Guide to Tools for ECE241/ECE253

Revision : 1.5 of September 25, 2020

This document provides information about accessing the tools used by the digital hardware
courses in the Digital and Embedded Systems Lab (DESL) in ECE at the University of
Toronto. You can access the tools remotely or install them on your own machines.

1 Remote Access

All of the tools described here are available on the ECF PCs and on the PCs in the DESL.

Instructions for ECF
http://www-ug.eecg.toronto.edu/msl/handouts/Steps_to_connect_to_ECF_computers_
remotely.pdf.

Instructions for DESL
http://www-ug.eecg.toronto.edu/msl/handouts/Steps_to_connect_to_DESL_computers_
remotely.pdf.

2 logistm

The logisim simulator is a nice open source tool for doing digital logic simulation. It should
run on any system supporting Java.

2.1 Web Site

http://www.cburch.com/logisim/

2.2 Notes

1. You will need to have Java installed.


http://www-ug.eecg.toronto.edu/msl/handouts/Steps_to_connect_to_ECF_computers_remotely.pdf
http://www-ug.eecg.toronto.edu/msl/handouts/Steps_to_connect_to_ECF_computers_remotely.pdf
http://www-ug.eecg.toronto.edu/msl/handouts/Steps_to_connect_to_DESL_computers_remotely.pdf
http://www-ug.eecg.toronto.edu/msl/handouts/Steps_to_connect_to_DESL_computers_remotely.pdf
http://www.cburch.com/logisim/

For Mac users, if you are running Catalina, you will find that logisim will not start.
You can get around this by just clicking on the logisim jar file. In the directory where
you untar-ed the downloaded file, the jar file can be found in:

Logisim.app/Contents/Resources/Java/logisim. jar.

For simplicity of finding it, you can copy it to your desktop.

2. You can learn how to use logisim by first going through the tutorial. After starting
logisim go to Help>Tutorial. The user guide is also there if you want to learn more.

3 Quartus Prime Lite

You will use Intel Quartus Prime to implement Verilog designs on FPGAs. The lab ma-
terial has been based on Version 18.0, so we recommend that you install that version.
You will need about 14GB of disk space and 6-8GB of memory in your computer. Win-
dows 10 and Linux are supported, but see https://www.intel.com/content/www/us/en/
programmable/support/support-resources/download/os-support.html for details. While
Quartus is supported on several flavours of Linux, ModelSim is supported on fewer. It can
be made to run on Ubuntu 18.04, but with some amount of pain!

To install Quartus on your own machine go to https://www.intel.com/content/www/us/
en/programmable/downloads/download-center.html.

Select Version 18.0 and click on the Lite Edition, which is the free version.

On the next page, to minimize what is installed, click on the Individual Files tab. Download
Quartus Prime, ModelSim-Intel FPGA Edition (includes Starter Edition) and Cyclone V
device support. The DE1-SoC board in our labs contains a Cyclone V. Run QuartusLiteSetup
to do the installation.

3.1 Tutorials

The Intel University web site at https://software.intel.com/content/www/us/en/develop/
topics/fpga-academic/learn/tutorials.html has a number of useful tutorials. You
should do the Verilog version of Introduction to Intel Quartus Prime Software (standard
or lite). Without the board, you can still do everything up to programming, configuring and
testing the design on the FPGA.


https://www.intel.com/content/www/us/en/programmable/support/support-resources/download/os-support.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/download/os-support.html
https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html
https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html
https://software.intel.com/content/www/us/en/develop/topics/fpga-academic/learn/tutorials.html
https://software.intel.com/content/www/us/en/develop/topics/fpga-academic/learn/tutorials.html

4 The fake_ fpga GUI

Use this GUI if you do not have access to a physical DE1-SoC board.

To give as close an experience to running on a real board as possible, the fake_fpga was
developed. The fake_fpga is a simulation environment GUI that can give you the experience
of interacting with LEDs, displays, buttons and switches in the same way as you would on
a physical DE1-SoC board. The exact same Verilog code that works on the fake_fpga, will
also run on the DE1-SoC board. The main difference is that the circuit will run much faster
in real hardware than it does in the simulated environment.

4.1 Java Version

To run fake_fpga you will need to have Java JDK 14 or newer to be installed. You can
download JDK 14 at https://jdk. java.net/14/.

