Laboratory Exercise 6

Finite State Machines

The purpose of this exercise is to learn how to create and nige state machines.

Preparation Beforethe Lab

You are required to complete Parts | to Ill of the lab by witiand testing Verilog code and compiling it with
Quartus Il. Show your schematic, Verilog, and simulaticorsHarts | to Il and state diagrams for Parts Il and 111
to the teaching assistants. You must simulate your circitiit ModelSim using reasonable test vectors.

In-lab Wor k

You are required to implement and test all of Parts | to Il tod tab. You need to demonstrate all parts to the
teaching assistants.

Part |

We wish to implement a finite state machine (FSM) that recoggiwo specific sequences of applied input sym-
bols, namely four consecutive 1s or the sequence 1101. Thangnputw and an output. Whenever = 1 for
four consecutive clock pulses, or when the sequén6é appears om across four consecutive clock pulses, the
value ofz has to be 1; otherwise, = 0. Overlapping sequences are allowed, so that # 1 for five consecu-
tive clock pulses the outputwill be equal to 1 after the fourth and fifth pulses. Figureldsilrates the required
relationship betweew andz. A state diagram for this FSM is shown in Figlife 2.

o MAANAANLANL

Figure 1: Required timing for the output

Reset

Figure 2: A state diagram for the FSM.

Figure[3 shows a partial Verilog file for the required statechiae. Study and understand this code as it provides
a model for how to clearly describe a finite state machinewlibboth simulate and synthesize properly.

The toggle switchlSW, on the DE1-SoC board is an active-low synchronous reset ifqopithe FSM,SW is
thew input, and the pushbuttdkEY; is the clock input that is applied manually. The red LEBDR, is the
outputz, and the state flip-flop outputs are assignedE®R;_.

/ISW[0] reset when 0
/ISW[1] input signal

/IKEY[O] clock signal

/ILEDR[3:0] displays current state
/ILEDRI9] displays output

module sequence_detector(SW, KEY, LEDR);
input [9:0] SW;
input [3:0] KEY;
output [9:0] LEDR;

wire w, clock, reset_b;

reg [3:0] y_Q, Y_D; // y_Q represents current state, Y_D repr esents next state
wire out_light;

parameter A = 4’b0000, B = 4'b0001, C = 4'b0010, D = 4’b0011, E = 4’0100, F = 4'b0101, G = 4'b0110;

assign w = SWI1]J;
assign clock = "KEYI[O0];
assign reset_b = SWI[0];

/I State table

/I The state table should only contain the logic for state tra nsitions

/I Do not mix in any output logic. The output logic should be ha ndled separately.
/I This will make it easier to read, modify and debug the code.

always @(*)
begin: state_table

case (y_Q)
A: begin

end

B: begin
iflw) Y_D =
else Y_D =

???
???
?2??
???
D ???
default: Y_D = A;
endcase
end // state_table

OmMmMoO

/| State Registers

always @(posedge clock)
begin: state_FFs
if(reset_b == 1'b0)
y_Q <= 4'b0000;
else
y_Q <= Y_D;
end // state_FFS

/I Output logic

/I Set out_light to 1 to turn on LED when in relevant states
assign out_light = ((Y_D == ???) | (Y_D == ??7?)),

/I Connect to /O

assign LEDR[9] = out_light;

assign LEDR[3:0] = y_Q;
endmodule

Figure 3: Verilog code for the FSM.

Perform the following steps:

1. Copy the code into a file and nameéquence_detector.v

2. Complete the state table and the output logic.
3. Draw a schematic describing the circuit and explain ihtTA as part of your prelab.

4. Simulate your circuit with ModelSim for a variety of inpséttings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Testfinectionality of the circuit.

Part |1

Most non-trivial digital circuits can be separated into twain functions. One is thgatapathwhere the data flows
and the other is theontrol paththat manipulates the signals in the datapath to control peeations performed
and how the data flows through the datapath. In previous Yatslearned how to construct a simple ALU, which
is a common datapath component. In Part | of this lab you heeady constructed a simpfimite state machine
(FSM), which is the most common component used to implemeaindrol path. Now you will see how to im-
plement an FSM to control a datapath so that a useful operatiperformed. This is an important step towards
building a microprocessor as well as any other computirgudir

In this part, you will be given a block diagram of a datapatlou™re to implement the datapath and an FSM
that performs the quadratic function:

Az®’ + Bx +c¢

using the given datapath. The valuescofd, B andC will be preloaded before the computation begins.

