Laboratory Exercise 8

Memory Blocks

In computer systems it is necessary to provide a substantial amount of memory. If a system is implemented
using FPGA technology it is possible to provide some amount of memory by using the memory resources that
exist in the FPGA device. In this exercise we will examine the general issues involved in implementing such
memory.

A diagram of the random access memory (RAM) module that we will implement is shown in Figure la. It contains
32 four-bit words (rows), which are accessed using a five-bit address port, a four-bit data port, and a write control
input.

The Cyclone series of FPGAs that are included on the DEO-CV, DE1-SoC, and DE2-115 boards provide dedicated
memory resources. The Cyclone V FPGA on the DEO-CV and DEI1-SoC boards contain dedicated memory
resources called M10K blocks, and the Cyclone IV on the DE2-115 contain dedicated memory resources called
MOIK blocks. Each M10K block contains 10240 memory bits, and each M9K block contains 9216 memory bits.
Both M10K and M9k blocks can be configured to implement memories of various sizes. A common term used
to specify the size of a memory is its aspect ratio, which gives the depth in words and the width in bits (depth
X width). The aspect ratios common to both blocks are 8K x 1 and 2K x 4. We will utilize the 2K X 4 mode in
this exercise, using only the first 32 words in the memory. We should also mention that M10K and M9K blocks
support many other modes of operation, but we will not discuss them here.

Address —L>

4
32 x 4 RAM W« » Data
Write
(a) RAM organization
5 5
Address
>
Datal : : .
ataln > 4
32 x4 RAM -« » DataOut
>
Write
Clock s

(b) RAM implementation

Figure 1: A 32 x 4 RAM module.

There are two important features of the M10K and M9K blocks that have to be mentioned. First, they includes
registers that can be used to synchronize all of the input and output signals to a clock input. The registers on the
input ports must always be used, and the registers on the output ports are optional. Second, the blocks have separate
ports for data being written to the memory and data being read from the memory. Given these requirements, we
will implement the modified 32 x 4 RAM module shown in Figure 1b. It includes registers for the address, data
input, and write ports, and uses a separate unregistered data output port.

Part 1

Commonly used logic structures, such as adders, registers, counters and memories, can be implemented in an
FPGA chip by using prebuilt modules that are provided in libraries. In this exercise we will use a module called
the altsyncram to implement the memory module in Figure 15.

1. Create a new Quartus II project to implement the memory module.

2. You can learn how the IP Catalog is used to generate a desired module by reading the tutorial Using Library
Modules in Verilog Designs. This tutorial is provided in the University Program section of Altera’s web site.

In the IP Catalog choose the RAM: I-PORT module, which is found under the Basic Functions > On
Chip Memory category. Select Verilog HDL as the type of output file to create, give the file the name
ram32x4.v, and click OK. As in Figure 2 specify a memory size of 32 four-bit words.Select M10K if your
DE-series board has a Cyclone V FPGA or MIK if it has a Cyclone IV FPGA. Also on this screen accept
the default setting to use a single clock for the memory’s registers, and then advance to the page shown in
Figure 3. On this page deselect the setting called 'q’ output port under the category Which ports should
be registered?. This setting creates a RAM module that matches the structure in Figure 1, with registered
input ports and unregistered output ports. Accept defaults for the rest of the settings in the Wizard, and click
the Finish button to exit from this tool. Examine the ram32x4.v Verilog file which defines the following
subcircuit:

module ram32x4 (input [4:0] address, input clock, input [3:0] data, input wren, output [3:0] q);

% MegaWizard Plug-In Manager [page 1 of 6] TS
% RAM: 1-PORT
[I]Parameter
> Regs/ChenfByte Enable/Acrs > ReadDuring Write Opton > MemInit >
Currently selected device family:
ram32x4 poone
data[3..0] g[3..0) [F] Match project/default
wren
|address2. O How wide should the ' output bus be? 4 - bits
How many 4-bit words of memory? 32 « words
g‘ﬂck _ B Note: You could enter arhitrary values for width and depth
e What should the memory block type be?
I %) Auto 7 MLAB @ M1k |
M-RAM 7 LCs Options... |
Setthe maximum block depth to Auto = words I
What docking method would you like to use?
@ single dock I
*) Dual dock: use separate ‘input and ‘output’ docks
il
il
1 W10K [[cancel][<gack][mext> |[Ensh |

Figure 2: Configuring the size of the memory module.

