Laboratory Exercise 3

Combinational Logic and Displays

This is an exercise in designing combinational circuits that can drive 7-segment displays, and perform a variety of
different functions.

Preparation Before the Lab

You are required to complete Parts I to III of the lab by writing and testing Verilog code and compiling it with
Quartus II. Show your schematics, Verilog, and simulations for Parts I to III to the teaching assistants. You must
simulate your circuit with ModelSim (using reasonable test vectors using the format shown in the previous lab).

In-lab Work

You are required to implement and test all of Parts I to III of the lab. You need to demonstrate all parts to the
teaching assistants.

Part 1

For this part of the lab, you will be learning how to use always blocks and case statements to design a 7 to 1
multiplexer. A module can contain any number of always blocks just the same as any module can contain any
number of other module instantiations. The difference is that an always block can only instantiate logic within the
module where it is defined. A module can be instantiated in any other module, i.e., it can be reused.

Fill out the rest of the case statement and add any wires you may need and connecting them using the assign
statement described in the previous lab.

always @(*) // declare always block
begin
case (select[2:0]) // start case statement
begin
0: out[0] = in[0]; // case O
1: ... // case 1
2: . // case 2
3. // case 3
4: . // case 4
5:. // case 5
6: ... /l case 6
default: ... /1 default case
end
end

An always block is triggered whenever there is a change in the sensitivity list. This list is denoted by the aster-
isk character in the above example. This means that whenever any input is changed, the following code will be
simulated. Similarly, we can change the asterisk to certain inputs to limit when this code is triggered, but this can
lead to simulations that do not match the real hardware. One of the (bad) features of the language. The accepted
practice today is to always use the asterisk.

It is important to have a default case to ensure that all cases are covered. Otherwise, you can again have sim-
ulations that do not match the hardware. Yet another Verilog feature! Your goal is to write Verilog that will

generate hardware that exactly matches the simulation, so please put in the default statement.

If you want to know why, read on. When you execute an always block, the use of if and case statements can
take you through different code paths. If you reach the end of the always block and there is an unassigned (reg)
variable, then a memory element, a latch, will be created because the meaning is that the variable keeps its pre-
vious value, so a memory element is inferred. The problem becomes more subtle because if select in the above
example is three bits, there are actually more than eight cases! Each bit can be (1,0,X,Z), so there are really 64
possible paths. Synthesis tools will likely assume only (1,0) and create the correct circuit, but the simulator may
not do the same. Always, always put in the default statement.

Using SWg_¢ as the data inputs SWy_7 as the select signals. Display on LEDR the output of a 7 to 1 multi-
plexer using the case statement shown above.

1. Draw a schematic outlining the hierarchies you will use and explain them to the TA as part of your prelab.
2. Create a new Quartus II project for your circuit.

3. Include your Verilog file for the circuit in your project. Use switch SWo_7 on the DE1-SoC board as the
select input, switches SWs_¢ as the data inputs. Connect the output to LEDRy.

4. Simulate your circuit with ModelSim for different values of select and data. You must show these to the
TA as part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part 11

Figure 2a shows a circuit for a full adder, which has the inputs a, b, and ¢;, and produces the outputs s and
Co. Parts b and c of the figure show a circuit symbol and truth table for the full adder, which produces the two-bit
binary sum c,s = a + b + ¢;. Figure 2d shows how four instances of this full adder module can be used to design
a circuit that adds two four-bit numbers. This type of circuit is usually called a ripple-carry adder, because of
the way that the carry signals are passed from one full adder to the next. Write Verilog code that implements this
circuit, as described below. Be sure to use what you learned about hierarchy in Lab 2.

a D_ D—s c;

a FA
b h —| €o
C(J
a) Full adder circuit b) Full adder symbol
bac| c s by aj c5 b, a, c, by a; c by ay ¢y
cooloo J i A b E]
010 01
011 10 FA FA FA FA
100 01
101 | 10
o] b R B g B
L1l I C S S S S
out °3 2 1 0
c¢) Full adder truth table d) Four-bit ripple-carry adder circuit

Figure 2. A ripple-carry adder circuit.

Perform the following steps.
1. Draw a schematic outlining the hierarchies you will use and explain them to the TA as part of your prelab.

2. Create a new Quartus II project for the adder circuit. Write a Verilog module for the full adder subcircuit
and write a top-level Verilog module that instantiates four instances of this full adder.

3. Use switches SW;_4 and SW3_ to represent the inputs A and B, respectively. Use SWy for the carry-in
¢;in, Of the adder. Connect the outputs of the adder, c,,; and S, to the green lights LED Ry and LED R3.
respectively.

4. Simulate your adder with ModelSim for intelligently chosen values of A and B and c¢;,,. You must show
these to the TA as part of your prelab. Note that as circuits get more complicated, you will not be able to
simulate or test all possible cases. This means that you have to test only a subset. Here intelligently chosen
means to find particular corner cases that exercise all aspects of the circuit. Be prepared to explain why
your test cases are good enough.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit by toggling the
switches and observing the LEDs.

Part II1

Using Parts I and II from this lab and the HEX decoder from Lab 2 Part III, you will implement a simple Arith-
metic Logic Unit (ALU). This unit can perform multiple operations such as addition, sign extension, etc. The
output result of each operation is sent to the multiplexer. If selected by the multiplexer, the operation result will
display at the output.

Shown in the case statement blew are the operations for each case. The multiplexer has an 8-bit input and 8-
bit output.

always @(*) /I declare always block
begin
case (select) // start case statement
begin
0: Addition using Part II of this Lab
: Addition using ’+’ operator
: Sign extend value B (SW3_g) to 8 bits
: Find if at least 1 of the 8 bits is 1 using a single OR operation
: Find it all of the 8 bits are 1 using a single AND operation
: Display the values on the switches
default: ... //default case
end
end

[T "SRR SR

Note that in this part of the lab, you will need to learn concatenation for the additions, sign extension, and
reduction operations for ORing and ANDing multiple bits without typing ever single bit out.
Perform the following steps:

1. Draw a schematic outlining the hierarchies you will use and explain them to the TA as part of your prelab.
2. Create a new Quartus II project for your circuit.

3. Create a Verilog module for the simple ALU. Connect the A and B inputs to switches SW7_, and SW3_g
respectively, and connect KEY>_(for select signals. Display the outputs on LEDR7_o; have HEX0 and
HEX?2 display output of A and B respectively and set HEXI and HEX3 to 0. HEX4 and HEX5 should
display the sum and carry out respectively.

4. Simulate your circuit with ModelSim for a variety of input settings, ensuring the output waveforms are
correct. You must show this to the TA as part of your prelab.

5. Compile the project.

6. Download the compiled circuit into the FPGA chip. Test the functionality of the circuit.

Note: In your simulation, KEY3_(are inverted. Remember that the DE1-SoC board recognizes an unpressed
pushbutton as a value of 1 and a pressed pushbutton as a 0.