Figure[4 shows the block diagram of the datapath you willcbuiResets are not shown. The datapath will
carry 8-bit unsigned values. Assume that the input valuessarall enough to not cause any overflows at any
point in the computation, i.e., no results will exce¥d— 1 = 255. The ALU needs only to perform addition and
multiplication, but you could use a variation of the ALU youilbpreviously to have more operations available for
solving other equations if you wish to try some things on yown. There are four registers,, R4, Rp andR¢
used at the start to store the values:pfd, B andC, respectively. The registefd, and Rg can be overwritten
during the computation. There is one output regisi&(,, that captures the output of the ALU and displays the
value in binary on the LEDs and in hex on the Hex displays. Two 4 multiplexers at the inputs to the ALU,
MuxAandMuxB, are used to select which register values are input to the.ALU

All registers have enable signals to determine when theyoal@ad new values and an active high synchronous
reset.

The circuit operates in the following manner. After an aetiigh synchronouReseion KEY,, you will preload
registersk, and andR 4 whenKEY; is pushed and then registeRg; and R are loaded wheKEY; is pushed.
After KEY; is released, the computation is performed and the circuitme to wait for new values to be loaded.
The final result should be loaded ini,; for display.

Use SW,_ for the initial values ofr and B and SW;_4 for the initial values ofA andC. Note that the reg-
isters are 8-bits and you only have four switches to speb#&nalue. You should load the upper nybble (upper
four bits) with 0's, i.e., you can only initialize with valgén the range 0 to 15.

The final result is displayed drtEDR;_ in binary andHEXOandHEX1in hex.

You will use CLOCK 50as your clock.

SWo4

SWs, SW;y.4 SWs,
load load
bR B PrRAFY br F° PR
| |
‘ 3
&
— 111

select1 ﬂ
2

/ select2 k

/

2
/'8 ’I
ALU /
8 8
"
R0 1 PR
I
HEX Display
&
LEDR

[ENC

Figure 4: Block diagram of datapath.

Structuring Your Code

At the top level you will have two separate modules for theagath and the control path. The main connections
between the datapath and control path modules will be theamignals coming from the control path and enter-
ing the datapath. You will also instantiate your hex decs@gthis level.

From Figurd ¥ you can see that there are five registers thadimuitar in structure. Write a generic register
module that you can instantiate with the appropriate inpatsoutputs for the five registers. Also write modules
for the 2 to 1 and 4 to 1 multiplexers since you need more thaobthem as well.

Build your datapath module by instantiating and connedtiregregisters and multiplexers according to Figure 4.
You can write your ALU as an always block, or also instante@taodule, such as the one you built in a previous
lab. You may use the add and multiply operator symbols,iai,do not have to build your own operator logic.

The control path module should use a structure similar totwba were provided in Figurgl 3 for Part I. The
main difference will be for th®©utput logicbecause there are many more output signals. You can uselarsimi
style as in Figur€l3 by creating a numberasfsign statements. A better approach in this design is to use a
second case statement that has the same states as the amerdtéor theState table but assign the outputs
instead of the next states. The example code fragment shoRigurd % computeda? in two cycles of the state
machine. In this style, it is easy to see what the controladgyare set to in each state.

You could be lazy and combine the state table and the outpit tase statements. However, this makes the
code more difficult to read, and worse, it makes it much mdifedit for the synthesis tool to figure out what you
want to do. This may lead to unexpected interpretation of gode by the tool and bugs that can be hard to find.
The result is that being lazy often results in a lot more wored &ustration as you try to debug your code, thus
defeating the goal of being lazy in the first place! The chaogurs. ..

I
I
1
1
1
I
I
1
1
I
I
I
1

Some of the states:
RESET_S : reset stat
AXS: A * X

e

AXX_S 1 (A * X) * X

BXS:B =* X

Some of the control signals as labeled on Figure 4

LD_A : load RA
LD_B : load RB

load : select for Mux_RA and Mux_RB
selectA : MuxA select
selectB : MuxB select
ALU_OP : select ALU operation

Part of the State tabl

always @(*)
begin: state_table

e

case (PresentState)

AX_S: /I Compute A
NextState = AXX_S;

AXX_S: /I Compute (A

BX_S;

NextState

default:
endcase
end // state_table

* X

* X) » X

NextState = RESET_S;

/I Part of the Output logic

always @(*)
begin: output_logic

case (PresentState)
/I In each state assign a value to all control signals

AX_S: /I Compute A

begin

load =

0;

selectA
selectB
ALU_OP = MULT;

/I Set values for rest of control signals

end

AXX_S: /Il Compute (A

begin
LD_A
LD_B

1
0

1
0;

load = 0;
selectA
selectB
ALU_OP = MULT;

/I Set values for rest of control signals

end

* X and store in A

/I Store result in RA

RA;
RX;

' /I Select ALU output

/I ALU A input gets RA
/I ALU B input gets RX

* X) » X and store in A

/I Store result in RA

/I Select ALU output
RA;

R

X,

X,

/I RA now has A * X

ALU_OP = ADD;
/I Set values for rest of control signals

end
endcase
end // output_logic

Figure 5: Verilog code fragments for the controller

Figure[® shows a code fragment for the controller outputdogingassign statements.

