Laboratory Exercise 4 — ECE241 Fall 2014

Latches, Flip-flops, and Registers

The purpose of this exercise is to investigate latchesflflps, and registers.

Preparation

You are required to do step 1 of Part |. You are also requiredrtte and simulate Verilog code for Parts Il
and Ill. For marking by the teaching assistants, you willcheebring with you (pasted into your lab book), your
schematic for Part I, your schematic for Part Il, and yourlggrcode and simulation output for Parts Il and 111
Please comment your simulation output by pointing out (@ntitming diagram) what is being tested as the simu-
lation proceeds.

In-lab Work

You are required to implement and test all of Parts | to Il led tab and demonstrate them to the teaching as-
sistant.

Part |

Figure 1 shows the circuit for a gated D latch. In this part, ydll build the gated D latch using the 7400
chips (as in Lab 1) and the protoboard (breadboard). Refde toethe Lab 1 handout for the specifications of the

7400 chips.
’» }— Qa2 (Q)
L .
>0 R Rz }

Clk

Figure 1: Circuit for a gated D latch.

Perform the following steps:

1. Inyourlab book, draw a schematic of the gated D latch usitegconnected 7400-series chips. Don't forget
to hook up the power and ground!

2. Build the gated D latch using the chips and protoboard.dustehes to control the clock and D input. Use
lights to makeQa and@b visible.

3. Study the behaviour of the latch for different D and cloekings.

4. Demonstrate your latch implementation to the TA.

Part |1

Figure 2 shows a positive-edge-triggered flip-flop with savenultiplexers. In this part of the lab, you will
use eight instances of the circuit in Figure 2 to design @rigfit 8-bit rotating register with parallel load shown
in Figure 3. TheLoadLeft input of all eight instances of the circuit in Figure 2 shobkltied to a single rotating
register inpuRotateRight because when you want to rotate the bits right, you have thtloabit to the left. The
loadn input of all eight instances should be tied to a single rotategister inpuParallelLoadn. Theclock input
of all eight instances should be tied to a single rotatingsteginputclock. Create an 8-bit-wide rotating register
input DATA _IN, whose individual wireATA IN[7] to DATA IN[O] are tied to theD input of each instance of
the circuit in Figure 2. Likewise, create an 8-bit-wide tatg register outpu@, whose individual wire€)[7] to
Q[O] are tied to the&) output of each instance of the circuit in Figure 2.

The remaining connections between the eight instancesdfitbuit in Figure 2 should realize the following
behaviour:

1. WhenParallelLoadn = 0, the value orDATA _IN is stored in the flip-flops on the next positive clock edge
(i.e., parallel load behaviour).

2. WhenParallelLoadn = 1, RotateRight = 1 andASRight = O the bits of the register rotate to the right on each
positive clock edge (notice the bits rotate to the right witlap around):

Q7Q6Q5Q4Q3Q2Q1Q0
QoQ7QeQ5Q4Q3Q20Q1
Q1QoQ7Q6Q5Q1Q3Q2

3. WhenParallelLoadn = 1, RotateRight = 1 andASRight = 1 the bits of the register rotate to the right on each
positive clock edge but the most significant bit is replidatéhis is called arithmetic shift right:

Q7Q6Q5Q4Q3Q2Q1Q0
Q7Q7Q6Q5Q4Q3Q20Q1
QrQ7Q7Q6Q5Q1Q3Q2

4. WhenParallelLoadn = 1 andRotateRight = O, the bits of the register rotate to the left on each positivelc
edge.ASRight is ignored:

Q7Q6Q5Q4Q3Q2Q1Q0
QeQ5Q1Q3Q20Q1Q0Q7
Q5Q4Q3Q201Q0Q7Qs

LoadLeﬁ
D
loadn

right .0 “HD Q Q
1

‘ 11

left
clock >

Figure 2: Sub-circuit for Part I1.

[7:0]

C +—

© =

® - =z
m I | —

= [} o0 <I

< ® oc =

s 21 2 <

L .

| o o

a

60

8-bit left/right
rotating register
with parallel load

clock

Q[7:0]

Figure 3: Top-level circuit for Part II.

