Laboratory Exercise 6

Finite State Machines
October 19, 2017

Learning Objectives

The purpose of this lab is to:

1. learn how to write Finite State Machines (FSMs) in Verilog

2. learn how to use an FSM to control the sequencing of logical operations.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus. Show your relevant preparation (schematics, Verilog, and simulations) for Parts I to III to the teaching
assistants. You must simulate your circuit with ModelSim (using reasonable test vectors you can justify). You
should also show state diagrams for Parts II and III.

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate them to the teaching
assistants.

Part 1

In this part you will implement a basic finite state machine (FSM) in Verilog. All FSMs you write in Verilog
should follow this structure or you can get into lots of trouble.

We wish to implement a FSM that recognizes two specific sequences of applied input symbols, namely four
consecutive 1s or the sequence 1101. There is an input w and an output z. Whenever w = 1 for four consecutive
clock pulses, or when the sequence 1101 appears on w across four consecutive clock pulses, the value of z has to
be 1; otherwise, z = 0. Overlapping sequences are allowed, so that if w = 1 for five consecutive clock pulses the
output z will be equal to 1 after the fourth and fifth pulses. Figure [T)illustrates the required relationship between
w and z for an example input sequence. A state diagram for this FSM is shown in Figure 2}

Figure 3| shows a partial Verilog file for the required state machine. Study and understand this code as it provides
a model for how to clearly describe a finite state machine that will both simulate and synthesize properly.

The toggle switch SWj on the DE1-SoC board is an active-low synchronous reset input for the FSM, SW; is the w
input, and the pushbutton KEYj is the clock input that is applied manually. The LED LEDRy is the output z, and
the state flip-flop outputs are assigned to LEDR3_.

Figure 1: Required timing for the output z.

Perform the following steps:

1. Begin with the template code provided online sequence_detector.v. (PRELAB)
2. Complete the state table and the output logic. (PRELAB)

3. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. (PRELAB)

4. Compile the project. (PRELAB)

5. Download the compiled circuit into the FPGA. Test the functionality of the circuit on your board.

Reset

Figure 2: A state diagram for the FSM.

1

//SW[0]
//SW[1]

reset when 0
input signal
//KEY[0] clock signal

//LEDR[3:0]
//LEDR[9] displays output

module sequence_detector (SW,

input [9:0] SW;

input [3:0] KEY;

output [9:0] LEDR;

wire w, clock, reset_b;
reg [3:0] y_Q, Y_D;
wire out_light;

parameter A = 4'b0000, B

assign w = SW[1];
assign clock = "KEY[O0];
assign reset_b = SW[O0];

// State table

// The state table should only contain the logic for state transitions

// Do not mix in any output logic. The output logic should be handled separately.

K

// y_Q represents current state,

displays current state

EY, LEDR);

4'b0001, C = 4'b0010, D = 4'b0011, E =

// This will make it easier to read, modify and debug the code.

always @ (*)

begin: state_table
case (y_Q)
A: begin
if (!'w) Y_D
else Y. D =
end
B: begin
if(!w) Y_D
else Y. D =
end
C: 2?7272
D: ?2?2?
E: 2?22
F: 2?22
G: 2?7272
default: Y. D = A;
endcase

end // state_table

// State Registers

always @ (posedge clock)

begin: state_FFs
if (reset_b == 1'b0)
y_Q <= 4'b0000;
else

y_Q <= Y_D;
end // state_FFS

// Output logic

= A;
C;

// Set out_light to 1 to turn on LED when in relevant states

assign out_light = ((y_Q == 227?) | (y_Q == ?22?));
// Connect to I/O

assign LEDR[9] = out_light;

assign LEDR[3:0] = y_Q;

endmodule

Figure 3: Verilog code for the FSM.

4'b0100,

F

Y_D represents next state

4'b0101,

G

4'b0110;

Part 11

Please note that there is a lot written here, but a lot of it is explanation and guidance, so please read carefully.

