Laboratory Exercise 6

Finite State Machines

The purpose of this exercise is to learn how to create and use finite state machines.
Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your schematic, Verilog, and simulations for Parts I to III and state diagrams for Parts II and III
to the teaching assistants. You must simulate your circuit with ModelSim (using reasonable test vectors using the
format shown in the previous lab).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part 1

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or the sequence 1101. There is an input w and an output z. Whenever w = 1 for
four consecutive clock pulses, or when the sequence 1101 appears on w across four consecutive clock pulses, the
value of z has to be 1; otherwise, z = 0. Overlapping sequences are allowed, so that if w = 1 for five consecu-
tive clock pulses the output z will be equal to 1 after the fourth and fifth pulses. Figure|l|illustrates the required
relationship between w and z.

Figure 1: Required timing for the output z.

A state diagram for this FSM is shown in Figure [2] For this part you are to manually derive an FSM circuit that
implements this state diagram, including the logic expressions that feed each of the state flip-flops.

Reset

Figure 2: A state diagram for the FSM.

Perform the following steps:
1. Draw a schematic outlining the hierarchies you will use and explain them to the TA as part of your prelab.

2. Write a Verilog file that realizes the behaviour described above. Use the toggle switch SWj on the DE1-SoC
board as an active-low synchronous reset input for the FSM, use SW as the w input, and the pushbutton
KEY) as the clock input which is applied manually. Use the red light LEDRy as the output z, and assign the
state flip-flop outputs to LEDR3_.

3. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part I1

For this section, you will be designing a 4-bit serial divider using a finite state machine.

Divisor

0 |ms

ma | m,

\

A5
Y Shift and

5-Bit Adder

LI dd/sub

Control Logic

Left Shift / q A
o
K Y

4

g

P’
a|a

2| a1 | Qo [

31 92| A1 | Yo

as

*5 Register A Dividend

Figure 3: Schematic of serial divider.

Divisor
00011

(Register A) (Dividend
00000 0111

00000 1110 Shiftleft
11101 1110 Subtract Divisor from Register A
00000 1110 AddDivisorto Register A
00000 111@ set qoto O or 1
00001 1100 Shiftleft
111110 1100 Subtract Divisor from Register A
00001 1100 Add Divisor to Register A
00001 110@ setgotoOor1
00011 1000 Shiftleft

0000 1000 Subtract Divisor from Register A
00000 100 setqoto O or 1
00001 0010 Shiftleft
111110 0010 Subtract Divisor from Register A
00001 0010 Add Divisor to Register A
(00001] (001;0_9setq0t000r1

KRemainder)

kQuotient

Figure 4: An example of functionality of serial divider.

Shown in the example above, the serial divider starts with Register A set to 0. The Dividend is shifted left. Any
overflowing value from the left shift will be carried over to Register A (as shown in the schematic).

The Divisor is then subtracted from Register A. The left most bit (called the most significant bit or MSB) is
saved. If the MSB is a /, then we restore Register A back to its original value by adding Divisor to Register A, and
set the right most bit (called the least significant bit or LSB) of the Dividend to 0. Else, we do not perform the
addition and immediately set the LSB of the Dividend to 1.

This cycle is performed until all the bits of the Dividend have been shifted out. Once the process is complete,
the new value of in place of the location of the Dividend is the Quotient, and Register A will hold the value of the
Remainder

To implement this part, you will use SW5_q for the divisor value and SW7_, for the dividend value. Use
CLOCK_50 to for the clock signal, KEY, as a synchronous active high reset, and KEY7 as the go signal to start
computation. The output of the Divisor will be displayed on HEXO0, Dividend will be displayed on HEX2, Quotient
on HEX4, and Remainder on HEX5. Set the remaining HEX displays to 0. Also display the Quotient on LEDR.

You are allowed to use the add and subtract operator symbol. It is recommended that you have the state transitions
in one case statement, while having all other operations in another case statement controlled by CLOCK_50.

Perform the following steps.

1. Draw a schematic & state diagram outlining the hierarchies you will use and explain them to the TA as part
of your prelab.

2. Write a Verilog file that realizes the behaviour described above.

3. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Part I11

A common use for finite state machines is inside processors where there exists a datapath. In the previous labs,
you learned how to construct a simple ALU. In this section, you will be given a schematic of a datapath. You are
to construct the datapath and to build a finite state machine which performs the quadratic function

Ax?2 +Bx +C

using given datapath. The value of x will be preloaded along with the other constants.

The datapath consists of four registers to store the constants of A, B, and C and a value for x. The four registers are
selected by two 4 to 1 multiplexers for inputs to the ALU, and the ALU can perform addition or multiplication.
The output of the ALU connects to two registers which then feed back into register storing value of A and B.

All registers have enable signals which can turn on and off the register’s functionality. You will have in total

10 control signals as seen in the schematic below (note that the ALU also has a control signal which is not shown).

To start the operation, you will preload registers RX and RA, then registers RB and RC. This will take 2 cycles.
You are free to perform operations in any order as long as if the result is correct.

SWs.,4 SW.4 SWs, SW;7.4

load load

L ENX ENA ENB ENC

D RX

—— [1
select —/t_/ select2 —/A;_/

2 2
’fg ’f
\ M /
8 8
e - |
> R0 F° b r1 F"
|
HEX Display
&
LEDR

Figure 5: Schematic of datapath.

To implement this part, you will use SW5_¢ for value of x and value of B, SW;_4 for value of A and C. You will
use CLOCK_50 as your clock, KEY, as an active high synchronous reset, KEY; to load values of x and B, and
KEY> to load values of A and C. The result is displays on LEDR7_q and HEX0 and HEX].

It is recommended that you separate the datapath from the control unit (the finite state machine). The control
unit should be broken up into two case statements similar to the previous section. One case statement handles the
state transitions and the other case statement turns on and off enable bits controlling the datapath.

Perform the following steps.

1. Draw a schematic & state diagram outlining the hierarchies you will use and explain them to the TA as part
of your prelab.

2. Write a Verilog file that realizes the behaviour described above.

3. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

4. Compile the project.

5. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

