Laboratory Exercise 6

Finite State Machines
The purpose of this exercise is to learn how to create and use finite state machines.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your schematics, Verilog, and simulations for Parts I to III and state diagrams for Parts IT and III
to the teaching assistants. You must simulate your circuit with ModelSim using reasonable test vectors.

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part 1

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or the sequence 1101. There is an input w and an output z. Whenever w = 1 for
four consecutive clock pulses, or when the sequence 1101 appears on w across four consecutive clock pulses, the
value of z has to be 1; otherwise, z = 0. Overlapping sequences are allowed, so that if w = 1 for five consecu-
tive clock pulses the output z will be equal to 1 after the fourth and fifth pulses. Figure|l|illustrates the required
relationship between w and z. A state diagram for this FSM is shown in Figure

o S

Figure 1: Required timing for the output z.

Reset

Figure 2: A state diagram for the FSM.

Figure [3] shows a partial Verilog file for the required state machine. Study and understand this code as it provides
a model for how to clearly describe a finite state machine that will both simulate and synthesize properly.

The toggle switch SWj on the DE1-SoC board is an active-low synchronous reset input for the FSM, SW; is the w
input, and the pushbutton KEYj is the clock input that is applied manually. The LED LEDRy is the output z, and
the state flip-flop outputs are assigned to LEDR3_.

//SW[0] reset when 0
//SW[1] input signal

//KEY[0] clock signal

//LEDR[3:0] displays current state
//LEDR[9] displays output

module sequence_detector (SW, KEY, LEDR);
input [9:0] SW;
input [3:0] KEY;
output [9:0] LEDR;

wire w, clock, reset_Db;

reg [3:0] y_Q, Y.D; // y_Q represents current state, Y_D represents next state
wire out_light;

parameter A = 4’b0000, B = 4'b0001, C = 4’b0010, D = 4’b0011, E = 4'b0100, F = 4’0101, G = 4'b0110;

assign w = SW[1l];
assign clock = "KEY[O0];
assign reset_b = SW[0];

// State table

// The state table should only contain the logic for state transitions

// Do not mix in any output logic. The output logic should be handled separately.
// This will make it easier to read, modify and debug the code.

always @ (*)
begin: state_table
case (y_Q)
A: begin
if (!'w) Y.D = A;
else Y_D = B;
end
B: begin
if(lw) YD
else Y_D =
end
?2?2?

= A;
C;
???

2272

2?7

QM™mEUQ

: 2?2
default: Y. D = A;
endcase
end // state_table

// State Registers

always @ (posedge clock)
begin: state_FFs
if (reset_b == 1’b0)
y_Q <= 4'b0000;
else
y_Q <= Y_D;
end // state_FFS

// Output logic

// Set out_light to 1 to turn on LED when in relevant states
assign out_light = ((y_Q == 227?) | (y_Q == 22?));

// Connect to I/O

assign LEDR[9] = out_light;

assign LEDR[3:0] = y_0Q;
endmodule

Figure 3: Verilog code for the FSM.

Perform the following steps:

1. Copy the code into a file and name it sequence_detector.v. Itis available online as
sequence_detector-partial.v.

2. Complete the state table and the output logic.
3. Draw a schematic describing the circuit.

4. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct.

5. Compile the project.

6. Download the compiled circuit into the FPGA. Test the functionality of the circuit on your board.

Part 11

Most non-trivial digital circuits can be separated into two main functions. One is the datapath where the data flows
and the other is the control path that manipulates the signals in the datapath to control the operations performed
and how the data flows through the datapath. In previous labs, you learned how to construct a simple ALU,
which is a common datapath component. In Part I of this lab you have already constructed a simple finite state
machine (FSM), which is the most common component used to implement a control path. Now you will see how
to implement an FSM to control a datapath so that a useful operation is performed. This is an important step
towards building a microprocessor as well as any other computing circuit.

In this part, you will be given a block diagram of a datapath. You are to implement the datapath and an FSM that
performs the quadratic function:

Az? + Bx+C

using the given datapath. The values of =, A, B and C will be preloaded before the computation begins.

Figure [] shows the block diagram of the datapath you will build. Resets are not shown, but do not forget them.
The datapath will carry 8-bit unsigned values. Assume that the input values are small enough to not cause any
overflows at any point in the computation, i.e., no results will exceed 2° — 1 = 255. The ALU needs only to
perform addition and multiplication, but you could use a variation of the ALU you built previously to have more
operations available for solving other equations if you wish to try some things on your own. There are four
registers R, R4, Rp and R¢ used at the start to store the values of x, A, B and C, respectively. The registers
R 4 and Rp can be overwritten during the computation. There is one output register, I?,,;, that captures the output
of the ALU and displays the value in binary on the LEDs and in hex on the Hex displays. Two 8-bit-wide, 4-to-1
multiplexers at the inputs to the ALU, MuxRA and MuxRB, are used to select which register values are input to the
ALU.

