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DISCLAIMER: The information contained in this document does NOT contain official 
grading policy. The information provided here is based on my personal experience with 
ECE241 course projects in the previous years. Its purpose is to warn you of some 
common mistakes and answer some common questions student in earlier years had. As 
grading policies and project requirements change from year to year, please consult course 
web site or your instructor for official policies. 

THIS DOCUMENT MAY CONTAIN SOME MISTAKES. I will do my best to point 
those mistakes to you if I discover any, but I cannot make any guarantees. 

All information in this document is MY PERSONAL PREFERRED WAY OF DOING 
VARIOUS TASKS RELATED TO HARDWARE DESIGN. It is by no means the only 
possible way to perform these tasks. Also, this document does not cover, nor does it 
attempt to cover all aspects of various problems discussed. Therefore, you should not 
make any implications on aspects of the problems not mentioned in this document. In 
other words, if the document states X, and you try to do Y, which is “very similar to X” , 
do not assume that statements this document makes for X necessarily hold for Y. 
CHECK YOUR ASSUMPTIONS against your textbook, course notes, your instructor’s 
and/or TA’s advice, compilation and simulation results from Quartus, and finally, 
common sense. 

Verilog and Quartus Issues 

When using Verilog for the first time in a real project, users are often tempted to use 
fancy features of the language to make their lives easier. Unfortunately, if one succumbs 
to those temptations, they usually make their lives harder. The main reason for that is that 
Verilog, the way it is used in ECE241 labs and the way Quartus II interprets it, is not a 
programming language. Verilog is a hardware description language, meaning that various 
blocks of code directly map into hardware. Therefore, the designers must always have in 
mind the circuit they want to implement, not the program they want to write. 

NOT ALL STATEMENTS THAT ARE LEGAL IN VERILOG WILL TRANSLATE 
INTO HARDWARE THAT PERFORMS THE FUNCTIONS THAT A HUMAN 
WOULD EXPECT WHEN READING THE CODE. Through following examples I will 
attempt to show some common mistakes and misconceptions. General rule is that it is 
NOT advisable to be creative when writing the Verilog code. It is much better to follow 
the practices known to work well. Too much creativity may result in Quartus 
misinterpreting the intentions of the designer and producing unexpected results. 

 



Many useful tips on common mistakes in writing Verilog code can be found IN 
SECTION A15 OF THE TEXTBOOK (S. Brown, Z. Vranesic: Fundamentals of Digital 
Logic with Verilog Design, McGraw-Hill: New York, 2003). 

 

Asynchronous inputs to registers 

One of the best examples of how even a minor change in the code can result in a major 
change in the resulting circuit is syntax for specifying asynchronous inputs to flip-flops. 
The following two pieces of code might seem to implement the same functionality: 

 

However, compiling these two pieces of code with Quartus II produces significantly 
different results 

 
The underlying reason is in how Quartus “ infers”  which signal in the sensitivity list is a 
clock, and which is an asynchronous input. An edge sensitive always block with more 
than one signal in the sensitivity list has to include a chain of if-else statements; the last 
else in the chain is assumed to specify the clock signal and the clock event. Therefore in 
the first code sample, the last else specifies that on the active edge of the clock cl k , q 
will become equal i n. The clock itself is inferred from the fact that the only possible way 
to reach that else branch is the positive edge on the cl k  signal. 

The situation is reversed in the second code sample: the last else specifies that on the 
active edge of the clock q will become equal 0. The clock itself is inferred from the fact 
that the only possible way to reach that else branch is the negative edge on the r eset n 
signal. 

The schematics for these examples were obtained using RTL Viewer tool. It is very 
useful to analyze how your code maps into hardware. You can access it through  

al ways @ ( posedge cl k or  
negedge r eset n)  

i f  ( r eset n == 0)  q <= 0;  

el se q <= i n;  

 

al ways @ ( posedge cl k or  
negedge r eset n)  

i f  ( c l k == 1)  q <= i n;  

el se q <= 0;  

 



Tools->Netlist Viewers->RTL Viewer. You have to compile your design first, or at least 
perform Analysis & Elaboration. 

MORAL: WRITE THE CODE THE WAY IT IS RECOMMENDED IN THE 
TEXTBOOK! 

 

Edge-Sensitive vs. Level-Sensitive always Blocks 

There are three simple rules to follow: 

a. If you want to implement a register, use edge-sensitive always block (posedge, 
negedge) 

b. If you want to implement combinational logic (gates) use level-sensitive always 
block. Alternatively, use an assi gn statement, in which case you do not use an 
always block 

When you use level-sensitive always block, instead of writing 
al ways @ ( a or  b or  c) , you can simply write 

al ways @( * )  

*  automatically includes all the signals used inside the always block into the 
sensitivity list. 