A finite state machine (FSM) on its own, like the one built in Part I, cannot do much and is not what you usually
do with an FSM except to teach how to build an FSM. The primary use of FSMs are to act as the main control for
digital systems that require functions like sequencing or responding in different ways to some stimuli. This part
will show you how to use an FSM to do something more interesting than recognizing a pattern of bits. To help
you focus on the FSM design, you are provided an entire datapath and example FSM that performs a computation.
Your task will be to change the FSM to do a different computation.

Most non-trivial digital circuits can be separated into two main functions. One is the datapath where the data flows
and the other is the control path that manipulates the signals in the datapath to control the operations performed and
how the data flows through the datapath. In previous labs, you learned how to construct a simple ALU, which is a
common datapath component. In Part I of this lab you have already constructed a simple FSM, which is the most
common component used to implement a control path. Now you will see how to implement an FSM to control a
datapath so that a useful operation is performed. This is an important step towards building a microprocessor as
well as any other computing circuit.

In this part, you are given a datapath and an FSM that controls the datapath so that it computes A? + C. Observe
that the example code loads all four values, despite using only two of the values in the computed result. This will
give you a head start because you will need all four values loaded for the task you will do. Also, often when you
inherit code, there might be parts of it that may not be used or be relevant because of how the code evolved. It is
up to you to figure out what is relevant for the task you are given. Feel free to modify the code you are given, if
you feel it is necessary to achieve the final result required.

Using the given datapath, you are required to implement an FSM that controls the datapath so that it performs the
computation:
Az? + Bz +C

The values of z, A, B and C will be preloaded by the user on the switches before the computation begins.

Figure [] shows the block diagram of the datapath you will build. Resets are not shown, but do not forget them.
The datapath will carry 8-bit unsigned values. Assume that the input values are small enough to not cause any
overflows at any point in the computation, i.e., no results will exceed 2° — 1 = 255. The ALU needs only to
perform addition and multiplication, but you could use a variation of the ALU you built previously to have more
operations available for solving other equations if you wish to try some things on your own. There are four
registers R, R4, Rp and R¢ used at the start to store the values of x, A, B and C, respectively. The registers
R4 and Rp can be overwritten during the computation. There is one output register, R, that captures the output
of the ALU and displays the value in binary on the LEDs and in hex on the HEX displays. Two 8-bit-wide, 4-to-1
multiplexers at the inputs to the ALU are used to select which register values are input to the ALU.

All registers have enable signals to determine when they are to load new values and an active low synchronous
reset.

The provided circuit operates in the following manner. After an active low synchronous reset on KEY(, you will
input the value for R4 on switches SW[7 : 0]. When KEY; is pushed and released, R4 will be loaded and then
you will input the next value on the switches that will be loaded into Rp. Press and release KEY; again. Likewise
for R¢ and Rx. Computation will start after KEY; is pressed and released for loading Rx. When computation is
finished, the final result will be loaded into Rp. This final result should be displayed on LEDR~_ in binary and
HEXO0 and HEX in hex. You will use CLOCK_50 as your clock.

data_in

[
1 | |]
W— Id_alu_out
ld_c_ ld_x_| ld_a ld_b
> © > X > A > B
I L 1
T —
| —1 1T
alu_select_a i|:‘/ ¥’_'_/L alu_select_b
alu_op ¥ J/
Id_r
S R
data_result

Figure 4: Block diagram of datapath.

Table 1: Register contents and control signals for computing A% + C

[Reset [1[2[3[4]5]6 7] \

data_in 5041322 2 2

RA O0|5|5|5|5|25]|25

RB 010|444 4| 4

RC 0/0|0[|3]3]| 3 3

Rx 0/]0]0|O0 2|22

RR 0/]0|0|O0O]0O| O |28

Id_a 110|{0]0O]1]| 0 1

Id_b 0|1]0]0]0| 0] O

ldc 0|0]1]0]0| 0] O

Idx 0/0|O0|1]0| 0] O

1d_alu_out 0]0|0]0]1| 0| O | I=selectaluoutput
alu_select_a 0(0]0|O0|0O]| O 0 | O=select A
alu_select_b 0(0]0|O0|0]| 2 0 | 2=select C

alu_op 0{0|0]0O|1| O | O | O=add, 1=multply
Id_r 0/]0]0]O0]0O]| 1 0

Perform the following steps:

1. Examine the Verilog code provided online in poly_function.v. This is a major step in this part of the
lab. You will not need to write much Verilog, but you will need to fully understand the provided Verilog to
make your modifications. Here’s how to read the code and what to look for:

(a) Observe that the top-level module instantiates a module called part?2 and the hex decoder modules
for output. The part2 module contains the main functionality of the design. The top-level module
just connects the LEDs and HEX displays to the outputs of the part2 module. This approach makes
it clear how the actual input/outputs are connected.