« MegaWizard Plug-In Manager [page 2 of 6] B

'Z) RAM: 1-PORT

> Read During Write Option > Mem Init

ram32x4 Which ports should be registered?

‘data’ and 'wren' input ports

‘address’ input port

[] 'q output port

Address{4..0]

lock

Create one dock enable signal for each dock signal.

[] Note: All registered ports are controlled by the More Options...
I enable signal(s)
il Create byte enable for port A |
What is the width of a byte for byte enables? | 3 bits
Create an 'adr' asynchronous dear for
] the registered ports loceBnlionss I

[] Create a 'rden’ read enable signal

| Cancel || < Back H Next > H Finish ‘

Figure 3: Configuring input and output ports.

3. Instantiate this subcircuit in a top-level Verilog file that includes appropriate input and output signals for the
memory ports given in Figure 1b.

4. Compile the circuit. Observe in the Compilation Report that the Quartus II Compiler uses 128 bits in one of
the M10K memory blocks to implement the RAM circuit.

5. Simulate the behavior of your circuit and ensure that you can read and write data in the memory.

Part 11

Now, we want to realize the memory circuit in the FPGA on your DE-series board, and use slide switches to load
some data into the created memory. We also want to display the contents of the RAM on the 7-segment displays.

1. Make a new Quartus II project which will be used to implement the desired circuit on your DE-series board.

2. Create another Verilog file that instantiates the ram32x4 module and that includes the required input and
output pins on your DE-series board. Use slide switches SW3_q to provide input data for the RAM, and
use switches switches SWs_4 to specify the address. Use SWy as the Wrife signal and use KEY| as the
Clock input. Show the address value on the 7-segment displays HEX5 — 4, show the data being input to the
memory on HEX?2, and show the data read out of the memory on HEXO.

3. Test your circuit and make sure that data can be stored into the memory at various locations.

Part I1I1

Instead of creating a memory module subcircuit by using the IP Catalog, we can implement the required memory
by specifying its structure in Verilog code. In a Verilog-specified design it is possible to define the memory as a
multidimensional array. A 32 X 4 array, which has 32 words with 4 bits per word, can be declared by the statement

reg [3:0] memory_array [31:0];

In the Cyclone series of FPGAs, such an array can be implemented either by using the flip-flops that each logic
element contains or, more efficiently, by using the built-in memory blocks. The Quartus II Help provides other
examples of Verilog code that show how memory can be specified (search in the Help for “Inferred memory”).

Perform the following steps:
1. Create a new project which will be used to implement the desired circuit on your DE-series board.

2. Write a Verilog file that provides the necessary functionality, including the ability to load the RAM and read
its contents as was done in Part II.

3. Assign the pins on the FPGA to connect to the switches and the 7-segment displays.
4. Compile the circuit and download it into the FPGA chip.

5. Test the functionality of your design by applying some inputs and observing the output.

Part IV

The SRAM block in Figure 1 has a single port that provides the address for both read and write operations. For
this part you will create a different type of memory module, in which there is one port for supplying the address
for a read operation, and a separate port that gives the address for a write operation. Perform the following steps.

1. Create a new Quartus II project for your circuit. To generate the desired memory module open the IP Catalog
and select the RAM: 2-PORT module in the Basic Functions > On Chip Memory category. As shown in
Figure 4, choose With one read port and one write port in the category called How will you be using
the dual port ram?

