Laboratory Exercise 6

Finite State Machines
October 25, 2016

Learning Objectives

The purpose of this lab is to learn how to create FSMs as well as use them to control a datapath over multiple
clock cycles.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus. Show your relevant preparation (schematics, Verilog, and simulations) for Parts I to III to the teaching
assistants. You must simulate your circuit with ModelSim (using reasonable test vectors you can justify). You
should also show state diagrams for Parts II and III.

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate them to the teaching
assistants.

Part 1

We wish to implement a finite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or the sequence 1101. There is an input w and an output z. Whenever w = 1 for
four consecutive clock pulses, or when the sequence 1101 appears on w across four consecutive clock pulses, the
value of z has to be 1; otherwise, z = 0. Overlapping sequences are allowed, so that if w = 1 for five consecu-
tive clock pulses the output z will be equal to 1 after the fourth and fifth pulses. Figure|l|illustrates the required
relationship between w and z. A state diagram for this FSM is shown in Figure

Figure 1: Required timing for the output z.

Reset

Figure 2: A state diagram for the FSM.

1

Figure [3]shows a partial Verilog file for the required state machine. Study and understand this code as it provides
a model for how to clearly describe a finite state machine that will both simulate and synthesize properly.

The toggle switch SWj on the DE1-SoC board is an active-low synchronous reset input for the FSM, SW; is the w
input, and the pushbutton KEY), is the clock input that is applied manually. The LED LEDRy is the output z, and
the state flip-flop outputs are assigned to LEDR3_.

//SW[0] reset when 0
//SW[1] input signal

//KEY[0] clock signal

//LEDR[3:0] displays current state
//LEDR[9] displays output

module sequence_detector (SW, KEY, LEDR);
input [9:0] SW;
input [3:0] KEY;
output [9:0] LEDR;

wire w, clock, reset_Db;

reg [3:0] y_Q, Y.D; // y_Q represents current state, Y_D represents next state
wire out_light;

parameter A = 4'b0000, B = 4'b0001, C = 4'b0010, D = 4'b0011, E = 4'b0100, F = 4'b0101, G = 4'b0110;

assign w = SW[1l];
assign clock = "KEY[O0];
assign reset_b = SW[0];

// State table

// The state table should only contain the logic for state transitions

// Do not mix in any output logic. The output logic should be handled separately.
// This will make it easier to read, modify and debug the code.

always @ (*)
begin: state_table
case (y_Q)
A: begin
if (!'w) Y.D = A;
else Y_D = B;
end
B: begin
if(lw) YD
else Y_D =
end
?2?2?

= A;
C;
???

2272

2?7

QM™mEUQ

: 2?2
default: Y. D = A;
endcase
end // state_table

// State Registers

always @ (posedge clock)
begin: state_FFs
if (reset_b == 1'b0)
y_Q <= 4'b0000;
else
y_Q <= Y_D;
end // state_FFS

// Output logic

// Set out_light to 1 to turn on LED when in relevant states
assign out_light = ((y_Q == 227?) | (y_Q == 22?));

// Connect to I/O

assign LEDR[9] = out_light;

assign LEDR[3:0] = y_0Q;
endmodule

Figure 3: Verilog code for the FSM.

Perform the following steps:

1. Begin with the template code provided online sequence_detector.v. (PRELAB)
2. Complete the state table and the output logic. (PRELAB)

3. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. (PRELAB)

4. Compile the project. (PRELAB)

5. Download the compiled circuit into the FPGA. Test the functionality of the circuit on your board.

Part 11

Most non-trivial digital circuits can be separated into two main functions. One is the datapath where the data flows
and the other is the control path that manipulates the signals in the datapath to control the operations performed
and how the data flows through the datapath. In previous labs, you learned how to construct a simple ALU,
which is a common datapath component. In Part I of this lab you have already constructed a simple finite state
machine (FSM), which is the most common component used to implement a control path. Now you will see how
to implement an FSM to control a datapath so that a useful operation is performed. This is an important step
towards building a microprocessor as well as any other computing circuit.

In this part, you are given a datapath and also an FSM that controls this datapath and performs A2 + C. Observe
that the example code loads all four values, despite using only two of the values in the computed result. This will
give you a head start on the next part. Also, often when you inherit code, there might be parts of it that may not be
used or be relevant because of how the code evolved. It is up to you to figure out what is relevant for the task you
are given. Feel free to modify the code you are given, if you feel it is necessary to achieve the final result required.

Using the given datapath, you are required to implement an FSM that controls it to perform the computation:

Az? + Bx + C

The values of x, A, B and C will be preloaded by the user on the switches before the computation begins.

Figure [shows the block diagram of the datapath you will build. Resets are not shown, but do not forget them.
The datapath will carry 8-bit unsigned values. Assume that the input values are small enough to not cause any
overflows at any point in the computation, i.e., no results will exceed 2 — 1 = 255. The ALU needs only to
perform addition and multiplication, but you could use a variation of the ALU you built previously to have more
operations available for solving other equations if you wish to try some things on your own. There are four
registers R, R4, Rp and R¢ used at the start to store the values of x, A, B and C, respectively. The registers
R4 and Rp can be overwritten during the computation. There is one output register, R, that captures the output
of the ALU and displays the value in binary on the LEDs and in hex on the HEX displays. Two 8-bit-wide, 4-to-1
multiplexers at the inputs to the ALU are used to select which register values are input to the ALU.

All registers have enable signals to determine when they are to load new values and an active low synchronous
reset.

