Laboratory Exercise 5 — ECE241 Fall 2014

Counters, Arithmetic

Preparation

You are required to write the Verilog code for Parts | to V. lrearking by the teaching assistants, you need
to bring with you (pasted into your lab book) your Verilog edor Parts IlI, IV and V.

When doing FPGA designs, it is important to understand wteles circuits go faster and how much logic is
being used. How you write your Verilog can have a significafiience on performance and resource usage. Print
out and paste into your lab book, for Part |, the portion ofGhrtus Il report showing th&yax of your counter
circuit (i.e., the maximum clock frequency at which your nter may be safely operated) and the number of logic
elements (LEs) required to implement the counter. Finé&dliyPart I, print out a simulation that exercises the
circuit for several clock cycles.

In-lab Work

You are required to implement and test all of Parts | to V ofldd® But you only need to demonstrate to the
teaching assistants Parts lll, IV and V. Your mark will bedzhen these three parts of the lab.

Part |
Consider the circuit in Figure 1. It is a 4-bit synchronousmer which uses four T-type flip-flops. The counter

increments its value on each positive edge of the clock ilBhablesignal is asserted. The counter is reset to 0
by setting theClear signal low — it is an active-low asynchronous clear. You arirtplement an 8-bit counter of

this type.
Enable£T Q)—T Q])—T Q T Q-

ClOCkT> Q — Q — Q ’,> Q

Clear

Figure 1: A 4-bit counter.

1. Write a Verilog file that defines an 8-bit counter by using #tructure depicted in Figure 1. Your code
should include a T flip-flop module that is instantiated 8 necreate the counter (i.e. structural Verilog).
Compile the circuit. How many logic elements (LES) are usedhtplement your circuit? What is the
maximum frequencylmay at which your circuit can be operated? (Use TimeQuest irtQsdo determine
the maximum frequenc¥max.)

2. Simulate your circuit to verify its correctness.

3. Augment your Verilog file to use the pushbuti§BY[0] as theClockinput, switchesSW[1]andSW][0] as
EnableandClearinputs, and 7-segment displal&X0andHEX1to display the hexadecimal count as your

circuit operates. Make the necessary pin assignments deedaplement the circuit on the DE2 board,
and compile the circuit. For this part, you should re-usehiiseadecimal-to-7-segment display decoder that
you created for Lab #4.

4. Download your circuit into the FPGA chip and test its fuocality by operating the switches.

5. Use the Quartus Il RTL Viewer to see how Quartus Il softwarethesized your circuit. What are the
differences in comparison with Figure 1?

Part |1

Another way to specify a counter is by using a register andngdt to its value. This can be accomplished using
the following Verilog statement:

Q<=Q+1

Compile an 8-bit version of this counter and determine thmiper of LEs needed and thigax that is attainable.
Use the sam&EY, SWand 7-segment displays as in Part | above. Use the RTL Viewssé the structure of this
implementation versus the design from Part |. Repeat thus stBPart | above for this counter.

Part 111

Design and implement a circuit that successively flashedh#ixadecimal digits O through F on the 7-segment
displayHEXO. You will use two switchesSW[1] andSW][0]to determine the speed of flashing according to the
following table:

SWI[1] SWI[0]| Speed
0 0 Full
0 1 1Hz
1 0 0.5Hz
1 1 0.25Hz

Full speed should use the 50-MHz clock signal provided onDE board. You must design a fully syn-
chronous circuit, which means that every flip flop in your gitshould be clocked by the same 50 MHz clock
signal. To derive the slower flashing rates you should usauateg, call it RateDivider, that is also clocked with
the 50 MHz clock. The output of RateDivider can be used asqiatircuit to create pulses at the required rates.
These pulses can be used to driveeaablesignal on the counter, call it DisplayCounter, that is caugnfrom 0
through F. Recall that a@nablesignal determines whether a flip flop, register, or countéiraliange on a clock
pulse.

1. Write a Verilog file that realizes the behaviour describbdve. Your circuit should have the clock and the
two switches as inputs.

2. Simulate your circuit with QSim to verify its correctneséou will find that it is not realistic to simulate
your final circuit. Why? This is a case where you need to find a way to make gimulations complete
in a realistic time, yet still have confidence that fiveal circuit will be correct. Use your simulation to
demonstrate that the circuit should perform correctly.

3. Include the pin constraints for the DE2 board, and syiitkdke circuit with Quartus II.

4. Download your circuit into the FPGA chip and test its fuocality.

Part 1V

Recall the circuit you built in Part | of Lab 3 where you userkthof the KEY pushbuttons to rotate a string on six
HEX displays. Modify the circuit you just built in Part 11l dhis lab so that it can be used to automatically scroll
the characters instead of using the KEY pushbuttons.

1. Write a Verilog file that realizes the behaviour describbdve. You should use the 50 MHz clock on the
DE2 board as the clock input to your circuit. Your circuit skibonly have the clock and the two switches
as inputs. As in Part lll, the only clock in your design sholbddthe 50 MHz clock.

2. Simulate your circuit with QSim to verify its correctness
3. Include the pin constraints for the DE2 board, and syiitkdke circuit with Quartus II.

4. Download your circuit into the FPGA chip and test its fuocality.

PartV

As you have seen in Lab 3, a ripple-carry adder circuit camidémented by instantiating full adders. However,
an adder circuit can likewise be implemented using a ‘+’ &igvierilog. For example, the following code fragment
addsn-bit numbersA and B to produce outputsumandcarry. Note how the left hand side of the assign statement
is one bit wider than the operands on the right hand side toraswdate the generation of the carry bit:

wire[n-1:0] sum;
wirecarry;

assign {carry, sum = A + B;

The curly braces in the example aboyé | are used to implemebncatenationUse this construct to implement
the circuit shown in Figure 2. Here the carry bit is used toi§jgwhen an overflow has occurred, i.e., that the
value of the result cannot be represented as an 8-bit nuralibasthe resulting value &is incorrect.

Design and compile your circuit with the Quartus Il softwagewnload it onto a DE2 board, and test its op-
eration as follows:

1. Create a new Quartus Il project.
2. Write Verilog code that describes the circuit in Figurér@u are encouraged to use procedural Verilog.

3. Connect inpud to switchesSW([7:0], useKEY][0] as an active-low asynchronous reset for all flip-flops in
the circuit andKEY[1] as a manual clock input. The sum output should be displayederedLEDR|[7:0]
lights and theDverflowshould be displayed on the re&EDR][8] light.

4. Assign the pins on the FPGA to connect to the switches, &egls/-segment displays.

5. Compile your design and use timing simulation to verifg ttorrect operation of the circuit. Once the
simulation works properly, download the circuit onto theZioard and test it by using different values of
A. Be sure to check that tH@verflowoutput works correctly.

6. Open the Quartus Il Compilation Report and examine thdtseseported by the Timing Analyzer. What is
the maximum operation frequendyax Of your circuit? What is the longest path in the circuit imts of
delay?

Clock > Q

\ ~V
—Q D overflow Cin 0

a4\ *

Overflow S

Figure 2: An eight-bit accumulator circuit.