« MegaWizard Plug-In Manager [page 1 of 10] {) &J
i i
£) RAM: 2-PORT [|

> CksjRd,ByteEn > Adrs > Outputl > Memlnit >

Currently selected device family: | Cycone v

data[7..0 Match project/default

wiraddress[4..0]

wren

rdaddress[d. 0
Llock

Block Typs: AUTO

RA

E How will you be using the dual port RAM?
8 q7..0L @ With one read port and one write port

©) With two read arite ports

32 Word(s)

m

How do you want to specify the memory size?
@ As a number of words

() As a number of bits

[| [<oe | [1es | [|-

« T r

Figure 4: Configuring the two input ports of the RAM.

Configure the memory size, clocking method, and registered ports the same way as Part II. As shown in
Figure 5 select | do not care (The outputs will be undefined) for Mixed Port Read-During-Write for

Single Input Clock RAM. This setting specifies that it does not matter whether the memory outputs the
new data being written, or the old data previously stored, in the case that the write and read addresses are
the same during a write operation.

« MegaWizard Plug-In Manager [page 6 of 10] B
i a
) RAM: 2-PORT [|
= > Meniit >
asd Mixed Port Read-During-Write for Single Input Clock RAM
g & How should the q output behave when reading
ev«'raddresr» 4.0 = amemory location that is being written from
wren e the other port?
Se
rdaddress[s 0 8 TEIEE
ock -) Old memory contents appear
Note: M-RAM cannot be used with this behavior
Block Type: MiOK _ A
@ I do not care (The outputs will be undefined) =
Do not analyze the timing between write and read operation.
Metastabilty issues are prevented by never writing and reading
at the same address at the same time
1M10K ‘ Cancel ‘ ‘ <Back ‘ | Mext > ‘ Finish |t

4| i v

Figure 5: Configuring the output of the RAM when reading and writing to the same address.

Figure 6 shows how the memory words can be initialized to specific values. It makes use of a feature that
allows the memory module to be loaded with data when the circuit is programmed into the FPGA chip.
As shown in the figure, choose the setting Yes, use this file for the memory content data, and specify
the filename ram32x4.mif. An example of a MIF file is provided in Figure 7. You can also learn about the
format of a memory initialization file (MIF) by using the Quartus II Help. You will need to create a MIF
file like the one in Figure 7 to test your circuit. Finish the Wizard and then examine the generated memory
module in the file ram32x4.v.

« MegaWizard Plug-In Manager [page 8 of 10] @‘ﬂ—hJ

') RAM: 2-PORT oot |

ype > CksRd,ByteEn >

asd Da you want to specify the initial content of the memory?

(i (2) Ng, leave it blank
wraddress[4. 0

wren

rdaddress[4 0

lock

Initialize memary content data to XX..X on
power-up in simulation

(@ Yes, use this file for the memory content data

(You can use a Hexadecimal (Intel-format) File [.hex] or a Memory Initialization File [.mif])

Block Type: 10K

File name: ram32x4.mif

The initial content file should conform to which port's dimensions? PORT_B| -

1 M10K

‘ Cancel H < Back H Next > H Einish |t
4 i »

Figure 6: Specifying a memory initialization file (MIF).

DEPTH = 32;

WIDTH = 4;
ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;
CONTENT

BEGIN

: 0000;

: 0001;

: 0010;

: 0011;

... (some lines not shown)
1E: 1110;

1F: 1111;

W N = O

END;

Figure 7: An example memory initialization file (MIF).

2. Write a Verilog file that instantiates your dual-port memory. To see the RAM contents, add to your design
a capability to display the content of each four-bit word (in hexadecimal format) on the 7-segment display
HEXO0. Use a counter as a read address, and scroll through the memory locations by displaying each word
for about one second. As each word is being displayed, show its address (in hex format) on the 7-segment
displays HEX3 —2. Use the 50 MHz clock, CLOCK_50, and use KEY, as a reset input. For the write address
and corresponding data use switches SWg_4 and SW3_g. Show the write address on HEX5 — 4 and show the

write data on HEX1. Make sure that you properly synchronize the slide switch inputs to the 50 MHz clock
signal.

3. Test your circuit and verify that the initial contents of the memory match your ram32x4.mif file. Make sure
that you can independently write data to any address by using the slide switches.

Copyright (©)2015 Altera Corporation.

	Part I
	Part II
	Part III
	Part IV