The provided circuit operates in the following manner. After an active low synchronous reset on KEY(, you will
input the value for R4 on switches SW[7 : 0]. When KEY; is pushed and released, R4 will be loaded and then
you will input the next value on the switches that will be loaded into Rp. Likewise for R¢ and Rx. Computation
will start after KEY; is pressed and released for loading Rx. When computation is finished, the final result will
be loaded into Rp. This final result should be displayed on LEDR;_ in binary and HEX0 and HEX] in hex. You
will use CLOCK_50 as your clock.

data_in

IAI/L_— Id_alu_out
Id_c Id_b d_a

C
[

>

D D

14

1
— |
 ——
alu_select_a i‘:‘/ \’:'_/L alu_select_b

alu_op t"

Id_r

data_result

Figure 4: Block diagram of datapath.

Perform the following steps:

1. Examine the provided Verilog code. This is a major step in this part of the lab. You will not need to
write much Verilog, but you’ll need to fully understand the provided Verilog to make your modifications.
(PRELAB)

2. Determine a sequence of steps similar to the datapath example shown in lecture that controls your datapath.
You should draw a table that shows the state of the Registers and control signals for each cycle of your
computation. (PRELAB)

3. Draw a state diagram for your controller starting with the register load states provided in the example FSM.
(PRELAB)

4. Modify the provided FSM to implement your controller and synthesize it. You should only need to modify
the control module. (PRELAB)

5. To examine the circuit produced by Quartus open the RTL Viewer tool (Tools > Netlist Viewers > RTL
Viewer). Find (on the left panel) and double-click on the box shown in the circuit that represents the finite
state machine, and determine whether the state diagram that it shows properly corresponds to the one you
have drawn. To see the state codes used for your FSM, open the Compilation Report, select the Analysis
and Synthesis section of the report, and click on State Machines.

The state codes after synthesis may be different from what you originally specified. This is because the tool
may have found a way to optimize the logic better by choosing a different state assignment. If you really
need to use your original state assignment, there is a setting to keep it. (PRELAB)

6. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. It is recommended that you start by simulating the datapath and controller modules separately.
Only when you are satisfied that they are working individually should you combine them into the full
design. Why is this approach better? (Hint: Consider the case when your design has 20 different modules.)
(PRELAB)

7. After you are satisfied with your simulations, download and test the functionality of the circuit on the FPGA
board.

Part 111

Division in hardware is the most complex of the four basic operations. Add, subtract and multiply are much easier
to build in hardware. For this part, you will be designing a 4-bit restoring divider using a finite state machine.

Figure [5] shows an example of how the restoring divider works. This mimics what you do when you do long
division by hand. In this specific example, number 7 (Dividend) is divided by number 3 (Divisor). The restoring
divider starts with Register A set to 0. The Dividend is shifted left and the bit shifted out of the left most bit of
the Dividend (called the most significant bit or MSB) is shifted into the least significant bit (LSB) of Register A as

shown in Figure[§]
Divisor
00011

Register Aj (Dividend
00000 0111

00000 1110 Shift left

—1]1101 1110 Subtract Divisor from Register A
00000 1110 AddDivisorto Register A
00000 111@ set qoto O or 1
00001 1100 Shift left

—1]1110 1100 Subtract Divisor from Register A
00001 1100 Add Divisor to Register A
00001 110@ setqotoOor 1

00011 1000 Shiftleft
—0j0000 1000 Subtract Divisor from Register A
00000 100 setqotoOor 1

00001 0010 Shiftleft
—1]1110 0010 Subtract Divisor from Register A
00001 0010 AddDivisor to Register A

(OOOOH (001L0_Dsetqot000r1

kRemainded KQuotient

Figure 5: An example showing how the restoring divider works.

Divisor

0O | mslmym;|mg

A5

A A 4 Shift and
A

5-Bit Add/Sub 229291 Add/sub

Control Logic

Left Shift)y q A

0
/v K Y
a;l a

Ay 2| a1 | Qo | A3 | 921 91 | Yo

a, *5 Register A Dividend

4

Figure 6: Block diagram of restoring divider.

The Divisor is then subtracted from Register A. If the MSB of Register A is a I, then we restore Register A back to
its original value by adding the Divisor back to Register A, and set the LSB of the Dividend to 0. Else, we do not
perform the restoring addition and immediately set the LSB of the Dividend to 1. You may use the subtract (—)
and addition (4) operators in Verilog to perform the subtraction and addition. As you will see in later lectures, the
1 in the MSB of Register A means that the value in Register A after the subtraction is a negative number, meaning
that the Divisor is larger than the original value in Register A. That is why Register A is restored by adding back
the Divisor.

This cycle is performed until all the bits of the Dividend have been shifted out. Once the process is complete, the
new value of the Dividend register is the Quotient, and Register A will hold the value of the Remainder.

To implement this part, you will use SW5_q for the divisor value and SW;_4 for the dividend value. Use
CLOCK_50 to for the clock signal, KEY as a synchronous active high reset, and KEY; as the Go signal to start
computation. The output of the Divisor will be displayed on HEXO, the Dividend will be displayed on HEX2, the
Quotient on HEX4, and the Remainder on HEX5. Set the remaining HEX displays to 0. Also display the Quotient
on LEDR.

Structure your code in the same way as you were shown in Part II.

Perform the following steps.

1. Draw a schematic for the datapath of your circuit. It will be similar to Figure[6] You should show how you

will initialize the registers, where the outputs are taken, and include all the control signals that you require.
(PRELAB)

2. Draw the state diagram to control your datapath. (PRELAB)
3. Draw the schematic for your controller module. (PRELAB)

4. Draw the top-level schematic showing how the datapath and controller are connected as well as the inputs
and outputs to your top-level circuit. (PRELAB)

5. Write the Verilog code that realizes your circuit. (PRELAB)

6. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. (PRELAB)

7. After you are satisfied with your simulations, download and test the functionality of the circuit on the FPGA
board.