It is impossible to specify an incomplete sensitivity list. The following code does 
not make sense: 

r eg out ;  

 al ways @( i n1)  

 begi n 

 out  = i n1 & i n2 & i n3;  

end 

You should keep in mind that level-sensitive always block describes logic gates. 
Can you imagine a 3-input AND gate whose output only changes when only one of 
its inputs changes, but not the other two? 

This code is still legal. Quartus will issue a warning and assume that you forgot to 
include signals in2 and in3 into the sensitivity list, and produce AND gate as if 
those signals were in the sensitivity list. That’s why it makes sense to simply write 
al ways @( * ) . 

It is also important to note that out  is not a register. The fact that variable is 
defined as r eg only means that it is going to be assigned a value inside an always 
block. Whether that variable gets implemented as a register or not depends on the 
type of the always block (edge-sensitive → register, 

level-sensitive → combinational logic) 



c. Always block cannot contain both edge-sensitive and level-sensitive signals. i.e 
al ways @( a or  posedge b)  is an illegal statement. One always block either 
describes a register or combinational logic, not both! 

 

Blocking vs. Non-blocking Assignments 

Verilog supports two types of assignments: blocking (=) and non-blocking (<=). There 
are three simple rules that should keep you out of trouble: 

a. Always use ONLY blocking assignments inside level-sensitive always blocks 
(describing combinational logic) 

b. Always use ONLY non-blocking assignments inside edge-sensitive always blocks 

c. Therefore, never mix blocking and non-blocking assignments inside the same 
always block. 

Any differences you might have learned between blocking and non-blocking assignments 
do not matter much if you stick to the three rules above, and keep in mind that an edge-
sensitive always block always produces a register, and level-sensitive always block 
always produces combinational logic, as described in the previous section. 

 

Module Instantiation 

Module instantiation is equivalent to plugging a piece of hardware whose functionality is 
specified in a given module into the design. MODULE INSTANTIATION IS NOT A 
FUNCTION CALL. Therefore, modules can NOT be instantiated within always blocks 
(the meaning of that would be: “plug in a new piece of hardware every time some signals 
change”, which obviously does not make sense).  

 

“ Initializing”  variables 

Often times you may want to “ initialize”  some variable and attempt to do the following 
(which is WRONG!!!): 

r eg out  = 0;  

This just does NOT work, because you are designing hardware. In hardware, wires 
cannot have “ initial values” . If you need some wire to have certain value when the circuit 
is powered up, you should design a register with a reset input. When the reset is asserted, 
the value of the register should become the “ initial value” . If you do not understand the 
last sentence, check the textbook to see how registers with reset signals are implemented 
in Verilog. Note that Quartus will still compile the code above, but will ignore the 
“ initialization” . 

 



How do I  write a function? 

Avoid using Verilog functions or tasks, because they do NOT behave anything like C 
functions, and they are not particularly useful for small designs like yours. 

Avoid latches 

Latches and/or gated latches get inferred from your code if you do not specify all possible 
cases in if-else or case statements. For instance the following code will produce a latch: 

al ways @( i n or  en)  

begi n 

 i f  ( en)  out  = i n;  

end 

The rationale for doing this goes something like this: “ I need a temporary variable which 
will only change if enable is high, otherwise it should stay the same”. The person 
reasoning like this is thinking programming instead of hardware design. First of all, 
THERE IS NO SUCH THING AS A TEMPORARY VARIABLE in Verilog. If you need 
some value to be retained, USE CLOCKED REGISTER! 

Variant of this code is this: 

al ways @( i n or  en)  

begi n 

 i f  ( en)  out  = i n;  

el se out  = out ;  

end 

These two pieces of code are identical and they both produce a latch, and they both 
represent a VERY BAD DESIGN PRACTICE. Latches can slow down the operational 
frequency of your circuitry and in some cases even introduce unpredictable behaviour, 
depending on your coding style. Similar problem occurs if you do not specify all possible 
cases in your case statements. That’s why it is a good practice to always include a default 
statement, and that DEFAULT STATEMENT CANNOT SPECIFY THAT A SIGNAL 
SHOULD REMAIN WHAT IT ALREADY IS (e.g. out=out;), because that is the same 
as not specifying the default statement at all. Also, the default statement has to specify 
ALL THE SIGNALS assigned elsewhere in the case statement. E.g. the following code 
will result in a latch for signals b and c. 



al ways @( i n1 or  i n2 or  i n3)  

begi n 

 case ( { i n1, i n2} )  

 2’ b00:  begi n 

  a = 1’ b0;  b=1’ b1;  c=i n3;  

 end 

 2’ b01:  begi n 

  a=1’ b1;  b=i n2;  c=i n1;  

 end 

 def aul t :  begi n 

  a=1’ bx;  

 end 

 endcase 

end 

The above code correctly specifies that in default case the value of a is don’ t care (1’bx 
means 1 bit don’ t care), however, it does not specify what the values of b and c should be 
in the default case. Therefore, signals b and c will be implemented as latches, which 
should be avoided. 

