
Laboratory Exercise 4

Latches, Flip-flops, and Registers
September 21, 2017

The purpose of this exercise is to investigate the fundamental synchronous logic elements: latches, flip-flops,
and registers.

Preparation Before the Lab

Review the instructions in Lab 2 about preparations.

Prepare for Part I by drawing the schematic. Prepare for Parts II and III of the lab by writing and testing Verilog
code and compiling it with Quartus. Show your schematics, Verilog, and simulations for Parts II to III to the
teaching assistants. You must simulate your circuit with ModelSim (using reasonable test vectors using ModelSim
scripts).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part I

Figure 1 shows the circuit for a gated D latch (text Section 5.3). In this part, you will build the gated D latch
using the 7400 chips (as in Lab 1) and the protoboard (breadboard). Refer back to the Lab 1 handout for the
specifications of the 7400 chips.

Figure 1: Circuit for a gated D latch.

Perform the following steps:

1. In your lab book, draw a schematic of the gated D latch using interconnected 7400-series chips. Recall from
Lab 1 what a gate-level schematic looks like.

2. Build the gated D latch using the chips and protoboard. Use switches to control the clock and D input. Use
lights to make Qa and Qb visible. Don’t forget to hook up the power and ground on all of your chips!

3. Study the behaviour of the latch for different D and clock settings.

1

4. Demonstrate your latch implementation to the TA.

Part II

In modern digital circuit design, latches are rarely used, and only in very special circumstances. The most common
storage element today is the edge-triggered D flip flop. One way to build an edge-triggered D flip flop is to connect
two D latches in series with the two D latches using opposite edges of the clock. This is called a master-slave flip
flop (text Section 5.4.1). The output of the master-slave flip flop changes on a clock edge, unlike the latch, which
changes according to the level of the clock. For a positive edge-triggered flip flop, the output changes when the
clock edge rises. The Verilog code for a positive edge-triggered flip flop is shown in Figure 2 (text Section A.14.2,
A.14.3). This flip flop also has an active-low, synchronous reset, meaning that the reset only happens when
Reset b = 0 on the rising clock edge. If q is declared as reg q, then you get a single flip flop. If q is declared as
reg[7:0] q, then you get eight parallel flip flops, which is called an 8-bit register. Of course, d should have the
same width as q.

always @(posedge Clock) // triggered every time clock rises
begin

if (Reset b == 1’b0) // when Reset b is 0 (note this is tested on every rising clock edge)
q <= 0; // q is set to 0. Note that the assignment uses <=

else // when Reset b is not 0
q <= d; // value of d passes through to output q

end

Figure 2: Verilog for a positive edge-triggered flip flop with active-low, synchronous reset.

Starting with the circuit you built for Lab 3 Part III build an ALU with the eight operations as shown in the
pseudo-code in Figure 3. The output of the ALU is to be stored in an 8-bit register (text Section A.14.4) and the
four least-significant bits of the register output are connected to the B input of the ALU. You may want to review
Verilog operators (text Section 4.6.5). Figure 4 shows the required connections.

always @(*) // declare always block
begin

case (function) // start case statement
0: A + B using the adder from Part II of this Lab
1: A + B using the Verilog ‘+’ operator
2: A XOR B in the lower four bits and A OR B in the upper four bits
3: Output 8’b00011000 if at least 1 of the 8 bits in the two inputs is 1 using a single OR operation
4: Output 8’b11100111 if all of the 8 bits in the two inputs are 1 using a single AND operation
5: Left shift A by B bits
6: A×B using the Verilog ‘*’ operator
7: Hold current value in the Register, i.e., the Register value does not change
default: . . . // default case

endcase
end

Figure 3: Pseudo-code for ALU.

2

Figure 4: Simple ALU with register circuit for Part II.

Perform the following steps.

1. Draw a schematic showing your code structure with all wires, inputs and outputs labeled. Connect the Data
input to switches SW3−0. Connect KEY0 to the Clock input for the register, SW9 to Reset b and use KEY3−1

for the ALU function inputs. Display the outputs on LEDR7−0; have HEX0 display the value of Data and
set HEX1, HEX2 and HEX3 to 0. HEX4 and HEX5 should display the least-significant and most-significant
four bits of Register respectively.

Be prepared to explain it to the TA as part of your preparation.

2. Create a Verilog module for the simple ALU with register. Use the code in Figure 2 as the model for your
register code.

3. Create a new Quartus project for your circuit.

4. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your preparation.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

3

Part III

Figure 5 shows a positive edge-triggered flip-flop with several multiplexers. In this part of the lab, you will use
eight instances of the circuit in Figure 5 to design a left/right 8-bit rotating register with parallel load shown in
Figure 6.

A rotating register uses the concept of shifting bits (text Section 5.8, A.14.5) in the register. When bits are shifted
in a register, it means that the bits are copied to the next flip flop on the left or the right. For example, to shift the
bits left, each flip flop loads the value of the flip flop to its right when the clock edge occurs. The term rotating
comes from how the bits at the ends of the register are handled. In the left-shift example, the flip flop at the right
end of the register has no right neighbour. One option is to load a zero, but for rotation we load the value of the
flip flop at the left end of the register. The behaviour is as if the register were really a ring because the left and
right ends are connected.

