
Laboratory Exercise 2
Multiplexers, Hierarchy, and HEX Displays

The purpose of this exercise is to learn the importance of simulations and hierarchies when writing in Verilog.
We will use switches SW9−0 on the DE1-SoC board as inputs to the circuit. We will use light emitting diodes
(LEDs) and 7-segment displays as output devices.

Note that we may refer to signals as SW9−0, i.e., with the subscripts, but when you write your Verilog, you
will need to use SW[0], SW[1], etc.

Preparation Before the Lab

For this lab, and all future labs, you will be asked to prepare schematics, Verilog code and ModelSim simulations
in your preparation. The schematics should show the structure of your Verilog code, much like the schematics in
Lab 1 showed how your circuit should be built. Your Verilog code will consist of a number of modules and the
schematic should show how the modules are wired together, and the input and output ports of your circuit, i.e.,
connections to switches, LEDs, displays, etc. Think of modules as just complex gates, such as the gates you wired
together in Lab 1. All port names of the modules, wires and I/O ports should be clearly labeled. Figure 1 below
is an example. Your Verilog code should be well-commented. For your simulations, you should have a script, or
number of scripts, that test important aspects of your design. Print out the waveforms from the simulator and paste
them into your lab book. If the simulation is very long, just print out enough to show that key parts of your circuit
are working and as evidence that you have done the simulations. It is not necessary to have pages and pages of
waveforms. However, occasionally, you will be asked to demonstrate and explain your entire simulation to the TA
in the lab, so be prepared for this.

You are required to write the Verilog code for Parts II and III of the lab. For marking of preparation by the
teaching assistants, you are required to show the teaching assistants your schematics, Verilog code, and ModelSim
simulations for Parts II and III.

In-lab Work

You are required to implement and test all of Parts II to III of the lab. You need to demonstrate both parts to
the teaching assistants.

Part I

Verilog File (.v):

The DE1-SoC board provides 10 toggle switches, called SW9−0, that can be used as inputs to a circuit, and
10 red lights, called LEDR9−0, that can be used to display output values.

A Verilog file has been provided by your instructor for a 2 to 1 multiplexer. The top module mux has 3 inputs.
SW[0] is the input 0 signal, SW[1] is the input 1 signal, and SW[9] is the select signal. The output is displayed on
LEDR[0].

module mux (SW, LEDR); //module name and port list

The top module, mux, is a very trivial example of using hierarchy where it instantiates a single mux2to1 module.
In the more general case, any module can instantiate a number of interconnected modules, just like when you
wired up a number of chips in Lab 1. However, in any circuit you build, there must be only one top-level module.

1

The .port(connection) matches the port from the mux2to1 module to the connection inside the mux module.

mux2to1 u0 (
.x(SW[0]); // assign port SW[0] to port x
.y(SW[1]); // assign port SW[1] to port y
.s(SW[9]); // assign port SW[9] to port s
.m(LEDR[0]); // assign port LEDR[0] to port m

);

Simulation File (.do):

After examining the file, to verify the code functions properly, we can perform a simulation using a script written
in a .do file. This file is also provided by your instructor.

Inside the .do file, we start off by creating a working directory called work using the vlib command. We then
compile the Verilog file using vlog and load it into the simulation with the vsim command. Lastly, to display all
the signals on the waveform viewer, we put {/*} after add wave.

set the working dir, where all compiled verilog goes
vlib work

compile all verilog modules in mux.v to working dir
could also have multiple verilog files
vlog mux.v

load simulation using mux as the top level simulation module
vsim mux

#log all signals and add some signals to waveform window
log {/*}
add wave {/*} would add all items in top level simulation module
add wave {/*}

Once everything is initiated, we can set the input signals to be a 1 or a 0 with the force command and run the
simulation for x ns with the run command.

set input values using the force command, signal names need to be in brackets
force {SW[0]} 0 # force SW[0] to 0
force {SW[1]} 1 # force SW[1] to 1
force {SW[9]} 0 # force SW[9] to 0

run simulation for a few ns
run 10ns # run for 10 ns

When you have familiarized yourself with the .do file, open ModelSim, and in the terminal window (near the
bottom) change to the file’s working directory using the cd command and type do wave.do (or the file name you
named your .do file).

Look at the simulation. You might be wondering how the time intervals are determined at this point. If we
open the Verilog file again, we can see that the very first line states the timescale with the time unit and time
precision. All time values are read as the time unit which is rounded to the nearest time precision.

