6

Table 1: Rotating the word LEAF67 on six displays frétEX5 down toHEXO

Perform the following steps.
1. Create a new Quartus Il project for your circuit.
2. Include your Verilog module in the Quartus Il project.

3. Include the required pin assignments for the DE2 boaralaswitches, LEDs, and 7-segment displays.
Compile the project.

module partl (SW, KEY, HEX0, HEX1, HEX2, HEX3, HEX4, HEX5);
input [17:0] SW; /l toggle switches
input [2:0] KEY; Il keys
output [6:0] HEXO; // 7-seg displays
output [6:0] HEXZ;
output [6:0] HEX2;
output [6:0] HEXS;
output [6:0] HEX4;
output [6:0] HEXS5;

Il instantiate six of the modules from Figure 7 of Lab 2.
... code not shown
endmodule
/l implements a 3-bit wide 6-to-1 multiplexer
module mux_3bit 6tol (S, U, V, W, X, Y, Z, M);
input [2:0] S, U, V, W, X, Y, Z;
output [2:0] M;
... code not shown
endmodule
/I implements a 7-segment decoder for L,E,A,F,6,7
module char7seg (C, Display);
input [2:0] C; /l input code
output [6:0] Display; // output 7-seg code
... code not shown
endmodule
/l implements a circuit to select and display one of six ctias
module displayoneofsix (SW,KEY,Display);
input [17:0] SW, /l toggle switches
input [2:0] KEY; Il keys
output [6:0] Display; // output 7-seg code

... code not shown

endmodule

Figure 1: Verilog code skeleton.

4. Download the compiled circuit into the FPGA chip. Testfilnectionality of the circuit by setting the proper
character codes on the switches S\, and then togglindKEY,_ o to observe the rotation of the characters.

Part |1

Figure Z» shows a circuit for dull adder, which has the inputs, b, and¢;, and produces the outputsandc,.
Partsb andc of the figure show a circuit symbol and truth table for the adider, which produces the two-bit
binary sumc,s = a + b + ¢;. Figure 21 shows how four instances of this full adder module can be tsddsign

a circuit that adds two four-bit numbers. This type of citdaiusually called aipple-carry adder, because of
the way that the carry signals are passed from one full adddetnext. Write Verilog code that implements this

circuit, as described below.

a) Full adder circuit

FA

b) Full adder symbol

c¢) Full adder truth table

bac| c s by a3 cy by a, ¢y by a, ¢ by ay ¢,
000100 RENNEERNEEREEE
001 01
010 01
011 10 FA FA FA FA
100 01
101 10
A iy ey
1 11 11

Cout 53 52 51 5o

d) Four-bit ripple-carry adder circuit

Figure 2. A ripple-carry adder circuit.

1. Create a new Quartus Il project for the adder circuit. vatVerilog module for the full adder subcircuit
and write a top-level Verilog module that instantiates fimstances of this full adder.

2. Use switchesWr;_, andSW5_g to represent the inputd and B, respectively. Us& Wy for the carry-in
¢, Of the adder. Connect tH&V switches to their corresponding red lights LEDR, and cohtiecoutputs
of the adder¢,,,; andsS, to the green lights LEDG.

3. Simulate your adder with QSim for intelligently chosertues of A and B andc¢;,,. Print the simulation
waveforms and paste them into your lab book.

4. Include the necessary pin assignments for the DE2 boardpite the circuit, and download it into the

FPGA chip.

5. Test your circuit by trying different values for numbetsB, andc;,,.

Part 111

Given the following 4-variable Boolean function expressedanonical sum-of-products (SOP) form:
flar, w2, @3,24) = Y _m(2,3,5,7,8,9,13,15) 1)

For example, minterm 5 B1xoT314.

Optimize the function using a Karnaugh map (K-map) to findhifisimized SOP form. Implement your opti-
mized function as a circuit in hardware using the DE2 board.

. Draw the K-map forf and use it to optimize the functigh
. List theprime implicants of the functionf.

1

2

3. List theessential prime implicants of the functionf.

4. Create a new Quartus Il project for the circuit. Write aiNdgrmodule for the optimized circuit.
5

. Use switche$W;_, to represent:, a2, 23, andzy, respectively. Usé& E D R[0] to represent the value of
f.

6. Simulate your circuit using QSim with intelligently clessvalues ok 1, z2, 23, andz4. Print the simulation
waveforms and paste them into your lab book.

7. Include the necessary pin assignments for the DE2 boardpite the circuit, and download it into the
FPGA chip.

8. Test your circuit by trying different values fai , 2, x3, andxy.

Part IV

Design anarithmetic logic unit (ALU) circuit with two 8-bit wide inputsA and B, a 3-bit wide input@, and
an 8-bit wide outpuZ. Input(controls the value that is computed by the circuit (based @md B) and placed
on outputZ. See Table 2 below for the different computations that capdséormed by the circuit. The logical
operations (OR, AND, NOT) in the table dpgwise operations.

Q2 Q1 Qo OutputZ
000 AoB
001 A® B
010 AAND B
011 AAND B
100 A+ B+ 1 (addition)
101 AXNOR B
110 Number of0’s in A (in binary)
111 | Number of0’s in A plus number ofl’s in B (in binary)

Table 2. Functions that can be performed by the ALU.

Use Verilog to implement your circuit. You do not need to woabout arithmetic overflow for the case when
A andB are too large such that + B (addition) does not fit within 8 bits. (Later on in ECE241, ywili learn
about how to detect that.) Note: you will re-use this ALU aitdn Lab 4, so do not delete your Verilog imple-
mentation!

1. Create a new Quartus Il project for the configurable logit circuit. Write a Verilog module for the ALU
circuit. You are encouraged to use procedural Verilog far pfart of the lab (see Appendix A.11 in Brown
and Vranesic 3 edition), though it is not mandatory.

2. Use switchesSWi5_g and SWr_q to represent the inputd and B, respectively. Use the red lights,
LEDR;_, to represent the value &f. Use K EY,_q to represent the inpu}.

3. Simulate your circuit with QSim for differemt, B, and@ values. Ensure the output functionality matches
that specified in Table 2.

4. Include the necessary pin assignments for the DE2 boardpite the circuit, and download it into the
FPGA chip.

5. Test your circuit by trying different values for numbetsB, andQ.

Copyright(©2006 Altera Corporation.