All registers have enable signals to determine when they are to load new values and an active high synchronous
reset.

The circuit operates in the following manner. After an active high synchronous Reset on KEY(, you will preload
registers R, and R4 when KEY; is pushed and then registers R and R¢ are loaded when KEY5 is pushed. After
KEYs is released, the computation is performed and the circuit returns to wait for new values to be loaded. The
final result should be loaded into R,,,; for display.

Use SW3_ for the initial values of x and B and SW7_, for the initial values of A and C. Note that the registers
are 8-bits and you only have four switches to specify the value. You should load the upper nybble (upper four bits)
with 0’s, i.e., you can only initialize with values in the range 0 to 15.

The final result is displayed on LEDR;_ in binary and HEX0 and HEX] in hex.

You will use CLOCK_50 as your clock.

SW;, SW7.4 SWi, SWr.4

load mux_RA load mux_RB
> RX | PrAF" PrRE T BPrRC PP
| |
‘ 3
&
— 111
lectA / lectB /
seleC zﬂ selecC Zﬂ
A8 P &
A \/ B
ALU_op ALU
8 * 8
y 4 y 4
4 4
dRout -
HEX Display
&
LEDR

Figure 4: Block diagram of datapath.

Structuring Your Code

Within your top-level module you will have two separate modules for the datapath and the control path. The main
connections between the datapath and control path modules will be the control signals coming from the control
path and entering the datapath. You will also instantiate your hex decoders at this level.

From Figure[] you can see that there are five registers that are similar in structure. Write a generic register module
that you can instantiate with the appropriate inputs and outputs for the five registers. Also write modules for the
2-to-1 and 4-to-1 multiplexers since you need more than one of them as well.

Build your datapath module by instantiating and connecting the registers and multiplexers according to Figure]
You can write your ALU as an always block, or also instantiate a module, such as the one you built in a previous
lab. You may use the add and multiply operator symbols, i.e., you do not have to build your own operator logic.

The control path module should use a structure similar to what you were provided in Figure [3|for Part I. The main
difference will be for the Output logic because there are many more output signals. You can use a style similar to
Figure [3| by creating a number of assign statements. Figure [5|shows a code fragment for the controller output
logic using assign statements.

// Alternate code for output logic
// It’s ugly, so won’t do too much here.

assign LD_A = ((PresentState == AX_S) | (PresentState == AXX_S) | ...);
assign selectA = (PresentState == AX_S) ? RA

((PresentState == AXX_S) ? RA

RX) ;

Figure 5: Verilog code fragments for the controller using assign statements

A better approach in this design is to use a second case statement that has the same states as the case statement
for the State table, but assign the outputs instead of the next states. The example code fragment shown in Figure|[6]
computes Az? in two cycles of the state machine. In this style, it is easy to see what the control signals are set to
in each state.

You could be lazy and combine the state table and the output logic case statements. However, this makes the code
more difficult to read, and worse, it makes it much more difficult for the synthesis tool to figure out what you
want to do. This may lead to unexpected interpretation of your code by the tool and bugs that can be hard to find.
The result is that being lazy often results in a lot more work and frustration as you try to debug your code, thus
defeating the goal of being lazy in the first place! The choice is yours. ..

/7
/7
/7
//
//
/7
2
//
//
//

2
//

/7

Some of the states:

RESET_S reset state
AX_S A * X

AXX_S (A * X) * X
BX_S B * X

Some of the control signals as labeled on Figure 4
LD_A load RA

LD_B load RB

load select for Mux_RA and Mux_RB

selectA MuxRA select

selectB MuxRB select

ALU_OP select ALU operation

Part of the State table
always @ (x)
begin: state_table

case (PresentState)

AX_S: // Compute A * X

NextState = AXX_S;
AXX_S: // Compute (A * X) * X
NextState = BX_S;
default: NextState = RESET_S;
endcase

end // state_table

// Part of the Output logic

always @ (x)
begin: output_logic
case (PresentState)
// In each state assign a value to all control

AX_S: // Compute A x X and store in A
begin
LD_A = 1; // Store result in RA
LD_B = 0;
load = 0; // Select ALU output
selectA = RA; // ALU A input gets RA
selectB = RX; // ALU B input gets RX
ALU_OP = MULT;
// Set values for rest of control signals
end
AXX_S: // Compute (A * X) % X and store in A
begin
LD_A = 1; // Store result in RA
LD_B = 0;
load 0; // Select ALU output
selectA = RA; // RA now has A x X
selectB = RX;
ALU_OP = MULT;
// Set values for rest of control signals
end
default:
begin
LD_A = 0;
LD_B = 0;
load = 0;
selectA = RX;
selectB = RX;
ALU_OP = ADD;
// Set values for rest of control signals
end
endcase

end // output_logic

Figure 6: Verilog code fragments for the controller

signals

Perform the following steps.