 

Simulation Issues 

Sometimes you may have to simulate a complex circuit for the purpose of debugging. For 
efficient debugging, it is often useful to be able to monitor the values of the signals 
internal to the circuit. That is not always possible because Quartus performs many 
optimizations, and usually does not keep track of exact signal names in the process. 
Therefore, to monitor the internal signals one has to bring those signals out to the top 
level of the design and make them outputs of your circuit, so that they become visible in 
the simulation waveform. 

 

How NOT to Implement Algorithms 

The most challenging task when writing a Verilog code is describing various algorithms 
that your project requires. Since Verilog is so similar to C, one is tempted to implement 
an algorithm similarly to C code. In such a case, one is tempted to use f or  or whi l e 
loops, functions and tasks. As previously mentioned, Verilog functions and tasks should 
be avoided, because they are not very useful when the circuits are synthesized. f or  and 
whi l e loops should be avoided in MOST cases, however, they can be useful sometimes, 
if one is aware of their meaning and limitations. The following discussion will focus on 
f or  loops, but it is also applicable to whi l e loops. f or  loop can be used to write some 



code in a shorter way. Assume you have a 4-bit signal, and you would like to reverse bits 
in that signal. One way to do that is to write the following code: 

wi r e [ 3: 0]  a;  

wi r e [ 3: 0]  b;  

assi gn b[ 3]  = a[ 0] ;  

assi gn b[ 2]  = a[ 1] ;  

assi gn b[ 1]  = a[ 2] ;  

assi gn b[ 0]  = a[ 3] ;  

A shorter way to write this is using the following code: 

wi r e [ 3: 0]  a;  

r eg [ 3: 0]  b;  

i nt eger  i ;  

al ways @( * )  

begi n 

f or  ( i =0;  i <=3;  i =i +1)  

b[ i ]  = a[ 3- i ] ;  

end 

Using f or  loop in this way is legal and desirable. However, the main limitation of the 
f or  loop is that loop index limits (0 and 3 in the previous example) have to be constants 
or parameters. It is not possible to specify something like this: 

wi r e [ 3: 0]  a;  

al ways @( * )  

begi n 

f or  ( i =0;  i <=a;  i =i +1)  

  / /  do somet hi ng 

end 

This code results in compile time error “Error: Verilog HDL For Statement error: must 
use only constant expressions in terminating conditions”  

This limitation seriously reduces usefulness of the f or  loop, and it is obvious that it can 
hardly be used to describe an algorithm. Another FLAWED approach with using f or  
loops is the following code: 



modul e t emp ( a,  b,  c l k) ;  

i nput  c l k;  i nput  [ 3: 0]  a;  out put  [ 3: 0]  b;  

r eg [ 3: 0]  b;  i nt eger  i ;  

al ways @( posedge cl k)  

begi n 

 f or  ( i =0;  i <=3;  i =i +1)  

 i f  ( a[ i ]  == 1)  

  b <= b + 4' b0001;  

end 

endmodul e 

The intention of the designer was to describe an algorithm that counts the number of bits 
of a that are equal to 1, and outputs that number on b. This code is flawed for several 
reasons. First of all, it is unclear when this “algorithm” has completed its work and 
produces a correct result. Second, the code doesn’ t produce circuitry even close to what 
was intended. The code produced is in effect equivalent to the code one would write if 
one manually wrote all the steps of the f or  loop. Therefore, this code is equivalent to: 

modul e t emp ( a,  b,  c l k) ;  

i nput  c l k;  i nput  [ 3: 0]  a;  out put  [ 3: 0]  b;  

r eg [ 3: 0]  b;  

al ways @( posedge cl k)  

begi n 

 i f  ( a[ 0]  == 1)  b <= b + 4' b0001;  

 i f  ( a[ 1]  == 1)  b <= b + 4' b0001;  

 i f  ( a[ 2]  == 1)  b <= b + 4' b0001;  

 i f  ( a[ 3]  == 1)  b <= b + 4' b0001;  

end 

endmodul e 

If you are not convinced that these two pieces of code produce the same result, type them 
into Quartus and synthesize, and use RTL Viewer to check the resulting circuitry. 

