Laboratory Exercise 5

Clocks and Counters
The purpose of this exercise is to learn how to create counters and to be able to modify the speed of the SOMHz
clock to be able to control circuits you build.
Preparation Before the Lab
You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your Verilog, simulations and schematics for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors using the format shown in the previous lab).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate both parts to
the teaching assistants.

Part 1

Consider the circuit in Figure |1} It is a 4-bit synchronous counter which uses four T-type flip-flops. The counter
increments its value on each positive edge of the clock if the Enable signal is asserted. The counter is reset to O
by setting the Clear signal low — it is an active-low asynchronous clear. You are to implement an 8-bit counter of

this type.
Enable +—{T Q)—T Q T Q—}LT Q-

Clock +—> Q —> ’,>

Figure 1: A 4-bit counter.

Al

Ql
-

\Y

Rl

Clear

Perform the following steps:

1. Write a Verilog file that defines an 8-bit counter by using the structure depicted in Figure Il Your code
should include a T flip-flop module that is instantiated 8 times to create the counter (i.e. structural Verilog).
Compile the circuit. How many logic elements (LEs) are used to implement your circuit? What is the
maximum frequency, Fj,qy, at which your circuit can be operated? (Use TimeQuest in Quartus to determine
the maximum frequency Fj;qy.)

2. Simulate your circuit to verify its correctness, draw the circuit and have both ready as prelab.

3. Augment your Verilog file to use the pushbutton KEYj as the Clock input, switches SW; and SW, as Enable
and Clear inputs, and 7-segment displays HEX0 and HEX] to display the hexadecimal count as your circuit
operates. Make the necessary pin assignments needed to implement the circuit on the DE1-SoC board, and
compile the circuit. For this part, you should re-use the hexadecimal-to-7-segment display decoder that you
created for Lab 2.

4. Download your circuit into the FPGA chip and test its functionality by operating the switches.

5. Use the Quartus II RTL Viewer to see how Quartus II software synthesized your circuit. What are the
differences in comparison with Figure 1?

Part 11

Another way to specify a counter is by using a register and adding 1 to its value. This can be accomplished
using the following Verilog statement:

Q<=Q+1;

Design and implement a circuit using the statement above that successively flashes the hexadecimal digits O
through F on the 7-segment display HEX0. You will use two switches, SW; and SWj to determine the speed
of flashing according to the following table:

SW[1] SWI[O0] | Speed
0 0 Full
0 1 1 Hz
1 0 0.5 Hz
1 1 0.25 Hz

Full speed should use the 50-MHz clock signal provided on the DE1-SoC board. You must design a fully syn-
chronous circuit, which means that every flip flop in your circuit should be clocked by the same 50 MHz clock
signal. To derive the slower flashing rates you should use a counter, call it RateDivider, that is also clocked with
the 50 MHz clock. The output of RateDivider can be used as part of a circuit to create pulses at the required rates.
These pulses can be used to drive an enable signal on the counter, call it DisplayCounter, that is counting from 0
through F. Recall that an enable signal determines whether a flip flop, register, or counter will change on a clock
pulse.

Perform the following steps.

1. Write a Verilog file that realizes the behaviour described above. Your circuit should have the clock and the
two switches as inputs.

2. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

3. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part I11

In this part of the exercise you are to implement a Morse code encoder using a lookup table (hard coded mul-
tiplexer) (LUT) and a rate divider similar to Part II. The Morse code uses patterns of short and long pulses to
represent a message. Each letter is represented as a sequence of dots (a short pulse), and dashes (a long pulse).
For example, starting from A, eight letters of the alphabet have the following representation:

TQTWOO®W >
I
[}
[}

Design and implement a Morse code encoder circuit a LUT and a rate divider. Your circuit should take as input
one of the eight letters of the alphabet starting from A (as in the table above) and display the Morse code for it on a
red LED, LEDR;. Use switches SW5_(and pushbuttons KEY1_q as inputs. When a user presses KEY1, the circuit
should display the Morse code for a letter specified by SW5_q (000 for A, 001 for B, etc.), using 0.5-second pulses
to represent dots, and 1.5-second pulses to represent dashes. The time between pulses is 0.5 seconds. Pushbutton
KEY(should function as an asynchronous reset.

Hint: Since your minimum time is 0.5 second, set each O or 1 to be 0.5 seconds. This means that a 0 is a
pause, a 1 is a dot, and 111 is a dash. Then read each 0 or 1 individually out of a shift register at 0.5 seconds per
read.

Perform the following steps.

1. Write a Verilog file that realizes the behaviour described above.

2. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

3. Draw a schematic outlining the hierarchies you used and explain them to the TA as another part of your
prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