(b) The part2 module has two modules called datapath and control, which is the explicit par-
titioning of control logic and the datapath logic. The code has been organized this way to make it
very clear where the control logic is written versus the datapath logic. Most important is that you can
clearly see what control signals coming from the control logic connect to the datapath.

(c) Read the datapath code and identify all the components shown in Figure[d] when looking at the datapath
module.

(d) Identify all the control signals shown ink Figure[dand where they are generated in the control module.
You should see that all the control signals are generated by the FSM in the control module.

(e) Find the case statement that defines the state table for the FSM. Also, find the case statement that
defines the outputs that are set in each state. It is important that the state transitions and the output
logic be in separate case statements. This makes it explicitly clear what logic is being generated
from your Verilog. If you start mixing the state transitions with the outputs, the code becomes very
challenging to understand, with the risk that the Verilog compilation will also do something you did
not intend.

By looking at the state transitions and what outputs are set in each state, observe how the loading of
the four registers is done and how the sequence of the loading is done according the the specification.
How does the FSM handle the pressing and releasing of the input go signal that is wired to KEY7?

You may find it helpful to draw a state diagram because you can then just modify it for Step]

(f) Which states do the actual computation? Identify those states and find the sequence of control signals.
Observe how the computation is done by using Figure [4] and seeing how that sequence of control
signals does the required operation.

(PRELAB)

2. Simulate the given circuit. Make sure you observe the state register of the FSM so that you can watch the
state transitions. You should be able to use the same simulation script after you modify the circuit to do
the new computation, except you may need to account for there being more operations being performed, so
more simulation time will be needed.

Before making changes to any design, it is always good to start from a known state, which in this case is
a working example and a working simulation script. If something goes wrong, go back to when the design
last worked and figure out what change caused the error. (PRELAB)

3. Table [I] shows a table of the sequence of register contents and control signals to do the computation of
A%+ C. You should be able to see the control signals changing the same way in the controller state machine
output logic. Following the model of the provided design, build the table for computing Az? + Bz + C.
Constructing this table will also be discussed in the lectures. (PRELAB)

4. Draw a state diagram for your controller starting with the register load states provided in the example FSM
Verilog code. (PRELAB)

5. Modify the provided FSM Verilog to implement your controller and synthesize it. You should only need to
modify the control module. (PRELAB)

6. To examine the circuit produced by Quartus open the RTL Viewer tool (Tools > Netlist Viewers > RTL
Viewer). Find (on the left panel) and double-click on the box shown in the circuit that represents the finite
state machine, and determine whether the state diagram that it shows properly corresponds to the one you
have drawn. To see the state codes used for your FSM, open the Compilation Report, select the Analysis
and Synthesis section of the report, and click on State Machines.

The state codes after synthesis may be different from what you originally specified. This is because the tool
may have found a way to optimize the logic better by choosing a different state assignment. If you really
need to use your original state assignment, there is a setting to keep it. (PRELAB)

7. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. It is recommended that you start by simulating the datapath and controller modules separately.
Only when you are satisfied that they are working individually should you combine them into the full
design. Why is this approach better? (Hint: Consider the case when your design has 20 different modules.)
(PRELAB)

8. After you are satisfied with your simulations, download and test the functionality of the circuit on the FPGA
board.

Part 111

In this part, you will have to build a complete datapath and corresponding state machine. We recommend that you
still have two separate modules for the datapath and the control just to help you understand the separation of what
is in a datapath and what is in a controller. In Part II, the control logic just generated control signals that were
inputs to the datapath. In this part, you will see that there is a signal that needs to go from the datapath into the
controller so make sure you account for it accordingly.