Perform the following steps as part of your prelab.

1. Run the default .do file given by your instructor.

2. Create your own test cases for the .do file and demonstrate that it works.

2

3. Create a new Quartus II project for the Verilog code provided and test it on the board during your lab session.
Do not forget that you will need the DE1 SoC.qsf file to define how the switches and LEDs connect to
the pins.

4. Compare the output results with the simulations you performed.

5. Did you notice a significant compilation time difference between ModelSim and the actual on board test re-
sults? The difference becomes greater as the complexity of the circuit increases. Comment on this difference
and its impact on debugging.

Part II

Start with the code given in Part I, modify the design to make it a 4 to 1 multiplexer. You must use multiple
instantiations of the mux2to1 module given to you in Part I. This is known as hierarchical design and is a good
practice especially for larger designs where the Verilog can become more difficult to debug.

To complete this section, you will need to use the wire declaration to create wires that can be used to connect
the multiple blocks together.

wire Connection; //creates a wire called Connection

The wire created above is called Connection and it can be used to connect the output of a module to the input of a
module, the same way you used a physical wire in Lab 1 to connect the output of one gate to the input of another
gate. Figure 1 shows a schematic of two modules using the wire Connection.

module block1(in1, out1); module block2(in2, out2);

out1 in2in1 out2
Connection

SW[0] LEDR[5]

Figure 1: Using the wire Connection to make a connection between two modules

The following code fragment corresponds to Figure 1. It creates instances of modules block1 and block2, named
B1 and B2, respectively. The wire Connection is used to wire the module instances together.

block1 B1 (
.in1(SW[0]); // assign port SW[0] to port in1
.out1(Connection); // assign wire Connection to port out1

);

block2 B2 (
.in2(Connection); // assign wire Connection to port in2
.out2(LEDR[5]); // assign port LEDR[5] to port out2

);

Another way to make a connection is to use the assign statement. For example, if we wanted to connect the wire
called Connection to LEDR0, we do the following:

assign LEDR[0] = Connection; // joins wire Connection to LEDR[0]

3

Table 1: Truth table for 4 to 1 multiplexer

s1s0 m

00 u
01 v
10 w
11 x

Now construct a module for the 4 to 1 multiplexer shown in Figure 2 with the truth table shown in Table 1 using
the wire construct and multiple instances of the mux2to1 module.

Figure 2: Symbol for 4 to 1 multiplexer

Perform the following steps.

1. Draw a schematic showing how you will connect the mux2to1 modules to build the 4 to 1 multiplexer. Be
prepared to explain it to the TA as part of your prelab. The schematic should reflect how you are going to
write your Verilog code.

2. Create a new Quartus II project for your circuit.

3. Include your Verilog file for the circuit in your project. Use switches SW9−8 on the DE1-SoC board as the
s input, switches SW3−0 as the inputs. Connect the output to LEDR0. Do not forget that you will need the
DE1 SoC.qsf file to define how the switches and LEDs connect to the pins.

4. Simulate your circuit with ModelSim for different values of s, u, v, w and x. Do enough simulations to
convince yourself that the circuit is working. You must show these to the TA as part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part III

In this part of the lab, you are to design a decoder for the 7-segment HEX display as shown in Figure 3. The
output of the HEX display is determined by the value at the input of the decoder as shown in Table 2.

4

Table 2: Truth table for HEX decoder

c3c2c1c0 Character

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

The 7-segment display uses a common anode. What does common anode mean in terms of lighting up a
segment? You should be able to find the answer online. Section 3.6.2 in the DE1-SoC User manual also tells you
what is needed to turn on a segment.

Figure 3: HEX decoder

Perform the following steps:

1. Draw a schematic of the circuit you want to build and be prepared to explain it to the TA as part of your
prelab. The schematic should reflect how you are going to write your Verilog code.

2. Create a new Quartus II project for your circuit.

3. Create a Verilog module for the 7-segment decoder. Connect the c3c2c1c0 inputs to switches SW3−0, and
connect the outputs of the decoder to the HEX0 display on the DE1-SoC board. The segments in this display
are called HEX00, HEX01, . . ., HEX06. You should declare the 7-bit port

5

output [6:0] HEX0;

in your Verilog code so that the names of these outputs match the corresponding names in the DE1-SoC
User Manual and the pin assignment DE1 SoC.qsf file.

4. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
SW3−0 switches and observing the 7-segment display.

6