You might think that the second code actually counts the bits in a that are set. However it 
does NOT. If there are multiple assignments to the same variable inside an always block, 
only the last assignment is taken into account. Therefore the above code will increment 
(increase by 1) a value in register b if input a has at least one bit set, regardless of the 
actual number of bits that are set. This will occur on every positive clock edge, thus 
producing a simple counter. This is far from the intended behaviour. In case a has all bits 
set to 0, the value of the register b will not change. 



How to Implement Algorithms 

The best way to implement an algorithm in hardware is to come up with a way to 
represent the algorithm as a finite state machine (FSM) controlling a datapath. In the 
example above, counting bits in an input signal can be done by using a datapath 
consisting of a shift register and a counter. The shift register is used to store the input 
number, while the counter is used to count the bits. FSM first resets the counter and loads 
the shift register (in parallel) from the input. Then the FSM enables the shift register to 
shift the number to the right by one position in each clock cycle. In each clock cycle the 
counter is incremented if the shift-register bit in position 0 is set. Once all the bits have 
been shifted, the counter contains the number of bits that are set, and FSM asserts signal 
done, meaning that the algorithm has finished, and the result can be read from the 
counter. 

 

How to “ slow down”  the clock 

In many projects there is usually a need for some part of the circuitry to operate slower 
than the clock that is usually available on the development board. For instance, if a 
project includes animation on VGA display, the object will usually move too fast across 
the screen if the animation is implemented by an FSM clocked at 50 MHz. Therefore, 
clock needs to be “slowed down”, or divided. Clock division refers to the fact that the 
clock frequency is divided by a certain factor. 

The approach that works well in FPGAs (and in other technologies) is to use a 
synchronous enable signal to “slow down”  the operation of one or more flip-flops. The 
idea is that, instead of slowing down the clock, we can simply disable the flip-flop for a 
number of clock cycles, and only enable it once in a while. For instance, if a flip-flop is 
only enabled every 10th clock cycle, its operation is identical to the flip-flop driven with 
10 times lower clock frequency. A simple way to obtain a signal that will enable the flip-
flop only every x cycles is to have a counter that counts from 0 to (x-1). Then the enable 
signal should only go high when the counter is equal to (x-1). One enable signal will 
typically be used for many flip-flops, because we usually want to slow down the 
operation of a part of the circuit, not just a single flip-flop. 

 

How to draw and move simple objects across the screen 

In lab 7 you learned how to move a dot across the screen using 2 counters. Part 3 of the 
lab 7 deals with moving a small picture across the screen. A suggested way of doing this 
is to copy contents of a memory module that resides outside the VGA controller to a 
specific location on the screen. This is useful to draw small pictures. 

Alternatively, if your object is simple enough, you can draw it by using a simple FSM. 
First, we have to have a pixel map of the object we want to draw. Assume, we want to 
draw letter H in the top left of the screen, as in the figure below.  



  

 

One way to draw this object is to design an FSM that will output the row, column and 
colour of each pixel and write them to video memory. A sequence for letter H would be: 

 

row column colour 

0 0 1 

0 1 0 

0 2 1 

1 0 1 

1 1 1 

1 2 1 

2 0 1 

2 1 0 

2 2 1 

 

The above table is derived assuming colour 1 means the pixel is on (black in the picture 
above), and 0 means the pixel is off (white in the picture above). 

Such an FSM would then always output the letter H to the top left corner of the screen. 
The simplest way to move this object on the screen is to have two counters, much like in 
lab 7, which will define the coordinate of the top left corner of letter H on the screen. Let 
us call these counters offset_x, and offset_y. We now use an adder to add the column 
output of the FSM to the offset_y counter, and another adder to add the row output of the 
FSM to the offset_x counter. Connecting the outputs of these adders to the video memory 

0       1        2      3   … 

…
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  2

   
   

1 
   

  0
 



(instead of connecting signals row and column directly), we get a circuit that can draw 
letter H anywhere on the screen. If you are not clear on how this works, try writing a 
table, like the one above, of values that will be produced by the described circuit when 
the counters have some non-zero values (e.g offset_x = 10, offset_y = 20). 

If the counters are controlled by buttons, the letter can be moved across the screen. Of 
course, the FSM has to be designed to erase the letter at the old position before updating 
the counters and drawing it at the new position. Erasing is simply done by setting all the 
pixels at the old position to 0. Moving a picture that you copy from memory is done in a 
similar way, as is described in part 3 of lab 7. 