For installing on Windows, go tohttps://java.tutorials24x7.com/blog/how-to-install-
openjdk-14-on-windows. This will make JDK 14 the default version of Java. However,
please read Section [4.3]if you want to run logisim as well.

For installing on Linux, please search online. It will vary depending on the Linux release
and version you are using.

4.2 Installing fake_fpga

To install fake_fpga go to https://github.com/UofT-HPRC/fake_fpga and then go to the
latest release available under Releases on the right of the window. Follow the instructions
there to install and test that the demo example works.

4.3 Java Conflicts

You can run logisim with the default Java installed with your Windows, i.e., if you do not
do anything to your version of Java. To run fake_fpga you will need Java JDK 14 so to be
able to run both, you can do this:

1. Download the Windows/x64 zip file at https://jdk. java.net/14/.

2. Unzip the file to your preferred installation directory.


https://jdk.java.net/14/
https://java.tutorials24x7.com/blog/how-to-install-openjdk-14-on-windows
https://java.tutorials24x7.com/blog/how-to-install-openjdk-14-on-windows
https://github.com/UofT-HPRC/fake_fpga
https://jdk.java.net/14/

3. Click through the installed folder into the bin directory.

4. Copy the entire path in the address bar at the top including the bin by Right Click
> Copy address as text.

5. Open File Explorer and navigate into the desim_win32 folder that you downloaded for
fake_fpga and then into the gui folder. There you will find a run.bat file.

6. Open run.bat to edit it.

7. Add a line at the beginning
PATH (paste the path you copied) ;%PATHY
The first line should now look something like:
PATH C:\ ... \openjdk-14.0.2_windows-x64_bin\jdk-14.0.2\bin;PATHY,

8. You should now be able to run the GUI by clicking the run.bat file.

4.4 Using fake_fpga

Download wu_of t_scripts.zip and read the README.txt file. There are also videos at the
download site that may help you.

A few things to note:

1. To make things easier to explain and minimize the need to modify too many things, the
name of the top module of the design you want to run with fake_fpga should be main
and for simplicity, put it in a file called main.v. You should start a new Quartus project
with main.v as the top-level module. The lab_template.v file shows an example of
what your top module should look like. This is necessary so that the test bench in
tb.v does not need to be changed as it will instantiate a module called main with the
port list as shown in lab_template.v.

If the name of the module you want to use with fake_fpga is not named main and does
not fit the port list required, you can just instantiate it within the main module. For
example, if your top module is

module part2(SW,LEDR);

and it is in a file called part2.v then copy lab_template.v and name it main.v. Re-
place the Write code in here! comment with an instantiation of your part module:



part2 P2(SW,LEDR);

Copy the contents of part2.v and paste it after the endmodule of main.v. An al-
ternative to pasting part2.v is to make sure you include part2.v as part of the
design files of the project. If you do that, you will also have to add vlog part2.v
in the run_sim script. Follow the directions in the README. txt that came with the
u_of t_scripts.zip file to compile your design in Quartus.

. The Verilog code that you write is called the Register-Transfer Level (RTL) description
of your circuit. The compile sim.tcl script will create the synthesized version of
your design and leave it in a file called main.vo, which is also a Verilog file that can
be simulated. The main.vo file is called the synthesized netlist and is essentially the
gate-level version of your circuit. Simulating the synthesized netlist is the best test of
whether the Verilog code that you have written will work on the real hardware as it
is possible to synthesize a circuit that behaves differently than the simulation of the
original Verilog RTL code. When this happens, the most likely reason is that you
wrote poor Verilog code that did not follow the rules of writing synthesizable Verilog.

. When you start the GUI, you can leave it running between multiple tests. When you
are finished a test, hit Stop Simulation on the GUI, and then Reset Signals, which sets
all switches, buttons and displays back to their default starting states. Then when
you start another test, it will connect to the GUI and you should see Connected to
simulator in the Messages window of the GUIL.

. When you are finished and want to close the GUI, you should first close the GUI and
then the command window that would have opened at the same time when you started
the GUI, or if you are using Linux, close the terminal window where you started the
GUI. This kills the remaining thread that is holding onto the server port.



	Remote Access
	logisim
	Web Site
	Notes

	Quartus Prime Lite
	Tutorials

	The fake_fpga GUI
	Java Version
	Installing fake_fpga
	Java Conflicts
	Using fake_fpga


