Laboratory Exercise 4

Latches, Flip-flops, and Registers

The purpose of this exercise is to investigate latches, flip-flops, and registers.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your Verilog, simulations and schematics for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors using the format shown in the previous lab).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate both parts to
the teaching assistants.

Part1
Figure [1| shows the circuit for a gated D latch. In this part, you will build the gated D latch using the 7400

chips (as in Lab 1) and the protoboard (breadboard). Refer back to the Lab 1 handout for the specifications of the
7400 chips.

’ SFDOE}— Q2(Q)
Clk L b
%}}_)

Figure 1: Circuit for a gated D latch.

Perform the following steps:

1. Inyour lab book, draw a schematic of the gated D latch using interconnected 7400-series chips. Don’t forget
to hook up the power and ground!

2. Build the gated D latch using the chips and protoboard. Use switches to control the clock and D input. Use
lights to make Qa and Qb visible.

3. Study the behaviour of the latch for different D and clock settings.
4. Demonstrate your latch implementation to the TA.

Part 11

Using Lab 3 Part III, remove case 5 and add 3 more cases, a shift, multiply and display previous value opera-
tion. In this section, you will need to also implement a register at the output of the 8 to 1 multiplexer shown below.
The output of this register will connect back to input B from your previous lab. Input A will not become data of
3 bit input using SW5_g.

always @(*) /I declare always block
begin
case (select) // start case statement
begin
0: Addition using Lab 3 Part II of this Lab
1: Addition using *+’ operator
2: Sign extend value B to 8 bits
3: Find if at least 1 of the 8 bits is 1 using a single OR operation
4: Find it all of the 8 bits are 1 using a single AND operation
5: Left shift B by A
6: Multiply B by A using ’*’ operator
7: Display the previous values
default: ... //default case
end
end

Data

HEX Display

!

4 4 4 4

2 2
Signal A Signal B

N
ALU

8 X

Register

HEX Display
LED Display

Figure 2: ALU Circuit for Part II.

Perform the following steps.

1.
2.

Create a new Quartus II project for your circuit.

Create a Verilog module for the simple ALU. Connect the data input to switches SW3_q. Connect KEY to
clock, SWy to reset and KEY3_; for select signals. Display the outputs on LEDR;_; have HEXO display
output of data and set HEX1, HEX2 and HEX3 to 0. HEX4 and HEXS should display the sum and carry out
respectively.

Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

Compile the project.

Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part I11

Figure 3] shows a positive-edge-triggered flip-flop with several multiplexers. In this part of the lab, you will
use eight instances of the circuit in Figure [3]to design a left/right 8-bit rotating register with parallel load shown
in Figure[d The LoadLeft input of all eight instances of the circuit in Figure 3] should be tied to a single rotating
register input RotateRight because when you want to rotate the bits right, you have to load the bit to the left. The
loadn input of all eight instances should be tied to a single rotating register input ParallelLoadn. The clock input
of all eight instances should be tied to a single rotating register input clock. Create an 8-bit-wide rotating register
input DATA_IN, whose individual wires DATA _IN[7] to DATA_IN[O] are tied to the D input of each instance of the
circuit in Figure[3] Likewise, create an 8-bit-wide rotating register output Q, whose individual wires Q/7] to Q[0]
are tied to the () output of each instance of the circuit in Figure [3]

The remaining connections between the eight instances of the circuit in Figure [3| should realize the following
behaviour:

1. When ParallelLoadn = 0, the value on DATA_IN is stored in the flip-flops on the next positive clock edge
(i.e., parallel load behaviour).

2. When ParallelLoadn = 1, RotateRight = 1 and ASRight = 0 the bits of the register rotate to the right on each
positive clock edge (notice the bits rotate to the right with wrap around):

Q7Q6Q5Q4Q3Q2Q1Q0
QuQ7Q6Q5Q1Q3Q2Q1
Q1QoQ7Q6cQ5Q1Q3Q2

3. When ParallelLoadn = 1, RotateRight = 1 and ASRight = I the bits of the register rotate to the right on each
positive clock edge but the most significant bit is replicated. This is called an Arithmetic shift right:

Q7QeQ5Q41Q30Q2Q1Q0
QrQ7QsQ5Q4Q3Q2Q1
QrQ7Q7Q6Q5Q1Q3Q2

4. When ParallelLoadn = I and RotateRight = 0, the bits of the register rotate to the left on each positive clock
edge. ASRight is ignored:

QrQeQ5Q4Q30Q2Q1Q0
QeQ5Q1Q3Q2Q1Q0Q7
QR5Q4Q3Q201Q0Q7Qs

[
<1 al =
@ ke
—
©
©
(@]
-
NG
right N 0
=0 D Q Q
1
left 1
clock —>
Figure 3: Sub-circuit for Part II.
S S)
-
© < N
o, 2 =
| & =
ol g 2
S| 8| Ve
| (&)
8-bit left/right
clock 9

rotating register
with parallel load

Q[7:0]

Figure 4: Top-level circuit for Part II.

Figure 4| shows the inputs and outputs of the top-level left/right rotating register circuit with parallel load, which
will contain eight instances of the circuit in Figure
Do the following steps:

1. Draw a schematic for the 8-bit rotating register with parallel load. Your schematic should contain eight
instances of the circuit in Figure[3] Label the signals on your schematic.

2. Create a new Quartus II project.

3. Write a Verilog module for the circuit in Figure 3]

4. Write a Verilog module for the rotating register with parallel load that instantiates eight instances of your
Verilog module for Figure 2. This Verilog module should match with the schematic in your lab book. Use
SW[7:0] as the inputs DATA_IN[7:0]. Use KEY[1] as the ParallelLoadn input, KEY[2] as the RotateRight
input and KEY[3] as the ASRight input. Use KEY/0] as the clock and Sw[0] as a synchronous active high
reset, but read the important note below about switch bouncing. The outputs Q/7:0] should be displayed
on the red LEDs (LEDR/[7:0]).

5. Include the Verilog code in your project.

6. Compile your Verilog code and simulate the design with ModelSim. In your simulation, you should perform
the reset operation first. Then, clock the register for several cycles to demonstrate rotation in the left and
right directions. (NOTE: If you do not perform a reset first, your simulation will not work!)

7. Download your circuit on the DE1-SoC board.

8. Test the functionality of your rotating register.

Note: In your simulation, KEY/[3:0] are inverted.