Division in hardware is the most complex of the four basic operations. Add, subtract and multiply are much easier
to build in hardware. For this part, you will be designing a 4-bit restoring divider using a finite state machine.

Figure [5] shows an example of how the restoring divider works. This mimics what you do when you do long
division by hand. In this specific example, number 7 (Dividend) is divided by number 3 (Divisor). The restoring
divider starts with Register A set to 0. The Dividend is shifted left and the bit shifted out of the left most bit of
the Dividend (called the most significant bit or MSB) is shifted into the least significant bit (LSB) of Register A as

shown in Figure [6]
Divisor
00011
Register Aj (Dividend
00000 0111
00000 1110 Shift left
11101 1110 Subtract Divisor from Register A

00000 1110 AddDivisorto Register A
00000 111@ setgotoOor 1

00001 1100 Shift left

11110 1100 Subtract Divisor from Register A
00001 1100 Add Divisor to Register A
00001 110@ setqgotoOor1

00011 1000 Shiftleft
—0j0000 1000 Subtract Divisor from Register A
00000 100 setqotoOor1

00001 0010 Shiftleft
—1]1110 0010 Subtract Divisor from Register A
00001 0010 AddDivisor to Register A

(OOOOH (001L0_Dsetqot000r1

kRemainded kQuotient

Figure 5: An example showing how the restoring divider works.

Divisor

0O | mslmym;|mg

A5

A A 4 Shift and
A

5-Bit Add/Sub 229291 Add/sub

Control Logic

Left Shift)y q A

0
/v K Y
a;l a

Ay 2| a1 | Qo | A3 | 921 91 | Yo

a, *5 Register A Dividend

4

Figure 6: Block diagram of restoring divider.

The Divisor is then subtracted from Register A. If the MSB of Register A is a I, then we restore Register A back to
its original value by adding the Divisor back to Register A, and set the LSB of the Dividend to 0. Else, we do not
perform the restoring addition and immediately set the LSB of the Dividend to 1. You may use the subtract (—)
and addition (+) operators in Verilog to perform the subtraction and addition. As you will see in later lectures, the
1 in the MSB of Register A means that the value in Register A after the subtraction is a negative number, meaning
that the Divisor is larger than the original value in Register A. That is why Register A is restored by adding back
the Divisor.

This sequence of steps is performed until all the bits of the Dividend have been shifted out. Once the process
is complete, the new value of the Dividend register is the Quotient, and Register A will hold the value of the
Remainder.

To implement this part, you will use SW5_q for the divisor value and SWy_4 for the dividend value. Use
CLOCK_50 for the clock signal, KEY; as a synchronous active high reset, and KEY; as the Go signal to start
computation. The output of the Divisor will be displayed on HEXO, the Dividend will be displayed on HEX2, the
Quotient on HEX4, and the Remainder on HEXS5. Set the remaining HEX displays to 0. Also display the Quotient
on LEDR.

Structure your code in the same way as you were shown in Part II.

Perform the following steps.

1. Draw a schematic for the datapath of your circuit. It will be similar to Figure[6] You should show how you
will initialize the registers, where the outputs are taken, and include all the control signals that you require.
Do not forget the clock and resets. (PRELAB)

2. Draw the state diagram to control your datapath. Check it by hand simulating the example shown in Figure[5]
Hand simulation just means to work through the steps using your schematic and state diagram to check
whether you can do the required operations before going through the effort of setting up the simulator. This
may not catch all bugs, but it is a good step to make sure you have a design that has a chance of working.
(PRELAB)

3. Draw the schematic for your controller module. (PRELAB)

4. Draw the top-level schematic showing how the datapath and controller are connected as well as the inputs
and outputs to your top-level circuit. (PRELAB)

5. Write the Verilog code that realizes your circuit. (PRELAB)

10

6. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. Start with Figure [5]as an example because it shows you all the steps with the values that should be
in the registers at each step. (PRELAB)

7. After you are satisfied with your simulations, download and test the functionality of the circuit on the FPGA
board.

11