/I Alternate code for output logic
/I 1t's ugly, so won't do too much here.

assign LD_A = ((PresentState == AX_S) | (PresentState == AXX _S) | ..
assign selectA = (PresentState == AX_S) ? RA :
((PresentState == AXX_S) ? RA :

RX);

Figure 6: Verilog code fragments for the controller usasgign statements

Perform the following steps.

Draw a state diagram for your controller.

Draw a schematic outlining the hierarchies you will usé explain them to the TA as part of your prelab.

1.

2.

3. Write a Verilog file that realizes the required circuit.
4,

Simulate your circuit with ModelSim for a variety of inpsgttings, ensuring the output waveforms are cor-
rect. You must show this to the TA as part of your prelab. leisommended that you start by simulating the
datapath and controller modules separately. Only when y@gatisfied that they are working individually

should you combine them into the full design. Why is this @agh better? (Hint: Consider the case when

your design has 20 different modules.)

5. Compile the project.
6. Download the compiled circuit into the FPGA chip. Testfinectionality of the circuit.

Part 111

Division in hardware is the most complex of the four basicrafiens. Add, subtract and multiply are much easier
to build in hardware. For this part, you will be designing bi#restoring divider using a finite state machine.

Figure[T shows an example of how the restoring divider workke restoring divider starts witRegister A
set to0. TheDividendis shifted left and the bit shifted out of the left most bit b&Dividend(called the most
significant bit or MSB) is shifted into the least significaiitt (. SB) of Register Aas shown in Figuril 8.

Divisor
00011

Register A (Dividend

00000/ 0111
00000 1110 Shiftleft

11101 1110 Subtract Divisor from Register A
00000 1110 AddDivisorto Register A
00000 111@ setqgotoOor1
00001 100 Shiftleft

—1]1110 100 Subtract Divisor from Register A

1
1
00001 1100 Add Divisor to Register A
00001 1 10@ setgotoOor1

00011 1000 Shiftleft
—0jJ0000 1000 Subtract Divisor from Register A
00000 100 setqotoOor 1

00001 0010 Shiftleft
—1]1110 0010 Subtract Divisor from Register A
00001 0010 AddDivisor to Register A

(00001] (OO1LQDsetqot000r1

KRemainder) kQuotient

Figure 7: An example of functionality of restoring divider.

Divisor

O I ms]lmylm;|mg

A5
Y Y Shift and
Add/Sub
5-Bit Adder | - Add/Sub

Control Logic

Left Shift / . A

)
/\r 4 Y
a;l a

Ay 2| a1] Ao |] 92| O | o

as *5 Register A Dividend

4

Figure 8: Block diagram of restoring divider.

TheDivisor is then subtracted froiRegister Alf the MSB of Register Ais al, then we restorRegister Avack to
its original value by adding thBivisor back toRegister Aand set the LSB of thBividendto 0. Else, we do not
perform the restoring addition and immediately set the LEBeDividendto 1.

This cycle is performed until all the bits of tH2ividendhave been shifted out. Once the process is complete,
the new value of in th®ividendregister is th&Quotient andRegister Awill hold the value of theRemainder

To implement this part, you will us&W,_, for the divisor value andW,_, for the dividend value. Use
CLOCKA50to for the clock signalKEY, as a synchronous active high reset, &tl; as theGo signal to start
computation. The output of tHivisor will be displayed orHEXOQ, the Dividendwill be displayed orHEX2, the
Quotienton HEX4, and theRemaindepn HEXS5. Set the remaining HEX displays @ Also display theQuotient
onLEDR

Structure your code in the same way as you were shown in Part Il

Perform the following steps.

1. Draw a schematic for the datapath of your circuit. It wél §imilar to Figuré€B. You should show how you
will initialize the registers, where the outputs are takamd include all the control signals that you require.

. Draw the state diagram to control your datapath.
. Draw a schematic that describes the hierarchies you g8l u

. Write a Verilog file that realizes your circuit.

a b~ W N

. Simulate your circuit with ModelSim for a variety of inpséttings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

(o2}

. Compile the project.

7. Download the compiled circuit into the FPGA chip. Testfinectionality of the circuit.

10