1. Draw a state diagram for your controller.

2. Draw a schematic of your circuit. Here you may find that a hierarchical schematic will make things easier.
You can draw separate schematics for the datapath and the control path. Figure []is almost all that you
need for the datapath, but you should add other labels like the wires and show the HEX displays and LEDs
in more detail. You can make another schematic representing the controller. Clearly label the inputs and
outputs of these schematics. For the complete design, draw a top-level schematic that incorporates two
boxes representing the datapath and controllers and show how their inputs and outputs are connected in
your top-level module. Do not forget to show the inputs and outputs to your top-level module.

3. Write a Verilog file that realizes the required circuit and synthesize it.

4. To examine the circuit produced by Quartus II open the RTL Viewer tool (Tools > Netlist Viewers > RTL
Viewer). Find (on the left panel) and double-click on the box shown in the circuit that represents the finite
state machine, and determine whether the state diagram that it shows properly corresponds to the one you
have drawn. To see the state codes used for your FSM, open the Compilation Report, select the Analysis
and Synthesis section of the report, and click on State Machines.

The state codes after synthesis may be different from what you originally specified. This is because the tool
may have found a way to optimize the logic better by choosing a different state assignment. If you really
need to use your original state assignment, there is a setting to keep it.

5. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. It is recommended that you start by simulating the datapath and controller modules separately.
Only when you are satisfied that they are working individually should you combine them into the full
design. Why is this approach better? (Hint: Consider the case when your design has 20 different modules.)

6. After you are satisfied with your simulations, download and test the functionality of the circuit on the FPGA
board.

Part 111

Division in hardware is the most complex of the four basic operations. Add, subtract and multiply are much easier
to build in hardware. For this part, you will be designing a 4-bit restoring divider using a finite state machine.

Figure [/| shows an example of how the restoring divider works. This mimics what you do when you do long
division by hand. The restoring divider starts with Register A set to 0. The Dividend is shifted left and the bit
shifted out of the left most bit of the Dividend (called the most significant bit or MSB) is shifted into the least
significant bit (LSB) of Register A as shown in Figure[§]

Divisor
00011

[Register A) [Dividend
00000 0111

00000 1110 Shiftleft

—1]1101 1110 Subtract Divisor from Register A
00000 1110 AddDivisorto Register A
00000 111@ set qoto O or 1
00001 1100 Shiftleft

—1]1110 1100 Subtract Divisor from Register A
00001 1100 Add Divisor to Register A
00001 110@ setgotoOor1
00011 1000 Shiftleft

—[0J0000 1000 Subtract Divisor from Register A
00000 100 setqoto O or 1
00001 0010 Shiftleft

—1]1110 0010 Subtract Divisor from Register A
00001 0010 Add Divisor to Register A
(00001] (OowqgsetqotoOoH

kRemainded kQuotient

Figure 7: An example showing how the restoring divider works.

Divisor

0O | mslmym;|mg

A5

A A 4 Shift and
A

5-Bit Add/Sub 229291 Add/sub

Control Logic

Left Shift)y q A

0
/v K Y
a;l a

Ay 2| a1 | Qo | A3 | 921 91 | Yo

a, *5 Register A Dividend

4

Figure 8: Block diagram of restoring divider.

The Divisor is then subtracted from Register A. If the MSB of Register A is a 1, then we restore Register A back to
its original value by adding the Divisor back to Register A, and set the LSB of the Dividend to 0. Else, we do not
perform the restoring addition and immediately set the LSB of the Dividend to 1.

This cycle is performed until all the bits of the Dividend have been shifted out. Once the process is complete, the
new value of the Dividend register is the Quotient, and Register A will hold the value of the Remainder.

To implement this part, you will use SW5_(for the divisor value and SW;_4 for the dividend value. Use
CLOCK_50 to for the clock signal, KEY as a synchronous active high reset, and KEY; as the Go signal to start
computation. The output of the Divisor will be displayed on HEXO, the Dividend will be displayed on HEX2, the
Quotient on HEX4, and the Remainder on HEX5. Set the remaining HEX displays to 0. Also display the Quotient
on LEDR.

Structure your code in the same way as you were shown in Part II.

Perform the following steps.

1. Draw a schematic for the datapath of your circuit. It will be similar to Figure[s| You should show how you
will initialize the registers, where the outputs are taken, and include all the control signals that you require.

2. Draw the state diagram to control your datapath.
3. Draw the schematic for your controller module.

4. Draw the top-level schematic showing how the datapath and controller are connected as well as the inputs
and outputs to your top-level circuit.

5. Write the Verilog code that realizes your circuit.

6. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct.

7. After you are satisfied with your simulations, download and test the functionality of the circuit on the FPGA
board.

10