The LoadLeft input of all eight instances of the circuit in Figure 5 should be tied to the single rotating register
input RotateRight because when you want to rotate the bits right, you have to load the bit to the left. The loadn
input of all eight instances should be tied to the single rotating register input ParallelLoadn. The clock input of all
eight instances should be tied to the single rotating register input clock. Create an 8-bit-wide rotating register input
DATA IN, whose individual wires DATA IN7 to DATA IN0 are tied to the D input of each instance of the circuit in
Figure 5. Likewise, create an 8-bit-wide rotating register output Q, whose individual wires Q7 to Q0 are tied to
the Q output of each instance of the circuit in Figure 5.

Figure 5: Sub-circuit for Part III.

8

8

D
AT

A
_I

N
[7

:0
]

Ro
ta

te
Ri

gh
t

Pa
ra

lle
lL

oa
dn

clock

Q
[7

:0
]

8-bit left/right
rotating register

with parallel loadreset

A
SR

ig
ht

Figure 6: Top-level circuit for Part III.

4

The remaining connections between the eight instances of the circuit in Figure 5 should realize the following
behaviour:

1. When ParallelLoadn = 0, the value on DATA IN is stored in the flip-flops on the next positive clock edge
(i.e., parallel load behaviour).

2. When ParallelLoadn = 1, RotateRight = 1 and ASRight = 0 the bits of the register rotate to the right on each
positive clock edge (notice the bits rotate to the right with wrap around):

Q7Q6Q5Q4Q3Q2Q1Q0

Q0Q7Q6Q5Q4Q3Q2Q1

Q1Q0Q7Q6Q5Q4Q3Q2

. . .

3. When ParallelLoadn = 1, RotateRight = 1 and ASRight = 1 the bits of the register rotate to the right on each
positive clock edge but the most significant bit is replicated. This is called an Arithmetic shift right:

Q7Q6Q5Q4Q3Q2Q1Q0

Q7Q7Q6Q5Q4Q3Q2Q1

Q7Q7Q7Q6Q5Q4Q3Q2

. . .

4. When ParallelLoadn = 1 and RotateRight = 0, the bits of the register rotate to the left on each positive clock
edge. ASRight is ignored:

Q7Q6Q5Q4Q3Q2Q1Q0

Q6Q5Q4Q3Q2Q1Q0Q7

Q5Q4Q3Q2Q1Q0Q7Q6

. . .

Do the following steps:

1. Draw a schematic for the 8-bit rotating register with parallel load. Your schematic should contain eight
instances of the sub-circuit in Figure 5 and all the wiring required to implement the desired behaviour.
Label the signals on your schematic with the same names you will use in your Verilog code.

Use SW7−0 as the inputs DATA IN7−0 and SW9 as a synchronous active high reset. Use KEY1 as the
ParallelLoadn input, KEY2 as the RotateRight input and KEY3 as the ASRight input. Use KEY0 as the clock,
but read the important note below about switch bouncing. The outputs Q7−0 should be displayed on the
LEDs (LEDR7−0).

2. Starting with the code in Figure 2 for a flop flop, modify it to have an active-high synchronous reset.
Combine this new flip flop with instances of the mux2to1 module from Lab 2 to build the sub-circuit shown
in Figure 5. To get you started, Figure 7, is a sample of hierarchical code showing the D flip flop with one
of the 2-to-1 multiplexers connected to it.

5

mux2to1 M1(//instantiates 2nd multiplexer
.x(rotatedata) //output from left most multiplexer
.y(data D) //data D coming in
.s(parallel loadn) //selects input D or rotate
.m(datato dff) //outputs to flip flop

);

flipflop F0(//instantiates flip flop
.d(datato dff) //input to flip flop
.q(out Q) //output from flip flop
.clock(clock) //clock signal
.reset(reset) //synchronous active high reset

);

Figure 7: Part of the code for the sub-circuit in Figure 5.

3. Create a new Quartus project.

4. Write a Verilog module for the rotating register with parallel load that instantiates eight instances of your
Verilog module for Figure 5. This Verilog module should match with the schematic in your lab book.

5. Include the Verilog code in your project.

6. Compile your Verilog code and simulate the design with ModelSim. In your simulation, you should perform
the reset operation first. Then, clock the register for several cycles to demonstrate rotation in the left and right
directions. (NOTE: If you do not perform a reset first, your simulation will not work! Try simulating
without doing reset first and see what happens. Can you explain the results?)

7. Download your circuit on the DE1-SoC board.

8. Test the functionality of your rotating register.

Note: If you run into bounce problems with KEY0 for your clock you are welcome to try using any of the keys.
All mechanical switches, such as a push/toggle button, will often make contact several times due the electrical
contacts bouncing. This happens quickly in human time, but not in electrical time. With a bouncing switch you
can observe multiple high-frequency toggles making it difficult to create single clock edges.

6