Figure 3 shows the inputs and outputs of the top-level Igfitrrotating register circuit with parallel load,
which will contain eight instances of the circuit in Figure 2

Do the following steps:

1. Draw a schematic for the 8-bit rotating register with flatdoad. Your schematic should contain eight
instances of the circuit in Figure 2. Paste the schematayiour lab book. Label the signals on your

schematic.
2. Create a new Quartus Il project.
3. Write a Verilog module for the circuit in Figure 2.

4. Write a Verilog module for the rotating register with pégbload that instantiates eight instances of your
Verilog module for Figure 2. This Verilog module should nfateith the schematic in your lab book. Use
SWM7:0] as the input®ATA IN[7:0]. UseSW[8] as theRotateRight input, SM 9] as theASRight input and
SWM10] as theParallelLoadn input. UseKEY[Q] as the clock, butead the important note below about
switch bouncing. The outputsQ[7:0] should be displayed on the red LEREDR[7:0]).

5. Include the Verilog code in your project.

6. Compile your Verilog code and simulate the design withr@Sin your simulation, you should use the
parallel load to initialize the rotating register to OxBEegadecimal) at the start of the simulation. Then,
clock the register for several cycles to demonstrate itati the left and right directions.

7. Download your circuit into the Cyclone Il FPGA on the DE2aba.

8. Test the functionality of your rotating register.

Note: If you run into bounce problems witkEY 0 for your clock you are welcome to try using any of the keys.
All mechanical switches, such as a push/toggle button, afitn make contact several times due the electrical
contacts bouncing. This happens quickly in human time, btiimelectrical time. With a bouncing switch you
can observe multiple high-frequency toggles making it cliffi to create single clock edges. Although the DE2
keys/switches are supposed to be debounced it doesn’t segark.

Part 111

You will use the ALU you designed in Part IV of Lab 3 to build te&cuit shown in Figure 4. The circuit
contains an 8-hit register that drives tBanput of the ALU. Design your register with an active-low sjmonous
reset. Observe that at each positive clock edge, the datheoAltU output is stored in the register, and as
such, it becomes an operand in the next computation. Thisiitican do a variety of computations, based on
the “instruction” appearing on the 3-bit-wid@PCODE input, and where the result of a computation is stored in
memory (the 8-bit register).

4
clk reset
— DATA = | [- | =
secosrs e j) B_IN JL 8
\.\ A B /
OPCODE—Z*\Q Alyfomlab3 |
\ | /

Figure 4: Circuit for Part Ill.

We wish to display the hexadecimal value of the 8-bit nunihe&N on the two 7-segment displaysEX[1:0].
Likewise, we wish to display the hexadecimal value of theit&dhmberDATA on the two 7-segment displays,
HEX[3:2]. You will need to design a 7-segment decoder that displagstnrect hexadecimal digit for a 4-bit
binary input. Your design will instantiate four instancéyour decoder.

UseKEY[0] for the clock input. Us&W[11] for the reset input. UsBW[7:0] for the DATA input. UseSW 10: 8]
for the OPCODE input.

1. Create a new Quartus Il project which will be used to immatthe desired circuit on the Altera DE2 board.
2. Write a Verilog module that provides the necessary fonetiity.

3. Include the Verilog file in your project and compile thecciit.
4

. Simulate the circuit with QSim for a few cycles to ensureryaircuit is working properly. You should use
the reset input to clear the register@®00 (hexadecimal) at the beginning of the simulation.

5. Assign the pins on the FPGA to connect to the switches asegient displays, as indicated in the User
Manual for the DE2 board.

6. Recompile the circuit and download it into the FPGA chip.
7. Test the functionality of your design by toggling the siluiés, keys, and observing the output displays.

8. For those with time to spare, you can try this. This will betmarked. Increase the functionality of your
ALU by adding shifting capability. Replace the register a1l with the shifter from Part II. You will
need to extend th@PCODE to add the shifter functions. Think about how tteset can be done.

